nvidia-cudnn-cu12 8.9.7.29__py3-none-win_amd64.whl → 9.1.0.70__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. nvidia/cudnn/bin/cudnn64_9.dll +0 -0
  2. nvidia/cudnn/bin/{cudnn_adv_infer64_8.dll → cudnn_adv64_9.dll} +0 -0
  3. nvidia/cudnn/bin/cudnn_cnn64_9.dll +0 -0
  4. nvidia/cudnn/bin/{cudnn_cnn_infer64_8.dll → cudnn_engines_precompiled64_9.dll} +0 -0
  5. nvidia/cudnn/bin/cudnn_engines_runtime_compiled64_9.dll +0 -0
  6. nvidia/cudnn/bin/cudnn_graph64_9.dll +0 -0
  7. nvidia/cudnn/bin/{cudnn_ops_infer64_8.dll → cudnn_heuristic64_9.dll} +0 -0
  8. nvidia/cudnn/bin/{cudnn_adv_train64_8.dll → cudnn_ops64_9.dll} +0 -0
  9. nvidia/cudnn/include/cudnn.h +8 -18
  10. nvidia/cudnn/include/{cudnn_adv_infer.h → cudnn_adv.h} +265 -252
  11. nvidia/cudnn/include/cudnn_backend.h +3 -558
  12. nvidia/cudnn/include/{cudnn_cnn_infer.h → cudnn_cnn.h} +187 -65
  13. nvidia/cudnn/include/cudnn_graph.h +909 -0
  14. nvidia/cudnn/include/{cudnn_ops_infer.h → cudnn_ops.h} +469 -336
  15. nvidia/cudnn/include/cudnn_version.h +4 -43
  16. nvidia/cudnn/lib/x64/cudnn.lib +0 -0
  17. nvidia/cudnn/lib/x64/cudnn64_9.lib +0 -0
  18. nvidia/cudnn/lib/x64/cudnn_adv.lib +0 -0
  19. nvidia/cudnn/lib/x64/cudnn_adv64_9.lib +0 -0
  20. nvidia/cudnn/lib/x64/cudnn_cnn.lib +0 -0
  21. nvidia/cudnn/lib/x64/cudnn_cnn64_9.lib +0 -0
  22. nvidia/cudnn/lib/x64/cudnn_engines_precompiled.lib +0 -0
  23. nvidia/cudnn/lib/x64/cudnn_engines_precompiled64_9.lib +0 -0
  24. nvidia/cudnn/lib/x64/cudnn_engines_runtime_compiled.lib +0 -0
  25. nvidia/cudnn/lib/x64/cudnn_engines_runtime_compiled64_9.lib +0 -0
  26. nvidia/cudnn/lib/x64/cudnn_graph.lib +0 -0
  27. nvidia/cudnn/lib/x64/cudnn_graph64_9.lib +0 -0
  28. nvidia/cudnn/lib/x64/cudnn_heuristic.lib +0 -0
  29. nvidia/cudnn/lib/x64/cudnn_heuristic64_9.lib +0 -0
  30. nvidia/cudnn/lib/x64/cudnn_ops.lib +0 -0
  31. nvidia/cudnn/lib/x64/cudnn_ops64_9.lib +0 -0
  32. {nvidia_cudnn_cu12-8.9.7.29.dist-info → nvidia_cudnn_cu12-9.1.0.70.dist-info}/METADATA +1 -1
  33. nvidia_cudnn_cu12-9.1.0.70.dist-info/RECORD +41 -0
  34. nvidia/cudnn/bin/cudnn64_8.dll +0 -0
  35. nvidia/cudnn/bin/cudnn_cnn_train64_8.dll +0 -0
  36. nvidia/cudnn/bin/cudnn_ops_train64_8.dll +0 -0
  37. nvidia/cudnn/include/cudnn_adv_train.h +0 -540
  38. nvidia/cudnn/include/cudnn_cnn_train.h +0 -219
  39. nvidia/cudnn/include/cudnn_ops_train.h +0 -501
  40. nvidia/cudnn/lib/x64/cudnn64_8.lib +0 -0
  41. nvidia/cudnn/lib/x64/cudnn_adv_infer.lib +0 -0
  42. nvidia/cudnn/lib/x64/cudnn_adv_infer64_8.lib +0 -0
  43. nvidia/cudnn/lib/x64/cudnn_adv_train.lib +0 -0
  44. nvidia/cudnn/lib/x64/cudnn_adv_train64_8.lib +0 -0
  45. nvidia/cudnn/lib/x64/cudnn_cnn_infer.lib +0 -0
  46. nvidia/cudnn/lib/x64/cudnn_cnn_infer64_8.lib +0 -0
  47. nvidia/cudnn/lib/x64/cudnn_cnn_train.lib +0 -0
  48. nvidia/cudnn/lib/x64/cudnn_cnn_train64_8.lib +0 -0
  49. nvidia/cudnn/lib/x64/cudnn_ops_infer.lib +0 -0
  50. nvidia/cudnn/lib/x64/cudnn_ops_infer64_8.lib +0 -0
  51. nvidia/cudnn/lib/x64/cudnn_ops_train.lib +0 -0
  52. nvidia/cudnn/lib/x64/cudnn_ops_train64_8.lib +0 -0
  53. nvidia_cudnn_cu12-8.9.7.29.dist-info/RECORD +0 -40
  54. {nvidia_cudnn_cu12-8.9.7.29.dist-info → nvidia_cudnn_cu12-9.1.0.70.dist-info}/License.txt +0 -0
  55. {nvidia_cudnn_cu12-8.9.7.29.dist-info → nvidia_cudnn_cu12-9.1.0.70.dist-info}/WHEEL +0 -0
