nvidia-nat 1.3.0a20251008__py3-none-any.whl → 1.3.0a20251009__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -24,6 +24,7 @@ from nat.builder.function_info import FunctionInfo
24
24
  from nat.cli.register_workflow import register_function
25
25
  from nat.data_models.agent import AgentBaseConfig
26
26
  from nat.data_models.api_server import ChatRequest
27
+ from nat.data_models.api_server import ChatRequestOrMessage
27
28
  from nat.data_models.api_server import ChatResponse
28
29
  from nat.data_models.api_server import Usage
29
30
  from nat.data_models.component_ref import FunctionGroupRef
@@ -70,9 +71,6 @@ class ReActAgentWorkflowConfig(AgentBaseConfig, OptimizableMixin, name="react_ag
70
71
  default=None,
71
72
  description="Provides the SYSTEM_PROMPT to use with the agent") # defaults to SYSTEM_PROMPT in prompt.py
72
73
  max_history: int = Field(default=15, description="Maximum number of messages to keep in the conversation history.")
73
- use_openai_api: bool = Field(default=False,
74
- description=("Use OpenAI API for the input/output types to the function. "
75
- "If False, strings will be used."))
76
74
  additional_instructions: str | None = OptimizableField(
77
75
  default=None,
78
76
  description="Additional instructions to provide to the agent in addition to the base prompt.",
@@ -118,21 +116,23 @@ async def react_agent_workflow(config: ReActAgentWorkflowConfig, builder: Builde
118
116
  pass_tool_call_errors_to_agent=config.pass_tool_call_errors_to_agent,
119
117
  normalize_tool_input_quotes=config.normalize_tool_input_quotes).build_graph()
120
118
 
121
- async def _response_fn(input_message: ChatRequest) -> ChatResponse:
119
+ async def _response_fn(chat_request_or_message: ChatRequestOrMessage) -> ChatResponse | str:
122
120
  """
123
121
  Main workflow entry function for the ReAct Agent.
124
122
 
125
123
  This function invokes the ReAct Agent Graph and returns the response.
126
124
 
127
125
  Args:
128
- input_message (ChatRequest): The input message to process
126
+ chat_request_or_message (ChatRequestOrMessage): The input message to process
129
127
 
130
128
  Returns:
131
- ChatResponse: The response from the agent or error message
129
+ ChatResponse | str: The response from the agent or error message
132
130
  """
133
131
  try:
132
+ message = GlobalTypeConverter.get().convert(chat_request_or_message, to_type=ChatRequest)
133
+
134
134
  # initialize the starting state with the user query
135
- messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in input_message.messages],
135
+ messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in message.messages],
136
136
  max_tokens=config.max_history,
137
137
  strategy="last",
138
138
  token_counter=len,
@@ -153,25 +153,16 @@ async def react_agent_workflow(config: ReActAgentWorkflowConfig, builder: Builde
153
153
  content = str(output_message.content)
154
154
 
155
155
  # Create usage statistics for the response
156
- prompt_tokens = sum(len(str(msg.content).split()) for msg in input_message.messages)
156
+ prompt_tokens = sum(len(str(msg.content).split()) for msg in message.messages)
157
157
  completion_tokens = len(content.split()) if content else 0
158
158
  total_tokens = prompt_tokens + completion_tokens
159
159
  usage = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=total_tokens)
160
- return ChatResponse.from_string(content, usage=usage)
161
-
160
+ response = ChatResponse.from_string(content, usage=usage)
161
+ if chat_request_or_message.is_string:
162
+ return GlobalTypeConverter.get().convert(response, to_type=str)
163
+ return response
162
164
  except Exception as ex:
163
165
  logger.exception("%s ReAct Agent failed with exception: %s", AGENT_LOG_PREFIX, str(ex))
164
166
  raise RuntimeError
165
167
 
