nvidia-nat 1.2.0rc5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiq/agent/__init__.py +0 -0
- aiq/agent/base.py +239 -0
- aiq/agent/dual_node.py +67 -0
- aiq/agent/react_agent/__init__.py +0 -0
- aiq/agent/react_agent/agent.py +355 -0
- aiq/agent/react_agent/output_parser.py +104 -0
- aiq/agent/react_agent/prompt.py +41 -0
- aiq/agent/react_agent/register.py +149 -0
- aiq/agent/reasoning_agent/__init__.py +0 -0
- aiq/agent/reasoning_agent/reasoning_agent.py +225 -0
- aiq/agent/register.py +23 -0
- aiq/agent/rewoo_agent/__init__.py +0 -0
- aiq/agent/rewoo_agent/agent.py +411 -0
- aiq/agent/rewoo_agent/prompt.py +108 -0
- aiq/agent/rewoo_agent/register.py +158 -0
- aiq/agent/tool_calling_agent/__init__.py +0 -0
- aiq/agent/tool_calling_agent/agent.py +119 -0
- aiq/agent/tool_calling_agent/register.py +106 -0
- aiq/authentication/__init__.py +14 -0
- aiq/authentication/api_key/__init__.py +14 -0
- aiq/authentication/api_key/api_key_auth_provider.py +96 -0
- aiq/authentication/api_key/api_key_auth_provider_config.py +124 -0
- aiq/authentication/api_key/register.py +26 -0
- aiq/authentication/exceptions/__init__.py +14 -0
- aiq/authentication/exceptions/api_key_exceptions.py +38 -0
- aiq/authentication/http_basic_auth/__init__.py +0 -0
- aiq/authentication/http_basic_auth/http_basic_auth_provider.py +81 -0
- aiq/authentication/http_basic_auth/register.py +30 -0
- aiq/authentication/interfaces.py +93 -0
- aiq/authentication/oauth2/__init__.py +14 -0
- aiq/authentication/oauth2/oauth2_auth_code_flow_provider.py +107 -0
- aiq/authentication/oauth2/oauth2_auth_code_flow_provider_config.py +39 -0
- aiq/authentication/oauth2/register.py +25 -0
- aiq/authentication/register.py +21 -0
- aiq/builder/__init__.py +0 -0
- aiq/builder/builder.py +285 -0
- aiq/builder/component_utils.py +316 -0
- aiq/builder/context.py +264 -0
- aiq/builder/embedder.py +24 -0
- aiq/builder/eval_builder.py +161 -0
- aiq/builder/evaluator.py +29 -0
- aiq/builder/framework_enum.py +24 -0
- aiq/builder/front_end.py +73 -0
- aiq/builder/function.py +344 -0
- aiq/builder/function_base.py +380 -0
- aiq/builder/function_info.py +627 -0
- aiq/builder/intermediate_step_manager.py +174 -0
- aiq/builder/llm.py +25 -0
- aiq/builder/retriever.py +25 -0
- aiq/builder/user_interaction_manager.py +74 -0
- aiq/builder/workflow.py +148 -0
- aiq/builder/workflow_builder.py +1117 -0
- aiq/cli/__init__.py +14 -0
- aiq/cli/cli_utils/__init__.py +0 -0
- aiq/cli/cli_utils/config_override.py +231 -0
- aiq/cli/cli_utils/validation.py +37 -0
- aiq/cli/commands/__init__.py +0 -0
- aiq/cli/commands/configure/__init__.py +0 -0
- aiq/cli/commands/configure/channel/__init__.py +0 -0
- aiq/cli/commands/configure/channel/add.py +28 -0
- aiq/cli/commands/configure/channel/channel.py +36 -0
- aiq/cli/commands/configure/channel/remove.py +30 -0
- aiq/cli/commands/configure/channel/update.py +30 -0
- aiq/cli/commands/configure/configure.py +33 -0
- aiq/cli/commands/evaluate.py +139 -0
- aiq/cli/commands/info/__init__.py +14 -0
- aiq/cli/commands/info/info.py +39 -0
- aiq/cli/commands/info/list_channels.py +32 -0
- aiq/cli/commands/info/list_components.py +129 -0
- aiq/cli/commands/info/list_mcp.py +213 -0
- aiq/cli/commands/registry/__init__.py +14 -0
- aiq/cli/commands/registry/publish.py +88 -0
- aiq/cli/commands/registry/pull.py +118 -0
- aiq/cli/commands/registry/registry.py +38 -0
- aiq/cli/commands/registry/remove.py +108 -0
- aiq/cli/commands/registry/search.py +155 -0
- aiq/cli/commands/sizing/__init__.py +14 -0
- aiq/cli/commands/sizing/calc.py +297 -0
- aiq/cli/commands/sizing/sizing.py +27 -0
- aiq/cli/commands/start.py +246 -0
- aiq/cli/commands/uninstall.py +81 -0
- aiq/cli/commands/validate.py +47 -0
- aiq/cli/commands/workflow/__init__.py +14 -0
- aiq/cli/commands/workflow/templates/__init__.py.j2 +0 -0
- aiq/cli/commands/workflow/templates/config.yml.j2 +16 -0
- aiq/cli/commands/workflow/templates/pyproject.toml.j2 +22 -0
- aiq/cli/commands/workflow/templates/register.py.j2 +5 -0
- aiq/cli/commands/workflow/templates/workflow.py.j2 +36 -0
- aiq/cli/commands/workflow/workflow.py +37 -0
- aiq/cli/commands/workflow/workflow_commands.py +313 -0
- aiq/cli/entrypoint.py +135 -0
- aiq/cli/main.py +44 -0
- aiq/cli/register_workflow.py +488 -0
- aiq/cli/type_registry.py +1000 -0
- aiq/data_models/__init__.py +14 -0
- aiq/data_models/api_server.py +694 -0
- aiq/data_models/authentication.py +231 -0
- aiq/data_models/common.py +171 -0
- aiq/data_models/component.py +54 -0
- aiq/data_models/component_ref.py +168 -0
- aiq/data_models/config.py +406 -0
- aiq/data_models/dataset_handler.py +123 -0
- aiq/data_models/discovery_metadata.py +335 -0
- aiq/data_models/embedder.py +27 -0
- aiq/data_models/evaluate.py +127 -0
- aiq/data_models/evaluator.py +26 -0
- aiq/data_models/front_end.py +26 -0
- aiq/data_models/function.py +30 -0
- aiq/data_models/function_dependencies.py +72 -0
- aiq/data_models/interactive.py +246 -0
- aiq/data_models/intermediate_step.py +302 -0
- aiq/data_models/invocation_node.py +38 -0
- aiq/data_models/llm.py +27 -0
- aiq/data_models/logging.py +26 -0
- aiq/data_models/memory.py +27 -0
- aiq/data_models/object_store.py +44 -0
- aiq/data_models/profiler.py +54 -0
- aiq/data_models/registry_handler.py +26 -0
- aiq/data_models/retriever.py +30 -0
- aiq/data_models/retry_mixin.py +35 -0
- aiq/data_models/span.py +187 -0
- aiq/data_models/step_adaptor.py +64 -0
- aiq/data_models/streaming.py +33 -0
- aiq/data_models/swe_bench_model.py +54 -0
- aiq/data_models/telemetry_exporter.py +26 -0
- aiq/data_models/ttc_strategy.py +30 -0
- aiq/embedder/__init__.py +0 -0
- aiq/embedder/langchain_client.py +41 -0
