nvidia-nat 1.3.0a20250910__py3-none-any.whl → 1.4.0a20251112__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nat/agent/base.py +13 -8
- nat/agent/prompt_optimizer/prompt.py +68 -0
- nat/agent/prompt_optimizer/register.py +149 -0
- nat/agent/react_agent/agent.py +6 -5
- nat/agent/react_agent/register.py +49 -39
- nat/agent/reasoning_agent/reasoning_agent.py +17 -15
- nat/agent/register.py +2 -0
- nat/agent/responses_api_agent/__init__.py +14 -0
- nat/agent/responses_api_agent/register.py +126 -0
- nat/agent/rewoo_agent/agent.py +304 -117
- nat/agent/rewoo_agent/prompt.py +19 -22
- nat/agent/rewoo_agent/register.py +51 -38
- nat/agent/tool_calling_agent/agent.py +75 -17
- nat/agent/tool_calling_agent/register.py +46 -23
- nat/authentication/api_key/api_key_auth_provider.py +6 -11
- nat/authentication/api_key/api_key_auth_provider_config.py +8 -5
- nat/authentication/credential_validator/__init__.py +14 -0
- nat/authentication/credential_validator/bearer_token_validator.py +557 -0
- nat/authentication/http_basic_auth/http_basic_auth_provider.py +1 -1
- nat/authentication/interfaces.py +5 -2
- nat/authentication/oauth2/oauth2_auth_code_flow_provider.py +69 -36
- nat/authentication/oauth2/oauth2_auth_code_flow_provider_config.py +2 -1
- nat/authentication/oauth2/oauth2_resource_server_config.py +125 -0
- nat/builder/builder.py +55 -23
- nat/builder/component_utils.py +9 -5
- nat/builder/context.py +54 -15
- nat/builder/eval_builder.py +14 -9
- nat/builder/framework_enum.py +1 -0
- nat/builder/front_end.py +1 -1
- nat/builder/function.py +370 -0
- nat/builder/function_info.py +1 -1
- nat/builder/intermediate_step_manager.py +38 -2
- nat/builder/workflow.py +5 -0
- nat/builder/workflow_builder.py +306 -54
- nat/cli/cli_utils/config_override.py +1 -1
- nat/cli/commands/info/info.py +16 -6
- nat/cli/commands/mcp/__init__.py +14 -0
- nat/cli/commands/mcp/mcp.py +986 -0
- nat/cli/commands/optimize.py +90 -0
- nat/cli/commands/start.py +1 -1
- nat/cli/commands/workflow/templates/config.yml.j2 +14 -13
- nat/cli/commands/workflow/templates/register.py.j2 +2 -2
- nat/cli/commands/workflow/templates/workflow.py.j2 +35 -21
- nat/cli/commands/workflow/workflow_commands.py +60 -18
- nat/cli/entrypoint.py +15 -11
- nat/cli/main.py +3 -0
- nat/cli/register_workflow.py +38 -4
- nat/cli/type_registry.py +72 -1
- nat/control_flow/__init__.py +0 -0
- nat/control_flow/register.py +20 -0
- nat/control_flow/router_agent/__init__.py +0 -0
- nat/control_flow/router_agent/agent.py +329 -0
- nat/control_flow/router_agent/prompt.py +48 -0
- nat/control_flow/router_agent/register.py +91 -0
- nat/control_flow/sequential_executor.py +166 -0
- nat/data_models/agent.py +34 -0
- nat/data_models/api_server.py +199 -69
- nat/data_models/authentication.py +23 -9
- nat/data_models/common.py +47 -0
- nat/data_models/component.py +2 -0
- nat/data_models/component_ref.py +11 -0
- nat/data_models/config.py +41 -17
- nat/data_models/dataset_handler.py +4 -3
- nat/data_models/function.py +34 -0
- nat/data_models/function_dependencies.py +8 -0
- nat/data_models/intermediate_step.py +9 -1
- nat/data_models/llm.py +15 -1
- nat/data_models/openai_mcp.py +46 -0
- nat/data_models/optimizable.py +208 -0
- nat/data_models/optimizer.py +161 -0
- nat/data_models/span.py +41 -3
- nat/data_models/thinking_mixin.py +2 -2
- nat/embedder/azure_openai_embedder.py +2 -1
- nat/embedder/nim_embedder.py +3 -2
- nat/embedder/openai_embedder.py +3 -2
- nat/eval/config.py +1 -1
- nat/eval/dataset_handler/dataset_downloader.py +3 -2
- nat/eval/dataset_handler/dataset_filter.py +34 -2
- nat/eval/evaluate.py +10 -3
- nat/eval/evaluator/base_evaluator.py +1 -1
- nat/eval/rag_evaluator/evaluate.py +7 -4
- nat/eval/register.py +4 -0
- nat/eval/runtime_evaluator/__init__.py +14 -0
- nat/eval/runtime_evaluator/evaluate.py +123 -0
- nat/eval/runtime_evaluator/register.py +100 -0
- nat/eval/swe_bench_evaluator/evaluate.py +1 -1
- nat/eval/trajectory_evaluator/register.py +1 -1
- nat/eval/tunable_rag_evaluator/evaluate.py +1 -1
- nat/eval/usage_stats.py +2 -0
- nat/eval/utils/output_uploader.py +3 -2
- nat/eval/utils/weave_eval.py +17 -3
- nat/experimental/decorators/experimental_warning_decorator.py +27 -7
- nat/experimental/test_time_compute/functions/execute_score_select_function.py +1 -1
- nat/experimental/test_time_compute/functions/plan_select_execute_function.py +7 -3
- nat/experimental/test_time_compute/functions/ttc_tool_orchestration_function.py +1 -1
- nat/experimental/test_time_compute/functions/ttc_tool_wrapper_function.py +3 -3
- nat/experimental/test_time_compute/models/strategy_base.py +2 -2
- nat/experimental/test_time_compute/selection/llm_based_output_merging_selector.py +1 -1
- nat/front_ends/console/authentication_flow_handler.py +82 -30
- nat/front_ends/console/console_front_end_plugin.py +19 -7
- nat/front_ends/fastapi/auth_flow_handlers/http_flow_handler.py +1 -1
- nat/front_ends/fastapi/auth_flow_handlers/websocket_flow_handler.py +52 -17
- nat/front_ends/fastapi/dask_client_mixin.py +65 -0
- nat/front_ends/fastapi/fastapi_front_end_config.py +25 -3
- nat/front_ends/fastapi/fastapi_front_end_plugin.py +140 -3
- nat/front_ends/fastapi/fastapi_front_end_plugin_worker.py +445 -265
- nat/front_ends/fastapi/job_store.py +518 -99
- nat/front_ends/fastapi/main.py +11 -19
- nat/front_ends/fastapi/message_handler.py +69 -44
- nat/front_ends/fastapi/message_validator.py +8 -7
- nat/front_ends/fastapi/utils.py +57 -0
- nat/front_ends/mcp/introspection_token_verifier.py +73 -0
- nat/front_ends/mcp/mcp_front_end_config.py +71 -3
