nvidia-nat 1.4.0a20251029__py3-none-any.whl → 1.4.0a20251031__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. nat/authentication/api_key/api_key_auth_provider.py +5 -10
  2. nat/authentication/api_key/api_key_auth_provider_config.py +8 -5
  3. nat/authentication/oauth2/oauth2_auth_code_flow_provider_config.py +2 -1
  4. nat/authentication/oauth2/oauth2_resource_server_config.py +2 -1
  5. nat/data_models/api_server.py +3 -2
  6. nat/data_models/common.py +22 -0
  7. nat/data_models/dataset_handler.py +3 -2
  8. nat/embedder/azure_openai_embedder.py +2 -1
  9. nat/embedder/nim_embedder.py +2 -1
  10. nat/embedder/openai_embedder.py +2 -1
  11. nat/eval/dataset_handler/dataset_downloader.py +3 -2
  12. nat/eval/utils/output_uploader.py +3 -2
  13. nat/front_ends/console/authentication_flow_handler.py +1 -1
  14. nat/front_ends/mcp/tool_converter.py +53 -22
  15. nat/llm/azure_openai_llm.py +2 -1
  16. nat/llm/litellm_llm.py +2 -1
  17. nat/llm/nim_llm.py +2 -1
  18. nat/llm/openai_llm.py +2 -1
  19. nat/profiler/parameter_optimization/parameter_optimizer.py +12 -2
  20. nat/profiler/parameter_optimization/pareto_visualizer.py +67 -2
  21. nat/registry_handlers/pypi/register_pypi.py +5 -3
  22. nat/registry_handlers/rest/register_rest.py +5 -3
  23. nat/retriever/nemo_retriever/register.py +2 -1
  24. {nvidia_nat-1.4.0a20251029.dist-info → nvidia_nat-1.4.0a20251031.dist-info}/METADATA +1 -1
  25. {nvidia_nat-1.4.0a20251029.dist-info → nvidia_nat-1.4.0a20251031.dist-info}/RECORD +30 -30
  26. {nvidia_nat-1.4.0a20251029.dist-info → nvidia_nat-1.4.0a20251031.dist-info}/WHEEL +0 -0
  27. {nvidia_nat-1.4.0a20251029.dist-info → nvidia_nat-1.4.0a20251031.dist-info}/entry_points.txt +0 -0
  28. {nvidia_nat-1.4.0a20251029.dist-info → nvidia_nat-1.4.0a20251031.dist-info}/licenses/LICENSE-3rd-party.txt +0 -0
  29. {nvidia_nat-1.4.0a20251029.dist-info → nvidia_nat-1.4.0a20251031.dist-info}/licenses/LICENSE.md +0 -0
  30. {nvidia_nat-1.4.0a20251029.dist-info → nvidia_nat-1.4.0a20251031.dist-info}/top_level.txt +0 -0
@@ -15,8 +15,6 @@
15
15
 
16
16
  import logging
17
17
 
18
- from pydantic import SecretStr
19
-
20
18
  from nat.authentication.api_key.api_key_auth_provider_config import APIKeyAuthProviderConfig
21
19
  from nat.authentication.interfaces import AuthProviderBase
22
20
  from nat.data_models.authentication import AuthResult
@@ -29,11 +27,10 @@ logger = logging.getLogger(__name__)
29
27
  class APIKeyAuthProvider(AuthProviderBase[APIKeyAuthProviderConfig]):
30
28
 
31
29
  # fmt: off
32
- def __init__(self,
33
- config: APIKeyAuthProviderConfig,
34
- config_name: str | None = None) -> None:
30
+ def __init__(self, config: APIKeyAuthProviderConfig, config_name: str | None = None) -> None:
35
31
  assert isinstance(config, APIKeyAuthProviderConfig), ("Config is not APIKeyAuthProviderConfig")
36
32
  super().__init__(config)
33
+
37
34
  # fmt: on
38
35
 
39
36
  async def _construct_authentication_header(self) -> BearerTokenCred:
@@ -58,14 +55,12 @@ class APIKeyAuthProvider(AuthProviderBase[APIKeyAuthProviderConfig]):
58
55
  header_auth_scheme = config.auth_scheme
59
56
 
60
57
  if header_auth_scheme == HeaderAuthScheme.BEARER:
61
- return BearerTokenCred(token=SecretStr(f"{config.raw_key}"),
58
+ return BearerTokenCred(token=config.raw_key,
62
59
  scheme=HeaderAuthScheme.BEARER.value,
63
60
  header_name=AUTHORIZATION_HEADER)
64
61
 
65
62
  if header_auth_scheme == HeaderAuthScheme.X_API_KEY:
66
- return BearerTokenCred(token=SecretStr(f"{config.raw_key}"),
67
- scheme=HeaderAuthScheme.X_API_KEY.value,
68
- header_name='')
63
+ return BearerTokenCred(token=config.raw_key, scheme=HeaderAuthScheme.X_API_KEY.value, header_name='')
69
64
 
70
65
  if header_auth_scheme == HeaderAuthScheme.CUSTOM:
71
66
  if not config.custom_header_name:
@@ -74,7 +69,7 @@ class APIKeyAuthProvider(AuthProviderBase[APIKeyAuthProviderConfig]):
74
69
  if not config.custom_header_prefix:
75
70
  raise ValueError('custom_header_prefix required when using header_auth_scheme=CUSTOM')
76
71
 
77
- return BearerTokenCred(token=SecretStr(f"{config.raw_key}"),
72
+ return BearerTokenCred(token=config.raw_key,
78
73
  scheme=config.custom_header_prefix,
79
74
  header_name=config.custom_header_name)
80
75
 
@@ -25,6 +25,7 @@ from nat.authentication.exceptions.api_key_exceptions import HeaderNameFieldErro
25
25
  from nat.authentication.exceptions.api_key_exceptions import HeaderPrefixFieldError
26
26
  from nat.data_models.authentication import AuthProviderBaseConfig
27
27
  from nat.data_models.authentication import HeaderAuthScheme
28
+ from nat.data_models.common import SerializableSecretStr
28
29
 
29
30
  logger = logging.getLogger(__name__)
30
31
 
@@ -37,8 +38,9 @@ class APIKeyAuthProviderConfig(AuthProviderBaseConfig, name="api_key"):
37
38
  API Key authentication configuration model.
38
39
  """
39
40
 
40
- raw_key: str = Field(description=("Raw API token or credential to be injected into the request parameter. "
41
- "Used for 'bearer','x-api-key','custom', and other schemes. "))
41
+ raw_key: SerializableSecretStr = Field(
42
+ description=("Raw API token or credential to be injected into the request parameter. "
43
+ "Used for 'bearer','x-api-key','custom', and other schemes. "))
42
44
 
43
45
  auth_scheme: HeaderAuthScheme = Field(default=HeaderAuthScheme.BEARER,
44
46
  description=("The HTTP authentication scheme to use. "
@@ -53,7 +55,7 @@ class APIKeyAuthProviderConfig(AuthProviderBaseConfig, name="api_key"):
53
55
 
54
56
  @field_validator('raw_key')
55
57
  @classmethod
56
- def validate_raw_key(cls, value: str) -> str:
58
+ def validate_raw_key(cls, value: SerializableSecretStr) -> SerializableSecretStr:
57
59
  if not value:
58
60
  raise APIKeyFieldError('value_missing', 'raw_key field value is required.')
59
61
 
@@ -63,11 +65,12 @@ class APIKeyAuthProviderConfig(AuthProviderBaseConfig, name="api_key"):
63
65
  'raw_key field value must be at least 8 characters long for security. '
64
66
  f'Got: {len(value)} characters.')
65
67
 
66
- if len(value.strip()) != len(value):
68
+ str_value = value.get_secret_value()
69
+ if len(str_value.strip()) != len(value):
67
70
  raise APIKeyFieldError('whitespace_found',
68
71
  'raw_key field value cannot have leading or trailing whitespace.')
69
72
 
70
- if any(c in string.whitespace for c in value):
73
+ if any(c in string.whitespace for c in str_value):
71
74
  raise APIKeyFieldError('contains_whitespace', 'raw_key must not contain any '
72
75
  'whitespace characters.')
73
76
 