  56. {nvidia_cudnn_cu12-8.9.7.29.dist-info → nvidia_cudnn_cu12-9.1.0.70.dist-info}/top_level.txt +0 -0
@@ -1,501 +0,0 @@
1
- /*
2
- * Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
3
- *
4
- * NOTICE TO LICENSEE:
5
- *
6
- * This source code and/or documentation ("Licensed Deliverables") are
7
- * subject to NVIDIA intellectual property rights under U.S. and
8
- * international Copyright laws.
9
- *
10
- * These Licensed Deliverables contained herein is PROPRIETARY and
11
- * CONFIDENTIAL to NVIDIA and is being provided under the terms and
12
- * conditions of a form of NVIDIA software license agreement by and
13
- * between NVIDIA and Licensee ("License Agreement") or electronically
14
- * accepted by Licensee. Notwithstanding any terms or conditions to
15
- * the contrary in the License Agreement, reproduction or disclosure
16
- * of the Licensed Deliverables to any third party without the express
17
- * written consent of NVIDIA is prohibited.
18
- *
19
- * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
20
- * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
21
- * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
22
- * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
23
- * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
24
- * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
25
- * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
26
- * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
27
- * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
28
- * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
29
- * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
30
- * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
31
- * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
32
- * OF THESE LICENSED DELIVERABLES.
33
- *
34
- * U.S. Government End Users. These Licensed Deliverables are a
35
- * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
36
- * 1995), consisting of "commercial computer software" and "commercial
37
- * computer software documentation" as such terms are used in 48
38
- * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
39
- * only as a commercial end item. Consistent with 48 C.F.R.12.212 and
40
- * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
41
- * U.S. Government End Users acquire the Licensed Deliverables with
42
- * only those rights set forth herein.
43
- *
44
- * Any use of the Licensed Deliverables in individual and commercial
45
- * software must include, in the user documentation and internal
46
- * comments to the code, the above Disclaimer and U.S. Government End
47
- * Users Notice.
48
- */
49
-
50
- /*
51
- * cudnn_ops_train : cuDNN's basic training operations and algorithms.
52
- */
53
-
54
- #if !defined(CUDNN_OPS_TRAIN_H_)
55
- #define CUDNN_OPS_TRAIN_H_
56
-
57
- #include <cuda_runtime.h>
58
- #include <stdint.h>
59
-
60
- #include "cudnn_version.h"
61
- #include "cudnn_ops_infer.h"
62
-
63
- /* These version numbers are autogenerated, do not edit manually. */
64
- #define CUDNN_OPS_TRAIN_MAJOR 8
65
- #define CUDNN_OPS_TRAIN_MINOR 9
66
- #define CUDNN_OPS_TRAIN_PATCH 7
67
-
68
- #if (CUDNN_OPS_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_OPS_TRAIN_MINOR != CUDNN_MINOR) || \
69
- (CUDNN_OPS_TRAIN_PATCH != CUDNN_PATCHLEVEL)
70
- #error Version mismatch in cuDNN OPS TRAIN!!!