166
- if (config.use_openai_api):
167
- yield FunctionInfo.from_fn(_response_fn, description=config.description)
168
- else:
169
-
170
- async def _str_api_fn(input_message: str) -> str:
171
- oai_input = GlobalTypeConverter.get().try_convert(input_message, to_type=ChatRequest)
172
-
173
- oai_output = await _response_fn(oai_input)
174
-
175
- return GlobalTypeConverter.get().try_convert(oai_output, to_type=str)
176
-
177
- yield FunctionInfo.from_fn(_str_api_fn, description=config.description)
168
+ yield FunctionInfo.from_fn(_response_fn, description=config.description)
@@ -25,6 +25,7 @@ from nat.builder.function_info import FunctionInfo
25
25
  from nat.cli.register_workflow import register_function
26
26
  from nat.data_models.agent import AgentBaseConfig
27
27
  from nat.data_models.api_server import ChatRequest
28
+ from nat.data_models.api_server import ChatRequestOrMessage
28
29
  from nat.data_models.api_server import ChatResponse
29
30
  from nat.data_models.api_server import Usage
30
31
  from nat.data_models.component_ref import FunctionGroupRef
@@ -54,9 +55,6 @@ class ReWOOAgentWorkflowConfig(AgentBaseConfig, name="rewoo_agent"):
54
55
  description="The number of retries before raising a tool call error.",
55
56
  ge=1)
56
57
  max_history: int = Field(default=15, description="Maximum number of messages to keep in the conversation history.")
57
- use_openai_api: bool = Field(default=False,
58
- description=("Use OpenAI API for the input/output types to the function. "
59
- "If False, strings will be used."))
60
58
  additional_planner_instructions: str | None = Field(
61
59
  default=None,
62
60
  validation_alias=AliasChoices("additional_planner_instructions", "additional_instructions"),
@@ -125,21 +123,23 @@ async def rewoo_agent_workflow(config: ReWOOAgentWorkflowConfig, builder: Builde
125
123
  tool_call_max_retries=config.tool_call_max_retries,
126
124
  raise_tool_call_error=config.raise_tool_call_error).build_graph()
127
125
 
128
- async def _response_fn(input_message: ChatRequest) -> ChatResponse:
126
+ async def _response_fn(chat_request_or_message: ChatRequestOrMessage) -> ChatResponse | str:
129
127
  """
130
128
  Main workflow entry function for the ReWOO Agent.
131
129
 
132
130
  This function invokes the ReWOO Agent Graph and returns the response.
133
131
 
134
132
  Args:
135
- input_message (ChatRequest): The input message to process
133
+ chat_request_or_message (ChatRequestOrMessage): The input message to process
136
134
 
137
135
  Returns:
138
- ChatResponse: The response from the agent or error message
136
+ ChatResponse | str: The response from the agent or error message
139
137
  """
140
138
  try:
139
+ message = GlobalTypeConverter.get().convert(chat_request_or_message, to_type=ChatRequest)
140
+
141
141
  # initialize the starting state with the user query
142
- messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in input_message.messages],
142
+ messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in message.messages],
143
143
  max_tokens=config.max_history,
144
144
  strategy="last",
145
145
  token_counter=len,
@@ -160,25 +160,16 @@ async def rewoo_agent_workflow(config: ReWOOAgentWorkflowConfig, builder: Builde
160
160
  output_message = str(output_message)
161
161
 
162
162
  # Create usage statistics for the response
163
- prompt_tokens = sum(len(str(msg.content).split()) for msg in input_message.messages)
163
+ prompt_tokens = sum(len(str(msg.content).split()) for msg in message.messages)
164
164
  completion_tokens = len(output_message.split()) if output_message else 0
165
165
  total_tokens = prompt_tokens + completion_tokens
166
166
  usage = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=total_tokens)
167
- return ChatResponse.from_string(output_message, usage=usage)
168
-
167
+ response = ChatResponse.from_string(output_message, usage=usage)
168
+ if chat_request_or_message.is_string:
169
+ return GlobalTypeConverter.get().convert(response, to_type=str)
170
+ return response
169
171
  except Exception as ex:
170
172
  logger.exception("ReWOO Agent failed with exception: %s", ex)
171
173
  raise RuntimeError
172
174
 