@@ -16,12 +16,13 @@
16
16
  from pydantic import Field
17
17
 
18
18
  from nat.data_models.authentication import AuthProviderBaseConfig
19
+ from nat.data_models.common import SerializableSecretStr
19
20
 
20
21
 
21
22
  class OAuth2AuthCodeFlowProviderConfig(AuthProviderBaseConfig, name="oauth2_auth_code_flow"):
22
23
 
23
24
  client_id: str = Field(description="The client ID for OAuth 2.0 authentication.")
24
- client_secret: str = Field(description="The secret associated with the client_id.")
25
+ client_secret: SerializableSecretStr = Field(description="The secret associated with the client_id.")
25
26
  authorization_url: str = Field(description="The authorization URL for OAuth 2.0 authentication.")
26
27
  token_url: str = Field(description="The token URL for OAuth 2.0 authentication.")
27
28
  token_endpoint_auth_method: str | None = Field(
@@ -20,6 +20,7 @@ from pydantic import field_validator
20
20
  from pydantic import model_validator
21
21
 
22
22
  from nat.data_models.authentication import AuthProviderBaseConfig
23
+ from nat.data_models.common import OptionalSecretStr
23
24
 
24
25
 
25
26
  class OAuth2ResourceServerConfig(AuthProviderBaseConfig, name="oauth2_resource_server"):
@@ -66,7 +67,7 @@ class OAuth2ResourceServerConfig(AuthProviderBaseConfig, name="oauth2_resource_s
66
67
  default=None,
67
68
  description="OAuth2 client ID for authenticating to the introspection endpoint (opaque token validation).",
68
69
  )
69
- client_secret: str | None = Field(
70
+ client_secret: OptionalSecretStr = Field(
70
71
  default=None,
71
72
  description="OAuth2 client secret for authenticating to the introspection endpoint (opaque token validation).",
72
73
  )
@@ -31,6 +31,7 @@ from pydantic import field_validator
31
31
  from pydantic import model_validator
32
32
  from pydantic_core.core_schema import ValidationInfo
33
33
 
34
+ from nat.data_models.common import SerializableSecretStr
34
35
  from nat.data_models.interactive import HumanPrompt
35
36
  from nat.utils.type_converter import GlobalTypeConverter
36
37
 
@@ -109,8 +110,8 @@ class TextContent(BaseModel):
109
110
  class Security(BaseModel):
110
111
  model_config = ConfigDict(extra="forbid")
111
112
 
112
- api_key: str = "default"
113
- token: str = "default"
113
+ api_key: SerializableSecretStr = Field(default="default")
114
+ token: SerializableSecretStr = Field(default="default")
114
115
 
115
116
 
116
117
  UserContent = typing.Annotated[TextContent | ImageContent | AudioContent, Discriminator("type")]
nat/data_models/common.py CHANGED
@@ -14,6 +14,7 @@
14
14
  # limitations under the License.
15
15
 
16
16
  import inspect
17
+ import os
17
18
  import sys
18
19
  import typing
19
20
  from hashlib import sha512
@@ -192,5 +193,26 @@ def get_secret_value(v: SecretStr | None) -> str | None:
192
193
  return v.get_secret_value()
193
194
 
194
195
 
196
+ def set_secret_from_env(model: BaseModel, field_name: str, env_var: str):
197
+ """
198
+ Set a SecretStr field in a Pydantic model from an environment variable, but only if the environment variable is set.
199
+
200
+ Parameters
201
+ ----------
202
+ model: BaseModel
203
+ The Pydantic model instance containing the field to set.
204
+ field_name: str
205
+ The name of the field in the model to set.
206
+ env_var: str
207
+ The name of the environment variable to read the secret value from.
208
+ """
209
+ env_value = os.getenv(env_var)
210
+ if env_value is not None:
211
+ setattr(model, field_name, SecretStr(env_value))
212
+
213
+
214
+ # A SecretStr that serializes to plain string
215
+ SerializableSecretStr = typing.Annotated[SecretStr, PlainSerializer(get_secret_value)]
216
+
195
217
  # A SecretStr or None that serializes to plain string
196
218
  OptionalSecretStr = typing.Annotated[SecretStr | None, PlainSerializer(get_secret_value)]
@@ -26,6 +26,7 @@ from pydantic import FilePath
26
26
  from pydantic import Tag
27
27
 
28
28
  from nat.data_models.common import BaseModelRegistryTag
29
+ from nat.data_models.common import SerializableSecretStr
29
30
  from nat.data_models.common import TypedBaseModel
30
31
 
31
32
 
@@ -34,8 +35,8 @@ class EvalS3Config(BaseModel):
34
35
  endpoint_url: str | None = None
35
36
  region_name: str | None = None
36
37
  bucket: str
37
- access_key: str
38
- secret_key: str
38
+ access_key: SerializableSecretStr
39
+ secret_key: SerializableSecretStr
39
40
 
40
41
 
41
42
  class EvalFilterEntryConfig(BaseModel):
@@ -20,6 +20,7 @@ from pydantic import Field
20
20
  from nat.builder.builder import Builder
21
21
  from nat.builder.embedder import EmbedderProviderInfo
22
22
  from nat.cli.register_workflow import register_embedder_provider
23
+ from nat.data_models.common import OptionalSecretStr
23
24
  from nat.data_models.embedder import EmbedderBaseConfig
24
25
  from nat.data_models.retry_mixin import RetryMixin
25
26
 
@@ -29,7 +30,7 @@ class AzureOpenAIEmbedderModelConfig(EmbedderBaseConfig, RetryMixin, name="azure
29
30
 
30
31
  model_config = ConfigDict(protected_namespaces=(), extra="allow")
31
32
 
32
- api_key: str | None = Field(default=None, description="Azure OpenAI API key to interact with hosted model.")
33
+ api_key: OptionalSecretStr = Field(default=None, description="Azure OpenAI API key to interact with hosted model.")
33
34
  api_version: str = Field(default="2025-04-01-preview", description="Azure OpenAI API version.")
34
35
  azure_endpoint: str | None = Field(validation_alias=AliasChoices("azure_endpoint", "base_url"),
35
36
  serialization_alias="azure_endpoint",
@@ -23,6 +23,7 @@ from pydantic import Field
23
23
  from nat.builder.builder import Builder
24
24
  from nat.builder.embedder import EmbedderProviderInfo
25
25
  from nat.cli.register_workflow import register_embedder_provider
26
+ from nat.data_models.common import OptionalSecretStr
26
27
  from nat.data_models.embedder import EmbedderBaseConfig
27
28
  from nat.data_models.retry_mixin import RetryMixin
28
29
 
@@ -41,7 +42,7 @@ TruncationOption = typing.Annotated[str, AfterValidator(option_in_allowed_values
41
42
  class NIMEmbedderModelConfig(EmbedderBaseConfig, RetryMixin, name="nim"):
42
43
  """A NVIDIA Inference Microservice (NIM) embedder provider to be used with an embedder client."""
43
44
 
44
- api_key: str | None = Field(default=None, description="NVIDIA API key to interact with hosted NIM.")
45
+ api_key: OptionalSecretStr = Field(default=None, description="NVIDIA API key to interact with hosted NIM.")
45
46
  base_url: str | None = Field(default=None, description="Base url to the hosted NIM.")
46
47
  model_name: str = Field(validation_alias=AliasChoices("model_name", "model"),
47
48
  serialization_alias="model",
@@ -20,6 +20,7 @@ from pydantic import Field
20
20
  from nat.builder.builder import Builder
21
21
  from nat.builder.embedder import EmbedderProviderInfo
22
22
  from nat.cli.register_workflow import register_embedder_provider
23
+ from nat.data_models.common import OptionalSecretStr
23
24
  from nat.data_models.embedder import EmbedderBaseConfig
24
25
  from nat.data_models.retry_mixin import RetryMixin
25
26
 
@@ -29,7 +30,7 @@ class OpenAIEmbedderModelConfig(EmbedderBaseConfig, RetryMixin, name="openai"):
29
30
 
