nv-ingest-api 2025.7.13.dev20250713__py3-none-any.whl → 2025.7.15.dev20250715__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nv-ingest-api might be problematic. Click here for more details.
- nv_ingest_api/internal/extract/pdf/engines/nemoretriever.py +2 -1
- nv_ingest_api/internal/extract/pdf/engines/pdfium.py +2 -1
- nv_ingest_api/internal/primitives/nim/model_interface/nemoretriever_parse.py +1 -0
- nv_ingest_api/internal/primitives/nim/model_interface/yolox.py +7 -12
- nv_ingest_api/util/image_processing/transforms.py +332 -82
- nv_ingest_api/util/pdf/pdfium.py +5 -13
- {nv_ingest_api-2025.7.13.dev20250713.dist-info → nv_ingest_api-2025.7.15.dev20250715.dist-info}/METADATA +2 -1
- {nv_ingest_api-2025.7.13.dev20250713.dist-info → nv_ingest_api-2025.7.15.dev20250715.dist-info}/RECORD +11 -11
- {nv_ingest_api-2025.7.13.dev20250713.dist-info → nv_ingest_api-2025.7.15.dev20250715.dist-info}/WHEEL +0 -0
- {nv_ingest_api-2025.7.13.dev20250713.dist-info → nv_ingest_api-2025.7.15.dev20250715.dist-info}/licenses/LICENSE +0 -0
- {nv_ingest_api-2025.7.13.dev20250713.dist-info → nv_ingest_api-2025.7.15.dev20250715.dist-info}/top_level.txt +0 -0
|
@@ -40,6 +40,7 @@ from nv_ingest_api.internal.schemas.meta.metadata_schema import validate_metadat
|
|
|
40
40
|
from nv_ingest_api.internal.primitives.nim.model_interface.yolox import (
|
|
41
41
|
YOLOX_PAGE_IMAGE_PREPROC_WIDTH,
|
|
42
42
|
YOLOX_PAGE_IMAGE_PREPROC_HEIGHT,
|
|
43
|
+
YOLOX_PAGE_IMAGE_FORMAT,
|
|
43
44
|
)
|
|
44
45
|
from nv_ingest_api.internal.schemas.extract.extract_pdf_schema import NemoRetrieverParseConfigSchema
|
|
45
46
|
from nv_ingest_api.util.metadata.aggregators import (
|
|
@@ -355,7 +356,7 @@ def nemoretriever_parse_extractor(
|
|
|
355
356
|
img_numpy = crop_image(page_image, transformed_bbox)
|
|
356
357
|
|
|
357
358
|
if img_numpy is not None:
|
|
358
|
-
base64_img = numpy_to_base64(img_numpy)
|
|
359
|
+
base64_img = numpy_to_base64(img_numpy, format=YOLOX_PAGE_IMAGE_FORMAT)
|
|
359
360
|
image = Base64Image(
|
|
360
361
|
image=base64_img,
|
|
361
362
|
bbox=transformed_bbox,
|
|
@@ -28,6 +28,7 @@ from nv_ingest_api.internal.primitives.nim.default_values import YOLOX_MAX_BATCH
|
|
|
28
28
|
from nv_ingest_api.internal.primitives.nim.model_interface.yolox import (
|
|
29
29
|
YOLOX_PAGE_IMAGE_PREPROC_WIDTH,
|
|
30
30
|
YOLOX_PAGE_IMAGE_PREPROC_HEIGHT,
|
|
31
|
+
YOLOX_PAGE_IMAGE_FORMAT,
|
|
31
32
|
get_yolox_model_name,
|
|
32
33
|
YoloxPageElementsModelInterface,
|
|
33
34
|
)
|
|
@@ -186,7 +187,7 @@ def _extract_page_element_images(
|
|
|
186
187
|
if cropped is None:
|
|
187
188
|
continue
|
|
188
189
|
|
|
189
|
-
base64_img = numpy_to_base64(cropped)
|
|
190
|
+
base64_img = numpy_to_base64(cropped, format=YOLOX_PAGE_IMAGE_FORMAT)
|
|
190
191
|
|
|
191
192
|
bbox_in_orig_coord = (
|
|
192
193
|
int(w1) - pad_width,
|
|
@@ -120,6 +120,7 @@ class NemoRetrieverParseModelInterface(ModelInterface):
|
|
|
120
120
|
logger.debug("Formatting input for HTTP NemoRetrieverParse model")
|
|
121
121
|
# Prepare payload for HTTP request
|
|
122
122
|
|
|
123
|
+
## TODO: Ask @Edward Kim if we want to switch to JPEG/PNG here
|
|
123
124
|
if "images" in data:
|
|
124
125
|
base64_list = [numpy_to_base64(img) for img in data["images"]]
|
|
125
126
|
else:
|
|
@@ -2,9 +2,7 @@
|
|
|
2
2
|
# All rights reserved.
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
4
|
|
|
5
|
-
|
|
6
|
-
import base64
|
|
7
|
-
import io
|
|
5
|
+
import os
|
|
8
6
|
import logging
|
|
9
7
|
import warnings
|
|
10
8
|
from math import log
|
|
@@ -20,11 +18,11 @@ import packaging
|
|
|
20
18
|
import pandas as pd
|
|
21
19
|
import torch
|
|
22
20
|
import torchvision
|
|
23
|
-
from PIL import Image
|
|
24
21
|
|
|
25
22
|
from nv_ingest_api.internal.primitives.nim import ModelInterface
|
|
26
23
|
from nv_ingest_api.internal.primitives.nim.model_interface.helpers import get_model_name
|
|
27
24
|
from nv_ingest_api.util.image_processing import scale_image_to_encoding_size
|
|
25
|
+
from nv_ingest_api.util.image_processing.transforms import numpy_to_base64
|
|
28
26
|
|
|
29
27
|
logger = logging.getLogger(__name__)
|
|
30
28
|
|
|
@@ -35,6 +33,7 @@ YOLOX_PAGE_MIN_SCORE = 0.1
|
|
|
35
33
|
YOLOX_PAGE_NIM_MAX_IMAGE_SIZE = 512_000
|
|
36
34
|
YOLOX_PAGE_IMAGE_PREPROC_HEIGHT = 1024
|
|
37
35
|
YOLOX_PAGE_IMAGE_PREPROC_WIDTH = 1024
|
|
36
|
+
YOLOX_PAGE_IMAGE_FORMAT = os.getenv("YOLOX_PAGE_IMAGE_FORMAT", "PNG")
|
|
38
37
|
|
|
39
38
|
# yolox-page-elements-v1 contants
|
|
40
39
|
YOLOX_PAGE_V1_NUM_CLASSES = 4
|
|
@@ -239,15 +238,11 @@ class YoloxModelInterfaceBase(ModelInterface):
|
|
|
239
238
|
# Convert to uint8 if needed.
|
|
240
239
|
if image.dtype != np.uint8:
|
|
241
240
|
image = (image * 255).astype(np.uint8)
|
|
242
|
-
# Convert the numpy array to a PIL Image.
|
|
243
|
-
image_pil = Image.fromarray(image)
|
|
244
|
-
original_size = image_pil.size
|
|
245
|
-
|
|
246
|
-
# Save the image to a buffer and encode to base64.
|
|
247
|
-
buffered = io.BytesIO()
|
|
248
|
-
image_pil.save(buffered, format="PNG")
|
|
249
|
-
image_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
250
241
|
|
|
242
|
+
# Get original size directly from numpy array (width, height)
|
|
243
|
+
original_size = (image.shape[1], image.shape[0])
|
|
244
|
+
# Convert numpy array directly to base64 using OpenCV
|
|
245
|
+
image_b64 = numpy_to_base64(image, format=YOLOX_PAGE_IMAGE_FORMAT)
|
|
251
246
|
# Scale the image if necessary.
|
|
252
247
|
scaled_image_b64, new_size = scale_image_to_encoding_size(
|
|
253
248
|
image_b64, max_base64_size=self.nim_max_image_size
|
|
@@ -2,29 +2,52 @@
|
|
|
2
2
|
# All rights reserved.
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
4
|
|
|
5
|
-
import base64
|
|
6
|
-
import io
|
|
7
5
|
import logging
|
|
8
|
-
from io import BytesIO
|
|
9
6
|
from math import ceil
|
|
10
7
|
from math import floor
|
|
11
8
|
from typing import Optional
|
|
12
9
|
from typing import Tuple
|
|
13
10
|
|
|
11
|
+
import cv2
|
|
14
12
|
import numpy as np
|
|
13
|
+
from io import BytesIO
|
|
15
14
|
from PIL import Image
|
|
16
|
-
from PIL import UnidentifiedImageError
|
|
17
15
|
|
|
18
16
|
from nv_ingest_api.util.converters import bytetools
|
|
19
17
|
|
|
18
|
+
# Configure OpenCV to use a single thread for image processing
|
|
19
|
+
cv2.setNumThreads(1)
|
|
20
20
|
DEFAULT_MAX_WIDTH = 1024
|
|
21
21
|
DEFAULT_MAX_HEIGHT = 1280
|
|
22
22
|
|
|
23
23
|
logger = logging.getLogger(__name__)
|
|
24
24
|
|
|
25
25
|
|
|
26
|
+
def _resize_image_opencv(
|
|
27
|
+
array: np.ndarray, target_size: Tuple[int, int], interpolation=cv2.INTER_LANCZOS4
|
|
28
|
+
) -> np.ndarray:
|
|
29
|
+
"""
|
|
30
|
+
Resizes a NumPy array representing an image using OpenCV.