- nat/front_ends/mcp/mcp_front_end_plugin.py +85 -21
- nat/front_ends/mcp/mcp_front_end_plugin_worker.py +248 -29
- nat/front_ends/mcp/memory_profiler.py +320 -0
- nat/front_ends/mcp/tool_converter.py +78 -25
- nat/front_ends/simple_base/simple_front_end_plugin_base.py +3 -1
- nat/llm/aws_bedrock_llm.py +21 -8
- nat/llm/azure_openai_llm.py +14 -5
- nat/llm/litellm_llm.py +80 -0
- nat/llm/nim_llm.py +23 -9
- nat/llm/openai_llm.py +19 -7
- nat/llm/register.py +4 -0
- nat/llm/utils/thinking.py +1 -1
- nat/observability/exporter/base_exporter.py +1 -1
- nat/observability/exporter/processing_exporter.py +29 -55
- nat/observability/exporter/span_exporter.py +43 -15
- nat/observability/exporter_manager.py +2 -2
- nat/observability/mixin/redaction_config_mixin.py +5 -4
- nat/observability/mixin/tagging_config_mixin.py +26 -14
- nat/observability/mixin/type_introspection_mixin.py +420 -107
- nat/observability/processor/batching_processor.py +1 -1
- nat/observability/processor/processor.py +3 -0
- nat/observability/processor/redaction/__init__.py +24 -0
- nat/observability/processor/redaction/contextual_redaction_processor.py +125 -0
- nat/observability/processor/redaction/contextual_span_redaction_processor.py +66 -0
- nat/observability/processor/redaction/redaction_processor.py +177 -0
- nat/observability/processor/redaction/span_header_redaction_processor.py +92 -0
- nat/observability/processor/span_tagging_processor.py +21 -14
- nat/observability/register.py +16 -0
- nat/profiler/callbacks/langchain_callback_handler.py +32 -7
- nat/profiler/callbacks/llama_index_callback_handler.py +36 -2
- nat/profiler/callbacks/token_usage_base_model.py +2 -0
- nat/profiler/decorators/framework_wrapper.py +61 -9
- nat/profiler/decorators/function_tracking.py +35 -3
- nat/profiler/forecasting/models/linear_model.py +1 -1
- nat/profiler/forecasting/models/random_forest_regressor.py +1 -1
- nat/profiler/inference_optimization/bottleneck_analysis/nested_stack_analysis.py +1 -1
- nat/profiler/inference_optimization/experimental/prefix_span_analysis.py +1 -1
- nat/profiler/parameter_optimization/__init__.py +0 -0
- nat/profiler/parameter_optimization/optimizable_utils.py +93 -0
- nat/profiler/parameter_optimization/optimizer_runtime.py +67 -0
- nat/profiler/parameter_optimization/parameter_optimizer.py +189 -0
- nat/profiler/parameter_optimization/parameter_selection.py +107 -0
- nat/profiler/parameter_optimization/pareto_visualizer.py +460 -0
- nat/profiler/parameter_optimization/prompt_optimizer.py +384 -0
- nat/profiler/parameter_optimization/update_helpers.py +66 -0
- nat/profiler/utils.py +3 -1
- nat/registry_handlers/pypi/register_pypi.py +5 -3
- nat/registry_handlers/rest/register_rest.py +5 -3
- nat/retriever/milvus/retriever.py +1 -1
- nat/retriever/nemo_retriever/register.py +2 -1
- nat/runtime/loader.py +1 -1
- nat/runtime/runner.py +111 -6
- nat/runtime/session.py +49 -3
- nat/settings/global_settings.py +2 -2
- nat/tool/chat_completion.py +4 -1
- nat/tool/code_execution/code_sandbox.py +3 -6
- nat/tool/code_execution/local_sandbox/Dockerfile.sandbox +19 -32
- nat/tool/code_execution/local_sandbox/local_sandbox_server.py +6 -1
- nat/tool/code_execution/local_sandbox/sandbox.requirements.txt +2 -0
- nat/tool/code_execution/local_sandbox/start_local_sandbox.sh +10 -4
- nat/tool/datetime_tools.py +1 -1
- nat/tool/github_tools.py +450 -0
- nat/tool/memory_tools/add_memory_tool.py +3 -3
- nat/tool/memory_tools/delete_memory_tool.py +3 -4
- nat/tool/memory_tools/get_memory_tool.py +4 -4
- nat/tool/register.py +2 -7
- nat/tool/server_tools.py +15 -2
- nat/utils/__init__.py +76 -0
- nat/utils/callable_utils.py +70 -0
- nat/utils/data_models/schema_validator.py +1 -1
- nat/utils/decorators.py +210 -0
- nat/utils/exception_handlers/automatic_retries.py +278 -72
- nat/utils/io/yaml_tools.py +73 -3
- nat/utils/log_levels.py +25 -0
- nat/utils/responses_api.py +26 -0
- nat/utils/string_utils.py +16 -0
- nat/utils/type_converter.py +12 -3
- nat/utils/type_utils.py +6 -2
- nvidia_nat-1.4.0a20251112.dist-info/METADATA +197 -0
- {nvidia_nat-1.3.0a20250910.dist-info → nvidia_nat-1.4.0a20251112.dist-info}/RECORD +199 -165
- {nvidia_nat-1.3.0a20250910.dist-info → nvidia_nat-1.4.0a20251112.dist-info}/entry_points.txt +1 -0
- nat/cli/commands/info/list_mcp.py +0 -461
- nat/data_models/temperature_mixin.py +0 -43
- nat/data_models/top_p_mixin.py +0 -43
- nat/observability/processor/header_redaction_processor.py +0 -123
- nat/observability/processor/redaction_processor.py +0 -77
- nat/tool/code_execution/test_code_execution_sandbox.py +0 -414
- nat/tool/github_tools/create_github_commit.py +0 -133
- nat/tool/github_tools/create_github_issue.py +0 -87
- nat/tool/github_tools/create_github_pr.py +0 -106
- nat/tool/github_tools/get_github_file.py +0 -106
- nat/tool/github_tools/get_github_issue.py +0 -166
- nat/tool/github_tools/get_github_pr.py +0 -256
- nat/tool/github_tools/update_github_issue.py +0 -100
- nvidia_nat-1.3.0a20250910.dist-info/METADATA +0 -373
- /nat/{tool/github_tools → agent/prompt_optimizer}/__init__.py +0 -0
- {nvidia_nat-1.3.0a20250910.dist-info → nvidia_nat-1.4.0a20251112.dist-info}/WHEEL +0 -0
- {nvidia_nat-1.3.0a20250910.dist-info → nvidia_nat-1.4.0a20251112.dist-info}/licenses/LICENSE-3rd-party.txt +0 -0
- {nvidia_nat-1.3.0a20250910.dist-info → nvidia_nat-1.4.0a20251112.dist-info}/licenses/LICENSE.md +0 -0
- {nvidia_nat-1.3.0a20250910.dist-info → nvidia_nat-1.4.0a20251112.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,320 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
"""Memory profiling utilities for MCP frontend."""