30
31
  model_config = ConfigDict(protected_namespaces=(), extra="allow")
31
32
 
32
- api_key: str | None = Field(default=None, description="OpenAI API key to interact with hosted model.")
33
+ api_key: OptionalSecretStr = Field(default=None, description="OpenAI API key to interact with hosted model.")
33
34
  base_url: str | None = Field(default=None, description="Base url to the hosted model.")
34
35
  model_name: str = Field(validation_alias=AliasChoices("model_name", "model"),
35
36
  serialization_alias="model",
@@ -19,6 +19,7 @@ import boto3
19
19
  import requests
20
20
  from botocore.exceptions import NoCredentialsError
21
21
 
22
+ from nat.data_models.common import get_secret_value
22
23
  from nat.data_models.dataset_handler import EvalDatasetConfig
23
24
 
24
25
  logger = logging.getLogger(__name__)
@@ -46,8 +47,8 @@ class DatasetDownloader:
46
47
  try:
47
48
  self._s3_client = boto3.client("s3",
48
49
  endpoint_url=self.s3_config.endpoint_url,
49
- aws_access_key_id=self.s3_config.access_key,
50
- aws_secret_access_key=self.s3_config.secret_key)
50
+ aws_access_key_id=get_secret_value(self.s3_config.access_key),
51
+ aws_secret_access_key=get_secret_value(self.s3_config.secret_key))
51
52
  except NoCredentialsError as e:
52
53
  logger.error("AWS credentials not available: %s", e)
53
54
  raise
@@ -24,6 +24,7 @@ import aioboto3
24
24
  from botocore.exceptions import NoCredentialsError
25
25
  from tqdm import tqdm
26
26
 
27
+ from nat.data_models.common import get_secret_value
27
28
  from nat.data_models.evaluate import EvalOutputConfig
28
29
 
29
30
  logger = logging.getLogger(__name__)
@@ -90,8 +91,8 @@ class OutputUploader:
90
91
  "s3",
91
92
  endpoint_url=endpoint_url,
92
93
  region_name=region_name,
93
- aws_access_key_id=self.s3_config.access_key,
94
- aws_secret_access_key=self.s3_config.secret_key,
94
+ aws_access_key_id=get_secret_value(self.s3_config.access_key),
95
+ aws_secret_access_key=get_secret_value(self.s3_config.secret_key),
95
96
  ) as s3_client:
96
97
  with tqdm(total=len(file_entries), desc="Uploading files to S3") as pbar:
97
98
  upload_tasks = [
@@ -95,7 +95,7 @@ class ConsoleAuthenticationFlowHandler(FlowHandlerBase):
95
95
  try:
96
96
  client = AsyncOAuth2Client(
97
97
  client_id=cfg.client_id,
98
- client_secret=cfg.client_secret,
98
+ client_secret=cfg.client_secret.get_secret_value(),
99
99
  redirect_uri=cfg.redirect_uri,
100
100
  scope=" ".join(cfg.scopes) if cfg.scopes else None,
101
101
  token_endpoint=cfg.token_url,
@@ -18,9 +18,12 @@ import logging
18
18
  from inspect import Parameter
19
19
  from inspect import Signature
20
20
  from typing import TYPE_CHECKING
21
+ from typing import Any
21
22
 
22
23
  from mcp.server.fastmcp import FastMCP
23
24
  from pydantic import BaseModel
25
+ from pydantic.fields import FieldInfo
26
+ from pydantic_core import PydanticUndefined
24
27
 
25
28
  from nat.builder.context import ContextState
26
29
  from nat.builder.function import Function
@@ -32,6 +35,41 @@ if TYPE_CHECKING:
32
35
 
33
36
  logger = logging.getLogger(__name__)
34
37
 
38
+ # Sentinel: marks "optional; let Pydantic supply default/factory"
39
+ _USE_PYDANTIC_DEFAULT = object()
40
+
41
+
42
+ def is_field_optional(field: FieldInfo) -> tuple[bool, Any]:
43
+ """Determine if a Pydantic field is optional and extract its default value for MCP signatures.
44
+
45
+ For MCP tool signatures, we need to distinguish:
46
+ - Required fields: marked with Parameter.empty
47
+ - Optional with concrete default: use that default
48
+ - Optional with factory: use sentinel so Pydantic can apply the factory later
49
+
50
+ Args:
51
+ field: The Pydantic FieldInfo to check
52
+
53
+ Returns:
54
+ A tuple of (is_optional, default_value):
55
+ - (False, Parameter.empty) for required fields
56
+ - (True, actual_default) for optional fields with explicit defaults
57
+ - (True, _USE_PYDANTIC_DEFAULT) for optional fields with default_factory
58
+ """
59
+ if field.is_required():
60
+ return False, Parameter.empty
61
+
62
+ # Field is optional - has either default or factory
63
+ if field.default is not PydanticUndefined:
64
+ return True, field.default
65
+
66
+ # Factory case: mark optional in signature but don't fabricate a value
67
+ if field.default_factory is not None:
68
+ return True, _USE_PYDANTIC_DEFAULT
69
+
70
+ # Rare corner case: non-required yet no default surfaced
71
+ return True, _USE_PYDANTIC_DEFAULT
72
+
35
73
 
36
74
  def create_function_wrapper(
37
75
  function_name: str,
@@ -79,12 +117,15 @@ def create_function_wrapper(
79
117
  # Get the field type and convert to appropriate Python type
80
118
  field_type = field.annotation
81
119
 
120
+ # Check if field is optional and get its default value
121
+ _is_optional, param_default = is_field_optional(field)
122
+
82
123
  # Add the parameter to our list
83
124
  parameters.append(
84
125
  Parameter(
85
126
  name=name,
86
127
  kind=Parameter.KEYWORD_ONLY,
87
- default=Parameter.empty if field.is_required else None,
128
+ default=param_default,
88
129
  annotation=field_type,
89
130
  ))
90
131
 
@@ -143,33 +184,23 @@ def create_function_wrapper(
143
184
  result = await call_with_observability(lambda: function.ainvoke(chat_request, to_type=str))
144
185
  else:
145
186
  # Regular handling
146
- # Handle complex input schema - if we extracted fields from a nested schema,
147
- # we need to reconstruct the input
148
- if len(schema.model_fields) == 1 and len(parameters) > 1:
149
- # Get the field name from the original schema
150
- field_name = next(iter(schema.model_fields.keys()))
151
- field_type = schema.model_fields[field_name].annotation
152
-
153
- # If it's a pydantic model, we need to create an instance
154
- if field_type and hasattr(field_type, "model_validate"):
155
- # Create the nested object
156
- nested_obj = field_type.model_validate(kwargs)
157
- # Call with the nested object
158
- kwargs = {field_name: nested_obj}
187
+ # Strip sentinel values so Pydantic can apply defaults/factories
188
+ cleaned_kwargs = {k: v for k, v in kwargs.items() if v is not _USE_PYDANTIC_DEFAULT}
189
+
190
+ # Always validate with the declared schema
191
+ # This handles defaults, factories, nested models, validators, etc.
192
+ model_input = schema.model_validate(cleaned_kwargs)
159
193
 
160
194
  # Call the NAT function with the parameters - special handling for Workflow
161
195
  if is_workflow:
162
- # For workflow with regular input, we'll assume the first parameter is the input
163
- input_value = list(kwargs.values())[0] if kwargs else ""
164
-
165
- # Workflows have a run method that is an async context manager
166
- # that returns a Runner
167
- async with function.run(input_value) as runner:
196
+ # Workflows expect the model instance directly
197
+ async with function.run(model_input) as runner:
168
198
  # Get the result from the runner
169
199
  result = await runner.result(to_type=str)
170
200
  else:
171
- # Regular function call
172
- result = await call_with_observability(lambda: function.acall_invoke(**kwargs))
201
+ # Regular function call - unpack the validated model
202
+ result = await call_with_observability(lambda: function.acall_invoke(**model_input.model_dump())
203
+ )
173
204
 