173
- if (config.use_openai_api):
174
- yield FunctionInfo.from_fn(_response_fn, description=config.description)
175
-
176
- else:
177
-
178
- async def _str_api_fn(input_message: str) -> str:
179
- oai_input = GlobalTypeConverter.get().try_convert(input_message, to_type=ChatRequest)
180
- oai_output = await _response_fn(oai_input)
181
-
182
- return GlobalTypeConverter.get().try_convert(oai_output, to_type=str)
183
-
184
- yield FunctionInfo.from_fn(_str_api_fn, description=config.description)
175
+ yield FunctionInfo.from_fn(_response_fn, description=config.description)
@@ -23,8 +23,10 @@ from nat.builder.function_info import FunctionInfo
23
23
  from nat.cli.register_workflow import register_function
24
24
  from nat.data_models.agent import AgentBaseConfig
25
25
  from nat.data_models.api_server import ChatRequest
26
+ from nat.data_models.api_server import ChatRequestOrMessage
26
27
  from nat.data_models.component_ref import FunctionGroupRef
27
28
  from nat.data_models.component_ref import FunctionRef
29
+ from nat.utils.type_converter import GlobalTypeConverter
28
30
 
29
31
  logger = logging.getLogger(__name__)
30
32
 
@@ -81,21 +83,23 @@ async def tool_calling_agent_workflow(config: ToolCallAgentWorkflowConfig, build
81
83
  handle_tool_errors=config.handle_tool_errors,
82
84
  return_direct=return_direct_tools).build_graph()
83
85
 
84
- async def _response_fn(input_message: ChatRequest) -> str:
86
+ async def _response_fn(chat_request_or_message: ChatRequestOrMessage) -> str:
85
87
  """
86
88
  Main workflow entry function for the Tool Calling Agent.
87
89
 
88
90
  This function invokes the Tool Calling Agent Graph and returns the response.
89
91
 
90
92
  Args:
91
- input_message (ChatRequest): The input message to process
93
+ chat_request_or_message (ChatRequestOrMessage): The input message to process
92
94
 
93
95
  Returns:
94
96
  str: The response from the agent or error message
95
97
  """
96
98
  try:
99
+ message = GlobalTypeConverter.get().convert(chat_request_or_message, to_type=ChatRequest)
100
+
97
101
  # initialize the starting state with the user query
98
- messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in input_message.messages],
102
+ messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in message.messages],
99
103
  max_tokens=config.max_history,
100
104
  strategy="last",
101
105
  token_counter=len,
nat/builder/function.py CHANGED
@@ -416,8 +416,9 @@ class FunctionGroup:
416
416
  """
417
417
  if not name.strip():
418
418
  raise ValueError("Function name cannot be empty or blank")
419
- if not re.match(r"^[a-zA-Z0-9_-]+$", name):
420
- raise ValueError(f"Function name can only contain letters, numbers, underscores, and hyphens: {name}")
419
+ if not re.match(r"^[a-zA-Z0-9_.-]+$", name):
420
+ raise ValueError(
421
+ f"Function name can only contain letters, numbers, underscores, periods, and hyphens: {name}")
421
422
  if name in self._functions:
422
423
  raise ValueError(f"Function {name} already exists in function group {self._instance_name}")
423
424
 
nat/cli/entrypoint.py CHANGED
@@ -29,6 +29,7 @@ import time
29
29
 
30
30
  import click
31
31
  import nest_asyncio
32
+ from dotenv import load_dotenv
32
33
 