|
|
16
|
+
|
|
17
|
+
import gc
|
|
18
|
+
import logging
|
|
19
|
+
import tracemalloc
|
|
20
|
+
from typing import Any
|
|
21
|
+
|
|
22
|
+
logger = logging.getLogger(__name__)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class MemoryProfiler:
|
|
26
|
+
"""Memory profiler for tracking memory usage and potential leaks."""
|
|
27
|
+
|
|
28
|
+
def __init__(self, enabled: bool = False, log_interval: int = 50, top_n: int = 10, log_level: str = "DEBUG"):
|
|
29
|
+
"""Initialize the memory profiler.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
enabled: Whether memory profiling is enabled
|
|
33
|
+
log_interval: Log stats every N requests
|
|
34
|
+
top_n: Number of top allocations to log
|
|
35
|
+
log_level: Log level for memory profiling output (e.g., "DEBUG", "INFO")
|
|
36
|
+
"""
|
|
37
|
+
self.enabled = enabled
|
|
38
|
+
# normalize interval to avoid modulo-by-zero
|
|
39
|
+
self.log_interval = max(1, int(log_interval))
|
|
40
|
+
self.top_n = top_n
|
|
41
|
+
self.log_level = getattr(logging, log_level.upper(), logging.DEBUG)
|
|
42
|
+
self.request_count = 0
|
|
43
|
+
self.baseline_snapshot = None
|
|
44
|
+
|
|
45
|
+
# Track whether this instance started tracemalloc (to avoid resetting external tracing)
|
|
46
|
+
self._we_started_tracemalloc = False
|
|
47
|
+
|
|
48
|
+
if self.enabled:
|
|
49
|
+
logger.info("Memory profiling ENABLED (interval=%d, top_n=%d, log_level=%s)",
|
|
50
|
+
self.log_interval,
|
|
51
|
+
top_n,
|
|
52
|
+
log_level)
|
|
53
|
+
try:
|
|
54
|
+
if not tracemalloc.is_tracing():
|
|
55
|
+
tracemalloc.start()
|
|
56
|
+
self._we_started_tracemalloc = True
|
|
57
|
+
# Take baseline snapshot
|
|
58
|
+
gc.collect()
|
|
59
|
+
self.baseline_snapshot = tracemalloc.take_snapshot()
|
|
60
|
+
except RuntimeError as e:
|
|
61
|
+
logger.warning("tracemalloc unavailable or not tracing: %s", e)
|
|
62
|
+
else:
|
|
63
|
+
logger.info("Memory profiling DISABLED")
|
|
64
|
+
|
|
65
|
+
def _log(self, message: str, *args: Any) -> None:
|
|
66
|
+
"""Log a message at the configured log level.
|
|
67
|
+
|
|
68
|
+
Args:
|
|
69
|
+
message: Log message format string
|
|
70
|
+
args: Arguments for the format string
|
|
71
|
+
"""
|
|
72
|
+
logger.log(self.log_level, message, *args)
|
|
73
|
+
|
|
74
|
+
def on_request_complete(self) -> None:
|
|
75
|
+
"""Called after each request completes."""
|
|
76
|
+
if not self.enabled:
|
|
77
|
+
return
|
|
78
|
+
self.request_count += 1
|
|
79
|
+
if self.request_count % self.log_interval == 0:
|
|
80
|
+
self.log_memory_stats()
|
|
81
|
+
|
|
82
|
+
def _ensure_tracing(self) -> bool:
|
|
83
|
+
"""Ensure tracemalloc is running if we started it originally.
|
|
84
|
+
|
|
85
|
+
Returns:
|
|
86
|
+
True if tracemalloc is active, False otherwise
|
|
87
|
+
"""
|
|
88
|
+
if tracemalloc.is_tracing():
|
|
89
|
+
return True
|
|
90
|
+
|
|
91
|
+
# Only restart if we started it originally (respect external control)
|
|
92
|
+
if not self._we_started_tracemalloc:
|
|
93
|
+
return False
|
|
94
|
+
|
|
95
|
+
# Attempt to restart
|
|
96
|
+
try:
|
|
97
|
+
logger.warning("tracemalloc was stopped externally; restarting (we started it originally)")
|
|
98
|
+
tracemalloc.start()
|
|
99
|
+
|
|
100
|
+
# Reset baseline since old tracking data is lost
|
|
101
|
+
gc.collect()
|
|
102
|
+
self.baseline_snapshot = tracemalloc.take_snapshot()
|
|
103
|
+
logger.info("Baseline snapshot reset after tracemalloc restart")
|
|
104
|
+
|
|
105
|
+
return True
|
|
106
|
+
except RuntimeError as e:
|
|
107
|
+
logger.error("Failed to restart tracemalloc: %s", e)
|
|
108
|
+
return False
|
|
109
|
+
|
|
110
|
+
def _safe_traced_memory(self) -> tuple[float, float] | None:
|
|
111
|
+
"""Return (current, peak usage in MB) if tracemalloc is active, else None."""