71
- #endif
72
-
73
- #if defined(__cplusplus)
74
- extern "C" {
75
- #endif
76
-
77
- /* Function to perform backward softmax */
78
- cudnnStatus_t CUDNNWINAPI
79
- cudnnSoftmaxBackward(cudnnHandle_t handle,
80
- cudnnSoftmaxAlgorithm_t algo,
81
- cudnnSoftmaxMode_t mode,
82
- const void *alpha,
83
- const cudnnTensorDescriptor_t yDesc,
84
- const void *y,
85
- const cudnnTensorDescriptor_t dyDesc,
86
- const void *dy,
87
- const void *beta,
88
- const cudnnTensorDescriptor_t dxDesc,
89
- void *dx);
90
-
91
- /* Function to perform backward pooling */
92
- cudnnStatus_t CUDNNWINAPI
93
- cudnnPoolingBackward(cudnnHandle_t handle,
94
- const cudnnPoolingDescriptor_t poolingDesc,
95
- const void *alpha,
96
- const cudnnTensorDescriptor_t yDesc,
97
- const void *y,
98
- const cudnnTensorDescriptor_t dyDesc,
99
- const void *dy,
100
- const cudnnTensorDescriptor_t xDesc,
101
- const void *x,
102
- const void *beta,
103
- const cudnnTensorDescriptor_t dxDesc,
104
- void *dx);
105
-
106
- /* Function to perform backward activation */
107
- cudnnStatus_t CUDNNWINAPI
108
- cudnnActivationBackward(cudnnHandle_t handle,
109
- cudnnActivationDescriptor_t activationDesc,
110
- const void *alpha,
111
- const cudnnTensorDescriptor_t yDesc,
112
- const void *y,
113
- const cudnnTensorDescriptor_t dyDesc,
114
- const void *dy,
115
- const cudnnTensorDescriptor_t xDesc,
116
- const void *x,
117
- const void *beta,
118
- const cudnnTensorDescriptor_t dxDesc,
119
- void *dx);
120
-
121
- /* LRN cross-channel backward computation. Double parameters cast to tensor data type */
122
- cudnnStatus_t CUDNNWINAPI
123
- cudnnLRNCrossChannelBackward(cudnnHandle_t handle,
124
- cudnnLRNDescriptor_t normDesc,
125
- cudnnLRNMode_t lrnMode,
126
- const void *alpha,
127
- const cudnnTensorDescriptor_t yDesc,
128
- const void *y,
129
- const cudnnTensorDescriptor_t dyDesc,
130
- const void *dy,
131
- const cudnnTensorDescriptor_t xDesc,
132
- const void *x,
133
- const void *beta,
134
- const cudnnTensorDescriptor_t dxDesc,
135
- void *dx);
136
-
137
- cudnnStatus_t CUDNNWINAPI
138
- cudnnDivisiveNormalizationBackward(cudnnHandle_t handle,
139
- cudnnLRNDescriptor_t normDesc,
140
- cudnnDivNormMode_t mode,
141
- const void *alpha,
142
- const cudnnTensorDescriptor_t xDesc, /* same desc for x, means, dy, temp, temp2 */
143
- const void *x,
144
- const void *means, /* if NULL, means are assumed to be zero */
145
- const void *dy,
146
- void *temp,
147
- void *temp2,
148
- const void *beta,
149
- const cudnnTensorDescriptor_t dXdMeansDesc, /* same desc for dx, dMeans */
150
- void *dx, /* output x differential */
151
- void *dMeans); /* output means differential, can be NULL */
152
-
153
- cudnnStatus_t CUDNNWINAPI
154
- cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(cudnnHandle_t handle,
155
- cudnnBatchNormMode_t mode,
156
- cudnnBatchNormOps_t bnOps,
157
- const cudnnTensorDescriptor_t xDesc,
158
- const cudnnTensorDescriptor_t zDesc,
159
- const cudnnTensorDescriptor_t yDesc,
160
- const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
161
- const cudnnActivationDescriptor_t activationDesc,
162
- size_t *sizeInBytes);
163
-
164
- cudnnStatus_t CUDNNWINAPI
165
- cudnnGetBatchNormalizationBackwardExWorkspaceSize(cudnnHandle_t handle,
166
- cudnnBatchNormMode_t mode,
167
- cudnnBatchNormOps_t bnOps,
168
- const cudnnTensorDescriptor_t xDesc,
169
- const cudnnTensorDescriptor_t yDesc,
170
- const cudnnTensorDescriptor_t dyDesc,
171
- const cudnnTensorDescriptor_t dzDesc,
172
- const cudnnTensorDescriptor_t dxDesc,
173
- const cudnnTensorDescriptor_t dBnScaleBiasDesc,
174
- const cudnnActivationDescriptor_t activationDesc,
175
- size_t *sizeInBytes);
176
-
177
- cudnnStatus_t CUDNNWINAPI
178
- cudnnGetBatchNormalizationTrainingExReserveSpaceSize(cudnnHandle_t handle,
179
- cudnnBatchNormMode_t mode,
180
- cudnnBatchNormOps_t bnOps,
181
- const cudnnActivationDescriptor_t activationDesc,
182
- const cudnnTensorDescriptor_t xDesc,
183
- size_t *sizeInBytes);
184
-
185
- /* Computes y = BN(x). Also accumulates moving averages of mean and inverse variances */
186
- cudnnStatus_t CUDNNWINAPI
187
- cudnnBatchNormalizationForwardTraining(
188
- cudnnHandle_t handle,
189
- cudnnBatchNormMode_t mode,
190
-
191
- const void *alpha, /* alpha[0] = result blend factor */
192
- const void *beta, /* beta[0] = dest layer blend factor */
193
-
194
- const cudnnTensorDescriptor_t xDesc,
195
- const void *x, /* NxCxHxW */
196
- const cudnnTensorDescriptor_t yDesc,
197
- void *y, /* NxCxHxW */
198
-
199
- /* Shared desc for the next 6 tensors in the argument list.