174
205
  # Report completion
175
206
  if ctx:
@@ -20,6 +20,7 @@ from pydantic import Field
20
20
  from nat.builder.builder import Builder
21
21
  from nat.builder.llm import LLMProviderInfo
22
22
  from nat.cli.register_workflow import register_llm_provider
23
+ from nat.data_models.common import OptionalSecretStr
23
24
  from nat.data_models.llm import LLMBaseConfig
24
25
  from nat.data_models.retry_mixin import RetryMixin
25
26
  from nat.data_models.temperature_mixin import TemperatureMixin
@@ -39,7 +40,7 @@ class AzureOpenAIModelConfig(
39
40
 
40
41
  model_config = ConfigDict(protected_namespaces=(), extra="allow")
41
42
 
42
- api_key: str | None = Field(default=None, description="Azure OpenAI API key to interact with hosted model.")
43
+ api_key: OptionalSecretStr = Field(default=None, description="Azure OpenAI API key to interact with hosted model.")
43
44
  api_version: str = Field(default="2025-04-01-preview", description="Azure OpenAI API version.")
44
45
  azure_endpoint: str | None = Field(validation_alias=AliasChoices("azure_endpoint", "base_url"),
45
46
  serialization_alias="azure_endpoint",
nat/llm/litellm_llm.py CHANGED
@@ -22,6 +22,7 @@ from pydantic import Field
22
22
  from nat.builder.builder import Builder
23
23
  from nat.builder.llm import LLMProviderInfo
24
24
  from nat.cli.register_workflow import register_llm_provider
25
+ from nat.data_models.common import OptionalSecretStr
25
26
  from nat.data_models.llm import LLMBaseConfig
26
27
  from nat.data_models.optimizable import OptimizableField
27
28
  from nat.data_models.optimizable import OptimizableMixin
@@ -44,7 +45,7 @@ class LiteLlmModelConfig(
44
45
 
45
46
  model_config = ConfigDict(protected_namespaces=(), extra="allow")
46
47
 
47
- api_key: str | None = Field(default=None, description="API key to interact with hosted model.")
48
+ api_key: OptionalSecretStr = Field(default=None, description="API key to interact with hosted model.")
48
49
  base_url: str | None = Field(default=None,
49
50
  description="Base url to the hosted model.",
50
51
  validation_alias=AliasChoices("base_url", "api_base"),
nat/llm/nim_llm.py CHANGED
@@ -21,6 +21,7 @@ from pydantic import PositiveInt
21
21
  from nat.builder.builder import Builder
22
22
  from nat.builder.llm import LLMProviderInfo
23
23
  from nat.cli.register_workflow import register_llm_provider
24
+ from nat.data_models.common import OptionalSecretStr
24
25
  from nat.data_models.llm import LLMBaseConfig
25
26
  from nat.data_models.optimizable import OptimizableField
26
27
  from nat.data_models.optimizable import OptimizableMixin
@@ -42,7 +43,7 @@ class NIMModelConfig(LLMBaseConfig,
42
43
 
43
44
  model_config = ConfigDict(protected_namespaces=(), extra="allow")
44
45
 
45
- api_key: str | None = Field(default=None, description="NVIDIA API key to interact with hosted NIM.")
46
+ api_key: OptionalSecretStr = Field(default=None, description="NVIDIA API key to interact with hosted NIM.")
46
47
  base_url: str | None = Field(default=None, description="Base url to the hosted NIM.")
47
48
  model_name: str = OptimizableField(validation_alias=AliasChoices("model_name", "model"),
48
49
  serialization_alias="model",
nat/llm/openai_llm.py CHANGED
@@ -20,6 +20,7 @@ from pydantic import Field
20
20
  from nat.builder.builder import Builder
21
21
  from nat.builder.llm import LLMProviderInfo
22
22
  from nat.cli.register_workflow import register_llm_provider
23
+ from nat.data_models.common import OptionalSecretStr
23
24
  from nat.data_models.llm import LLMBaseConfig
24
25
  from nat.data_models.optimizable import OptimizableField
25
26
  from nat.data_models.optimizable import OptimizableMixin
@@ -40,7 +41,7 @@ class OpenAIModelConfig(LLMBaseConfig,
40
41
 
41
42
  model_config = ConfigDict(protected_namespaces=(), extra="allow")
42
43
 
43
- api_key: str | None = Field(default=None, description="OpenAI API key to interact with hosted model.")
44
+ api_key: OptionalSecretStr = Field(default=None, description="OpenAI API key to interact with hosted model.")
44
45
  base_url: str | None = Field(default=None, description="Base url to the hosted model.")
45
46
  model_name: str = OptimizableField(validation_alias=AliasChoices("model_name", "model"),
46
47
  serialization_alias="model",
@@ -111,7 +111,10 @@ def optimize_parameters(
111
111
  tasks = [_single_eval(i) for i in range(reps)]
112
112
  return await asyncio.gather(*tasks)
113
113
 
114
- with (out_dir / f"config_numeric_trial_{trial._trial_id}.yml").open("w") as fh:
114
+ # Calculate padding width based on total number of trials
115
+ trial_id_width = len(str(max(0, optimizer_config.numeric.n_trials - 1)))
116
+ trial_id_padded = f"{trial.number:0{trial_id_width}d}"
117
+ with (out_dir / f"config_numeric_trial_{trial_id_padded}.yml").open("w") as fh:
115
118
  yaml.dump(cfg_trial.model_dump(), fh)
116
119
 
117
120
  all_scores = asyncio.run(_run_all_evals())
@@ -132,7 +135,7 @@ def optimize_parameters(
132
135
 
133
136
  # Save final results (out_dir already created and defined above)
134
137
  with (out_dir / "optimized_config.yml").open("w") as fh:
135
- yaml.dump(tuned_cfg.model_dump(), fh)
138
+ yaml.dump(tuned_cfg.model_dump(mode='json'), fh)
136
139
  with (out_dir / "trials_dataframe_params.csv").open("w") as fh:
137
140
  # Export full trials DataFrame (values, params, timings, etc.).
138
141
  df = study.trials_dataframe()
@@ -154,6 +157,13 @@ def optimize_parameters(
154
157
  # Some Optuna versions return a dict in a single user_attrs column.
155
158
  df["rep_scores"] = df["user_attrs"].apply(lambda d: d.get("rep_scores") if isinstance(d, dict) else None)
156
159
  df = df.drop(columns=["user_attrs"])
160
+
161
+ # Get Pareto optimal trial numbers from Optuna study
162
+ pareto_trials = study.best_trials
163
+ pareto_trial_numbers = {trial.number for trial in pareto_trials}
164
+ # Add boolean column indicating if trial is Pareto optimal
165
+ df["pareto_optimal"] = df["number"].isin(pareto_trial_numbers)
166
+
157
167
  df.to_csv(fh, index=False)
158
168
 
159
169
  # Generate Pareto front visualizations
@@ -21,6 +21,8 @@ import matplotlib.pyplot as plt
21
21
  import numpy as np
22
22
  import optuna
23
23
  import pandas as pd
24
+ from matplotlib.lines import Line2D
25
+ from matplotlib.patches import Patch
24
26
 
25
27
  logger = logging.getLogger(__name__)
26
28
 
@@ -79,6 +81,19 @@ class ParetoVisualizer:
79
81
  linewidths=1.5,
80
82
  marker='*')
81
83
 
84
+ # Add trial number labels to Pareto optimal points
85
+ for idx in range(len(pareto_trials_df)):
86
+ trial_number = pareto_trials_df.iloc[idx]['number'] \
87
+ if 'number' in pareto_trials_df.columns else pareto_trials_df.index[idx]
88
+ ax.annotate(f'{int(trial_number)}',
89
+ xy=(pareto_x[idx], pareto_y[idx]),
90
+ xytext=(8, 8),
91
+ textcoords='offset points',
92
+ fontsize=9,
93
+ fontweight='bold',
94
+ color='darkred',
95
+ bbox=dict(boxstyle='round,pad=0.3', facecolor='white', edgecolor='red', alpha=0.9))
96
+
82
97
  # Draw Pareto front line (only for 2D)
83
98
  if len(pareto_x) > 1:
84
99
  # Sort points for line drawing based on first objective
@@ -182,6 +197,18 @@ class ParetoVisualizer:
182
197
  trial_values = [normalized_values[j][idx] for j in range(n_metrics)]
183
198
  ax.plot(x_positions, trial_values, 'r-', alpha=0.8, linewidth=3)
184
199
 