- aiq/embedder/nim_embedder.py +59 -0
- aiq/embedder/openai_embedder.py +43 -0
- aiq/embedder/register.py +24 -0
- aiq/eval/__init__.py +14 -0
- aiq/eval/config.py +60 -0
- aiq/eval/dataset_handler/__init__.py +0 -0
- aiq/eval/dataset_handler/dataset_downloader.py +106 -0
- aiq/eval/dataset_handler/dataset_filter.py +52 -0
- aiq/eval/dataset_handler/dataset_handler.py +254 -0
- aiq/eval/evaluate.py +506 -0
- aiq/eval/evaluator/__init__.py +14 -0
- aiq/eval/evaluator/base_evaluator.py +73 -0
- aiq/eval/evaluator/evaluator_model.py +45 -0
- aiq/eval/intermediate_step_adapter.py +99 -0
- aiq/eval/rag_evaluator/__init__.py +0 -0
- aiq/eval/rag_evaluator/evaluate.py +178 -0
- aiq/eval/rag_evaluator/register.py +143 -0
- aiq/eval/register.py +23 -0
- aiq/eval/remote_workflow.py +133 -0
- aiq/eval/runners/__init__.py +14 -0
- aiq/eval/runners/config.py +39 -0
- aiq/eval/runners/multi_eval_runner.py +54 -0
- aiq/eval/runtime_event_subscriber.py +52 -0
- aiq/eval/swe_bench_evaluator/__init__.py +0 -0
- aiq/eval/swe_bench_evaluator/evaluate.py +215 -0
- aiq/eval/swe_bench_evaluator/register.py +36 -0
- aiq/eval/trajectory_evaluator/__init__.py +0 -0
- aiq/eval/trajectory_evaluator/evaluate.py +75 -0
- aiq/eval/trajectory_evaluator/register.py +40 -0
- aiq/eval/tunable_rag_evaluator/__init__.py +0 -0
- aiq/eval/tunable_rag_evaluator/evaluate.py +245 -0
- aiq/eval/tunable_rag_evaluator/register.py +52 -0
- aiq/eval/usage_stats.py +41 -0
- aiq/eval/utils/__init__.py +0 -0
- aiq/eval/utils/output_uploader.py +140 -0
- aiq/eval/utils/tqdm_position_registry.py +40 -0
- aiq/eval/utils/weave_eval.py +184 -0
- aiq/experimental/__init__.py +0 -0
- aiq/experimental/decorators/__init__.py +0 -0
- aiq/experimental/decorators/experimental_warning_decorator.py +130 -0
- aiq/experimental/test_time_compute/__init__.py +0 -0
- aiq/experimental/test_time_compute/editing/__init__.py +0 -0
- aiq/experimental/test_time_compute/editing/iterative_plan_refinement_editor.py +147 -0
- aiq/experimental/test_time_compute/editing/llm_as_a_judge_editor.py +204 -0
- aiq/experimental/test_time_compute/editing/motivation_aware_summarization.py +107 -0
- aiq/experimental/test_time_compute/functions/__init__.py +0 -0
- aiq/experimental/test_time_compute/functions/execute_score_select_function.py +105 -0
- aiq/experimental/test_time_compute/functions/its_tool_orchestration_function.py +205 -0
- aiq/experimental/test_time_compute/functions/its_tool_wrapper_function.py +146 -0
- aiq/experimental/test_time_compute/functions/plan_select_execute_function.py +224 -0
- aiq/experimental/test_time_compute/models/__init__.py +0 -0
- aiq/experimental/test_time_compute/models/editor_config.py +132 -0
- aiq/experimental/test_time_compute/models/scoring_config.py +112 -0
- aiq/experimental/test_time_compute/models/search_config.py +120 -0
- aiq/experimental/test_time_compute/models/selection_config.py +154 -0
- aiq/experimental/test_time_compute/models/stage_enums.py +43 -0
- aiq/experimental/test_time_compute/models/strategy_base.py +66 -0
- aiq/experimental/test_time_compute/models/tool_use_config.py +41 -0
- aiq/experimental/test_time_compute/models/ttc_item.py +48 -0
- aiq/experimental/test_time_compute/register.py +36 -0
- aiq/experimental/test_time_compute/scoring/__init__.py +0 -0
- aiq/experimental/test_time_compute/scoring/llm_based_agent_scorer.py +168 -0
- aiq/experimental/test_time_compute/scoring/llm_based_plan_scorer.py +168 -0
- aiq/experimental/test_time_compute/scoring/motivation_aware_scorer.py +111 -0
- aiq/experimental/test_time_compute/search/__init__.py +0 -0
- aiq/experimental/test_time_compute/search/multi_llm_planner.py +128 -0
- aiq/experimental/test_time_compute/search/multi_query_retrieval_search.py +122 -0
- aiq/experimental/test_time_compute/search/single_shot_multi_plan_planner.py +128 -0
- aiq/experimental/test_time_compute/selection/__init__.py +0 -0
- aiq/experimental/test_time_compute/selection/best_of_n_selector.py +63 -0
- aiq/experimental/test_time_compute/selection/llm_based_agent_output_selector.py +131 -0
- aiq/experimental/test_time_compute/selection/llm_based_output_merging_selector.py +159 -0
- aiq/experimental/test_time_compute/selection/llm_based_plan_selector.py +128 -0
- aiq/experimental/test_time_compute/selection/threshold_selector.py +58 -0
- aiq/front_ends/__init__.py +14 -0
- aiq/front_ends/console/__init__.py +14 -0
- aiq/front_ends/console/authentication_flow_handler.py +233 -0
- aiq/front_ends/console/console_front_end_config.py +32 -0
- aiq/front_ends/console/console_front_end_plugin.py +96 -0
- aiq/front_ends/console/register.py +25 -0
- aiq/front_ends/cron/__init__.py +14 -0
- aiq/front_ends/fastapi/__init__.py +14 -0
- aiq/front_ends/fastapi/auth_flow_handlers/__init__.py +0 -0
- aiq/front_ends/fastapi/auth_flow_handlers/http_flow_handler.py +27 -0
- aiq/front_ends/fastapi/auth_flow_handlers/websocket_flow_handler.py +107 -0
- aiq/front_ends/fastapi/fastapi_front_end_config.py +234 -0
- aiq/front_ends/fastapi/fastapi_front_end_controller.py +68 -0
- aiq/front_ends/fastapi/fastapi_front_end_plugin.py +116 -0
- aiq/front_ends/fastapi/fastapi_front_end_plugin_worker.py +1092 -0
- aiq/front_ends/fastapi/html_snippets/__init__.py +14 -0
- aiq/front_ends/fastapi/html_snippets/auth_code_grant_success.py +35 -0
- aiq/front_ends/fastapi/intermediate_steps_subscriber.py +80 -0
- aiq/front_ends/fastapi/job_store.py +183 -0
- aiq/front_ends/fastapi/main.py +72 -0
- aiq/front_ends/fastapi/message_handler.py +298 -0
- aiq/front_ends/fastapi/message_validator.py +345 -0
- aiq/front_ends/fastapi/register.py +25 -0
- aiq/front_ends/fastapi/response_helpers.py +195 -0
- aiq/front_ends/fastapi/step_adaptor.py +321 -0