33
34
  from nat.utils.log_levels import LOG_LEVELS
34
35
 
@@ -45,6 +46,9 @@ from .commands.uninstall import uninstall_command
45
46
  from .commands.validate import validate_command
46
47
  from .commands.workflow.workflow import workflow_command
47
48
 
49
+ # Load environment variables from .env file, if it exists
50
+ load_dotenv()
51
+
48
52
  # Apply at the beginning of the file to avoid issues with asyncio
49
53
  nest_asyncio.apply()
50
54
 
@@ -28,6 +28,7 @@ from pydantic import HttpUrl
28
28
  from pydantic import conlist
29
29
  from pydantic import field_serializer
30
30
  from pydantic import field_validator
31
+ from pydantic import model_validator
31
32
  from pydantic_core.core_schema import ValidationInfo
32
33
 
33
34
  from nat.data_models.interactive import HumanPrompt
@@ -120,15 +121,7 @@ class Message(BaseModel):
120
121
  role: UserMessageContentRoleType
121
122
 
122
123
 
123
- class ChatRequest(BaseModel):
124
- """
125
- ChatRequest is a data model that represents a request to the NAT chat API.
126
- Fully compatible with OpenAI Chat Completions API specification.
127
- """
128
-
129
- # Required fields
130
- messages: typing.Annotated[list[Message], conlist(Message, min_length=1)]
131
-
124
+ class ChatRequestOptionals(BaseModel):
132
125
  # Optional fields (OpenAI Chat Completions API compatible)
133
126
  model: str | None = Field(default=None, description="name of the model to use")
134
127
  frequency_penalty: float | None = Field(default=0.0,
@@ -153,6 +146,16 @@ class ChatRequest(BaseModel):
153
146
  parallel_tool_calls: bool | None = Field(default=True, description="Whether to enable parallel function calling")
154
147
  user: str | None = Field(default=None, description="Unique identifier representing end-user")
155
148
 
149
+
150
+ class ChatRequest(ChatRequestOptionals):
151
+ """
152
+ ChatRequest is a data model that represents a request to the NAT chat API.
153
+ Fully compatible with OpenAI Chat Completions API specification.
154
+ """
155
+
156
+ # Required fields
157
+ messages: typing.Annotated[list[Message], conlist(Message, min_length=1)]
158
+
156
159
  model_config = ConfigDict(extra="allow",
157
160
  json_schema_extra={
158
161
  "example": {
@@ -194,6 +197,42 @@ class ChatRequest(BaseModel):
194
197
  top_p=top_p)
195
198
 
196
199
 
200
+ class ChatRequestOrMessage(ChatRequestOptionals):
201
+ """
202
+ ChatRequestOrMessage is a data model that represents either a conversation or a string input.
203
+ This is useful for functions that can handle either type of input.
204
+
205
+ `messages` is compatible with the OpenAI Chat Completions API specification.
206
+
207
+ `input_string` is a string input that can be used for functions that do not require a conversation.
208
+ """
209
+
210
+ messages: typing.Annotated[list[Message] | None, conlist(Message, min_length=1)] = Field(
211
+ default=None, description="The conversation messages to process.")
212
+
213
+ input_string: str | None = Field(default=None, alias="input_message", description="The input message to process.")
214
+
215
+ @property
216
+ def is_string(self) -> bool:
217
+ return self.input_string is not None
218
+
219
+ @property
220
+ def is_conversation(self) -> bool:
221
+ return self.messages is not None
222
+
223
+ @model_validator(mode="after")
224
+ def validate_messages_or_input_string(self):
225
+ if self.messages is not None and self.input_string is not None:
226
+ raise ValueError("Either messages or input_message/input_string must be provided, not both")
227
+ if self.messages is None and self.input_string is None:
228
+ raise ValueError("Either messages or input_message/input_string must be provided")
229
+ if self.input_string is not None:
230
+ extra_fields = self.model_dump(exclude={"input_string"}, exclude_none=True, exclude_unset=True)
231
+ if len(extra_fields) > 0:
232
+ raise ValueError("no extra fields are permitted when input_message/input_string is provided")
233
+ return self
234
+
235
+
197
236
  class ChoiceMessage(BaseModel):
198
237
  content: str | None = None
199
238
  role: UserMessageContentRoleType | None = None
@@ -661,6 +700,36 @@ def _string_to_nat_chat_request(data: str) -> ChatRequest:
661
700
  GlobalTypeConverter.register_converter(_string_to_nat_chat_request)
662
701
 