|
|
112
|
+
if not self._ensure_tracing():
|
|
113
|
+
return None
|
|
114
|
+
|
|
115
|
+
try:
|
|
116
|
+
current, peak = tracemalloc.get_traced_memory()
|
|
117
|
+
megabyte = (1 << 20)
|
|
118
|
+
return (current / megabyte, peak / megabyte)
|
|
119
|
+
except RuntimeError:
|
|
120
|
+
return None
|
|
121
|
+
|
|
122
|
+
def _safe_snapshot(self) -> tracemalloc.Snapshot | None:
|
|
123
|
+
"""Return a tracemalloc Snapshot if available, else None."""
|
|
124
|
+
if not self._ensure_tracing():
|
|
125
|
+
return None
|
|
126
|
+
|
|
127
|
+
try:
|
|
128
|
+
return tracemalloc.take_snapshot()
|
|
129
|
+
except RuntimeError:
|
|
130
|
+
return None
|
|
131
|
+
|
|
132
|
+
def log_memory_stats(self) -> dict[str, Any]:
|
|
133
|
+
"""Log current memory statistics and return them."""
|
|
134
|
+
if not self.enabled:
|
|
135
|
+
return {}
|
|
136
|
+
|
|
137
|
+
# Force garbage collection first
|
|
138
|
+
gc.collect()
|
|
139
|
+
|
|
140
|
+
# Get current memory usage
|
|
141
|
+
mem = self._safe_traced_memory()
|
|
142
|
+
if mem is None:
|
|
143
|
+
logger.info("tracemalloc is not active; cannot collect memory stats.")
|
|
144
|
+
# still return structural fields
|
|
145
|
+
stats = {
|
|
146
|
+
"request_count": self.request_count,
|
|
147
|
+
"current_memory_mb": None,
|
|
148
|
+
"peak_memory_mb": None,
|
|
149
|
+
"active_intermediate_managers": self._safe_intermediate_step_manager_count(),
|
|
150
|
+
"outstanding_steps": self._safe_outstanding_step_count(),
|
|
151
|
+
"active_exporters": self._safe_exporter_count(),
|
|
152
|
+
"isolated_exporters": self._safe_isolated_exporter_count(),
|
|
153
|
+
"subject_instances": self._count_instances_of_type("Subject"),
|
|
154
|
+
}
|
|
155
|
+
return stats
|
|
156
|
+
|
|
157
|
+
current_mb, peak_mb = mem
|
|
158
|
+
|
|
159
|
+
# Take snapshot and compare to baseline
|
|
160
|
+
snapshot = self._safe_snapshot()
|
|
161
|
+
|
|
162
|
+
# Track BaseExporter instances (observability layer)
|
|
163
|
+
exporter_count = self._safe_exporter_count()
|
|
164
|
+
isolated_exporter_count = self._safe_isolated_exporter_count()
|
|
165
|
+
|
|
166
|
+
# Track Subject instances (event streams)
|
|
167
|
+
subject_count = self._count_instances_of_type("Subject")
|
|
168
|
+
|
|
169
|
+
stats = {
|
|
170
|
+
"request_count": self.request_count,
|
|
171
|
+
"current_memory_mb": round(current_mb, 2),
|
|
172
|
+
"peak_memory_mb": round(peak_mb, 2),
|
|
173
|
+
"active_intermediate_managers": self._safe_intermediate_step_manager_count(),
|
|
174
|
+
"outstanding_steps": self._safe_outstanding_step_count(),
|
|
175
|
+
"active_exporters": exporter_count,
|
|
176
|
+
"isolated_exporters": isolated_exporter_count,
|
|
177
|
+
"subject_instances": subject_count,
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
self._log("=" * 80)
|
|
181
|
+
self._log("MEMORY PROFILE AFTER %d REQUESTS:", self.request_count)
|
|
182
|
+
self._log(" Current Memory: %.2f MB", current_mb)
|
|
183
|
+
self._log(" Peak Memory: %.2f MB", peak_mb)
|
|
184
|
+
self._log("")
|
|
185
|
+
self._log("NAT COMPONENT INSTANCES:")
|
|
186
|
+
self._log(" IntermediateStepManagers: %d active (%d outstanding steps)",
|
|
187
|
+
stats["active_intermediate_managers"],
|
|
188
|
+
stats["outstanding_steps"])
|
|
189
|
+
self._log(" BaseExporters: %d active (%d isolated)", stats["active_exporters"], stats["isolated_exporters"])
|
|
190
|
+
self._log(" Subject (event streams): %d instances", stats["subject_instances"])
|
|
191
|
+
|
|
192
|
+
# Show top allocations
|
|
193
|
+
if snapshot is None:
|
|
194
|
+
self._log("tracemalloc snapshot unavailable.")
|
|
195
|
+
else:
|
|
196
|
+
if self.baseline_snapshot:
|
|
197
|
+
self._log("TOP %d MEMORY GROWTH SINCE BASELINE:", self.top_n)
|
|
198
|
+
top_stats = snapshot.compare_to(self.baseline_snapshot, 'lineno')
|
|
199
|
+
else:
|
|
200
|
+
self._log("TOP %d MEMORY ALLOCATIONS:", self.top_n)
|
|
201
|
+
top_stats = snapshot.statistics('lineno')
|
|
202
|
+
|
|
203
|
+
for i, stat in enumerate(top_stats[:self.top_n], 1):
|
|
204
|
+
self._log(" #%d: %s", i, stat)
|
|
205
|
+
|
|
206
|
+
self._log("=" * 80)
|
|
207
|
+
|
|
208
|
+
return stats
|
|
209
|
+
|
|
210
|
+
def _count_instances_of_type(self, type_name: str) -> int:
|
|
211
|
+
"""Count instances of a specific type in memory."""