200
- Data type to be set as follows:
201
- type = (typeOf(x) == double) ? double : float
202
- Dimensions for this descriptor depend on normalization mode
203
- - Spatial Normalization : tensors are expected to have dims 1xCx1x1
204
- (normalization is performed across NxHxW)
205
- - Per-Activation Normalization : tensors are expected to have dims of 1xCxHxW
206
- (normalization is performed across N) */
207
- const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
208
-
209
- /* 'Gamma' and 'Beta' respectively in Ioffe and Szegedy's paper's notation */
210
- const void *bnScale,
211
- const void *bnBias,
212
-
213
- /* MUST use factor=1 in the very first call of a complete training cycle.
214
- Use a factor=1/(1+n) at N-th call to the function to get
215
- Cumulative Moving Average (CMA) behavior
216
- CMA[n] = (x[1]+...+x[n])/n
217
- Since CMA[n+1] = (n*CMA[n]+x[n+1])/(n+1) =
218
- ((n+1)*CMA[n]-CMA[n])/(n+1) + x[n+1]/(n+1) =
219
- CMA[n]*(1-1/(n+1)) + x[n+1]*1/(n+1) */
220
- double exponentialAverageFactor,
221
-
222
- /* Used in Training phase only.
223
- runningMean = newMean*factor + runningMean*(1-factor) */
224
- void *resultRunningMean,
225
- /* Output in training mode, input in inference. Is the moving average
226
- of variance[x] (factor is applied in the same way as for runningMean) */
227
- void *resultRunningVariance,
228
-
229
- /* Has to be >= CUDNN_BN_MIN_EPSILON. Should be the same in forward and backward functions. */
230
- double epsilon,
231
-
232
- /* Optionally save intermediate results from the forward pass here
233
- - can be reused to speed up backward pass. NULL if unused */
234
- void *resultSaveMean,
235
- void *resultSaveInvVariance);
236
-
237
- /* Computes y = relu(BN(x) + z). Also accumulates moving averages of mean and inverse variances */
238
- cudnnStatus_t CUDNNWINAPI
239
- cudnnBatchNormalizationForwardTrainingEx(
240
- cudnnHandle_t handle,
241
- cudnnBatchNormMode_t mode,
242
- cudnnBatchNormOps_t bnOps,
243
-
244
- const void *alpha, /* alpha[0] = result blend factor */
245
- const void *beta, /* beta[0] = dest layer blend factor */
246
-
247
- const cudnnTensorDescriptor_t xDesc,
248
- const void *xData,
249
- const cudnnTensorDescriptor_t zDesc,
250
- const void *zData,
251
- const cudnnTensorDescriptor_t yDesc,
252
- void *yData,
253
-
254
- const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
255
- const void *bnScale,
256
- const void *bnBias,
257
-
258
- double exponentialAverageFactor,
259
- void *resultRunningMean,
260
- void *resultRunningVariance,
261
-
262
- /* Has to be >= CUDNN_BN_MIN_EPSILON. Should be the same in forward and backward functions. */
263
- double epsilon,
264
-
265
- /* Optionally save intermediate results from the forward pass here
266
- - can be reused to speed up backward pass. NULL if unused */
267
- void *resultSaveMean,
268
- void *resultSaveInvVariance,
269
-
270
- cudnnActivationDescriptor_t activationDesc,
271
- void *workspace,
272
- size_t workSpaceSizeInBytes,
273
- void *reserveSpace,
274
- size_t reserveSpaceSizeInBytes);
275
-
276
- /* Performs backward pass of Batch Normalization layer. Returns x gradient,
277
- * bnScale gradient and bnBias gradient */
278
- cudnnStatus_t CUDNNWINAPI
279
- cudnnBatchNormalizationBackward(cudnnHandle_t handle,
280
- cudnnBatchNormMode_t mode,
281
- const void *alphaDataDiff,
282
- const void *betaDataDiff,
283
- const void *alphaParamDiff,
284
- const void *betaParamDiff,
285
- const cudnnTensorDescriptor_t xDesc, /* same desc for x, dx, dy */
286
- const void *x,
287
- const cudnnTensorDescriptor_t dyDesc,
288
- const void *dy,
289
- const cudnnTensorDescriptor_t dxDesc,
290
- void *dx,
291