663
702
 
703
+ def _chat_request_or_message_to_chat_request(data: ChatRequestOrMessage) -> ChatRequest:
704
+ if data.input_string is not None:
705
+ return _string_to_nat_chat_request(data.input_string)
706
+ return ChatRequest(**data.model_dump(exclude={"input_string"}))
707
+
708
+
709
+ GlobalTypeConverter.register_converter(_chat_request_or_message_to_chat_request)
710
+
711
+
712
+ def _chat_request_to_chat_request_or_message(data: ChatRequest) -> ChatRequestOrMessage:
713
+ return ChatRequestOrMessage(**data.model_dump(by_alias=True))
714
+
715
+
716
+ GlobalTypeConverter.register_converter(_chat_request_to_chat_request_or_message)
717
+
718
+
719
+ def _chat_request_or_message_to_string(data: ChatRequestOrMessage) -> str:
720
+ return data.input_string or ""
721
+
722
+
723
+ GlobalTypeConverter.register_converter(_chat_request_or_message_to_string)
724
+
725
+
726
+ def _string_to_chat_request_or_message(data: str) -> ChatRequestOrMessage:
727
+ return ChatRequestOrMessage(input_message=data)
728
+
729
+
730
+ GlobalTypeConverter.register_converter(_string_to_chat_request_or_message)
731
+
732
+
664
733
  # ======== ChatResponse Converters ========
665
734
  def _nat_chat_response_to_string(data: ChatResponse) -> str:
666
735
  if data.choices and data.choices[0].message:
@@ -93,6 +93,14 @@ class TypeConverter:
93
93
  if to_type is None or decomposed.is_instance(data):
94
94
  return data
95
95
 
96
+ # 2) If data is a union type, try to convert to each type in the union
97
+ if decomposed.is_union:
98
+ for union_type in decomposed.args:
99
+ result = self._convert(data, union_type)
100
+ if result is not None:
101
+ return result
102
+ return None
103
+
96
104
  root = decomposed.root
97
105
 