|
|
212
|
+
count = 0
|
|
213
|
+
for obj in gc.get_objects():
|
|
214
|
+
try:
|
|
215
|
+
if type(obj).__name__ == type_name:
|
|
216
|
+
count += 1
|
|
217
|
+
except Exception:
|
|
218
|
+
pass
|
|
219
|
+
return count
|
|
220
|
+
|
|
221
|
+
def _safe_exporter_count(self) -> int:
|
|
222
|
+
try:
|
|
223
|
+
from nat.observability.exporter.base_exporter import BaseExporter
|
|
224
|
+
return BaseExporter.get_active_instance_count()
|
|
225
|
+
except Exception as e:
|
|
226
|
+
logger.debug("Could not get BaseExporter stats: %s", e)
|
|
227
|
+
return 0
|
|
228
|
+
|
|
229
|
+
def _safe_isolated_exporter_count(self) -> int:
|
|
230
|
+
try:
|
|
231
|
+
from nat.observability.exporter.base_exporter import BaseExporter
|
|
232
|
+
return BaseExporter.get_isolated_instance_count()
|
|
233
|
+
except Exception:
|
|
234
|
+
return 0
|
|
235
|
+
|
|
236
|
+
def _safe_intermediate_step_manager_count(self) -> int:
|
|
237
|
+
try:
|
|
238
|
+
from nat.builder.intermediate_step_manager import IntermediateStepManager
|
|
239
|
+
# len() is atomic in CPython, but catch RuntimeError just in case
|
|
240
|
+
try:
|
|
241
|
+
return IntermediateStepManager.get_active_instance_count()
|
|
242
|
+
except RuntimeError:
|
|
243
|
+
# Set was modified during len() - very rare
|
|
244
|
+
logger.debug("Set changed during count, returning 0")
|
|
245
|
+
return 0
|
|
246
|
+
except Exception as e:
|
|
247
|
+
logger.debug("Could not get IntermediateStepManager stats: %s", e)
|
|
248
|
+
return 0
|
|
249
|
+
|
|
250
|
+
def _safe_outstanding_step_count(self) -> int:
|
|
251
|
+
"""Get total outstanding steps across all active IntermediateStepManager instances."""
|
|
252
|
+
try:
|
|
253
|
+
from nat.builder.intermediate_step_manager import IntermediateStepManager
|
|
254
|
+
|
|
255
|
+
# Make a snapshot to avoid "Set changed size during iteration" if GC runs
|
|
256
|
+
try:
|
|
257
|
+
instances_snapshot = list(IntermediateStepManager._active_instances)
|
|
258
|
+
except RuntimeError:
|
|
259
|
+
# Set changed during list() call - rare but possible
|
|
260
|
+
logger.debug("Set changed during snapshot, returning 0 for outstanding steps")
|
|
261
|
+
return 0
|
|
262
|
+
|
|
263
|
+
total_outstanding = 0
|
|
264
|
+
# Iterate through snapshot safely
|
|
265
|
+
for ref in instances_snapshot:
|
|
266
|
+
try:
|
|
267
|
+
manager = ref()
|
|
268
|
+
if manager is not None:
|
|
269
|
+
total_outstanding += manager.get_outstanding_step_count()
|
|
270
|
+
except (ReferenceError, AttributeError):
|
|
271
|
+
# Manager was GC'd or in invalid state - skip it
|
|
272
|
+
continue
|
|
273
|
+
return total_outstanding
|
|
274
|
+
except Exception as e:
|
|
275
|
+
logger.debug("Could not get outstanding step count: %s", e)
|
|
276
|
+
return 0
|
|
277
|
+
|
|
278
|
+
def get_stats(self) -> dict[str, Any]:
|
|
279
|
+
"""Get current memory statistics without logging."""
|
|
280
|
+
if not self.enabled:
|
|
281
|
+
return {"enabled": False}
|
|
282
|
+
|
|
283
|
+
mem = self._safe_traced_memory()
|
|
284
|
+
if mem is None:
|
|
285
|
+
return {
|
|
286
|
+
"enabled": True,
|
|
287
|
+
"request_count": self.request_count,
|
|
288
|
+
"current_memory_mb": None,
|
|
289
|
+
"peak_memory_mb": None,
|
|
290
|
+
"active_intermediate_managers": self._safe_intermediate_step_manager_count(),
|
|
291
|
+
"outstanding_steps": self._safe_outstanding_step_count(),
|
|
292
|
+
"active_exporters": self._safe_exporter_count(),
|
|
293
|
+
"isolated_exporters": self._safe_isolated_exporter_count(),
|
|
294
|
+
"subject_instances": self._count_instances_of_type("Subject"),
|
|
295
|
+
}
|
|
296
|
+
|
|
297
|
+
current_mb, peak_mb = mem
|
|
298
|
+
return {
|
|
299
|
+
"enabled": True,
|
|
300
|
+
"request_count": self.request_count,
|
|
301
|
+
"current_memory_mb": round(current_mb, 2),
|
|
302
|
+
"peak_memory_mb": round(peak_mb, 2),
|
|
303
|
+
"active_intermediate_managers": self._safe_intermediate_step_manager_count(),
|
|
304
|
+
"outstanding_steps": self._safe_outstanding_step_count(),
|
|
305
|
+
"active_exporters": self._safe_exporter_count(),
|
|
306
|
+
"isolated_exporters": self._safe_isolated_exporter_count(),
|
|
307
|
+
"subject_instances": self._count_instances_of_type("Subject"),
|
|
308
|
+
}
|
|
309
|
+
|
|
310
|
+
def reset_baseline(self) -> None:
|
|
311
|
+
"""Reset the baseline snapshot to current state."""
|
|
312
|
+
if not self.enabled:
|
|
313
|
+
return
|
|
314
|
+
gc.collect()
|
|
315
|
+
snap = self._safe_snapshot()
|
|
316
|
+
if snap is None:
|
|
317
|
+
logger.info("Cannot reset baseline: tracemalloc is not active.")