|
|
31
|
+
|
|
32
|
+
Parameters
|
|
33
|
+
----------
|
|
34
|
+
array : np.ndarray
|
|
35
|
+
The input image as a NumPy array.
|
|
36
|
+
target_size : Tuple[int, int]
|
|
37
|
+
The target size as (width, height).
|
|
38
|
+
interpolation : int, optional
|
|
39
|
+
OpenCV interpolation method. Defaults to cv2.INTER_LANCZOS4.
|
|
40
|
+
|
|
41
|
+
Returns
|
|
42
|
+
-------
|
|
43
|
+
np.ndarray
|
|
44
|
+
The resized image as a NumPy array.
|
|
45
|
+
"""
|
|
46
|
+
return cv2.resize(array, target_size, interpolation=interpolation)
|
|
47
|
+
|
|
48
|
+
|
|
26
49
|
def scale_image_to_encoding_size(
|
|
27
|
-
base64_image: str, max_base64_size: int = 180_000, initial_reduction: float = 0.9
|
|
50
|
+
base64_image: str, max_base64_size: int = 180_000, initial_reduction: float = 0.9, format: str = "PNG", **kwargs
|
|
28
51
|
) -> Tuple[str, Tuple[int, int]]:
|
|
29
52
|
"""
|
|
30
53
|
Decodes a base64-encoded image, resizes it if needed, and re-encodes it as base64.
|
|
@@ -38,12 +61,19 @@ def scale_image_to_encoding_size(
|
|
|
38
61
|
Maximum allowable size for the base64-encoded image, by default 180,000 characters.
|
|
39
62
|
initial_reduction : float, optional
|
|
40
63
|
Initial reduction step for resizing, by default 0.9.
|
|
64
|
+
format : str, optional
|
|
65
|
+
The image format to use for encoding. Supported formats are "PNG" and "JPEG".
|
|
66
|
+
Defaults to "PNG".
|
|
67
|
+
**kwargs
|
|
68
|
+
Additional keyword arguments passed to the format-specific encoding function.
|
|
69
|
+
For JPEG: quality (int, default=100) - JPEG quality (1-100).
|
|
70
|
+
For PNG: compression (int, default=3) - PNG compression level (0-9).
|
|
41
71
|
|
|
42
72
|
Returns
|
|
43
73
|
-------
|
|
44
74
|
Tuple[str, Tuple[int, int]]
|
|
45
75
|
A tuple containing:
|
|
46
|
-
- Base64-encoded
|
|
76
|
+
- Base64-encoded image string in the specified format, resized if necessary.
|
|
47
77
|
- The new size as a tuple (width, height).
|
|
48
78
|
|
|
49
79
|
Raises
|
|
@@ -52,12 +82,11 @@ def scale_image_to_encoding_size(
|
|
|
52
82
|
If the image cannot be resized below the specified max_base64_size.
|
|
53
83
|
"""
|
|
54
84
|
try:
|
|
55
|
-
# Decode the base64 image
|
|
56
|
-
|
|
57
|
-
img = Image.open(io.BytesIO(image_data)).convert("RGB")
|
|
85
|
+
# Decode the base64 image using OpenCV (returns RGB format)
|
|
86
|
+
img_array = base64_to_numpy(base64_image)
|
|
58
87
|
|
|
59
|
-
# Initial image size
|
|
60
|
-
original_size =
|
|
88
|
+
# Initial image size (height, width, channels) -> (width, height)
|
|
89
|
+
original_size = (img_array.shape[1], img_array.shape[0])
|
|
61
90
|
|
|
62
91
|
# Check initial size
|
|
63
92
|
if len(base64_image) <= max_base64_size:
|
|
@@ -66,23 +95,24 @@ def scale_image_to_encoding_size(
|
|
|
66
95
|
# Initial reduction step
|
|
67
96
|
reduction_step = initial_reduction
|
|
68
97
|
new_size = original_size
|
|
98
|
+
current_img = img_array.copy()
|
|
99
|
+
original_width, original_height = original_size
|
|
100
|
+
|
|
69
101
|
while len(base64_image) > max_base64_size:
|
|
70
|
-
|
|
71
|
-
new_size
|
|
102
|
+
new_size = (int(original_width * reduction_step), int(original_height * reduction_step))
|
|
103
|
+
if new_size[0] < 1 or new_size[1] < 1:
|
|
104
|
+
raise ValueError("Image cannot be resized further without becoming too small.")