- /* Shared tensor desc for the 4 tensors below */
292
- const cudnnTensorDescriptor_t dBnScaleBiasDesc,
293
- const void *bnScale, /* bnBias doesn't affect backpropagation */
294
- /* scale and bias diff are not backpropagated below this layer */
295
- void *dBnScaleResult,
296
- void *dBnBiasResult,
297
- /* Same epsilon as forward pass */
298
- double epsilon,
299
-
300
- /* Optionally cached intermediate results from
301
- forward pass */
302
- const void *savedMean,
303
- const void *savedInvVariance);
304
-
305
- cudnnStatus_t CUDNNWINAPI
306
- cudnnBatchNormalizationBackwardEx(cudnnHandle_t handle,
307
- cudnnBatchNormMode_t mode,
308
- cudnnBatchNormOps_t bnOps,
309
-
310
- const void *alphaDataDiff,
311
- const void *betaDataDiff,
312
- const void *alphaParamDiff,
313
- const void *betaParamDiff,
314
- const cudnnTensorDescriptor_t xDesc,
315
- const void *xData,
316
- const cudnnTensorDescriptor_t yDesc,
317
- const void *yData,
318
- const cudnnTensorDescriptor_t dyDesc,
319
- const void *dyData,
320
- const cudnnTensorDescriptor_t dzDesc,
321
- void *dzData,
322
- const cudnnTensorDescriptor_t dxDesc,
323
- void *dxData,
324
-
325
- /* Shared tensor desc for the 4 tensors below */
326
- const cudnnTensorDescriptor_t dBnScaleBiasDesc,
327
- const void *bnScaleData,
328
- const void *bnBiasData, /* needed if there is activation */
329
- void *dBnScaleData,
330
- void *dBnBiasData,
331
- double epsilon, /* Same epsilon as forward pass */
332
-
333
- /* Optionally cached intermediate results from
334
- forward pass */
335
- const void *savedMean,
336
- const void *savedInvVariance,
337
- cudnnActivationDescriptor_t activationDesc,
338
- void *workSpace,
339
- size_t workSpaceSizeInBytes,
340
- void *reserveSpace,
341
- size_t reserveSpaceSizeInBytes);
342
-
343
- cudnnStatus_t CUDNNWINAPI
344
- cudnnGetNormalizationForwardTrainingWorkspaceSize(cudnnHandle_t handle,
345
- cudnnNormMode_t mode,
346
- cudnnNormOps_t normOps,
347
- cudnnNormAlgo_t algo,
348
- const cudnnTensorDescriptor_t xDesc,
349
- const cudnnTensorDescriptor_t zDesc,
350
- const cudnnTensorDescriptor_t yDesc,
351
- const cudnnTensorDescriptor_t normScaleBiasDesc,
352
- const cudnnActivationDescriptor_t activationDesc,
353
- const cudnnTensorDescriptor_t normMeanVarDesc,
354
- size_t *sizeInBytes,
355
- int groupCnt); /* Place hold for future work, should be set to 1 now*/
356
-
357
- cudnnStatus_t CUDNNWINAPI
358
- cudnnGetNormalizationBackwardWorkspaceSize(cudnnHandle_t handle,
359
- cudnnNormMode_t mode,
360
- cudnnNormOps_t normOps,
361
- cudnnNormAlgo_t algo,
362
- const cudnnTensorDescriptor_t xDesc,
363
- const cudnnTensorDescriptor_t yDesc,
364
- const cudnnTensorDescriptor_t dyDesc,
365
- const cudnnTensorDescriptor_t dzDesc,
366
- const cudnnTensorDescriptor_t dxDesc,
367
- const cudnnTensorDescriptor_t dNormScaleBiasDesc,
368
- const cudnnActivationDescriptor_t activationDesc,
369
- const cudnnTensorDescriptor_t normMeanVarDesc,
370
- size_t *sizeInBytes,
371
- int groupCnt); /* Place hold for future work, should be set to 1 now*/
372
-
373
- cudnnStatus_t CUDNNWINAPI
374
- cudnnGetNormalizationTrainingReserveSpaceSize(cudnnHandle_t handle,
375
- cudnnNormMode_t mode,
376
- cudnnNormOps_t normOps,
377
- cudnnNormAlgo_t algo,
378
- const cudnnActivationDescriptor_t activationDesc,
379
- const cudnnTensorDescriptor_t xDesc,
380
- size_t *sizeInBytes,
381
- int groupCnt); /* Place hold for future work, should be set to 1 now*/
382
-
383
- /* Computes y = relu(Norm(x) + z). Also accumulates moving averages of mean and inverse variances */
384
- cudnnStatus_t CUDNNWINAPI
385
- cudnnNormalizationForwardTraining(cudnnHandle_t handle,
386
- cudnnNormMode_t mode,