98
106
  # 2) Attempt direct in *this* converter
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nvidia-nat
3
- Version: 1.3.0a20251008
3
+ Version: 1.3.0a20251009
4
4
  Summary: NVIDIA NeMo Agent toolkit
5
5
  Author: NVIDIA Corporation
6
6
  Maintainer: NVIDIA Corporation
7
- License-Expression: Apache-2.0
7
+ License: Apache-2.0
8
8
  Project-URL: documentation, https://docs.nvidia.com/nemo/agent-toolkit/latest/
9
9
  Project-URL: source, https://github.com/NVIDIA/NeMo-Agent-Toolkit
10
10
  Keywords: ai,rag,agents
@@ -14,8 +14,8 @@ Classifier: Programming Language :: Python :: 3.12
14
14
  Classifier: Programming Language :: Python :: 3.13
15
15
  Requires-Python: <3.14,>=3.11
16
16
  Description-Content-Type: text/markdown
17
- License-File: LICENSE.md
18
17
  License-File: LICENSE-3rd-party.txt
18
+ License-File: LICENSE.md
19
19
  Requires-Dist: aioboto3>=11.0.0
20
20
  Requires-Dist: authlib~=1.5
21
21
  Requires-Dist: click~=8.1
@@ -40,6 +40,7 @@ Requires-Dist: pkginfo~=1.12
40
40
  Requires-Dist: platformdirs~=4.3
41
41
  Requires-Dist: pydantic~=2.11
42
42
  Requires-Dist: pymilvus~=2.4
43
+ Requires-Dist: python-dotenv~=1.1.1
43
44
  Requires-Dist: PyYAML~=6.0
44
45
  Requires-Dist: ragas~=0.2.14
45
46
  Requires-Dist: rich~=13.9
@@ -10,16 +10,16 @@ nat/agent/react_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
10
10
  nat/agent/react_agent/agent.py,sha256=sWrg9WrglTKQQyG3EcjNm2JTEchCPEo9li-Po7TJKss,21294
11
11
  nat/agent/react_agent/output_parser.py,sha256=m7K6wRwtckBBpAHqOf3BZ9mqZLwrP13Kxz5fvNxbyZE,4219
12
12
  nat/agent/react_agent/prompt.py,sha256=N47JJrT6xwYQCv1jedHhlul2AE7EfKsSYfAbgJwWRew,1758
13
- nat/agent/react_agent/register.py,sha256=wAoPkly7dE8bb5x8XFf5-C1qJQausLKQwQcFCby_dwU,9307
13
+ nat/agent/react_agent/register.py,sha256=lpiso1tKq70ZYKbV9zXZegtXPLJNBaBrnG25R9hyA9Q,9008
14
14
  nat/agent/reasoning_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  nat/agent/reasoning_agent/reasoning_agent.py,sha256=k_0wEDqACQn1Rn1MAKxoXyqOKsthHCQ1gt990YYUqHU,9575
16
16
  nat/agent/rewoo_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  nat/agent/rewoo_agent/agent.py,sha256=XXgVXY9xwkyxnr093KXUtfgyNxAQbyGAecoGqN5mMLY,26199
18
18
  nat/agent/rewoo_agent/prompt.py,sha256=B0JeL1xDX4VKcShlkkviEcAsOKAwzSlX8NcAQdmUUPw,3645
19
- nat/agent/rewoo_agent/register.py,sha256=GfJRQgpFWl-LQ-pPaG7EUeBH5u7pDZZNVP5cSweZJdM,9599
19
+ nat/agent/rewoo_agent/register.py,sha256=s6D9W4x5jIkda8l67gj3A46aefk6KQPuZ4H-ZJkVAtY,9300
20
20
  nat/agent/tool_calling_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
21
  nat/agent/tool_calling_agent/agent.py,sha256=4SIp29I56oznPRQu7B3HCoX53Ri3_o3BRRYNJjeBkF8,11006
22
- nat/agent/tool_calling_agent/register.py,sha256=ijiRfgDVtt2p7_q1YbIQZmUVV8-jf3yT18HwtKyReUI,6822