- aiq/front_ends/mcp/__init__.py +14 -0
- aiq/front_ends/mcp/mcp_front_end_config.py +32 -0
- aiq/front_ends/mcp/mcp_front_end_plugin.py +93 -0
- aiq/front_ends/mcp/register.py +27 -0
- aiq/front_ends/mcp/tool_converter.py +242 -0
- aiq/front_ends/register.py +22 -0
- aiq/front_ends/simple_base/__init__.py +14 -0
- aiq/front_ends/simple_base/simple_front_end_plugin_base.py +54 -0
- aiq/llm/__init__.py +0 -0
- aiq/llm/aws_bedrock_llm.py +57 -0
- aiq/llm/nim_llm.py +46 -0
- aiq/llm/openai_llm.py +46 -0
- aiq/llm/register.py +23 -0
- aiq/llm/utils/__init__.py +14 -0
- aiq/llm/utils/env_config_value.py +94 -0
- aiq/llm/utils/error.py +17 -0
- aiq/memory/__init__.py +20 -0
- aiq/memory/interfaces.py +183 -0
- aiq/memory/models.py +112 -0
- aiq/meta/module_to_distro.json +3 -0
- aiq/meta/pypi.md +58 -0
- aiq/object_store/__init__.py +20 -0
- aiq/object_store/in_memory_object_store.py +76 -0
- aiq/object_store/interfaces.py +84 -0
- aiq/object_store/models.py +36 -0
- aiq/object_store/register.py +20 -0
- aiq/observability/__init__.py +14 -0
- aiq/observability/exporter/__init__.py +14 -0
- aiq/observability/exporter/base_exporter.py +449 -0
- aiq/observability/exporter/exporter.py +78 -0
- aiq/observability/exporter/file_exporter.py +33 -0
- aiq/observability/exporter/processing_exporter.py +322 -0
- aiq/observability/exporter/raw_exporter.py +52 -0
- aiq/observability/exporter/span_exporter.py +265 -0
- aiq/observability/exporter_manager.py +335 -0
- aiq/observability/mixin/__init__.py +14 -0
- aiq/observability/mixin/batch_config_mixin.py +26 -0
- aiq/observability/mixin/collector_config_mixin.py +23 -0
- aiq/observability/mixin/file_mixin.py +288 -0
- aiq/observability/mixin/file_mode.py +23 -0
- aiq/observability/mixin/resource_conflict_mixin.py +134 -0
- aiq/observability/mixin/serialize_mixin.py +61 -0
- aiq/observability/mixin/type_introspection_mixin.py +183 -0
- aiq/observability/processor/__init__.py +14 -0
- aiq/observability/processor/batching_processor.py +310 -0
- aiq/observability/processor/callback_processor.py +42 -0
- aiq/observability/processor/intermediate_step_serializer.py +28 -0
- aiq/observability/processor/processor.py +71 -0
- aiq/observability/register.py +96 -0
- aiq/observability/utils/__init__.py +14 -0
- aiq/observability/utils/dict_utils.py +236 -0
- aiq/observability/utils/time_utils.py +31 -0
- aiq/plugins/.namespace +1 -0
- aiq/profiler/__init__.py +0 -0
- aiq/profiler/calc/__init__.py +14 -0
- aiq/profiler/calc/calc_runner.py +627 -0
- aiq/profiler/calc/calculations.py +288 -0
- aiq/profiler/calc/data_models.py +188 -0
- aiq/profiler/calc/plot.py +345 -0
- aiq/profiler/callbacks/__init__.py +0 -0
- aiq/profiler/callbacks/agno_callback_handler.py +295 -0
- aiq/profiler/callbacks/base_callback_class.py +20 -0
- aiq/profiler/callbacks/langchain_callback_handler.py +290 -0
- aiq/profiler/callbacks/llama_index_callback_handler.py +205 -0
- aiq/profiler/callbacks/semantic_kernel_callback_handler.py +238 -0
- aiq/profiler/callbacks/token_usage_base_model.py +27 -0
- aiq/profiler/data_frame_row.py +51 -0
- aiq/profiler/data_models.py +24 -0
- aiq/profiler/decorators/__init__.py +0 -0
- aiq/profiler/decorators/framework_wrapper.py +131 -0
- aiq/profiler/decorators/function_tracking.py +254 -0
- aiq/profiler/forecasting/__init__.py +0 -0
- aiq/profiler/forecasting/config.py +18 -0
- aiq/profiler/forecasting/model_trainer.py +75 -0
- aiq/profiler/forecasting/models/__init__.py +22 -0
- aiq/profiler/forecasting/models/forecasting_base_model.py +40 -0
- aiq/profiler/forecasting/models/linear_model.py +196 -0
- aiq/profiler/forecasting/models/random_forest_regressor.py +268 -0
- aiq/profiler/inference_metrics_model.py +28 -0
- aiq/profiler/inference_optimization/__init__.py +0 -0
- aiq/profiler/inference_optimization/bottleneck_analysis/__init__.py +0 -0
- aiq/profiler/inference_optimization/bottleneck_analysis/nested_stack_analysis.py +460 -0
- aiq/profiler/inference_optimization/bottleneck_analysis/simple_stack_analysis.py +258 -0
- aiq/profiler/inference_optimization/data_models.py +386 -0
- aiq/profiler/inference_optimization/experimental/__init__.py +0 -0
- aiq/profiler/inference_optimization/experimental/concurrency_spike_analysis.py +468 -0
- aiq/profiler/inference_optimization/experimental/prefix_span_analysis.py +405 -0
- aiq/profiler/inference_optimization/llm_metrics.py +212 -0
- aiq/profiler/inference_optimization/prompt_caching.py +163 -0
- aiq/profiler/inference_optimization/token_uniqueness.py +107 -0
- aiq/profiler/inference_optimization/workflow_runtimes.py +72 -0
- aiq/profiler/intermediate_property_adapter.py +102 -0
- aiq/profiler/profile_runner.py +473 -0
- aiq/profiler/utils.py +184 -0
- aiq/registry_handlers/__init__.py +0 -0
- aiq/registry_handlers/local/__init__.py +0 -0
- aiq/registry_handlers/local/local_handler.py +176 -0
- aiq/registry_handlers/local/register_local.py +37 -0
- aiq/registry_handlers/metadata_factory.py +60 -0
- aiq/registry_handlers/package_utils.py +567 -0
- aiq/registry_handlers/pypi/__init__.py +0 -0
- aiq/registry_handlers/pypi/pypi_handler.py +251 -0
- aiq/registry_handlers/pypi/register_pypi.py +40 -0
- aiq/registry_handlers/register.py +21 -0
- aiq/registry_handlers/registry_handler_base.py +157 -0
- aiq/registry_handlers/rest/__init__.py +0 -0
- aiq/registry_handlers/rest/register_rest.py +56 -0
- aiq/registry_handlers/rest/rest_handler.py +237 -0
- aiq/registry_handlers/schemas/__init__.py +0 -0
- aiq/registry_handlers/schemas/headers.py +42 -0
- aiq/registry_handlers/schemas/package.py +68 -0
- aiq/registry_handlers/schemas/publish.py +63 -0
- aiq/registry_handlers/schemas/pull.py +82 -0