387
- cudnnNormOps_t normOps,
388
- cudnnNormAlgo_t algo,
389
- const void *alpha, /* alpha[0] = result blend factor */
390
- const void *beta, /* beta[0] = dest layer blend factor */
391
- const cudnnTensorDescriptor_t xDesc,
392
- const void *xData,
393
- const cudnnTensorDescriptor_t normScaleBiasDesc,
394
- const void *normScale,
395
- const void *normBias,
396
- double exponentialAverageFactor,
397
- const cudnnTensorDescriptor_t normMeanVarDesc,
398
- void *resultRunningMean,
399
- void *resultRunningVariance,
400
- /* Has to be >= 0. Should be the same in forward and backward functions. */
401
- double epsilon,
402
- /* Optionally save intermediate results from the forward pass here
403
- - can be reused to speed up backward pass. NULL if unused */
404
- void *resultSaveMean,
405
- void *resultSaveInvVariance,
406
- cudnnActivationDescriptor_t activationDesc,
407
- const cudnnTensorDescriptor_t zDesc,
408
- const void *zData,
409
- const cudnnTensorDescriptor_t yDesc,
410
- void *yData,
411
- void *workspace,
412
- size_t workSpaceSizeInBytes,
413
- void *reserveSpace,
414
- size_t reserveSpaceSizeInBytes,
415
- int groupCnt); /* Place hold for future work, should be set to 1 now*/
416
-
417
- cudnnStatus_t CUDNNWINAPI
418
- cudnnNormalizationBackward(cudnnHandle_t handle,
419
- cudnnNormMode_t mode,
420
- cudnnNormOps_t normOps,
421
- cudnnNormAlgo_t algo,
422
- const void *alphaDataDiff,
423
- const void *betaDataDiff,
424
- const void *alphaParamDiff,
425
- const void *betaParamDiff,
426
- const cudnnTensorDescriptor_t xDesc,
427
- const void *xData,
428
- const cudnnTensorDescriptor_t yDesc,
429
- const void *yData,
430
- const cudnnTensorDescriptor_t dyDesc,
431
- const void *dyData,
432
- const cudnnTensorDescriptor_t dzDesc,
433
- void *dzData,
434
- const cudnnTensorDescriptor_t dxDesc,
435
- void *dxData,
436
- /* Shared tensor desc for the 4 tensors below */
437
- const cudnnTensorDescriptor_t dNormScaleBiasDesc,
438
- const void *normScaleData,
439
- const void *normBiasData, /* needed if there is activation */
440
- void *dNormScaleData,
441
- void *dNormBiasData,
442
- double epsilon, /* Same epsilon as forward pass */
443
- const cudnnTensorDescriptor_t normMeanVarDesc,
444
- /* Optionally cached intermediate results from
445
- forward pass */
446
- const void *savedMean,
447
- const void *savedInvVariance,
448
- cudnnActivationDescriptor_t activationDesc,
449
- void *workSpace,
450
- size_t workSpaceSizeInBytes,
451
- void *reserveSpace,
452
- size_t reserveSpaceSizeInBytes,
453
- int groupCnt); /* Place hold for future work, should be set to 1 now*/
454
-
455
- cudnnStatus_t CUDNNWINAPI
456
- cudnnSpatialTfGridGeneratorBackward(cudnnHandle_t handle,
457
- const cudnnSpatialTransformerDescriptor_t stDesc,
458
- const void *dgrid,
459
- void *dtheta);
460
-
461
- cudnnStatus_t CUDNNWINAPI
462
- cudnnSpatialTfSamplerBackward(cudnnHandle_t handle,
463
- cudnnSpatialTransformerDescriptor_t stDesc,
464
- const void *alpha,
465
- const cudnnTensorDescriptor_t xDesc,
466
- const void *x,
467
- const void *beta,
468
- const cudnnTensorDescriptor_t dxDesc,
469
- void *dx,
470
- const void *alphaDgrid,
471
- const cudnnTensorDescriptor_t dyDesc,
472
- const void *dy,
473
- const void *grid,
474
- const void *betaDgrid,
475
- void *dgrid);
476
-
477
- cudnnStatus_t CUDNNWINAPI
478
- cudnnDropoutBackward(cudnnHandle_t handle,
479
- const cudnnDropoutDescriptor_t dropoutDesc,
480
- const cudnnTensorDescriptor_t dydesc,
481
- const void *dy,
482
- const cudnnTensorDescriptor_t dxdesc,
483
- void *dx,
484
- void *reserveSpace,
485
- size_t reserveSpaceSizeInBytes);
486
-
487
- /*
488
- * \brief Cross-library version checker.