|
|
105
|
+
|
|
106
|
+
# Resize the image using OpenCV
|
|
107
|
+
current_img = _resize_image_opencv(img_array, new_size)
|
|
72
108
|
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
img_resized.save(buffered, format="PNG")
|
|
76
|
-
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
109
|
+
# Re-encode as base64 using the specified format
|
|
110
|
+
base64_image = numpy_to_base64(current_img, format=format, **kwargs)
|
|
77
111
|
|
|
78
112
|
# Adjust the reduction step if necessary
|
|
79
113
|
if len(base64_image) > max_base64_size:
|
|
80
114
|
reduction_step *= 0.95 # Reduce size further if needed
|
|
81
115
|
|
|
82
|
-
# Safety check
|
|
83
|
-
if new_size[0] < 1 or new_size[1] < 1:
|
|
84
|
-
raise Exception("Image cannot be resized further without becoming too small.")
|
|
85
|
-
|
|
86
116
|
return base64_image, new_size
|
|
87
117
|
|
|
88
118
|
except Exception as e:
|
|
@@ -90,36 +120,84 @@ def scale_image_to_encoding_size(
|
|
|
90
120
|
raise
|
|
91
121
|
|
|
92
122
|
|
|
93
|
-
def
|
|
123
|
+
def _detect_base64_image_format(base64_string: str) -> Optional[str]:
|
|
94
124
|
"""
|
|
95
|
-
|
|
125
|
+
Detects the format of a base64-encoded image using Pillow.
|
|
96
126
|
|
|
97
127
|
Parameters
|
|
98
128
|
----------
|
|
99
|
-
|
|
129
|
+
base64_string : str
|
|
100
130
|
Base64-encoded image string.
|
|
101
131
|
|
|
102
132
|
Returns
|
|
103
133
|
-------
|
|
104
|
-
|
|
105
|
-
Base64-encoded PNG image string.
|
|
134
|
+
The detected format ("PNG", "JPEG", "UNKNOWN")
|
|
106
135
|
"""
|
|
107
136
|
try:
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
137
|
+
image_bytes = bytetools.bytesfrombase64(base64_string)
|
|
138
|
+
except Exception as e:
|
|
139
|
+
logger.error(f"Invalid base64 string: {e}")
|
|
140
|
+
raise ValueError(f"Invalid base64 string: {e}") from e
|
|
141
|
+
|
|
142
|
+
try:
|
|
143
|
+
with Image.open(BytesIO(image_bytes)) as img:
|
|
144
|
+
return img.format.upper()
|
|
145
|
+
except ImportError:
|
|
146
|
+
raise ImportError("Pillow library not available")
|
|
147
|
+
except Exception as e:
|
|
148
|
+
logger.error(f"Error detecting image format: {e}")
|
|
149
|
+
return "UNKNOWN"
|
|
111
150
|
|
|
112
|
-
# Check if the image is already in PNG format
|
|
113
|
-
if image.format != "PNG":
|
|
114
|
-
# Convert the image to PNG
|
|
115
|
-
buffered = io.BytesIO()
|
|
116
|
-
image.convert("RGB").save(buffered, format="PNG")
|
|
117
|
-
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
118
151
|
|
|
152
|
+
def ensure_base64_format(base64_image: str, target_format: str = "PNG", **kwargs) -> str:
|
|
153
|
+
"""
|
|
154
|
+
Ensures the given base64-encoded image is in the specified format. Converts if necessary.
|
|
155
|
+
Skips conversion if the image is already in the target format.
|
|
156
|
+
|
|
157
|
+
Parameters
|
|
158
|
+
----------
|
|
159
|
+
base64_image : str
|
|
160
|
+
Base64-encoded image string.
|
|
161
|
+
target_format : str, optional
|
|
162
|
+
The target image format. Supported formats are "PNG" and "JPEG". Defaults to "PNG".
|
|
163
|
+
**kwargs
|
|
164
|
+
Additional keyword arguments passed to the format-specific encoding function.
|
|
165
|
+
For JPEG: quality (int, default=100) - JPEG quality (1-100).
|
|
166
|
+
For PNG: compression (int, default=3) - PNG compression level (0-9).
|
|
167
|
+
|
|
168
|
+
Returns
|
|
169
|
+
-------
|
|
170
|
+
str
|
|
171
|
+
Base64-encoded image string in the specified format.
|
|
172
|
+
|
|
173
|
+
Raises
|
|
174
|
+
------
|
|
175
|
+
ValueError
|
|
176
|
+
If there is an error during format conversion.
|
|
177
|
+
"""
|
|
178
|
+
target_format = target_format.upper()
|
|
179
|
+
if target_format == "JPG":
|
|
180
|
+
target_format = "JPEG"
|
|
181
|
+
|
|
182
|
+
current_format = _detect_base64_image_format(base64_image)
|
|
183
|
+
if current_format == "UNKNOWN":
|
|
184
|
+
raise ValueError(
|
|
185
|
+
f"Unable to decode image from base64 string: {base64_image}, because current format could not be detected."