22
+ nat/agent/tool_calling_agent/register.py,sha256=h1Xfr1KPvQkslPg-NqdOMQAmx1PNFAIvvOC5bAIJtbE,7074
23
23
  nat/authentication/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
24
24
  nat/authentication/interfaces.py,sha256=1J2CWEJ_n6CLA3_HD3XV28CSbyfxrPAHzr7Q4kKDFdc,3511
25
25
  nat/authentication/register.py,sha256=lFhswYUk9iZ53mq33fClR9UfjJPdjGIivGGNHQeWiYo,915
@@ -48,7 +48,7 @@ nat/builder/eval_builder.py,sha256=I-ScvupmorClYoVBIs_PhSsB7Xf9e2nGWe0rCZp3txo,6
48
48
  nat/builder/evaluator.py,sha256=xWHMND2vcAUkdFP7FU3jnVki1rUHeTa0-9saFh2hWKs,1162
49
49
  nat/builder/framework_enum.py,sha256=n7IaTQBxhFozIQqRMcX9kXntw28JhFzCj82jJ0C5tNU,901
50
50
  nat/builder/front_end.py,sha256=FCJ87NSshVVuTg8zZrq3YAr_u0RaYVZVcibnqlRFy-M,2173
51
- nat/builder/function.py,sha256=RrfKSCt9WunPhwn5fk8X7wuvb9A21iO8T-IySHUi3KM,27763
51
+ nat/builder/function.py,sha256=3h51TA0D6EQGWjHDsoxa_8ooQcZpk_-yAndk4oc5dGo,27790
52
52
  nat/builder/function_base.py,sha256=0Eg8RtjWhEU3Yme0CVxcRutobA0Qo8-YHZLI6L2qAgM,13116
53
53
  nat/builder/function_info.py,sha256=7Rmrn-gOFrT2TIJklJwA_O-ycx_oimwZ0-qMYpbuZrU,25161
54
54
  nat/builder/intermediate_step_manager.py,sha256=iOuMLWTaES0J0XzaLxhTUqFvuoCAChJu3V69T43K0k0,7599
@@ -58,7 +58,7 @@ nat/builder/user_interaction_manager.py,sha256=-Z2qbQes7a2cuXgT7KEbWeuok0HcCnRdw
58
58
  nat/builder/workflow.py,sha256=bHrxK-VFsxUTw2wZgkWcCttpCMDeWNGPfmIGEW_bjZo,6908
59
59
  nat/builder/workflow_builder.py,sha256=GgNkeBmG_q3YGnGliuzpYhkC869q_PdaP4RoqXH6HdI,58709
60
60
  nat/cli/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
61
- nat/cli/entrypoint.py,sha256=JdZVd5kFotbQbHJAX9KI4lAqJ9HlFDlToB0ZfJ2zrzo,5001
61
+ nat/cli/entrypoint.py,sha256=vN9G8fe-7ITmsVciJU11Fk7JaSxFnN5A4FrD7WjYbxg,5105
62
62
  nat/cli/main.py,sha256=LZMKvoHYR926mghMjVpfLiI2qraqtrhMY9hvuAQCRWk,2258
63
63
  nat/cli/register_workflow.py,sha256=DOQQgUWB_NO9k7nlkP4cAx_RX03Cndk032K-kqyuvEs,23285
64
64
  nat/cli/type_registry.py,sha256=HbPU-7lzSHZ4aepJ3qOgfnl5LzK6-KHwcerhFpWw6mU,48839
@@ -112,7 +112,7 @@ nat/control_flow/router_agent/prompt.py,sha256=fIAiNsAs1zXRAatButR76zSpHJNxSkXXK
112
112
  nat/control_flow/router_agent/register.py,sha256=4RGmS9sy-QtIMmvh8mfMcR1VqxFPLpG4RckWCIExh40,4144
113
113
  nat/data_models/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
114
114
  nat/data_models/agent.py,sha256=IwDyb9Zc3R4Zd5rFeqt7q0EQswczAl5focxV9KozIzs,1625
115
- nat/data_models/api_server.py,sha256=V8y1v9-5p4kmaQmmDU2N6m_V_CFJeozDzJEoIHOSV8w,26177
115
+ nat/data_models/api_server.py,sha256=NWT1ChN2qaakD2DgyYCy_7MhfzvEBQX15qnUXnpCQmk,28883
116
116
  nat/data_models/authentication.py,sha256=XPu9W8nh4XRSuxPv3HxO-FMQ_JtTEoK6Y02JwnzDwTg,8457
117
117
  nat/data_models/common.py,sha256=nXXfGrjpxebzBUa55mLdmzePLt7VFHvTAc6Znj3yEv0,5875
