nxs-analysis-tools 0.0.36__py3-none-any.whl → 0.0.38__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nxs-analysis-tools might be problematic. Click here for more details.
- _meta/__init__.py +1 -1
- nxs_analysis_tools/pairdistribution.py +14 -13
- {nxs_analysis_tools-0.0.36.dist-info → nxs_analysis_tools-0.0.38.dist-info}/METADATA +4 -1
- nxs_analysis_tools-0.0.38.dist-info/RECORD +11 -0
- nxs_analysis_tools-0.0.36.dist-info/RECORD +0 -11
- {nxs_analysis_tools-0.0.36.dist-info → nxs_analysis_tools-0.0.38.dist-info}/LICENSE +0 -0
- {nxs_analysis_tools-0.0.36.dist-info → nxs_analysis_tools-0.0.38.dist-info}/WHEEL +0 -0
- {nxs_analysis_tools-0.0.36.dist-info → nxs_analysis_tools-0.0.38.dist-info}/top_level.txt +0 -0
_meta/__init__.py
CHANGED
|
@@ -16,6 +16,11 @@ import pyfftw
|
|
|
16
16
|
from .datareduction import plot_slice, reciprocal_lattice_params, Padder, \
|
|
17
17
|
array_to_nxdata
|
|
18
18
|
|
|
19
|
+
__all__ = ['Symmetrizer2D', 'Symmetrizer3D', 'Puncher', 'Interpolator',
|
|
20
|
+
'fourier_transform_nxdata', 'Gaussian3DKernel', 'DeltaPDF',
|
|
21
|
+
'generate_gaussian'
|
|
22
|
+
]
|
|
23
|
+
|
|
19
24
|
|
|
20
25
|
class Symmetrizer2D:
|
|
21
26
|
"""
|
|
@@ -870,9 +875,6 @@ class Gaussian3DKernel(Kernel):
|
|
|
870
875
|
The default is [1, 0, 1, 0, 1, 0], corresponding to the Gaussian form:
|
|
871
876
|
(1 * X^2 + 0 * X * Y + 1 * Y^2 + 0 * Y * Z + 1 * Z^2 + 0 * Z * X).
|
|
872
877
|
|
|
873
|
-
**kwargs : keyword arguments
|
|
874
|
-
Additional keyword arguments passed to the parent class constructor.
|
|
875
|
-
|
|
876
878
|
Raises
|
|
877
879
|
------
|
|
878
880
|
ValueError
|
|
@@ -892,7 +894,7 @@ class Gaussian3DKernel(Kernel):
|
|
|
892
894
|
x_dim, y_dim, z_dim = size
|
|
893
895
|
x = np.linspace(-x_dim, x_dim, int(x_dim) + 1)
|
|
894
896
|
y = np.linspace(-y_dim, y_dim, int(y_dim) + 1)
|
|
895
|
-
z = np.
|
|
897
|
+
z = np.linspace(-z_dim, z_dim, int(z_dim) + 1)
|
|
896
898
|
X, Y, Z = np.meshgrid(x, y, z)
|
|
897
899
|
array = np.exp(-(coeffs[0] * X ** 2 +
|
|
898
900
|
coeffs[1] * X * Y +
|
|
@@ -907,7 +909,7 @@ class Gaussian3DKernel(Kernel):
|
|
|
907
909
|
self._truncation = np.abs(1. - self._array.sum())
|
|
908
910
|
|
|
909
911
|
|
|
910
|
-
class Interpolator
|
|
912
|
+
class Interpolator:
|
|
911
913
|
"""
|
|
912
914
|
A class to perform data interpolation using convolution with a specified
|
|
913
915
|
kernel.
|
|
@@ -996,7 +998,6 @@ class Interpolator():
|
|
|
996
998
|
if self.interp_time:
|
|
997
999
|
print(f"Last interpolation took {self.interp_time / 60:.2f} minutes.")
|
|
998
1000
|
|
|
999
|
-
|
|
1000
1001
|
print("Running interpolation...")