- aiq/registry_handlers/schemas/remove.py +36 -0
- aiq/registry_handlers/schemas/search.py +91 -0
- aiq/registry_handlers/schemas/status.py +47 -0
- aiq/retriever/__init__.py +0 -0
- aiq/retriever/interface.py +37 -0
- aiq/retriever/milvus/__init__.py +14 -0
- aiq/retriever/milvus/register.py +81 -0
- aiq/retriever/milvus/retriever.py +228 -0
- aiq/retriever/models.py +74 -0
- aiq/retriever/nemo_retriever/__init__.py +14 -0
- aiq/retriever/nemo_retriever/register.py +60 -0
- aiq/retriever/nemo_retriever/retriever.py +190 -0
- aiq/retriever/register.py +22 -0
- aiq/runtime/__init__.py +14 -0
- aiq/runtime/loader.py +215 -0
- aiq/runtime/runner.py +190 -0
- aiq/runtime/session.py +158 -0
- aiq/runtime/user_metadata.py +130 -0
- aiq/settings/__init__.py +0 -0
- aiq/settings/global_settings.py +318 -0
- aiq/test/.namespace +1 -0
- aiq/tool/__init__.py +0 -0
- aiq/tool/chat_completion.py +74 -0
- aiq/tool/code_execution/README.md +151 -0
- aiq/tool/code_execution/__init__.py +0 -0
- aiq/tool/code_execution/code_sandbox.py +267 -0
- aiq/tool/code_execution/local_sandbox/.gitignore +1 -0
- aiq/tool/code_execution/local_sandbox/Dockerfile.sandbox +60 -0
- aiq/tool/code_execution/local_sandbox/__init__.py +13 -0
- aiq/tool/code_execution/local_sandbox/local_sandbox_server.py +198 -0
- aiq/tool/code_execution/local_sandbox/sandbox.requirements.txt +6 -0
- aiq/tool/code_execution/local_sandbox/start_local_sandbox.sh +50 -0
- aiq/tool/code_execution/register.py +74 -0
- aiq/tool/code_execution/test_code_execution_sandbox.py +414 -0
- aiq/tool/code_execution/utils.py +100 -0
- aiq/tool/datetime_tools.py +42 -0
- aiq/tool/document_search.py +141 -0
- aiq/tool/github_tools/__init__.py +0 -0
- aiq/tool/github_tools/create_github_commit.py +133 -0
- aiq/tool/github_tools/create_github_issue.py +87 -0
- aiq/tool/github_tools/create_github_pr.py +106 -0
- aiq/tool/github_tools/get_github_file.py +106 -0
- aiq/tool/github_tools/get_github_issue.py +166 -0
- aiq/tool/github_tools/get_github_pr.py +256 -0
- aiq/tool/github_tools/update_github_issue.py +100 -0
- aiq/tool/mcp/__init__.py +14 -0
- aiq/tool/mcp/exceptions.py +142 -0
- aiq/tool/mcp/mcp_client.py +255 -0
- aiq/tool/mcp/mcp_tool.py +96 -0
- aiq/tool/memory_tools/__init__.py +0 -0
- aiq/tool/memory_tools/add_memory_tool.py +79 -0
- aiq/tool/memory_tools/delete_memory_tool.py +67 -0
- aiq/tool/memory_tools/get_memory_tool.py +72 -0
- aiq/tool/nvidia_rag.py +95 -0
- aiq/tool/register.py +38 -0
- aiq/tool/retriever.py +89 -0
- aiq/tool/server_tools.py +66 -0
- aiq/utils/__init__.py +0 -0
- aiq/utils/data_models/__init__.py +0 -0
- aiq/utils/data_models/schema_validator.py +58 -0
- aiq/utils/debugging_utils.py +43 -0
- aiq/utils/dump_distro_mapping.py +32 -0
- aiq/utils/exception_handlers/__init__.py +0 -0
- aiq/utils/exception_handlers/automatic_retries.py +289 -0
- aiq/utils/exception_handlers/mcp.py +211 -0
- aiq/utils/exception_handlers/schemas.py +114 -0
- aiq/utils/io/__init__.py +0 -0
- aiq/utils/io/model_processing.py +28 -0
- aiq/utils/io/yaml_tools.py +119 -0
- aiq/utils/log_utils.py +37 -0
- aiq/utils/metadata_utils.py +74 -0
- aiq/utils/optional_imports.py +142 -0
- aiq/utils/producer_consumer_queue.py +178 -0
- aiq/utils/reactive/__init__.py +0 -0
- aiq/utils/reactive/base/__init__.py +0 -0
- aiq/utils/reactive/base/observable_base.py +65 -0
- aiq/utils/reactive/base/observer_base.py +55 -0
- aiq/utils/reactive/base/subject_base.py +79 -0
- aiq/utils/reactive/observable.py +59 -0
- aiq/utils/reactive/observer.py +76 -0
- aiq/utils/reactive/subject.py +131 -0
- aiq/utils/reactive/subscription.py +49 -0
- aiq/utils/settings/__init__.py +0 -0
- aiq/utils/settings/global_settings.py +197 -0
- aiq/utils/string_utils.py +38 -0
- aiq/utils/type_converter.py +290 -0
- aiq/utils/type_utils.py +484 -0
- aiq/utils/url_utils.py +27 -0
- nvidia_nat-1.2.0rc5.dist-info/METADATA +363 -0
- nvidia_nat-1.2.0rc5.dist-info/RECORD +435 -0
- nvidia_nat-1.2.0rc5.dist-info/WHEEL +5 -0
- nvidia_nat-1.2.0rc5.dist-info/entry_points.txt +20 -0
- nvidia_nat-1.2.0rc5.dist-info/licenses/LICENSE-3rd-party.txt +3686 -0
- nvidia_nat-1.2.0rc5.dist-info/licenses/LICENSE.md +201 -0
- nvidia_nat-1.2.0rc5.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,224 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import logging
|
|
17
|
+
from collections.abc import AsyncGenerator
|
|
18
|
+
|
|
19
|
+
from pydantic import Field
|
|
20
|
+
|
|
21
|
+
from aiq.builder.builder import Builder
|
|
22
|
+
from aiq.builder.framework_enum import LLMFrameworkEnum
|
|
23
|
+
from aiq.builder.function_info import FunctionInfo
|
|
24
|
+
from aiq.cli.register_workflow import register_function
|
|
25
|
+
from aiq.data_models.api_server import AIQChatRequest
|
|
26
|
+
from aiq.data_models.component_ref import FunctionRef
|
|
27
|
+
from aiq.data_models.component_ref import TTCStrategyRef
|
|
28
|
+
from aiq.data_models.function import FunctionBaseConfig
|
|
29
|
+
from aiq.experimental.test_time_compute.models.stage_enums import PipelineTypeEnum
|
|
30
|
+
from aiq.experimental.test_time_compute.models.stage_enums import StageTypeEnum
|
|
31
|
+
from aiq.experimental.test_time_compute.models.ttc_item import TTCItem
|
|
32
|
+
|
|
33
|
+
logger = logging.getLogger(__name__)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class PlanSelectExecuteFunctionConfig(FunctionBaseConfig, name="plan_select_execute_function"):
|
|
37
|
+
"""
|
|
38
|
+
Defines an aiqtoolkit function that performs reasoning on the input data.
|
|
39
|
+
Output is passed to the next function in the workflow.
|
|
40
|
+
|
|
41
|
+
Designed to be used with an InterceptingFunction.