118
118
  nat/data_models/component.py,sha256=b_hXOA8Gm5UNvlFkAhsR6kEvf33ST50MKtr5kWf75Ao,1894
@@ -448,7 +448,7 @@ nat/utils/metadata_utils.py,sha256=BSsiB6jIWd8oEuEynJi55qCG762UuTYFaiUH0OT9HdY,2
448
448
  nat/utils/optional_imports.py,sha256=jQSVBc2fBSRw-2d6r8cEwvh5-di2EUUPakuuo9QbbwA,4039
449
449
  nat/utils/producer_consumer_queue.py,sha256=AcSYkAMBxLx06A5Xdy960PP3AJ7YaSPGJ7rbN_hJsjI,6599
450
450
  nat/utils/string_utils.py,sha256=71HuIzGx7rF8ocTmeoUBpnCi1Qf1yynYlNLLIKP4BVs,1415
451
- nat/utils/type_converter.py,sha256=-2PwMsEm7tlmrniZzO7x2DnRxhOEeJGVAIJc3c5n2g4,10655
451
+ nat/utils/type_converter.py,sha256=vDZzrZ9ycWgZJdkWB1sHB2ivZX-E8fPfkrB-vAAxroI,10968
452
452
  nat/utils/type_utils.py,sha256=SMo5hM4dKf2G3U_0J0wvdFX6-lzMVSh8vd-W34Oixow,14836
453
453
  nat/utils/url_utils.py,sha256=UzDP_xaS6brWTu7vAws0B4jZyrITIK9Si3U6pZBZqDE,1028
454
454
  nat/utils/data_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -470,10 +470,10 @@ nat/utils/reactive/base/observer_base.py,sha256=6BiQfx26EMumotJ3KoVcdmFBYR_fnAss
470
470
  nat/utils/reactive/base/subject_base.py,sha256=UQOxlkZTIeeyYmG5qLtDpNf_63Y7p-doEeUA08_R8ME,2521
471
471
  nat/utils/settings/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
472
472
  nat/utils/settings/global_settings.py,sha256=9JaO6pxKT_Pjw6rxJRsRlFCXdVKCl_xUKU2QHZQWWNM,7294
473
- nvidia_nat-1.3.0a20251008.dist-info/licenses/LICENSE-3rd-party.txt,sha256=fOk5jMmCX9YoKWyYzTtfgl-SUy477audFC5hNY4oP7Q,284609
474
- nvidia_nat-1.3.0a20251008.dist-info/licenses/LICENSE.md,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
475
- nvidia_nat-1.3.0a20251008.dist-info/METADATA,sha256=tEdXANDD2YPmxsPa1gPerKY61Gt_V6r-dhDs2bd3FMs,10203
476
- nvidia_nat-1.3.0a20251008.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
477
- nvidia_nat-1.3.0a20251008.dist-info/entry_points.txt,sha256=4jCqjyETMpyoWbCBf4GalZU8I_wbstpzwQNezdAVbbo,698
478
- nvidia_nat-1.3.0a20251008.dist-info/top_level.txt,sha256=lgJWLkigiVZuZ_O1nxVnD_ziYBwgpE2OStdaCduMEGc,8
479
- nvidia_nat-1.3.0a20251008.dist-info/RECORD,,
473
+ nvidia_nat-1.3.0a20251009.dist-info/licenses/LICENSE-3rd-party.txt,sha256=fOk5jMmCX9YoKWyYzTtfgl-SUy477audFC5hNY4oP7Q,284609
474
+ nvidia_nat-1.3.0a20251009.dist-info/licenses/LICENSE.md,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
475
+ nvidia_nat-1.3.0a20251009.dist-info/METADATA,sha256=4vRqn410h3ctm5GgR97zDJjNH1pCPmp6z9bq6jLeO-E,10228
476
+ nvidia_nat-1.3.0a20251009.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
477
+ nvidia_nat-1.3.0a20251009.dist-info/entry_points.txt,sha256=4jCqjyETMpyoWbCBf4GalZU8I_wbstpzwQNezdAVbbo,698
478
+ nvidia_nat-1.3.0a20251009.dist-info/top_level.txt,sha256=lgJWLkigiVZuZ_O1nxVnD_ziYBwgpE2OStdaCduMEGc,8
479
+ nvidia_nat-1.3.0a20251009.dist-info/RECORD,,