|
|
318
|
+
return
|
|
319
|
+
self.baseline_snapshot = snap
|
|
320
|
+
logger.info("Memory profiling baseline reset at request %d", self.request_count)
|
|
@@ -18,9 +18,12 @@ import logging
|
|
|
18
18
|
from inspect import Parameter
|
|
19
19
|
from inspect import Signature
|
|
20
20
|
from typing import TYPE_CHECKING
|
|
21
|
+
from typing import Any
|
|
21
22
|
|
|
22
23
|
from mcp.server.fastmcp import FastMCP
|
|
23
24
|
from pydantic import BaseModel
|
|
25
|
+
from pydantic.fields import FieldInfo
|
|
26
|
+
from pydantic_core import PydanticUndefined
|
|
24
27
|
|
|
25
28
|
from nat.builder.context import ContextState
|
|
26
29
|
from nat.builder.function import Function
|
|
@@ -28,9 +31,45 @@ from nat.builder.function_base import FunctionBase
|
|
|
28
31
|
|
|
29
32
|
if TYPE_CHECKING:
|
|
30
33
|
from nat.builder.workflow import Workflow
|
|
34
|
+
from nat.front_ends.mcp.memory_profiler import MemoryProfiler
|
|
31
35
|
|
|
32
36
|
logger = logging.getLogger(__name__)
|
|
33
37
|
|
|
38
|
+
# Sentinel: marks "optional; let Pydantic supply default/factory"
|
|
39
|
+
_USE_PYDANTIC_DEFAULT = object()
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def is_field_optional(field: FieldInfo) -> tuple[bool, Any]:
|
|
43
|
+
"""Determine if a Pydantic field is optional and extract its default value for MCP signatures.
|
|
44
|
+
|
|
45
|
+
For MCP tool signatures, we need to distinguish:
|
|
46
|
+
- Required fields: marked with Parameter.empty
|
|
47
|
+
- Optional with concrete default: use that default
|
|
48
|
+
- Optional with factory: use sentinel so Pydantic can apply the factory later
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
field: The Pydantic FieldInfo to check
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
A tuple of (is_optional, default_value):
|
|
55
|
+
- (False, Parameter.empty) for required fields
|
|
56
|
+
- (True, actual_default) for optional fields with explicit defaults
|
|
57
|
+
- (True, _USE_PYDANTIC_DEFAULT) for optional fields with default_factory
|
|
58
|
+
"""
|
|
59
|
+
if field.is_required():
|
|
60
|
+
return False, Parameter.empty
|
|
61
|
+
|
|
62
|
+
# Field is optional - has either default or factory
|
|
63
|
+
if field.default is not PydanticUndefined:
|
|
64
|
+
return True, field.default
|
|
65
|
+
|
|
66
|
+
# Factory case: mark optional in signature but don't fabricate a value
|
|
67
|
+
if field.default_factory is not None:
|
|
68
|
+
return True, _USE_PYDANTIC_DEFAULT
|
|
69
|
+
|
|
70
|
+
# Rare corner case: non-required yet no default surfaced
|
|
71
|
+
return True, _USE_PYDANTIC_DEFAULT
|
|
72
|
+
|
|
34
73
|
|
|
35
74
|
def create_function_wrapper(
|
|
36
75
|
function_name: str,
|
|
@@ -38,6 +77,7 @@ def create_function_wrapper(
|
|
|
38
77
|
schema: type[BaseModel],
|
|
39
78
|
is_workflow: bool = False,
|
|
40
79
|
workflow: 'Workflow | None' = None,
|
|
80
|
+
memory_profiler: 'MemoryProfiler | None' = None,
|
|
41
81
|
):
|
|
42
82
|
"""Create a wrapper function that exposes the actual parameters of a NAT Function as an MCP tool.
|
|
43
83
|
|
|
@@ -47,6 +87,7 @@ def create_function_wrapper(
|
|
|
47
87
|
schema (type[BaseModel]): The input schema of the function
|
|
48
88
|
is_workflow (bool): Whether the function is a Workflow
|
|
49
89
|
workflow (Workflow | None): The parent workflow for observability context
|
|
90
|
+
memory_profiler: Optional memory profiler to track requests
|
|
50
91
|
|
|
51
92
|
Returns:
|
|
52
93
|
A wrapper function suitable for registration with MCP
|
|
@@ -76,12 +117,15 @@ def create_function_wrapper(
|
|
|
76
117
|
# Get the field type and convert to appropriate Python type
|
|
77
118
|
field_type = field.annotation
|
|
78
119
|
|
|
120
|
+
# Check if field is optional and get its default value
|
|
121
|
+
_is_optional, param_default = is_field_optional(field)
|
|
122
|
+
|
|
79
123
|
# Add the parameter to our list
|
|
80
124
|
parameters.append(
|
|
81
125
|
Parameter(
|
|
82
126
|
name=name,
|
|
83
127
|
kind=Parameter.KEYWORD_ONLY,
|
|
84
|
-
default=
|
|
128
|
+
default=param_default,
|
|
85
129
|
annotation=field_type,
|
|
86
130
|
))
|
|
87
131
|
|
|
@@ -140,47 +184,46 @@ def create_function_wrapper(
|
|
|
140
184
|
result = await call_with_observability(lambda: function.ainvoke(chat_request, to_type=str))
|
|
141
185
|
else:
|
|
142
186
|
# Regular handling
|
|
143
|
-
#
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
# If it's a pydantic model, we need to create an instance
|
|
151
|
-
if field_type and hasattr(field_type, "model_validate"):
|
|
152
|
-
# Create the nested object
|
|
153
|
-
nested_obj = field_type.model_validate(kwargs)
|
|
154
|
-
# Call with the nested object
|
|
155
|
-
kwargs = {field_name: nested_obj}
|
|
187
|
+
# Strip sentinel values so Pydantic can apply defaults/factories
|
|
188
|
+
cleaned_kwargs = {k: v for k, v in kwargs.items() if v is not _USE_PYDANTIC_DEFAULT}