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
augmented_fn: FunctionRef = Field(description="The name of the function to reason on.")
|
|
45
|
+
|
|
46
|
+
planner: TTCStrategyRef = Field(description="The configuration for the planner.")
|
|
47
|
+
editor: TTCStrategyRef | None = Field(description="The configuration for the editor.", default=None)
|
|
48
|
+
scorer: TTCStrategyRef | None = Field(description="The configuration for the scorer.", default=None)
|
|
49
|
+
selector: TTCStrategyRef = Field(description="The configuration for the selector.")
|
|
50
|
+
|
|
51
|
+
verbose: bool = Field(default=False, description="Whether to log detailed information.")
|
|
52
|
+
agent_context_prompt_template: str = Field(
|
|
53
|
+
description="The template for the agent context prompt. This prompt is used to provide context about the agent",
|
|
54
|
+
default=("\nThe agent system has the following description:\n"
|
|
55
|
+
"{description}\n"
|
|
56
|
+
"And has access to the following tools with functionality:\n"
|
|
57
|
+
"{tools}\n\n"))
|
|
58
|
+
|
|
59
|
+
downstream_template: str = Field(
|
|
60
|
+
description=("The template for the downstream prompt. This prompt is used to provide the reasoning output to"
|
|
61
|
+
" the executing agent"),
|
|
62
|
+
default=("Answer the following question based on message history: {input_text}"
|
|
63
|
+
"\n\nHere is a plan for execution that you could use to guide you if you wanted to:"
|
|
64
|
+
"\n\n{reasoning_output}"
|
|
65
|
+
"\n\nNOTE: Remember to follow your guidance on how to format output, etc."
|
|
66
|
+
"\n\n You must respond with the answer to the original question directly to the user."))
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
@register_function(config_type=PlanSelectExecuteFunctionConfig, framework_wrappers=[LLMFrameworkEnum.LANGCHAIN])
|
|
70
|
+
async def plan_select_execute_function(config: PlanSelectExecuteFunctionConfig, builder: Builder):
|
|
71
|
+
"""
|
|
72
|
+
Build a ExecutionPlanningFunction from the provided config.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
config (ExecutionPlanningFunctionConfig): The config for the ExecutionPlanningFunction.
|
|
76
|
+
builder (Builder): The Builder instance to use for building the function.
|
|
77
|
+
|
|
78
|
+
Returns:
|
|
79
|
+
ExecutionPlanningFunction: The built ExecutionPlanningFunction.
|
|
80
|
+
"""
|
|
81
|
+
|
|
82
|
+
try:
|
|
83
|
+
from langchain_core.prompts import PromptTemplate
|
|
84
|
+
except ImportError:
|
|
85
|
+
raise ImportError("langchain-core is not installed. Please install it to use SingleShotMultiPlanPlanner.\n"
|
|
86
|
+
"This error can be resolved by installing aiqtoolkit-langchain.")
|
|
87
|
+
|
|
88
|
+
# Get the augmented function's description
|
|
89
|
+
augmented_function = builder.get_function(config.augmented_fn)
|
|
90
|
+
|
|
91
|
+
# For now, we rely on runtime checking for type conversion
|
|
92
|
+
|
|
93
|
+
if augmented_function.description and augmented_function.description != "":
|
|
94
|
+
augmented_function_desc = augmented_function.description
|
|
95
|
+
else:
|
|
96
|
+
raise ValueError(f"Function {config.augmented_fn} does not have a description. Cannot augment "
|
|
97
|
+
f"function without a description.")
|
|
98
|
+
|
|
99
|
+
# Get the function dependencies of the augmented function
|
|
100
|
+
function_used_tools = builder.get_function_dependencies(config.augmented_fn).functions
|
|
101
|
+
tool_list = "Tool: Description\n"
|
|
102
|
+
|
|
103
|
+
for tool in function_used_tools:
|
|
104
|
+
tool_impl = builder.get_function(tool)
|
|
105
|
+
tool_list += f"- {tool}: {tool_impl.description if hasattr(tool_impl, 'description') else ''}\n"
|
|
106
|
+
|
|
107
|
+
# Draft the reasoning prompt for the augmented function
|
|
108
|
+
template = PromptTemplate(template=config.agent_context_prompt_template,
|
|
109
|
+
input_variables=["description", "tools"],
|
|
110
|
+
validate_template=True)
|
|
111
|
+
|
|
112
|
+
downstream_template = PromptTemplate(template=config.downstream_template,
|
|
113
|
+
input_variables=["input_text", "reasoning_output"],
|
|
114
|
+
validate_template=True)
|
|
115
|
+
|
|
116
|
+
planner = await builder.get_ttc_strategy(strategy_name=config.planner,
|
|
117
|
+
pipeline_type=PipelineTypeEnum.PLANNING,
|
|
118
|
+
stage_type=StageTypeEnum.SEARCH)
|
|
119
|
+
|
|
120
|
+
selector = await builder.get_ttc_strategy(strategy_name=config.selector,
|
|
121
|
+
pipeline_type=PipelineTypeEnum.PLANNING,
|
|
122
|
+
stage_type=StageTypeEnum.SELECTION)
|
|
123
|
+
|
|
124
|
+
if config.editor:
|
|
125
|
+
editor = await builder.get_ttc_strategy(strategy_name=config.editor,
|
|
126
|
+
pipeline_type=PipelineTypeEnum.PLANNING,
|
|
127
|
+
stage_type=StageTypeEnum.EDITING)
|
|
128
|
+
else:
|
|
129
|
+
editor = None
|
|
130
|
+
|
|
131
|
+
if config.scorer:
|
|
132
|
+
scorer = await builder.get_ttc_strategy(strategy_name=config.scorer,
|
|
133
|
+
pipeline_type=PipelineTypeEnum.PLANNING,
|
|
134
|
+
stage_type=StageTypeEnum.SCORING)
|
|
135
|
+
else:
|
|
136
|
+
scorer = None
|
|
137
|
+
|
|
138
|
+
async def planning_pipeline(prompt, context):
|
|
139
|
+
|
|
140
|
+
plans = await planner.ainvoke([TTCItem()], prompt, context)
|
|
141
|
+
|
|
142
|
+
if editor:
|
|
143
|
+
plans = await editor.ainvoke(plans, prompt, context)
|
|
144
|
+
if scorer:
|
|
145
|
+
plans = await scorer.ainvoke(plans, prompt, context)
|
|
146
|
+
|
|
147
|
+
selected_plan = (await selector.ainvoke(plans, prompt, context))[0]
|
|
148
|
+
|
|
149
|
+
return selected_plan
|
|
150
|
+
|
|
151
|
+
streaming_inner_fn = None
|
|
152
|
+
single_inner_fn = None
|
|
153
|
+
|
|
154
|
+
if augmented_function.has_streaming_output:
|
|
155
|
+
|
|
156
|
+
async def streaming_inner(
|
|
157
|
+
input_message: AIQChatRequest) -> AsyncGenerator[augmented_function.streaming_output_type]:
|
|
158
|
+
"""
|
|
159
|
+
Perform reasoning on the input text.
|
|
160
|
+
|
|
161
|
+
Args:
|
|
162
|
+
input_message (AIQChatRequest): The input text to reason on.
|
|
163
|
+
"""
|
|
164
|
+
|
|
165
|
+
input_text = "".join([str(message.model_dump()) + "\n" for message in input_message.messages])
|
|
166
|
+
|
|
167
|
+
context_prompt = await template.ainvoke(input={"description": augmented_function_desc, "tools": tool_list})
|
|
168
|
+
|
|
169
|
+
context_prompt = context_prompt.to_string()
|
|
170
|
+
|
|
171
|
+
# Run the TTC pipeline
|
|
172
|
+
planning_item: TTCItem = await planning_pipeline(prompt=input_text, context=context_prompt)
|
|
173
|
+
|
|
174
|
+
output = await downstream_template.ainvoke(input={
|
|
175
|
+
"input_text": input_text, "reasoning_output": planning_item.plan
|
|
176
|
+
})
|
|
177
|
+
|
|
178
|
+
output = output.to_string()
|
|
179
|
+
|
|
180
|
+
if config.verbose:
|
|
181
|
+
logger.info("Reasoning plan and input to agent: \n\n%s", output)
|
|
182
|
+
|
|
183
|
+
async for chunk in augmented_function.acall_stream(output):
|
|
184
|
+
yield chunk
|
|
185
|
+
|
|
186
|
+
streaming_inner_fn = streaming_inner
|
|
187
|
+
|
|
188
|
+
if augmented_function.has_single_output:
|
|
189
|
+
|
|
190
|
+
async def single_inner(input_message: AIQChatRequest) -> augmented_function.single_output_type:
|
|
191
|
+
"""
|
|
192
|
+
Perform reasoning on the input text.