|
|
186
|
+
)
|
|
187
|
+
if current_format == target_format:
|
|
188
|
+
logger.debug(f"Image already in {target_format} format, skipping conversion")
|
|
119
189
|
return base64_image
|
|
190
|
+
|
|
191
|
+
try:
|
|
192
|
+
# Decode the base64 image using OpenCV (returns RGB format)
|
|
193
|
+
img_array = base64_to_numpy(base64_image)
|
|
194
|
+
# Re-encode in the target format
|
|
195
|
+
return numpy_to_base64(img_array, format=target_format, **kwargs)
|
|
196
|
+
except ImportError as e:
|
|
197
|
+
raise e
|
|
120
198
|
except Exception as e:
|
|
121
|
-
logger.error(f"Error
|
|
122
|
-
|
|
199
|
+
logger.error(f"Error converting image to {target_format} format: {e}")
|
|
200
|
+
raise ValueError(f"Failed to convert image to {target_format} format: {e}") from e
|
|
123
201
|
|
|
124
202
|
|
|
125
203
|
def pad_image(
|
|
@@ -302,66 +380,193 @@ def normalize_image(
|
|
|
302
380
|
return output_array
|
|
303
381
|
|
|
304
382
|
|
|
305
|
-
def
|
|
383
|
+
def _preprocess_numpy_array(array: np.ndarray) -> np.ndarray:
|
|
384
|
+
"""
|
|
385
|
+
Preprocesses a NumPy array for image encoding by ensuring proper format and data type.
|
|
386
|
+
Also handles color space conversion for OpenCV encoding.
|
|
387
|
+
|
|
388
|
+
Parameters
|
|
389
|
+
----------
|
|
390
|
+
array : np.ndarray
|
|
391
|
+
The input image as a NumPy array.
|
|
392
|
+
|
|
393
|
+
Returns
|
|
394
|
+
-------
|
|
395
|
+
np.ndarray
|
|
396
|
+
The preprocessed array in uint8 format, ready for OpenCV encoding (BGR color order for color images).
|
|
397
|
+
|
|
398
|
+
Raises
|
|
399
|
+
------
|
|
400
|
+
ValueError
|
|
401
|
+
If the input array cannot be converted into a valid image format.
|
|
402
|
+
"""
|
|
403
|
+
# Check if the array is valid and can be converted to an image
|
|
404
|
+
try:
|
|
405
|
+
# If the array represents a grayscale image, drop the redundant axis in
|
|
406
|
+
# (h, w, 1). cv2 expects (h, w) for grayscale.
|
|
407
|
+
if array.ndim == 3 and array.shape[2] == 1:
|
|
408
|
+
array = np.squeeze(array, axis=2)
|
|
409
|
+
|
|
410
|
+
# Ensure uint8 data type
|
|
411
|
+
processed_array = array.astype(np.uint8)
|
|
412
|
+
|
|
413
|
+
# OpenCV uses BGR color order, so convert RGB to BGR if needed
|
|
414
|
+
if processed_array.ndim == 3 and processed_array.shape[2] == 3:
|
|
415
|
+
# Assume input is RGB and convert to BGR for OpenCV
|
|
416
|
+
processed_array = cv2.cvtColor(processed_array, cv2.COLOR_RGB2BGR)
|
|
417
|
+
|
|
418
|
+
return processed_array
|
|
419
|
+
except Exception as e:
|
|
420
|
+
raise ValueError(f"Failed to preprocess NumPy array for image encoding: {e}")
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
def _encode_opencv_jpeg(array: np.ndarray, *, quality: int = 100) -> bytes:
|
|
424
|
+
"""NumPy array -> JPEG bytes using OpenCV."""
|
|
425
|
+
ok, buf = cv2.imencode(".jpg", array, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
|
|
426
|
+
if not ok:
|
|
427
|
+
raise RuntimeError("cv2.imencode failed")
|
|
428
|
+
return buf.tobytes()
|
|
429
|
+
|
|
430
|
+
|
|
431
|
+
def _encode_opencv_png(array: np.ndarray, *, compression: int = 6) -> bytes:
|
|
432
|
+
"""NumPy array -> PNG bytes using OpenCV"""
|
|
433
|
+
encode_params = [
|
|
434
|
+
cv2.IMWRITE_PNG_COMPRESSION,
|
|
435
|
+
compression,
|
|
436
|
+
cv2.IMWRITE_PNG_STRATEGY,
|
|
437
|
+
cv2.IMWRITE_PNG_STRATEGY_DEFAULT,
|
|
438
|
+
]
|
|
439
|
+
ok, buf = cv2.imencode(".png", array, encode_params)
|
|
440
|
+
if not ok:
|
|
441
|
+
raise RuntimeError("cv2.imencode(.png) failed")
|
|
442
|
+
return buf.tobytes()
|
|
443
|
+
|
|
444
|
+
|
|
445
|
+
def numpy_to_base64_png(array: np.ndarray) -> str:
|
|
446
|
+
"""
|
|
447
|
+
Converts a preprocessed NumPy array representing an image to a base64-encoded PNG string using OpenCV.