200
+ # Add trial number label at the rightmost point
201
+ trial_number = trials_df.iloc[idx]['number'] if 'number' in trials_df.columns else idx
202
+ # Position label slightly to the right and above the last point
203
+ ax.annotate(f'{int(trial_number)}',
204
+ xy=(x_positions[-1], trial_values[-1]),
205
+ xytext=(5, 5),
206
+ textcoords='offset points',
207
+ fontsize=9,
208
+ fontweight='bold',
209
+ color='darkred',
210
+ bbox=dict(boxstyle='round,pad=0.3', facecolor='white', edgecolor='red', alpha=0.8))
211
+
185
212
  # Customize plot
186
213
  ax.set_xticks(x_positions)
187
214
  ax.set_xticklabels([f"{name}\n({direction})" for name, direction in zip(self.metric_names, self.directions)])
@@ -191,10 +218,10 @@ class ParetoVisualizer:
191
218
  ax.grid(True, alpha=0.3)
192
219
 
193
220
  # Add legend
194
- from matplotlib.lines import Line2D
195
221
  legend_elements = [
196
222
  Line2D([0], [0], color='blue', alpha=0.3, linewidth=2, label='All Trials'),
197
- Line2D([0], [0], color='red', alpha=0.8, linewidth=3, label='Pareto Optimal')
223
+ Line2D([0], [0], color='red', alpha=0.8, linewidth=3, label='Pareto Optimal'),
224
+ Patch(facecolor='white', edgecolor='red', label='[n]: trial number')
198
225
  ]
199
226
  ax.legend(handles=legend_elements, loc='best')
200
227
 
@@ -262,11 +289,49 @@ class ParetoVisualizer:
262
289
  linewidths=1,
263
290
  marker='*')
264
291
 
292
+ # Add trial number labels to Pareto optimal points
293
+ for idx in range(len(pareto_trials_df)):
294
+ trial_number = pareto_trials_df.iloc[idx]['number'] \
295
+ if 'number' in pareto_trials_df.columns else pareto_trials_df.index[idx]
296
+ ax.annotate(f'{int(trial_number)}',
297
+ xy=(pareto_x[idx], pareto_y[idx]),
298
+ xytext=(6, 6),
299
+ textcoords='offset points',
300
+ fontsize=8,
301
+ fontweight='bold',
302
+ color='darkred',
303
+ bbox=dict(boxstyle='round,pad=0.2',
304
+ facecolor='white',
305
+ edgecolor='red',
306
+ alpha=0.8))
307
+
265
308
  ax.set_xlabel(f"{self.metric_names[j]} ({self.directions[j]})")
266
309
  ax.set_ylabel(f"{self.metric_names[i]} ({self.directions[i]})")
267
310
 
268
311
  ax.grid(True, alpha=0.3)
269
312
 
313
+ # Add legend to the figure
314
+ legend_elements = [
315
+ Line2D([0], [0],
316
+ marker='o',
317
+ color='w',
318
+ markerfacecolor='lightblue',
319
+ markeredgecolor='navy',
320
+ markersize=8,
321
+ alpha=0.6,
322
+ label='All Trials'),
323
+ Line2D([0], [0],
324
+ marker='*',
325
+ color='w',
326
+ markerfacecolor='red',
327
+ markeredgecolor='darkred',
328
+ markersize=10,
329
+ alpha=0.9,
330
+ label='Pareto Optimal'),
331
+ Patch(facecolor='white', edgecolor='red', label='[n]: trial number')
332
+ ]
333
+ fig.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(0.98, 0.98), framealpha=0.9, fontsize=10)
334
+
270
335
  plt.tight_layout()
271
336
 
272
337
  if save_path:
@@ -16,6 +16,8 @@
16
16
  from pydantic import Field
17
17
 
18
18
  from nat.cli.register_workflow import register_registry_handler
19
+ from nat.data_models.common import OptionalSecretStr
20
+ from nat.data_models.common import get_secret_value
19
21
  from nat.data_models.registry_handler import RegistryHandlerBaseConfig
20
22
 
21
23
 
@@ -23,8 +25,8 @@ class PypiRegistryHandlerConfig(RegistryHandlerBaseConfig, name="pypi"):
23
25
  """Registry handler for interacting with a remote PyPI registry index."""
24
26
 
25
27
  endpoint: str = Field(description="A string representing the remote endpoint.")
26
- token: str | None = Field(default=None,
27
- description="The authentication token to use when interacting with the registry.")
28
+ token: OptionalSecretStr = Field(default=None,
29
+ description="The authentication token to use when interacting with the registry.")
28
30
  publish_route: str = Field(description="The route to the NAT publish service.")
29
31
  pull_route: str = Field(description="The route to the NAT pull service.")
30
32
  search_route: str = Field(default="simple", description="The route to the NAT search service.")
@@ -35,6 +37,6 @@ async def pypi_publish_registry_handler(config: PypiRegistryHandlerConfig):
35
37
 
36
38
  from nat.registry_handlers.pypi.pypi_handler import PypiRegistryHandler
37
39
 
38
- registry_handler = PypiRegistryHandler(endpoint=config.endpoint, token=config.token)
40
+ registry_handler = PypiRegistryHandler(endpoint=config.endpoint, token=get_secret_value(config.token))
39
41
 
40
42
  yield registry_handler
@@ -18,6 +18,8 @@ import os
18
18
  from pydantic import Field
19
19
 
20
20
  from nat.cli.register_workflow import register_registry_handler
21
+ from nat.data_models.common import OptionalSecretStr
22
+ from nat.data_models.common import get_secret_value
21
23
  from nat.data_models.registry_handler import RegistryHandlerBaseConfig
22
24
 
23
25
 
@@ -25,8 +27,8 @@ class RestRegistryHandlerConfig(RegistryHandlerBaseConfig, name="rest"):
25
27
  """Registry handler for interacting with a remote REST registry."""
26
28
 
27
29
  endpoint: str = Field(description="A string representing the remote endpoint.")
28
- token: str | None = Field(default=None,
29
- description="The authentication token to use when interacting with the registry.")
30
+ token: OptionalSecretStr = Field(default=None,
31
+ description="The authentication token to use when interacting with the registry.")
30
32
  publish_route: str = Field(default="", description="The route to the NAT publish service.")
31
33
  pull_route: str = Field(default="", description="The route to the NAT pull service.")
32
34
  search_route: str = Field(default="", description="The route to the NAT search service")
@@ -44,7 +46,7 @@ async def rest_search_handler(config: RestRegistryHandlerConfig):
44
46
  if (registry_token is None):
45
47
  raise ValueError("Please supply registry token.")
46
48
  else:
47
- registry_token = config.token
49
+ registry_token = get_secret_value(config.token)
48
50
 
49
51
  registry_handler = RestRegistryHandler(token=registry_token,
50
52
  endpoint=config.endpoint,
@@ -20,6 +20,7 @@ from nat.builder.builder import Builder
20
20
  from nat.builder.retriever import RetrieverProviderInfo
21
21
  from nat.cli.register_workflow import register_retriever_client
22
22
  from nat.cli.register_workflow import register_retriever_provider
23
+ from nat.data_models.common import OptionalSecretStr
23
24
  from nat.data_models.retriever import RetrieverBaseConfig
24
25
 