|
|
189
|
+
|
|
190
|
+
# Always validate with the declared schema
|
|
191
|
+
# This handles defaults, factories, nested models, validators, etc.
|
|
192
|
+
model_input = schema.model_validate(cleaned_kwargs)
|
|
156
193
|
|
|
157
194
|
# Call the NAT function with the parameters - special handling for Workflow
|
|
158
195
|
if is_workflow:
|
|
159
|
-
#
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
# Workflows have a run method that is an async context manager
|
|
163
|
-
# that returns a Runner
|
|
164
|
-
async with function.run(input_value) as runner:
|
|
196
|
+
# Workflows expect the model instance directly
|
|
197
|
+
async with function.run(model_input) as runner:
|
|
165
198
|
# Get the result from the runner
|
|
166
199
|
result = await runner.result(to_type=str)
|
|
167
200
|
else:
|
|
168
|
-
# Regular function call
|
|
169
|
-
result = await call_with_observability(lambda: function.acall_invoke(**
|
|
201
|
+
# Regular function call - unpack the validated model
|
|
202
|
+
result = await call_with_observability(lambda: function.acall_invoke(**model_input.model_dump())
|
|
203
|
+
)
|
|
170
204
|
|
|
171
205
|
# Report completion
|
|
172
206
|
if ctx:
|
|
173
207
|
await ctx.report_progress(100, 100)
|
|
174
208
|
|
|
209
|
+
# Track request completion for memory profiling
|
|
210
|
+
if memory_profiler:
|
|
211
|
+
memory_profiler.on_request_complete()
|
|
212
|
+
|
|
175
213
|
# Handle different result types for proper formatting
|
|
176
214
|
if isinstance(result, str):
|
|
177
215
|
return result
|
|
178
|
-
if isinstance(result,
|
|
216
|
+
if isinstance(result, dict | list):
|
|
179
217
|
return json.dumps(result, default=str)
|
|
180
218
|
return str(result)
|
|
181
219
|
except Exception as e:
|
|
182
220
|
if ctx:
|
|
183
221
|
ctx.error("Error calling function %s: %s", function_name, str(e))
|
|
222
|
+
|
|
223
|
+
# Track request completion even on error
|
|
224
|
+
if memory_profiler:
|
|
225
|
+
memory_profiler.on_request_complete()
|
|
226
|
+
|
|
184
227
|
raise
|
|
185
228
|
|
|
186
229
|
return wrapper_with_ctx
|
|
@@ -229,6 +272,9 @@ def get_function_description(function: FunctionBase) -> str:
|
|
|
229
272
|
# Try to get anything that might be a description
|
|
230
273
|
elif hasattr(config, "topic") and config.topic:
|
|
231
274
|
function_description = config.topic
|
|
275
|
+
# Try to get description from the workflow config
|
|
276
|
+
elif hasattr(config, "workflow") and hasattr(config.workflow, "description") and config.workflow.description:
|
|
277
|
+
function_description = config.workflow.description
|
|
232
278
|
|
|
233
279
|
elif isinstance(function, Function):
|
|
234
280
|
function_description = function.description
|
|
@@ -239,7 +285,8 @@ def get_function_description(function: FunctionBase) -> str:
|
|
|
239
285
|
def register_function_with_mcp(mcp: FastMCP,
|
|
240
286
|
function_name: str,
|
|
241
287
|
function: FunctionBase,
|
|
242
|
-
workflow: 'Workflow | None' = None
|
|
288
|
+
workflow: 'Workflow | None' = None,
|
|
289
|
+
memory_profiler: 'MemoryProfiler | None' = None) -> None:
|
|
243
290
|
"""Register a NAT Function as an MCP tool.
|
|
244
291
|
|
|
245
292
|
Args:
|
|
@@ -247,6 +294,7 @@ def register_function_with_mcp(mcp: FastMCP,
|
|
|
247
294
|
function_name: The name to register the function under
|
|
248
295
|
function: The NAT Function to register
|
|
249
296
|
workflow: The parent workflow for observability context (if available)
|
|
297
|
+
memory_profiler: Optional memory profiler to track requests
|
|
250
298
|
"""
|
|
251
299
|
logger.info("Registering function %s with MCP", function_name)
|
|
252
300
|
|
|
@@ -264,5 +312,10 @@ def register_function_with_mcp(mcp: FastMCP,
|
|
|
264
312
|
function_description = get_function_description(function)
|
|
265
313
|
|
|
266
314
|
# Create and register the wrapper function with MCP
|
|
267
|
-
wrapper_func = create_function_wrapper(function_name,
|
|
315
|
+
wrapper_func = create_function_wrapper(function_name,
|
|
316
|
+
function,
|
|
317
|
+
input_schema,
|
|
318
|
+
is_workflow,
|
|
319
|
+
workflow,
|
|
320
|
+
memory_profiler)
|
|
268
321
|
mcp.tool(name=function_name, description=function_description)(wrapper_func)
|
|
@@ -35,6 +35,8 @@ class SimpleFrontEndPluginBase(FrontEndBase[FrontEndConfigT], ABC):
|
|
|
35
35
|
|
|
36
36
|
async def run(self):
|
|
37
37
|
|
|
38
|
+
await self.pre_run()
|
|
39
|
+
|
|
38
40
|
# Must yield the workflow function otherwise it cleans up
|
|
39
41
|
async with WorkflowBuilder.from_config(config=self.full_config) as builder:
|
|
40
42
|
|
|
@@ -45,7 +47,7 @@ class SimpleFrontEndPluginBase(FrontEndBase[FrontEndConfigT], ABC):
|
|
|
45
47
|
|
|
46
48
|
click.echo(stream.getvalue())
|
|
47
49
|
|
|
48
|
-
workflow = builder.build()
|
|
50
|
+
workflow = await builder.build()
|
|
49
51
|
session_manager = SessionManager(workflow)
|
|
50
52
|
await self.run_workflow(session_manager)
|
|
51
53
|
|
nat/llm/aws_bedrock_llm.py
CHANGED
|
@@ -21,22 +21,25 @@ from nat.builder.builder import Builder
|
|
|
21
21
|
from nat.builder.llm import LLMProviderInfo
|
|
22
22
|
from nat.cli.register_workflow import register_llm_provider
|
|
23
23
|
from nat.data_models.llm import LLMBaseConfig
|
|
24
|
+
from nat.data_models.optimizable import OptimizableField
|
|
25
|
+
from nat.data_models.optimizable import OptimizableMixin
|
|
26
|
+
from nat.data_models.optimizable import SearchSpace
|
|
24
27
|
from nat.data_models.retry_mixin import RetryMixin
|
|
25
|
-
from nat.data_models.temperature_mixin import TemperatureMixin
|
|
26
28
|
from nat.data_models.thinking_mixin import ThinkingMixin
|
|
27
|
-
from nat.data_models.top_p_mixin import TopPMixin
|
|
28
29
|
|
|
29
30
|
|
|
30
|
-
class AWSBedrockModelConfig(LLMBaseConfig, RetryMixin,
|
|
31
|
+
class AWSBedrockModelConfig(LLMBaseConfig, RetryMixin, OptimizableMixin, ThinkingMixin, name="aws_bedrock"):
|
|
31
32
|
"""An AWS Bedrock llm provider to be used with an LLM client."""