|
|
1001
1002
|
result = np.real(
|
|
1002
1003
|
convolve_fft(self.data[self.data.signal].nxdata,
|
|
@@ -1027,11 +1028,11 @@ class Interpolator():
|
|
|
1027
1028
|
"""
|
|
1028
1029
|
data = self.data
|
|
1029
1030
|
tukey_H = np.tile(
|
|
1030
|
-
scipy.signal.tukey(len(data[data.axes[0]]), alpha=tukey_alphas[0])[:, None, None],
|
|
1031
|
+
scipy.signal.windows.tukey(len(data[data.axes[0]]), alpha=tukey_alphas[0])[:, None, None],
|
|
1031
1032
|
(1, len(data[data.axes[1]]), len(data[data.axes[2]]))
|
|
1032
1033
|
)
|
|
1033
1034
|
tukey_K = np.tile(
|
|
1034
|
-
scipy.signal.tukey(len(data[data.axes[1]]), alpha=tukey_alphas[1])[None, :, None],
|
|
1035
|
+
scipy.signal.windows.tukey(len(data[data.axes[1]]), alpha=tukey_alphas[1])[None, :, None],
|
|
1035
1036
|
(len(data[data.axes[0]]), 1, len(data[data.axes[2]]))
|
|
1036
1037
|
)
|
|
1037
1038
|
window = tukey_H * tukey_K
|
|
@@ -1040,7 +1041,7 @@ class Interpolator():
|
|
|
1040
1041
|
gc.collect()
|
|
1041
1042
|
|
|
1042
1043
|
tukey_L = np.tile(
|
|
1043
|
-
scipy.signal.tukey(len(data[data.axes[2]]), alpha=tukey_alphas[2])[None, None, :],
|
|
1044
|
+
scipy.signal.windows.tukey(len(data[data.axes[2]]), alpha=tukey_alphas[2])[None, None, :],
|
|
1044
1045
|
(len(data[data.axes[0]]), len(data[data.axes[1]]), 1))
|
|
1045
1046
|
window = window * tukey_L
|
|
1046
1047
|
|
|
@@ -1069,11 +1070,11 @@ class Interpolator():
|
|
|
1069
1070
|
L_ = data[data.axes[2]]
|
|
1070
1071
|
|
|
1071
1072
|
tukey_H = np.tile(
|
|
1072
|
-
scipy.signal.tukey(len(data[data.axes[0]]), alpha=tukey_alphas[0])[:, None, None],
|
|
1073
|
+
scipy.signal.windows.tukey(len(data[data.axes[0]]), alpha=tukey_alphas[0])[:, None, None],
|
|
1073
1074
|
(1, len(data[data.axes[1]]), len(data[data.axes[2]]))
|
|
1074
1075
|
)
|
|
1075
1076
|
tukey_K = np.tile(
|
|
1076
|
-
scipy.signal.tukey(len(data[data.axes[1]]), alpha=tukey_alphas[1])[None, :, None],
|
|
1077
|
+
scipy.signal.windows.tukey(len(data[data.axes[1]]), alpha=tukey_alphas[1])[None, :, None],
|
|
1077
1078
|
(len(data[data.axes[0]]), 1, len(data[data.axes[2]]))
|
|
1078
1079
|
)
|
|
1079
1080
|
window = tukey_H * tukey_K
|
|
@@ -1087,7 +1088,7 @@ class Interpolator():
|
|
|
1087
1088
|
np.tile(
|
|
1088
1089
|
np.concatenate(
|
|
1089
1090
|
(np.zeros(truncation)[:, None, None],
|
|
1090
|
-
scipy.signal.tukey(len(H_) - 2 * truncation,
|
|
1091
|
+
scipy.signal.windows.tukey(len(H_) - 2 * truncation,
|
|
1091
1092
|
alpha=tukey_alphas[2])[:, None, None],
|
|
1092
1093
|
np.zeros(truncation)[:, None, None])),
|
|
1093
1094
|
(1, len(K_), len(L_))
|
|
@@ -1101,7 +1102,7 @@ class Interpolator():
|
|
|
1101
1102
|
gc.collect()
|
|
1102
1103
|
|
|
1103
1104
|
tukey_L = np.tile(
|
|
1104
|
-
scipy.signal.tukey(len(data[data.axes[2]]), alpha=tukey_alphas[3])[None, None, :],
|
|
1105
|
+
scipy.signal.windows.tukey(len(data[data.axes[2]]), alpha=tukey_alphas[3])[None, None, :],
|
|
1105
1106
|
(len(data[data.axes[0]]), len(data[data.axes[1]]), 1)
|
|
1106
1107
|
)
|
|
1107
1108
|
window = window * tukey_L
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: nxs-analysis-tools
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.38
|
|
4
4
|
Summary: Reduce and transform nexus format (.nxs) scattering data.