25
26
 
@@ -34,7 +35,7 @@ class NemoRetrieverConfig(RetrieverBaseConfig, name="nemo_retriever"):
34
35
  default=None,
35
36
  description="A list of fields to return from the datastore. If 'None', all fields but the vector are returned.")
36
37
  timeout: int = Field(default=60, description="Maximum time to wait for results to be returned from the service.")
37
- nvidia_api_key: str | None = Field(
38
+ nvidia_api_key: OptionalSecretStr = Field(
38
39
  description="API key used to authenticate with the service. If 'None', will use ENV Variable 'NVIDIA_API_KEY'",
39
40
  default=None,
40
41
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nvidia-nat
3
- Version: 1.4.0a20251029
3
+ Version: 1.4.0a20251031
4
4
  Summary: NVIDIA NeMo Agent toolkit
5
5
  Author: NVIDIA Corporation
6
6
  Maintainer: NVIDIA Corporation
@@ -26,8 +26,8 @@ nat/authentication/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7
26
26
  nat/authentication/interfaces.py,sha256=1J2CWEJ_n6CLA3_HD3XV28CSbyfxrPAHzr7Q4kKDFdc,3511
27
27
  nat/authentication/register.py,sha256=lFhswYUk9iZ53mq33fClR9UfjJPdjGIivGGNHQeWiYo,915
28
28
  nat/authentication/api_key/__init__.py,sha256=GUJrgGtpvyMUCjUBvR3faAdv-tZzbU9W-izgx9aMEQg,680
29
- nat/authentication/api_key/api_key_auth_provider.py,sha256=QGRZZilD2GryhRJoODfKqypH54IwQp0I-Cck40Dc7dM,4032
30
- nat/authentication/api_key/api_key_auth_provider_config.py,sha256=zfkxH3yvUSKKldRf1K4PPm0rJLXGH0GDH8xj7anPYGQ,5472
29
+ nat/authentication/api_key/api_key_auth_provider.py,sha256=J6WNarzdLIT1dRLM0wbYlcgypddNNGhgo9ExfQodM1I,3849
30
+ nat/authentication/api_key/api_key_auth_provider_config.py,sha256=RLywkXGxfQlKnTW0Rz3a5qGgqyHV1B8ec8w2_nv3Dl8,5628
31
31
  nat/authentication/api_key/register.py,sha256=Mhv3WyZ9H7C2JN8VuPvwlsJEZrwXJCLXCIokkN9RrP0,1147
32
32
  nat/authentication/credential_validator/__init__.py,sha256=GUJrgGtpvyMUCjUBvR3faAdv-tZzbU9W-izgx9aMEQg,680
33
33
  nat/authentication/credential_validator/bearer_token_validator.py,sha256=cwGENd_bp-u2Y_JCRbEPxFkulk_vREpLog5c83h1nRU,21250
@@ -38,8 +38,8 @@ nat/authentication/http_basic_auth/http_basic_auth_provider.py,sha256=OXr5TV87Si
38
38
  nat/authentication/http_basic_auth/register.py,sha256=N2VD0vw7cYABsLxsGXl5yw0htc8adkrB0Y_EMxKwFfk,1235
39
39
  nat/authentication/oauth2/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
40
40
  nat/authentication/oauth2/oauth2_auth_code_flow_provider.py,sha256=NXsVATFxQ10Gg_nrW7Ljft2VXlAj460TeoXL-ww4WZc,5804
41
- nat/authentication/oauth2/oauth2_auth_code_flow_provider_config.py,sha256=e165ysd2pX2WTbV3_FQKEjEaa4TAXkJ7B98WUGbqnGE,2204
42
- nat/authentication/oauth2/oauth2_resource_server_config.py,sha256=ltcNp8Dwb2Q4tlwMN5Cl0B5pouTLtXRoV-QopfqV45M,5314
41
+ nat/authentication/oauth2/oauth2_auth_code_flow_provider_config.py,sha256=R261a2QU2ZUiyY2GjMc3xJpPYqPzydSKVSGhgyj7Do0,2279
42
+ nat/authentication/oauth2/oauth2_resource_server_config.py,sha256=WtqFMsJ-FzIjP7tjqs-tdYN4Pck0wxvdSyKIObNtU_8,5374
43
43
  nat/authentication/oauth2/register.py,sha256=7rXhf-ilgSS_bUJsd9pOOCotL1FM8dKUt3ke1TllKkQ,1228
44
44
  nat/builder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
45
  nat/builder/builder.py,sha256=okI3Y101hwF63AwazzxiahQx-W9eFZ_SNdFXzDuoftU,11608
@@ -114,13 +114,13 @@ nat/control_flow/router_agent/prompt.py,sha256=fIAiNsAs1zXRAatButR76zSpHJNxSkXXK
114
114
  nat/control_flow/router_agent/register.py,sha256=4RGmS9sy-QtIMmvh8mfMcR1VqxFPLpG4RckWCIExh40,4144
115
115
  nat/data_models/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
116
116
  nat/data_models/agent.py,sha256=IwDyb9Zc3R4Zd5rFeqt7q0EQswczAl5focxV9KozIzs,1625
117
- nat/data_models/api_server.py,sha256=oQtSiP7jpkHIZ75g21A_lTiidNsQo54pq3qy2StIJcs,30652
117
+ nat/data_models/api_server.py,sha256=sX_faprmycij1Zy_PQqEMtAcbvGD8PG1kWKLAyNQx6M,30775
118
118
  nat/data_models/authentication.py,sha256=XPu9W8nh4XRSuxPv3HxO-FMQ_JtTEoK6Y02JwnzDwTg,8457
119
- nat/data_models/common.py,sha256=0SL3qcQpY1SUJvFsup9HJW62n5ltgXgKMlKdvL6n5Zg,6542
119
+ nat/data_models/common.py,sha256=dOtZI6g9AvFplu40nTsUDnahafVa9c2VITq19V_cb50,7302
120
120
  nat/data_models/component.py,sha256=b_hXOA8Gm5UNvlFkAhsR6kEvf33ST50MKtr5kWf75Ao,1894
121
121
  nat/data_models/component_ref.py,sha256=KFDWFVCcvJCfBBcXTh9f3R802EVHBtHXh9OdbRqFmdM,4747
122
122
  nat/data_models/config.py,sha256=P0JJmjqvUHUkpZ3Yc0IrMPoA2qP8HkmOjl7CwNq-nQQ,18833
123
- nat/data_models/dataset_handler.py,sha256=bFPahRkmPtSmA4DVSUwKg-NJRHP7TGQDSRJiSv5UhZY,5518
123
+ nat/data_models/dataset_handler.py,sha256=1zz0456WGcGdLA9bodbMd1EMtQC8pns8TpvjNkk27No,5611
124
124
  nat/data_models/discovery_metadata.py,sha256=_l97iQsqp_ihba8CbMBQ73mH1sipTQ19GiJDdzQYQGY,13432
125
125
  nat/data_models/embedder.py,sha256=nPhthEQDtzAMGd8gFRB1ZfJpN5M9DJvv0h28ohHnTmI,1002
126
126
  nat/data_models/evaluate.py,sha256=L0GdNh_c8jii-MiK8oHW9sUUsGO3l1FMsprr-UazT5c,4836
@@ -153,9 +153,9 @@ nat/data_models/thinking_mixin.py,sha256=VRDUJZ8XP_Vv0gW2FRZUf8O9-kVgNEdZCEZ8oEm
153
153
  nat/data_models/top_p_mixin.py,sha256=mu0DLnCAiwNzpSFR8FOW4kQBUpodSrvUR4MsLrNtbgA,1599
154
154
  nat/data_models/ttc_strategy.py,sha256=tAkKWcyEBmBOOYtHMtQTgeCbHxFTk5SEkmFunNVnfyE,1114
155
155
  nat/embedder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
- nat/embedder/azure_openai_embedder.py,sha256=8OM54DCVCmWuQ8eZ5lXxsKYQktRmHMoIelRHZmKurUk,2381
157