|
|
193
|
+
|
|
194
|
+
Args:
|
|
195
|
+
input_message (AIQChatRequest): The input text to reason on.
|
|
196
|
+
"""
|
|
197
|
+
|
|
198
|
+
input_text = "".join([str(message.model_dump()) + "\n" for message in input_message.messages])
|
|
199
|
+
|
|
200
|
+
context_prompt = await template.ainvoke(input={"description": augmented_function_desc, "tools": tool_list})
|
|
201
|
+
|
|
202
|
+
context_prompt = context_prompt.to_string()
|
|
203
|
+
|
|
204
|
+
# Run the TTC pipeline
|
|
205
|
+
planning_item: TTCItem = await planning_pipeline(prompt=input_text, context=context_prompt)
|
|
206
|
+
|
|
207
|
+
output = await downstream_template.ainvoke(input={
|
|
208
|
+
"input_text": input_text, "reasoning_output": planning_item.plan
|
|
209
|
+
})
|
|
210
|
+
|
|
211
|
+
output = output.to_string()
|
|
212
|
+
|
|
213
|
+
if config.verbose:
|
|
214
|
+
logger.info("Reasoning plan and input to agent: \n\n%s", output)
|
|
215
|
+
|
|
216
|
+
return await augmented_function.acall_invoke(output)
|
|
217
|
+
|
|
218
|
+
single_inner_fn = single_inner
|
|
219
|
+
|
|
220
|
+
yield FunctionInfo.create(
|
|
221
|
+
single_fn=single_inner_fn,
|
|
222
|
+
stream_fn=streaming_inner_fn,
|
|
223
|
+
description=("Function that runs an TTC execution planner on input and sends plan downstream"),
|
|
224
|
+
converters=augmented_function.converter_list)
|
|
File without changes
|
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import typing
|
|
17
|
+
|
|
18
|
+
from pydantic import Field
|
|
19
|
+
from pydantic import model_validator
|
|
20
|
+
|
|
21
|
+
from aiq.data_models.component_ref import LLMRef
|
|
22
|
+
from aiq.data_models.ttc_strategy import TTCStrategyBaseConfig
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class LLMAsAJudgeEditorConfig(TTCStrategyBaseConfig, name="llm_as_a_judge_editor"):
|
|
26
|
+
"""
|
|
27
|
+
Configuration for the LLMAsAJudgeEditor.
|
|
28
|
+
"""
|
|
29
|
+
num_feedback: int = Field(default=10,
|
|
30
|
+
description="Number of feedback items to generate for each plan during editing. "
|
|
31
|
+
"This can help in refining the plans based on feedback.")
|
|
32
|
+
|
|
33
|
+
# If strategy is provided, LLM must be
|
|
34
|
+
editing_llm: LLMRef | typing.Any | None = Field(
|
|
35
|
+
default=None,
|
|
36
|
+
description="The LLM to use for editing the plans. This can be a callable or an instance of an LLM client.")
|
|
37
|
+
|
|
38
|
+
# If strategy is LLM_AS_A_JUDGE, ensure that the feedback_llm is provided.
|
|
39
|
+
feedback_llm: LLMRef | typing.Any | None = Field(default=None,
|
|
40
|
+
description="The LLM to use for generating feedback on the plans."
|
|
41
|
+
" This can be a callable or an instance of an LLM client.")
|
|
42
|
+
|
|
43
|
+
editor_template: str = Field(default=(
|
|
44
|
+
"You are an expert at improving execution plans. You will be given a plan and feedback on that plan."
|
|
45
|
+
" Your task is to create an improved version of the plan that addresses the feedback "
|
|
46
|
+
"while maintaining its strengths.\n\n"
|
|
47
|
+
"Here is the context:\n\n"
|
|
48
|
+
"{context}\n\n"
|
|
49
|
+
"**Input:** \n{original_prompt}\n\n"
|
|
50
|
+
"**Original Plan:**\n{plan}\n\n"
|
|
51
|
+
"**Feedback on the Plan:**\n{feedback}\n\n"
|
|
52
|
+
"Please provide an improved version of the plan that addresses"
|
|
53
|
+
" the feedback points. Maintain the same structure and "
|
|
54
|
+
"step-by-step format, but enhance the content. Do not include explanations of your changes, just provide the "
|
|
55
|
+
"improved plan directly:\n\n"
|
|
56
|
+
"Begin the final improve plan with 'EDITED PLAN:'"),
|
|
57
|
+
description="The template to use for editing the planning items based on feedback.")
|
|
58
|
+
|
|
59
|
+
feedback_template: str = Field(
|
|
60
|
+
default=("You are an expert at evaluating execution plans. You will be given a plan and "
|
|
61
|
+
"need to provide {num_feedback} "
|
|
62
|
+
"specific points of feedback about its strengths and weaknesses.\n\n"
|
|
63
|
+
"Your feedback should cover aspects like:\n"
|
|
64
|
+
"- Comprehensiveness of the plan\n"
|
|
65
|
+
"- Logical flow and sequencing\n"
|
|
66
|
+
"- Appropriate use of available tools\n"
|
|
67
|
+
"- Potential edge cases or failure points\n"
|
|
68
|
+
"- Efficiency and optimization opportunities\n\n"
|
|
69
|
+
"Here is the context and plan to evaluate:\n\n"
|
|
70
|
+
"{context}\n\n"
|
|
71
|
+
"**Objective:** \n{original_prompt}\n\n"
|
|
72
|
+
"**Plan to Evaluate:**\n{plan}\n\n"
|
|
73
|
+
"Please provide exactly {num_feedback} numbered points of feedback, including "
|
|
74
|
+
"both strengths and areas for improvement. Begin the feedback with 'FEEDBACK:' and provide"
|
|
75
|
+
"{num_feedback} specific feedback points."),
|
|
76
|
+
description="The template to use for generating feedback for each planning item.")
|
|
77
|
+
|
|
78
|
+
@model_validator(mode="before")
|
|
79
|
+
def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
|
|
80
|
+
|
|
81
|
+
if values.get('editing_llm') is None:
|
|
82
|
+
raise ValueError('editing_llm must be provided when editing_strategy is set.')
|
|
83
|
+
# If editing strategy is LLM_AS_A_JUDGE, feedback_llm must also be provided
|
|
84
|
+
if (values.get('feedback_llm') is None):
|
|
85
|
+
raise ValueError('feedback_llm must be provided when editing_strategy is LLM_AS_A_JUDGE.')
|
|
86
|
+
|
|
87
|
+
return values
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class IterativePlanRefinementConfig(TTCStrategyBaseConfig, name="iterative_plan_refinement"):
|
|
91
|
+
"""Configuration for an 'iterative plan refinement' strategy."""
|
|
92
|
+
editor_llm: LLMRef | typing.Any | None = Field(
|
|
93
|
+
default=None, description="The LLM to use for generating and refining the plan across multiple iterations.")
|
|
94
|
+
num_iterations: int = Field(default=3, description="How many refinement steps to perform.")