|
|
5
5
|
Author-email: "Steven J. Gomez Alvarado" <stevenjgomez@ucsb.edu>
|
|
6
6
|
License: MIT License
|
|
@@ -48,6 +48,9 @@ Requires-Dist: ipython>=1.0.0
|
|
|
48
48
|
Requires-Dist: pandas>=2.0.2
|
|
49
49
|
Requires-Dist: nexusformat>=1.0.1
|
|
50
50
|
Requires-Dist: lmfit>=1.2.1
|
|
51
|
+
Requires-Dist: astropy>=5.3.4
|
|
52
|
+
Requires-Dist: pyfftw>=0.13.1
|
|
53
|
+
Requires-Dist: scipy>=1.14.1
|
|
51
54
|
Provides-Extra: dev
|
|
52
55
|
Requires-Dist: build>=0.8.0; extra == "dev"
|
|
53
56
|
Requires-Dist: furo>=2022.6.21; extra == "dev"
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
_meta/__init__.py,sha256=Fq9YEQTMUYLfpwp34vFDtGaCAlkmx85tKN1ydDrKlhM,352
|
|
2
|
+
nxs_analysis_tools/__init__.py,sha256=bxbTLpIcKasH3fuRZOvJ9zeu7IBBju82mOTgUV4ZqHE,530
|
|
3
|
+
nxs_analysis_tools/chess.py,sha256=GUW08BcDUGD88MPZCl4yJTQp4hwd9tVNTJN_afNSUUo,24339
|
|
4
|
+
nxs_analysis_tools/datareduction.py,sha256=e__mBGZIpJ-_-Dr6-T9hJURJazFnBy3PoWfwRxOra4U,41848
|
|
5
|
+
nxs_analysis_tools/fitting.py,sha256=vPx75lKvm5pWOGBtRtff8k6J5dA6kRk3EJyzxCH5Tyk,8809
|
|
6
|
+
nxs_analysis_tools/pairdistribution.py,sha256=ymJIzXdvg6aZXHF-T63szBeh3XmBbbAvK5eS6s0aqnM,57593
|
|
7
|
+
nxs_analysis_tools-0.0.38.dist-info/LICENSE,sha256=tdnoYVH1-ogW_5-gGs9bK-IkCamH1ATJqrdL37kWTHk,1102
|
|
8
|
+
nxs_analysis_tools-0.0.38.dist-info/METADATA,sha256=10kCoETrsas_HIGd06j8yH1jG4IZ1tns8eOo2Eq_szc,3895
|
|
9
|
+
nxs_analysis_tools-0.0.38.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
|
|
10
|
+
nxs_analysis_tools-0.0.38.dist-info/top_level.txt,sha256=8U000GNPzo6T6pOMjRdgOSO5heMzLMGjkxa1CDtyMHM,25
|
|
11
|
+
nxs_analysis_tools-0.0.38.dist-info/RECORD,,
|
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
_meta/__init__.py,sha256=MgUQ6hf6wCCPWsne48uNL0cMwcd9-4h5VAzva2i5Y5g,351
|
|
2
|
-
nxs_analysis_tools/__init__.py,sha256=bxbTLpIcKasH3fuRZOvJ9zeu7IBBju82mOTgUV4ZqHE,530
|
|
3
|
-
nxs_analysis_tools/chess.py,sha256=GUW08BcDUGD88MPZCl4yJTQp4hwd9tVNTJN_afNSUUo,24339
|
|
4
|
-
nxs_analysis_tools/datareduction.py,sha256=e__mBGZIpJ-_-Dr6-T9hJURJazFnBy3PoWfwRxOra4U,41848
|
|
5
|
-
nxs_analysis_tools/fitting.py,sha256=vPx75lKvm5pWOGBtRtff8k6J5dA6kRk3EJyzxCH5Tyk,8809
|
|
6
|
-
nxs_analysis_tools/pairdistribution.py,sha256=SD0X5TXaSkodczi-zS8sp80B8VzFoksxo3GDhqDoR_M,57464
|
|
7
|
-
nxs_analysis_tools-0.0.36.dist-info/LICENSE,sha256=tdnoYVH1-ogW_5-gGs9bK-IkCamH1ATJqrdL37kWTHk,1102
|
|
8
|
-
nxs_analysis_tools-0.0.36.dist-info/METADATA,sha256=IVmTja2nIobn4AqJOR7COpjHZh6iHFpQq46Nm7Gbrpo,3803
|
|
9
|
-
nxs_analysis_tools-0.0.36.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
|
|
10
|
-
nxs_analysis_tools-0.0.36.dist-info/top_level.txt,sha256=8U000GNPzo6T6pOMjRdgOSO5heMzLMGjkxa1CDtyMHM,25
|
|
11
|
-
nxs_analysis_tools-0.0.36.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|