489
- * This function is implemented differently in each sub-library. Each sublib
490
- * checks whether its own version matches that of its dependencies.
491
- * \returns CUDNN_STATUS_SUCCESS if the version check passes,
492
- * CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
493
- */
494
- cudnnStatus_t CUDNNWINAPI
495
- cudnnOpsTrainVersionCheck(void);
496
-
497
- #if defined(__cplusplus)
498
- }
499
- #endif
500
-
501
- #endif /* CUDNN_OPS_TRAIN_H_ */
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
@@ -1,40 +0,0 @@
1
- nvidia/cudnn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- nvidia/cudnn/bin/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- nvidia/cudnn/bin/cudnn64_8.dll,sha256=dN0_KEuJWPb1WM-AJkIIOCHQODF9P8nEJGl8-noel1Y,288296
4
- nvidia/cudnn/bin/cudnn_adv_infer64_8.dll,sha256=72gD2pik6EukyuOxO1v_Uv3cq-T-HxhBNgeg0vpPywY,125217320
5
- nvidia/cudnn/bin/cudnn_adv_train64_8.dll,sha256=2kr10XvNoORwBeFFkRQ6tw_ktAB-YGPGpnKBN3ofCDk,116558888
6
- nvidia/cudnn/bin/cudnn_cnn_infer64_8.dll,sha256=-quwtztsImzyPQTUPSBQFEaXxYtruGpJ44g16AtLY4c,582690344
7
- nvidia/cudnn/bin/cudnn_cnn_train64_8.dll,sha256=L-_Yihhl2up8fnLVW2HZA3LP8w98BLAfTIonyhl_8cI,122242104
8
- nvidia/cudnn/bin/cudnn_ops_infer64_8.dll,sha256=i5Y1vJJuOkEqmMMVWCG40dpbC58GSDXoMp2U0oaZUd0,89759272
9
- nvidia/cudnn/bin/cudnn_ops_train64_8.dll,sha256=BhR0O6iNABc-gCc-5mH3xLgDH1g_7LcO-DaUkfH5hoA,70162472
10
- nvidia/cudnn/include/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- nvidia/cudnn/include/cudnn.h,sha256=jy9OprYJtzi3VllQxGk2O62ZiX7UFD9JxJ4j3MP9X34,3046
12
- nvidia/cudnn/include/cudnn_adv_infer.h,sha256=WxfF6e1RBA9BVwTkb_MuVFVh-insWEyyNsGBLZIrXOw,29685
13
- nvidia/cudnn/include/cudnn_adv_train.h,sha256=573VI7NmgH-FxpSzE8uT5nGrIDKyx_TBYOda-jo6O2Q,28240
14
- nvidia/cudnn/include/cudnn_backend.h,sha256=MnvontQDinw97_6PRJ7ORMxniLmMVdbDZN37iJd8Yz0,26263
15
- nvidia/cudnn/include/cudnn_cnn_infer.h,sha256=f95C211rSS-rf0tmCtwmAeoVnOJUHgPyJnh9gsq9UnI,29654
16
- nvidia/cudnn/include/cudnn_cnn_train.h,sha256=herpiBpT887luRhppTbyq4QsWdHE7ic5jFvnDpTeH9k,10436
17
- nvidia/cudnn/include/cudnn_ops_infer.h,sha256=Zx7UtZHgW_EdG4elW68qqzX2K-lZkvCe9EokgLu3Ems,50814
18
- nvidia/cudnn/include/cudnn_ops_train.h,sha256=hrrh_zwl1Iadbx6SanujtvHhnAeX8TF2Mqd9VSSK2gg,26234