|
|
95
|
+
refinement_template: str = Field(
|
|
96
|
+
default=("You have the current plan:\n{current_plan}\n\n"
|
|
97
|
+
"The plan was generated to achieve the following objective:\n{original_prompt}\n\n"
|
|
98
|
+
"Using an agent system with the following description:\n{context}\n\n"
|
|
99
|
+
"Refine or improve it to achieve the objective better."
|
|
100
|
+
"Output the updated plan, beginning with:\nEDITED PLAN:\n"),
|
|
101
|
+
description="Prompt used in each iteration to refine the plan.")
|
|
102
|
+
|
|
103
|
+
@model_validator(mode="before")
|
|
104
|
+
def validate_iterative_strategies(cls, values: dict) -> dict:
|
|
105
|
+
if not values.get('editor_llm'):
|
|
106
|
+
raise ValueError('planning_llm must be provided for iterative plan refinement.')
|
|
107
|
+
if values.get('num_iterations', 0) < 1:
|
|
108
|
+
raise ValueError('num_iterations must be >= 1 for iterative plan refinement.')
|
|
109
|
+
return values
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
class MotivationAwareSummarizationConfig(TTCStrategyBaseConfig, name="motivation_aware_editing"):
|
|
113
|
+
"""
|
|
114
|
+
Configuration for the MotivationAwareSummarization strategy.
|
|
115
|
+
"""
|
|
116
|
+
editor_llm: LLMRef | typing.Any | None = Field(
|
|
117
|
+
default=None,
|
|
118
|
+
description="The LLM to use for editing the plans. This can be a callable or an instance of an LLM client.")
|
|
119
|
+
|
|
120
|
+
editor_template: str = Field(
|
|
121
|
+
default=("You are an expert at summarizing key information from relevant documents based on an input task"
|
|
122
|
+
"and motivation. Given a task and motivation, and documents, your task is to create a concise "
|
|
123
|
+
"a summarized response to the task and motivation grounded in the documents .\n\n"
|
|
124
|
+
"Here is the task:\n\n"
|
|
125
|
+
"{task}\n\n"
|
|
126
|
+
"Here is the motivation:\n\n"
|
|
127
|
+
"{motivation}\n\n"
|
|
128
|
+
"and here are the documents:\n\n"
|
|
129
|
+
"{output}\n\n"
|
|
130
|
+
"Please respond with a concise summary that addresses the task and motivation, in at most one"
|
|
131
|
+
"or two sentences. Do not include any other output except the summary. "),
|
|
132
|
+
description="The template to use for summarizing documents.")
|
|
@@ -0,0 +1,112 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import typing
|
|
17
|
+
|
|
18
|
+
from pydantic import Field
|
|
19
|
+
from pydantic import model_validator
|
|
20
|
+
|
|
21
|
+
from aiq.data_models.component_ref import LLMRef
|
|
22
|
+
from aiq.data_models.ttc_strategy import TTCStrategyBaseConfig
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class LLMBasedPlanScoringConfig(TTCStrategyBaseConfig, name="llm_based_plan_scoring"):
|
|
26
|
+
"""
|
|
27
|
+
Configuration for LLMBasedScoring.
|
|
28
|
+
"""
|
|
29
|
+
scoring_llm: LLMRef | typing.Any | None = Field(
|
|
30
|
+
default=None,
|
|
31
|
+
description="The LLM to use for scoring the plans. This can be a callable or an instance of an LLM client.")
|
|
32
|
+
|
|
33
|
+
scoring_template: str = Field(
|
|
34
|
+
default=("You are an expert reasoning model tasked with scoring the following execution plan based on its"
|
|
35
|
+
"quality and relevance to the provided input to an agent system.\n\n"
|
|
36
|
+
"The agent system's role is:\n{context}\n\n"
|
|
37
|
+
"It has been tasked with achieving the following goal: \n{original_prompt}\n\n"
|
|
38
|
+
"The following plan has been generated to achieve this goal:\n\n{plan}\n\n"
|
|
39
|
+
"Score the plan on a scale from 1 to 10, where 10 is the best. "
|
|
40
|
+
"Return the final score as a floating point number preceded by `FINAL SCORE:` without any "
|
|
41
|
+
"other text before or after it\n"),
|
|
42
|
+
description="The template to use for scoring the plans.")
|
|
43
|
+
|
|
44
|
+
@model_validator(mode="before")
|
|
45
|
+
def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
|
|
46
|
+
"""
|
|
47
|
+
Ensure that the scoring_llm is provided when using LLMBasedScoring.
|
|
48
|
+
"""
|
|
49
|
+
if values.get('scoring_llm') is None:
|
|
50
|
+
raise ValueError('scoring_llm must be provided when scorer_type is set to LLM_BASED_SCORING.')
|
|
51
|
+
|
|
52
|
+
return values
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class LLMBasedAgentScoringConfig(TTCStrategyBaseConfig, name="llm_based_agent_scoring"):
|
|
56
|
+
"""
|
|
57
|
+
Configuration for LLMBasedScoring.
|
|
58
|
+
"""
|
|
59
|
+
scoring_llm: LLMRef | typing.Any | None = Field(
|
|
60
|
+
default=None,
|
|
61
|
+
description="The LLM to use for scoring the plans. This can be a callable or an instance of an LLM client.")
|
|
62
|
+
|
|
63
|
+
scoring_template: str = Field(
|
|
64
|
+
description="Prompt template to use for scoring the function output",
|
|
65
|
+
default=("You are an expert reasoning model tasked with scoring the following "
|
|
66
|
+
"result of an agent system based on its input and objective. Judge"
|
|
67
|
+
" the quality and relevance of the answer to score it.\n\n"
|
|
68
|
+
"The agent system's objective is:\n{objective}\n\n"
|
|
69
|
+
"It has been tasked with achieving the following goal: \n{input}\n\n"
|
|
70
|
+
"The following output has been generated by the agent:\n\n{output}\n\n"
|
|
71
|
+
"Score the result on a scale from 1 to 10, where 10 is the best. "
|
|
72
|
+
"Return the final score as a floating point number preceded by `FINAL SCORE:` without any "
|
|
73
|
+
"other text before or after it\n"),
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
@model_validator(mode="before")
|
|
77
|
+
def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
|
|
78
|
+
"""
|
|
79
|
+
Ensure that the scoring_llm is provided when using LLMBasedScoring.
|
|
80
|
+
"""
|
|
81
|
+
if values.get('scoring_llm') is None:
|
|
82
|
+
raise ValueError('scoring_llm must be provided when scorer_type is set to LLM_BASED_SCORING.')
|
|
83
|
+
|
|
84
|
+
return values
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class MotivationAwareScoringConfig(TTCStrategyBaseConfig, name="motivation_aware_scoring"):
|
|
88
|
+
"""
|
|
89
|
+
Configuration for a scoring strategy that considers both the original input (task)
|
|
90
|
+
and the motivation (from metadata) along with the current output.
|
|
91
|
+
"""
|
|
92
|
+
|
|
93
|
+
scoring_llm: LLMRef | None = Field(
|
|
94
|
+
default=None, description="The LLM used to evaluate how well the output addresses the task plus motivation.")