- nat/embedder/nim_embedder.py,sha256=4DLcweOajXi67ZpLq_QvK0ZihFsntpsSF27FEvhF1ZQ,2532
158
- nat/embedder/openai_embedder.py,sha256=uASGh8KEmJg6_km8YNaenpPC92v-WbFpsvq-l4R38pY,1937
156
+ nat/embedder/azure_openai_embedder.py,sha256=yMHOA6lWZl15Pvd9Gpp_rHy5q2qmBiRjbFesFBGuC_U,2441
157
+ nat/embedder/nim_embedder.py,sha256=BDwqixfzToXoOg4vkHcLAhoCGzwfJjixcDAGYGM8Sok,2592
158
+ nat/embedder/openai_embedder.py,sha256=To7aCg8UyWPwSoA0MAHanH_MAKFDi3EcZxgLU1xYE9M,1997
159
159
  nat/embedder/register.py,sha256=TM_LKuSlJr3tEceNVuHfAx_yrCzf1sryD5Ycep5rNGo,883
160
160
  nat/eval/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
161
161
  nat/eval/config.py,sha256=G0LE4JpZaQy3PvERldVATFpQCiDQcVJGUFChgorqzNo,2377
@@ -166,7 +166,7 @@ nat/eval/remote_workflow.py,sha256=JAAbD0s753AOjo9baT4OqcB5dVEDmN34jPe0Uk13LcU,6
166
166
  nat/eval/runtime_event_subscriber.py,sha256=9MVgZLKvpnThHINaPbszPYDWnJ61sntS09YZtDhIRE4,1900
167
167
  nat/eval/usage_stats.py,sha256=r8Zr3bIy2qXU1BgVKXr_4mr7bG0hte3BPNQLSgZvg8M,1376
168
168
  nat/eval/dataset_handler/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
169
- nat/eval/dataset_handler/dataset_downloader.py,sha256=w5Kjj7Dn2gQ14ekgt3rtGT8EPGJtXXXlckbtby9rJ2k,4553
169
+ nat/eval/dataset_handler/dataset_downloader.py,sha256=ZaNohbRSvoHPWIj0C_FqyJnhQKoTBk_uZF7ijjfk6vE,4641
170
170
  nat/eval/dataset_handler/dataset_filter.py,sha256=HrK0m3SQnPX6zOcKwJwYMrD9O-f6aOw8Vo3j9RKszqE,2115
171
171
  nat/eval/dataset_handler/dataset_handler.py,sha256=my28rKvQiiRN_h2TJz6fdKeMOjP3LC3_e2aJNnPPYhE,18159
172
172
  nat/eval/evaluator/__init__.py,sha256=GUJrgGtpvyMUCjUBvR3faAdv-tZzbU9W-izgx9aMEQg,680
@@ -192,7 +192,7 @@ nat/eval/tunable_rag_evaluator/evaluate.py,sha256=SzZYwE0juuNv6o9Pbddxi4edxRXlo8
192
192
  nat/eval/tunable_rag_evaluator/register.py,sha256=jYhPz8Xwsxyb7E0xpkAcQFT20xjSoYd_4qOJ7ltvUzU,2558
193
193
  nat/eval/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
194
194
  nat/eval/utils/eval_trace_ctx.py,sha256=hN0YZ0wMOPzh9I-iSav-cGdxY3RWQWoE_tk5BxUf1mc,3264
195
- nat/eval/utils/output_uploader.py,sha256=27-aKIejV-6DGNErR6iTioNE5rN_lEeiNoBTS1qIVVM,5579
195
+ nat/eval/utils/output_uploader.py,sha256=wtAaxvrJrjQPFt8mTLSz31sWDs09KmLkmyelMQOLDws,5667
196
196
  nat/eval/utils/tqdm_position_registry.py,sha256=9CtpCk1wtYCSyieHPaSp8nlZu6EcNUOaUz2RTqfekrA,1286
197
197
  nat/eval/utils/weave_eval.py,sha256=fma5x9JbWpWrfQbfMHcjMovlRVR0v35yfNt1Avt6Vro,7719
198
198
  nat/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -235,7 +235,7 @@ nat/experimental/test_time_compute/selection/threshold_selector.py,sha256=9E__TM
235
235
  nat/front_ends/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
236
236
  nat/front_ends/register.py,sha256=_C6AFpsQ8hUXavKHaBMy0g137fOcLfEjyU0EAuYqtao,857
237
237
  nat/front_ends/console/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
238
- nat/front_ends/console/authentication_flow_handler.py,sha256=iv8sm7i1mtVT60lfXwwqDrlQfNZ1bl1bPfWkaH5oaLA,12147
238
+ nat/front_ends/console/authentication_flow_handler.py,sha256=ikZdzQH4uLJ_eWLDHcCAcXhOk_2gmnjVTjykuISeVQE,12166
239
239
  nat/front_ends/console/console_front_end_config.py,sha256=wkMXk-RCdlEj3303kB1gh47UKJnubX2R-vzBzhedpS4,1318
240
240
  nat/front_ends/console/console_front_end_plugin.py,sha256=rlh8rL8iJCczVJngBFMckNFB7ERqJGtX1QJr-iNKGyA,4670
241
241
  nat/front_ends/console/register.py,sha256=2Kf6Mthx6jzWzU8YdhYIR1iABmZDvs1UXM_20npXWXs,1153
@@ -267,15 +267,15 @@ nat/front_ends/mcp/mcp_front_end_plugin.py,sha256=MVYJBCOhZAzUPlnXest6CYP3Gf0Ef1
267
267
  nat/front_ends/mcp/mcp_front_end_plugin_worker.py,sha256=qoRbYLC_HWqSH_jSNb-w7R_qwOmLyXaUA5JK0SX33GA,15362
268
268
  nat/front_ends/mcp/memory_profiler.py,sha256=OpcpLBAGCdQwYSFZbtAqdfncrnGYVjDcMpWydB71hjY,12811
269
269
  nat/front_ends/mcp/register.py,sha256=3aJtgG5VaiqujoeU1-Eq7Hl5pWslIlIwGFU2ASLTXgM,1173
270
- nat/front_ends/mcp/tool_converter.py,sha256=14NweQN3cPFBw7ZNiGyUHO4VhMGHrtfLGgvu4_H38oU,12426
270
+ nat/front_ends/mcp/tool_converter.py,sha256=IOHb8UoW_TVvRoiML2yi6nlbx13KgcmUsuYOGS3xYe0,13349
271
271
  nat/front_ends/simple_base/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
272
272
  nat/front_ends/simple_base/simple_front_end_plugin_base.py,sha256=py_yA9XAw-yHfK5cQJLM8ElnubEEM2ac8M0bvz-ScWs,1801
273
273
  nat/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
274
274
  nat/llm/aws_bedrock_llm.py,sha256=Qo6-7MUrh4qGzUQMsEPTyKEBp5D7DwU6e8LHoHwzQIs,3252
275
- nat/llm/azure_openai_llm.py,sha256=30JWbNyscHhuRjFdWF2yLAEcKurY0q2BSMVFTdtSv9g,2649
276
- nat/llm/litellm_llm.py,sha256=3txXuGXd5i3IAhzuI87jB4VGM3DeNfmvnkpZuTk0MPs,2943
277
- nat/llm/nim_llm.py,sha256=bKPNgK1c6n9TWbtltY5Jz9nRzWBKjk2S1-ClF1ngtNY,2729
278
- nat/llm/openai_llm.py,sha256=gUZ0AkQ25PrO9wWUzXvAMmrBMn5bqz9uU0Mv-54sxIE,2577
275
+ nat/llm/azure_openai_llm.py,sha256=IJ_o6W_NtR2rzaCowznyJUA8-5F4CG0scy3Nw2egoPs,2709
276
+ nat/llm/litellm_llm.py,sha256=060odQkgTR087LmFrgnpy_yP0nvUoHI25DahS5VUbgA,3003
277
+ nat/llm/nim_llm.py,sha256=2v5QC16Fk-Nczx2p9OP7hfPM7CsylbAEZlkJrkvLgKI,2789
278
+ nat/llm/openai_llm.py,sha256=vg4K05IUamsRz9SVs1GUJrabr38cs8JNa_jd52048cw,2637
279
279
  nat/llm/register.py,sha256=7xDYdK4w4opAwIjzDM5x7moJXT3QeEGaGGc_nDfY0i4,1090
280
280
  nat/llm/utils/__init__.py,sha256=GUJrgGtpvyMUCjUBvR3faAdv-tZzbU9W-izgx9aMEQg,680
281
281
  nat/llm/utils/env_config_value.py,sha256=kBVsv0pEokIAfDQx5omR7_FevFv_5fTPswcbnvhVT2c,3548