|
|
448
|
+
|
|
449
|
+
Parameters
|
|
450
|
+
----------
|
|
451
|
+
array : np.ndarray
|
|
452
|
+
The preprocessed input image as a NumPy array. Must have a shape compatible with image data.
|
|
453
|
+
|
|
454
|
+
Returns
|
|
455
|
+
-------
|
|
456
|
+
str
|
|
457
|
+
The base64-encoded PNG string representation of the input NumPy array.
|
|
458
|
+
|
|
459
|
+
Raises
|
|
460
|
+
------
|
|
461
|
+
RuntimeError
|
|
462
|
+
If there is an issue during the image conversion or base64 encoding process.
|
|
463
|
+
"""
|
|
464
|
+
try:
|
|
465
|
+
# Encode to PNG bytes using OpenCV
|
|
466
|
+
png_bytes = _encode_opencv_png(array)
|
|
467
|
+
|
|
468
|
+
# Convert to base64
|
|
469
|
+
base64_img = bytetools.base64frombytes(png_bytes)
|
|
470
|
+
except Exception as e:
|
|
471
|
+
raise RuntimeError(f"Failed to encode image to base64 PNG: {e}")
|
|
472
|
+
|
|
473
|
+
return base64_img
|
|
474
|
+
|
|
475
|
+
|
|
476
|
+
def numpy_to_base64_jpeg(array: np.ndarray, quality: int = 100) -> str:
|
|
477
|
+
"""
|
|
478
|
+
Converts a preprocessed NumPy array representing an image to a base64-encoded JPEG string using OpenCV.
|
|
479
|
+
|
|
480
|
+
Parameters
|
|
481
|
+
----------
|
|
482
|
+
array : np.ndarray
|
|
483
|
+
The preprocessed input image as a NumPy array. Must have a shape compatible with image data.
|
|
484
|
+
quality : int, optional
|
|
485
|
+
JPEG quality (1-100), by default 100. Higher values mean better quality but larger file size.
|
|
486
|
+
|
|
487
|
+
Returns
|
|
488
|
+
-------
|
|
489
|
+
str
|
|
490
|
+
The base64-encoded JPEG string representation of the input NumPy array.
|
|
491
|
+
|
|
492
|
+
Raises
|
|
493
|
+
------
|
|
494
|
+
RuntimeError
|
|
495
|
+
If there is an issue during the image conversion or base64 encoding process.
|
|
496
|
+
"""
|
|
497
|
+
try:
|
|
498
|
+
# Encode to JPEG bytes using OpenCV
|
|
499
|
+
jpeg_bytes = _encode_opencv_jpeg(array, quality=quality)
|
|
500
|
+
|
|
501
|
+
# Convert to base64
|
|
502
|
+
base64_img = bytetools.base64frombytes(jpeg_bytes)
|
|
503
|
+
except Exception as e:
|
|
504
|
+
raise RuntimeError(f"Failed to encode image to base64 JPEG: {e}")
|
|
505
|
+
|
|
506
|
+
return base64_img
|
|
507
|
+
|
|
508
|
+
|
|
509
|
+
def numpy_to_base64(array: np.ndarray, format: str = "PNG", **kwargs) -> str:
|
|
306
510
|
"""
|
|
307
511
|
Converts a NumPy array representing an image to a base64-encoded string.
|
|
308
512
|
|
|
309
|
-
The function takes a NumPy array,
|
|
310
|
-
the image
|
|
311
|
-
a format that can be converted to a valid image, such as having a shape
|
|
312
|
-
where C is the number of channels (e.g., 3 for RGB).
|
|
513
|
+
The function takes a NumPy array, preprocesses it, and then encodes
|
|
514
|
+
the image in the specified format as a base64 string. The input array is expected
|
|
515
|
+
to be in a format that can be converted to a valid image, such as having a shape
|
|
516
|
+
of (H, W, C) where C is the number of channels (e.g., 3 for RGB).
|
|
313
517
|
|
|
314
518
|
Parameters
|
|
315
519
|
----------
|
|
316
520
|
array : np.ndarray
|
|
317
521
|
The input image as a NumPy array. Must have a shape compatible with image data.