|
|
32
33
|
|
|
33
|
-
model_config = ConfigDict(protected_namespaces=())
|
|
34
|
+
model_config = ConfigDict(protected_namespaces=(), extra="allow")
|
|
34
35
|
|
|
35
36
|
# Completion parameters
|
|
36
|
-
model_name: str =
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
max_tokens: int
|
|
37
|
+
model_name: str = OptimizableField(validation_alias=AliasChoices("model_name", "model"),
|
|
38
|
+
serialization_alias="model",
|
|
39
|
+
description="The model name for the hosted AWS Bedrock.")
|
|
40
|
+
max_tokens: int = OptimizableField(default=300,
|
|
41
|
+
description="Maximum number of tokens to generate.",
|
|
42
|
+
space=SearchSpace(high=2176, low=128, step=512))
|
|
40
43
|
context_size: int | None = Field(
|
|
41
44
|
default=1024,
|
|
42
45
|
gt=0,
|
|
@@ -50,6 +53,16 @@ class AWSBedrockModelConfig(LLMBaseConfig, RetryMixin, TemperatureMixin, TopPMix
|
|
|
50
53
|
default=None, description="Bedrock endpoint to use. Needed if you don't want to default to us-east-1 endpoint.")
|
|
51
54
|
credentials_profile_name: str | None = Field(
|
|
52
55
|
default=None, description="The name of the profile in the ~/.aws/credentials or ~/.aws/config files.")
|
|
56
|
+
temperature: float | None = OptimizableField(
|
|
57
|
+
default=None,
|
|
58
|
+
ge=0.0,
|
|
59
|
+
description="Sampling temperature to control randomness in the output.",
|
|
60
|
+
space=SearchSpace(high=0.9, low=0.1, step=0.2))
|
|
61
|
+
top_p: float | None = OptimizableField(default=None,
|
|
62
|
+
ge=0.0,
|
|
63
|
+
le=1.0,
|
|
64
|
+
description="Top-p for distribution sampling.",
|
|
65
|
+
space=SearchSpace(high=1.0, low=0.5, step=0.1))
|
|
53
66
|
|
|
54
67
|
|
|
55
68
|
@register_llm_provider(config_type=AWSBedrockModelConfig)
|
nat/llm/azure_openai_llm.py
CHANGED
|
@@ -20,18 +20,17 @@ from pydantic import Field
|
|
|
20
20
|
from nat.builder.builder import Builder
|
|
21
21
|
from nat.builder.llm import LLMProviderInfo
|
|
22
22
|
from nat.cli.register_workflow import register_llm_provider
|
|
23
|
+
from nat.data_models.common import OptionalSecretStr
|
|
23
24
|
from nat.data_models.llm import LLMBaseConfig
|
|
25
|
+
from nat.data_models.optimizable import OptimizableField
|
|
26
|
+
from nat.data_models.optimizable import SearchSpace
|
|
24
27
|
from nat.data_models.retry_mixin import RetryMixin
|
|
25
|
-
from nat.data_models.temperature_mixin import TemperatureMixin
|
|
26
28
|
from nat.data_models.thinking_mixin import ThinkingMixin
|
|
27
|
-
from nat.data_models.top_p_mixin import TopPMixin
|
|
28
29
|
|
|
29
30
|
|
|
30
31
|
class AzureOpenAIModelConfig(
|
|
31
32
|
LLMBaseConfig,
|
|
32
33
|
RetryMixin,
|
|
33
|
-
TemperatureMixin,
|
|
34
|
-
TopPMixin,
|
|
35
34
|
ThinkingMixin,
|
|
36
35
|
name="azure_openai",
|
|
37
36
|
):
|
|
@@ -39,7 +38,7 @@ class AzureOpenAIModelConfig(
|
|
|
39
38
|
|
|
40
39
|
model_config = ConfigDict(protected_namespaces=(), extra="allow")
|
|
41
40
|
|
|
42
|
-
api_key:
|
|
41
|
+
api_key: OptionalSecretStr = Field(default=None, description="Azure OpenAI API key to interact with hosted model.")
|
|
43
42
|
api_version: str = Field(default="2025-04-01-preview", description="Azure OpenAI API version.")
|
|
44
43
|
azure_endpoint: str | None = Field(validation_alias=AliasChoices("azure_endpoint", "base_url"),
|
|
45
44
|
serialization_alias="azure_endpoint",
|
|
@@ -49,6 +48,16 @@ class AzureOpenAIModelConfig(
|
|
|
49
48
|
serialization_alias="azure_deployment",
|
|
50
49
|
description="The Azure OpenAI hosted model/deployment name.")
|
|
51
50
|
seed: int | None = Field(default=None, description="Random seed to set for generation.")
|
|
51
|
+
temperature: float | None = OptimizableField(
|
|
52
|
+
default=None,
|
|
53
|
+
ge=0.0,
|
|
54
|
+
description="Sampling temperature to control randomness in the output.",
|
|
55
|
+
space=SearchSpace(high=0.9, low=0.1, step=0.2))
|
|
56
|
+
top_p: float | None = OptimizableField(default=None,
|
|
57
|
+
ge=0.0,
|
|
58
|
+
le=1.0,
|
|
59
|
+
description="Top-p for distribution sampling.",
|
|
60
|
+
space=SearchSpace(high=1.0, low=0.5, step=0.1))
|
|
52
61
|
|
|
53
62
|
|
|
54
63
|
@register_llm_provider(config_type=AzureOpenAIModelConfig)
|