@@ -371,9 +371,9 @@ nat/profiler/inference_optimization/experimental/prefix_span_analysis.py,sha256=
371
371
  nat/profiler/parameter_optimization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
372
372
  nat/profiler/parameter_optimization/optimizable_utils.py,sha256=93Pl8A14Zq_f3XsxSH-yFnEJ6B7W5hp7doPnPoLlRB4,3714
373
373
  nat/profiler/parameter_optimization/optimizer_runtime.py,sha256=rXmCOq81o7ZorQOUYociVjuO3NO9CIjFBbwql2u_4H4,2715
374
- nat/profiler/parameter_optimization/parameter_optimizer.py,sha256=vxUvso4RnSwoUF5rJkJJGaIOJojebrvYcA79WA0ZP7c,7719
374
+ nat/profiler/parameter_optimization/parameter_optimizer.py,sha256=xKqKLOJaOi3EVZjT95zwKwHdX3AyYmMfxDxyhwtHal4,8256
375
375
  nat/profiler/parameter_optimization/parameter_selection.py,sha256=pfnNQIx1evNICgChsOJXIFQHoL1R_kmh_vNDsVMC9kg,3982
376
- nat/profiler/parameter_optimization/pareto_visualizer.py,sha256=QclLZmmsWINIAh4n0XAKmnIZOqGHTMr-iggZS0kxj-Y,17055
376
+ nat/profiler/parameter_optimization/pareto_visualizer.py,sha256=mE4Az9G_hw4CsAP8jgNl9H5L9KQjq82bxmIPEr63nEg,20537
377
377
  nat/profiler/parameter_optimization/prompt_optimizer.py,sha256=_AmdeB1jRamd93qR5UqRy5LweYR3bjnD7zoLxzXYE0k,17658
378
378
  nat/profiler/parameter_optimization/update_helpers.py,sha256=NxWhrGVchbjws85pPd-jS-C14_l70QvVSvEfENndVcY,2339
379
379
  nat/registry_handlers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -386,9 +386,9 @@ nat/registry_handlers/local/local_handler.py,sha256=Dz-jRccF3NbSM9ddEzI7qckD-Ngj
386
386
  nat/registry_handlers/local/register_local.py,sha256=EMcQ3tvDDic4YeViz3jNIQyrUiD0foriP11CuuEmrr0,1341
387
387
  nat/registry_handlers/pypi/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
388
388
  nat/registry_handlers/pypi/pypi_handler.py,sha256=ec6oJjMO4msWTqahpP0L72O-iVckOFvrgcnpZuUlrw4,10070
389
- nat/registry_handlers/pypi/register_pypi.py,sha256=iFoZeAQjO_dZfzCsgp-5SmqwFDQ9y8QReVHZ0iGFoow,1840
389
+ nat/registry_handlers/pypi/register_pypi.py,sha256=4TY6RLab99yIeQvfysZKFdsCWzTU81Dkxyb0yMONys0,1977
390
390
  nat/registry_handlers/rest/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
391
- nat/registry_handlers/rest/register_rest.py,sha256=We_WtZ0KPSgCjsORRA1QNAgljEAGLeUi92mYRJ3nVQU,2529
391
+ nat/registry_handlers/rest/register_rest.py,sha256=anIc20Tkupnm0T7wFfo5g_9tvJwBJjtaCo3nfhZUAmI,2666
392
392
  nat/registry_handlers/rest/rest_handler.py,sha256=Ez-seJyUqVYrR_kLrDFrA1kuzWIKeiJYY0GTrV9-qnA,9371
393
393
  nat/registry_handlers/schemas/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
394
394
  nat/registry_handlers/schemas/headers.py,sha256=LnVfCMNc3vRr-lRdFB8Cuv9Db5Ct-ACTapjWLaRg2os,1549
@@ -406,7 +406,7 @@ nat/retriever/milvus/__init__.py,sha256=GUJrgGtpvyMUCjUBvR3faAdv-tZzbU9W-izgx9aM
406
406
  nat/retriever/milvus/register.py,sha256=FaWvUFj4rU6qcui-G459Z-bQV-QAVR3PNONT1qu7jxs,4027
407
407
  nat/retriever/milvus/retriever.py,sha256=wfWi-Ck17ZXbrCJE3MiEVD4DuVeeAkgifdAkoISqNa0,9485
408
408
  nat/retriever/nemo_retriever/__init__.py,sha256=GUJrgGtpvyMUCjUBvR3faAdv-tZzbU9W-izgx9aMEQg,680
409
- nat/retriever/nemo_retriever/register.py,sha256=3XdrvEJzX2Zc8wpdm__4YYlEWBW-FK3tl_BwOWtn-4w,2893
409
+ nat/retriever/nemo_retriever/register.py,sha256=j0K5wz4jS9LbSXMknKUjkZ5bnqLGqrkcKGKTQNSg0ro,2953
410
410
  nat/retriever/nemo_retriever/retriever.py,sha256=gi3_qJFqE-iqRh3of_cmJg-SwzaQ3z24zA9LwY_MSLY,6930
411
411
  nat/runtime/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
412
412
  nat/runtime/loader.py,sha256=obUdAgZVYCPGC0R8u3wcoKFJzzSPQgJvrbU4OWygtog,7953
@@ -475,10 +475,10 @@ nat/utils/reactive/base/observer_base.py,sha256=6BiQfx26EMumotJ3KoVcdmFBYR_fnAss
475
475
  nat/utils/reactive/base/subject_base.py,sha256=UQOxlkZTIeeyYmG5qLtDpNf_63Y7p-doEeUA08_R8ME,2521
476
476
  nat/utils/settings/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
477
477
  nat/utils/settings/global_settings.py,sha256=9JaO6pxKT_Pjw6rxJRsRlFCXdVKCl_xUKU2QHZQWWNM,7294
478
- nvidia_nat-1.4.0a20251029.dist-info/licenses/LICENSE-3rd-party.txt,sha256=fOk5jMmCX9YoKWyYzTtfgl-SUy477audFC5hNY4oP7Q,284609
479
- nvidia_nat-1.4.0a20251029.dist-info/licenses/LICENSE.md,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
480
- nvidia_nat-1.4.0a20251029.dist-info/METADATA,sha256=tiz911ksuk9pmFsLqH1gUexiw_Y6H5fqLvquikF0_Lo,10248
481
- nvidia_nat-1.4.0a20251029.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
482
- nvidia_nat-1.4.0a20251029.dist-info/entry_points.txt,sha256=4jCqjyETMpyoWbCBf4GalZU8I_wbstpzwQNezdAVbbo,698
483
- nvidia_nat-1.4.0a20251029.dist-info/top_level.txt,sha256=lgJWLkigiVZuZ_O1nxVnD_ziYBwgpE2OStdaCduMEGc,8
484
- nvidia_nat-1.4.0a20251029.dist-info/RECORD,,
478
+ nvidia_nat-1.4.0a20251031.dist-info/licenses/LICENSE-3rd-party.txt,sha256=fOk5jMmCX9YoKWyYzTtfgl-SUy477audFC5hNY4oP7Q,284609
479
+ nvidia_nat-1.4.0a20251031.dist-info/licenses/LICENSE.md,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
480
+ nvidia_nat-1.4.0a20251031.dist-info/METADATA,sha256=qPR0zmgu2THcW57-42J5cZOLVmw059YSyZV5ngsk-Gw,10248
481
+ nvidia_nat-1.4.0a20251031.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
482
+ nvidia_nat-1.4.0a20251031.dist-info/entry_points.txt,sha256=4jCqjyETMpyoWbCBf4GalZU8I_wbstpzwQNezdAVbbo,698
483
+ nvidia_nat-1.4.0a20251031.dist-info/top_level.txt,sha256=lgJWLkigiVZuZ_O1nxVnD_ziYBwgpE2OStdaCduMEGc,8
484
+ nvidia_nat-1.4.0a20251031.dist-info/RECORD,,