|
|
95
|
+
|
|
96
|
+
scoring_template: str = Field(
|
|
97
|
+
default=("You are an expert at assessing the quality of an output in relation to its task and motivation.\n"
|
|
98
|
+
"Task: {task}\n"
|
|
99
|
+
"Motivation: {motivation}\n"
|
|
100
|
+
"Output: {output}\n"
|
|
101
|
+
"On a scale from 1 to 10 (10 being the best), how well does this output fulfill "
|
|
102
|
+
"the original task in the context "
|
|
103
|
+
"of the provided motivation? Note that the task might answer one part of a bigger question "
|
|
104
|
+
"which should count as a satisfactory response and should not receive a lower score.\n"
|
|
105
|
+
"Return the final score as a floating point number preceded by 'FINAL SCORE:'."),
|
|
106
|
+
description="The prompt template used to evaluate and score the output.")
|
|
107
|
+
|
|
108
|
+
@model_validator(mode="before")
|
|
109
|
+
def validate_scoring_llm(cls, values):
|
|
110
|
+
if values.get('scoring_llm') is None:
|
|
111
|
+
raise ValueError("A scoring_llm must be provided for motivation_aware_scoring.")
|
|
112
|
+
return values
|
|
@@ -0,0 +1,120 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import typing
|
|
17
|
+
|
|
18
|
+
from pydantic import Field
|
|
19
|
+
from pydantic import model_validator
|
|
20
|
+
|
|
21
|
+
from aiq.data_models.component_ref import LLMRef
|
|
22
|
+
from aiq.data_models.ttc_strategy import TTCStrategyBaseConfig
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class SingleShotMultiPlanConfig(TTCStrategyBaseConfig, name="single_shot_multi_plan"):
|
|
26
|
+
num_plans: int = Field(default=4, description="Number of plans to generate.")
|
|
27
|
+
max_temperature: float = Field(default=1.0,
|
|
28
|
+
description="Maximum temperature to use for sampling when generating plans. "
|
|
29
|
+
"This can help control the randomness of the generated plans.")
|
|
30
|
+
min_temperature: float = Field(default=0.5,
|
|
31
|
+
description="Minimum temperature to use for sampling when generating plans. "
|
|
32
|
+
"This can help control the randomness of the generated plans.")
|
|
33
|
+
# If strategy is provided, LLM must be
|
|
34
|
+
planning_llm: LLMRef | typing.Any | None = Field(
|
|
35
|
+
default=None,
|
|
36
|
+
description="The LLM to use for planning. This can be a callable or an "
|
|
37
|
+
"instance of an LLM client.")
|
|
38
|
+
|
|
39
|
+
planning_template: str = Field(
|
|
40
|
+
default=("You are an expert reasoning model task with creating a detailed execution plan"
|
|
41
|
+
" for a system that has the following information to get the result of a given input:\n\n"
|
|
42
|
+
"**System Information:**\n {context}"
|
|
43
|
+
"**Input:** \n{prompt}\n\n"
|
|
44
|
+
"An example plan could look like this:\n\n"
|
|
45
|
+
"1. Call tool A with input X\n"
|
|
46
|
+
"2. Call tool B with input Y\n"
|
|
47
|
+
"3. Interpret the output of tool A and B\n"
|
|
48
|
+
"4. Return the final result"
|
|
49
|
+
"\n\nBegin the final plan with PLAN:\n"),
|
|
50
|
+
description="The template to use for generating plans.")
|
|
51
|
+
|
|
52
|
+
@model_validator(mode="before")
|
|
53
|
+
def validate_strategies(cls, values: dict[str, typing.Any]) -> dict[str, typing.Any]:
|
|
54
|
+
"""
|
|
55
|
+
Ensure that the required LLMs are provided based on the selected strategies.
|
|
56
|
+
"""
|
|
57
|
+
# Validate planning strategy: planning_llm must be provided if planning_strategy is set
|
|
58
|
+
if values.get('planning_llm') is None:
|
|
59
|
+
raise ValueError('planning_llm must be provided when planning_strategy is set.')
|
|
60
|
+
|
|
61
|
+
return values
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class MultiLLMPlanConfig(TTCStrategyBaseConfig, name="multi_llm_plan"):
|
|
65
|
+
"""Configuration for a 'multi LLM plan generation' strategy."""
|
|
66
|
+
llms: list[LLMRef] = Field(
|
|
67
|
+
default_factory=list,
|
|
68
|
+
description="list of LLMs to use for plan generation. Each LLM can generate one or more plans.")
|
|
69
|
+
plans_per_llm: int = Field(default=2, description="Number of plans each LLM should generate.")
|
|
70
|
+
max_temperature: float = Field(default=1.0,
|
|
71
|
+
description="Maximum temperature to use for sampling when generating plans. "
|
|
72
|
+
"This can help control the randomness of the generated plans.")
|
|
73
|
+
min_temperature: float = Field(default=0.5,
|
|
74
|
+
description="Minimum temperature to use for sampling when generating plans. "
|
|
75
|
+
"This can help control the randomness of the generated plans.")
|
|
76
|
+
planning_template: str = Field(
|
|
77
|
+
default=("You are an expert reasoning model task with creating a detailed execution plan"
|
|
78
|
+
" for a system that has the following information to get the result of a given input:\n\n"
|
|
79
|
+
"**System Information:**\n {context}"
|
|
80
|
+
"**Input:** \n{prompt}\n\n"
|
|
81
|
+
"An example plan could look like this:\n\n"
|
|
82
|
+
"1. Call tool A with input X\n"
|
|
83
|
+
"2. Call tool B with input Y\n"
|
|
84
|
+
"3. Interpret the output of tool A and B\n"
|
|
85
|
+
"4. Return the final result"
|
|
86
|
+
"\n\nBegin the final plan with PLAN:\n"),
|
|
87
|
+
description="The template to use for generating plans.")
|
|
88
|
+
|
|
89
|
+
@model_validator(mode="before")
|
|
90
|
+
def validate_multi_llm_strategies(cls, values: dict) -> dict:
|
|
91
|
+
if not values.get('llms'):
|
|
92
|
+
raise ValueError('Must provide at least one LLMRef in `llms` for multi-LLM strategy.')
|
|
93
|
+
return values
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class MultiQueryRetrievalSearchConfig(TTCStrategyBaseConfig, name="multi_query_retrieval_search"):
|
|
97
|
+
"""
|
|
98
|
+
Configuration for the MultiQueryRetrievalSearch strategy.
|
|
99
|
+
This strategy generates multiple new 'TTCItem's per original item,
|
|
100
|
+
each containing a differently phrased or re-focused version of the original task.
|
|
101
|
+
"""
|
|
102
|
+
llms: list[LLMRef] = Field(default_factory=list,
|
|
103
|
+
description="list of LLM references to use for generating diverse queries.")
|
|
104
|
+
|
|
105
|
+
query_generation_template: str = Field(
|
|
106
|
+
default=("You are an expert at re-framing a user's query to encourage new solution paths. "
|
|
107
|
+
"Given the task description and an optional motivation, produce a short alternative query "
|
|
108
|
+
"that addresses the same task from a different angle. By generating multiple "
|
|
109
|
+
"perspectives on the task, your goal is to help "
|
|
110
|
+
"the user overcome some of the limitations of distance-based similarity search.\n\n"
|
|
111
|
+
"Task: {task}\n"
|
|
112
|
+
"Motivation: {motivation}\n\n"
|
|
113
|
+
"Output a concise new query statement below. Only output the revised query and nothing else.\n"),
|
|
114
|
+
description="Prompt template for rewriting the task from a different perspective.")
|
|
115
|
+
|
|
116
|
+
@model_validator(mode="before")
|
|
117
|
+
def validate_llms(cls, values):
|
|
118
|
+
if not values.get('llms'):
|
|
119
|
+
raise ValueError("At least one LLMRef must be provided for multi_query_retrieval_search.")
|
|
120
|
+
return values
|