19
- nvidia/cudnn/include/cudnn_version.h,sha256=YisGcp70_uX0ZSUKQORwQjR05sfqqSgBEhKFLe1rGWs,4128
20
- nvidia/cudnn/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
- nvidia/cudnn/lib/x64/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- nvidia/cudnn/lib/x64/cudnn.lib,sha256=_10Inr59wqU9PI28fLdR3Hx5F2pMLgJWBI9-wtaaKLk,73512
23
- nvidia/cudnn/lib/x64/cudnn64_8.lib,sha256=_10Inr59wqU9PI28fLdR3Hx5F2pMLgJWBI9-wtaaKLk,73512
24
- nvidia/cudnn/lib/x64/cudnn_adv_infer.lib,sha256=3HVWs6k_YQPy0YUobH5MbdSCVwFrdRK8vO7KeMk2d0s,79388
25
- nvidia/cudnn/lib/x64/cudnn_adv_infer64_8.lib,sha256=3HVWs6k_YQPy0YUobH5MbdSCVwFrdRK8vO7KeMk2d0s,79388
26
- nvidia/cudnn/lib/x64/cudnn_adv_train.lib,sha256=SeRu8D8-Hh3MuA5biQWOHpJJzWivVsJLd-6j_8QWEOo,30944
27
- nvidia/cudnn/lib/x64/cudnn_adv_train64_8.lib,sha256=SeRu8D8-Hh3MuA5biQWOHpJJzWivVsJLd-6j_8QWEOo,30944
28
- nvidia/cudnn/lib/x64/cudnn_cnn_infer.lib,sha256=2Hoq5PajmeVUw599FMjP-uf1QMiCQ1mJONbOBEZxPIk,2854600
29
- nvidia/cudnn/lib/x64/cudnn_cnn_infer64_8.lib,sha256=2Hoq5PajmeVUw599FMjP-uf1QMiCQ1mJONbOBEZxPIk,2854600
30
- nvidia/cudnn/lib/x64/cudnn_cnn_train.lib,sha256=QDa323qZghES_5zsN-jmuFpHzMwaWmFI2qBHSLb4zRg,1217768
31
- nvidia/cudnn/lib/x64/cudnn_cnn_train64_8.lib,sha256=QDa323qZghES_5zsN-jmuFpHzMwaWmFI2qBHSLb4zRg,1217768
32
- nvidia/cudnn/lib/x64/cudnn_ops_infer.lib,sha256=ELLJqsdIPcnTZQ-ZzHsil8ZrHC607Bljvd4qLkNj6iA,153564
33
- nvidia/cudnn/lib/x64/cudnn_ops_infer64_8.lib,sha256=ELLJqsdIPcnTZQ-ZzHsil8ZrHC607Bljvd4qLkNj6iA,153564
34
- nvidia/cudnn/lib/x64/cudnn_ops_train.lib,sha256=toVlTeO7d3m9kFXTPA4_s0WA5eNUqdXoSGz46w6dzbc,29348
35
- nvidia/cudnn/lib/x64/cudnn_ops_train64_8.lib,sha256=toVlTeO7d3m9kFXTPA4_s0WA5eNUqdXoSGz46w6dzbc,29348
36
- nvidia_cudnn_cu12-8.9.7.29.dist-info/License.txt,sha256=0AOvqxcMKH77l5l0BEmaIjh7nghHWpi6h-47lJw3NXo,29569
37
- nvidia_cudnn_cu12-8.9.7.29.dist-info/METADATA,sha256=y6m310t1MDb_6DvHiynzYKer7VguT9NdFpElBgHSlTY,1602
38
- nvidia_cudnn_cu12-8.9.7.29.dist-info/WHEEL,sha256=nNsUzh1WmP_SJ0w9BtmcWoJ5zFMuD9TAo5jnsi5d6sQ,98
39
- nvidia_cudnn_cu12-8.9.7.29.dist-info/top_level.txt,sha256=fTkAtiFuL16nUrB9ytDDtpytz2t0B4NvYTnRzwAhO14,7
40
- nvidia_cudnn_cu12-8.9.7.29.dist-info/RECORD,,