|
|
522
|
+
format : str, optional
|
|
523
|
+
The image format to use for encoding. Supported formats are "PNG" and "JPEG".
|
|
524
|
+
Defaults to "PNG".
|
|
525
|
+
**kwargs
|
|
526
|
+
Additional keyword arguments passed to the format-specific encoding function.
|
|
527
|
+
For JPEG: quality (int, default=100) - JPEG quality (1-100).
|
|
318
528
|
|
|
319
529
|
Returns
|
|
320
530
|
-------
|
|
321
531
|
str
|
|
322
|
-
The base64-encoded string representation of the input NumPy array
|
|
532
|
+
The base64-encoded string representation of the input NumPy array in the specified format.
|
|
323
533
|
|
|
324
534
|
Raises
|
|
325
535
|
------
|
|
326
536
|
ValueError
|
|
327
|
-
If the input array cannot be converted into a valid image format
|
|
537
|
+
If the input array cannot be converted into a valid image format, or if an
|
|
538
|
+
unsupported format is specified.
|
|
328
539
|
RuntimeError
|
|
329
540
|
If there is an issue during the image conversion or base64 encoding process.
|
|
330
541
|
|
|
331
542
|
Examples
|
|
332
543
|
--------
|
|
333
544
|
>>> array = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
|
|
334
|
-
>>> encoded_str = numpy_to_base64(array)
|
|
545
|
+
>>> encoded_str = numpy_to_base64(array, format="PNG")
|
|
335
546
|
>>> isinstance(encoded_str, str)
|
|
336
547
|
True
|
|
548
|
+
>>> encoded_str_jpeg = numpy_to_base64(array, format="JPEG", quality=90)
|
|
549
|
+
>>> isinstance(encoded_str_jpeg, str)
|
|
550
|
+
True
|
|
337
551
|
"""
|
|
338
|
-
#
|
|
339
|
-
|
|
340
|
-
# a grayscale image.
|
|
341
|
-
if array.ndim == 3 and array.shape[2] == 1:
|
|
342
|
-
array = np.squeeze(array, axis=2)
|
|
552
|
+
# Centralized preprocessing of the numpy array
|
|
553
|
+
processed_array = _preprocess_numpy_array(array)
|
|
343
554
|
|
|
344
|
-
|
|
345
|
-
try:
|
|
346
|
-
# Convert the NumPy array to a PIL image
|
|
347
|
-
pil_image = Image.fromarray(array.astype(np.uint8))
|
|
348
|
-
except Exception as e:
|
|
349
|
-
raise ValueError(f"Failed to convert NumPy array to image: {e}")
|
|
555
|
+
format = format.upper()
|
|
350
556
|
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
raise
|
|
358
|
-
|
|
359
|
-
return base64_img
|
|
557
|
+
if format == "PNG":
|
|
558
|
+
return numpy_to_base64_png(processed_array)
|
|
559
|
+
elif format == "JPEG" or format == "JPG":
|
|
560
|
+
quality = kwargs.get("quality", 100)
|
|
561
|
+
return numpy_to_base64_jpeg(processed_array, quality=quality)
|
|
562
|
+
else:
|
|
563
|
+
raise ValueError(f"Unsupported format: {format}. Supported formats are 'PNG' and 'JPEG'.")
|
|
360
564
|
|
|
361
565
|
|
|
362
566
|
def base64_to_numpy(base64_string: str) -> np.ndarray:
|
|
363
567
|
"""
|
|
364
|
-
Convert a base64-encoded image string to a NumPy array.
|
|
568
|
+
Convert a base64-encoded image string to a NumPy array using OpenCV.
|
|
569
|
+
Returns images in RGB format for consistency.
|
|
365
570
|
|
|
366
571
|
Parameters
|
|
367
572
|
----------
|
|
@@ -371,37 +576,82 @@ def base64_to_numpy(base64_string: str) -> np.ndarray:
|
|
|
371
576
|
Returns
|
|
372
577
|
-------
|
|
373
578
|
numpy.ndarray
|
|
374
|
-
NumPy array representation of the decoded image.
|
|
579
|
+
NumPy array representation of the decoded image in RGB format (for color images).
|
|
580
|
+
Grayscale images are returned as-is.
|
|
375
581
|
|
|
376
582
|
Raises
|
|
377
583
|
------
|
|
378
584
|
ValueError
|
|
379
585
|
If the base64 string is invalid or cannot be decoded into an image.
|
|
380
|
-
ImportError
|
|
381
|
-
If required libraries are not installed.
|
|
382
586
|
|
|
383
587
|
Examples
|
|
384
588
|
--------
|
|
385
589
|
>>> base64_str = '/9j/4AAQSkZJRgABAQAAAQABAAD/2wBD...'
|
|
386
590
|
>>> img_array = base64_to_numpy(base64_str)
|
|
591
|
+
>>> # img_array is now in RGB format (for color images)
|
|
387
592
|
"""
|
|
388
593
|
try:
|
|
389
|
-
# Decode the base64 string
|
|
390
|
-
|
|
391
|
-
except
|
|
594
|
+
# Decode the base64 string to bytes using bytetools
|
|
595
|
+
image_bytes = bytetools.bytesfrombase64(base64_string)
|
|
596
|
+
except Exception as e:
|
|
392
597
|
raise ValueError("Invalid base64 string") from e
|
|
393
598
|
|
|
599
|
+
# Create numpy buffer from bytes and decode using OpenCV
|
|
600
|
+
buf = np.frombuffer(image_bytes, dtype=np.uint8)
|
|
394
601
|
try:
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
image
|
|
401
|
-
|
|
602
|
+
img = cv2.imdecode(buf, cv2.IMREAD_UNCHANGED)
|
|
603
|
+
if img is None:
|
|
604
|
+
raise ValueError("OpenCV failed to decode image")
|
|
605
|
+
|
|
606
|
+
# Convert BGR to RGB for consistent processing (OpenCV loads as BGR)
|
|
607
|
+
# Only convert if it's a 3-channel color image
|
|
608
|
+
if img.ndim == 3 and img.shape[2] == 3:
|
|
609
|
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
610
|
+
except ImportError:
|
|
611
|
+
raise
|
|
612
|
+
except Exception as e:
|
|
402
613
|
raise ValueError("Unable to decode image from base64 string") from e
|
|
403
614
|
|
|
404
|
-
# Convert
|
|
405
|
-
|
|
615
|
+
# Convert to numpy array
|
|
616
|
+
img = np.array(img)
|
|
617
|
+
# Assert that 3-channel images are in RGB format after conversion
|
|
618
|
+
assert img.ndim <= 3, f"Image has unexpected number of dimensions: {img.ndim}"
|
|
619
|
+
assert img.ndim != 3 or img.shape[2] == 3, f"3-channel image should have 3 channels, got: {img.shape[2]}"
|
|
620
|
+
|
|
621
|
+
return img
|
|
622
|
+
|
|
623
|
+
|
|
624
|
+
def scale_numpy_image(
|
|
625
|
+
img_arr: np.ndarray, scale_tuple: Optional[Tuple[int, int]] = None, interpolation=Image.LANCZOS
|
|
626
|
+
) -> np.ndarray:
|
|
627
|
+
"""
|
|
628
|
+
Scales a NumPy image array using OpenCV with aspect ratio preservation.
|
|
406
629
|
|
|
407
|
-
|
|
630
|
+
This function provides OpenCV-based image scaling that mimics PIL's thumbnail behavior
|
|
631
|
+
by maintaining aspect ratio and scaling to fit within the specified dimensions.
|
|
632
|
+
|
|
633
|
+
Parameters
|
|
634
|
+
----------
|
|
635
|
+
img_arr : np.ndarray
|
|
636
|
+
The input image as a NumPy array.
|
|
637
|
+
scale_tuple : Optional[Tuple[int, int]], optional
|
|
638
|
+
A tuple (width, height) to resize the image to. If provided, the image
|
|
639
|
+
will be resized to fit within these dimensions while maintaining aspect ratio
|
|
640
|
+
(similar to PIL's thumbnail method). Defaults to None.
|
|
641
|
+
interpolation : int, optional
|
|
642
|
+
OpenCV interpolation method. Defaults to cv2.INTER_LANCZOS4.
|
|
643
|
+
|
|
644
|
+
Returns
|
|
645
|
+
-------
|
|
646
|
+
np.ndarray
|
|
647
|
+
A NumPy array representing the scaled image data.
|
|
648
|
+
"""
|
|
649
|
+
# Apply scaling using OpenCV if specified
|
|
650
|
+
# Using PIL for scaling as CV2 seems to lead to different results
|
|
651
|
+
# TODO: Remove when we move to YOLOX Ensemble Models
|
|
652
|
+
if scale_tuple:
|
|
653
|
+
image = Image.fromarray(img_arr)
|
|
654
|
+
image.thumbnail(scale_tuple, interpolation)
|
|
655
|
+
img_arr = np.array(image)
|
|
656
|
+
# Ensure we return a copy
|
|
657
|
+
return img_arr.copy()
|
nv_ingest_api/util/pdf/pdfium.py
CHANGED
|
@@ -7,7 +7,6 @@ from typing import List, Any
|
|
|
7
7
|
from typing import Optional
|
|
8
8
|
from typing import Tuple
|
|
9
9
|
|
|
10
|
-
import PIL
|
|
11
10
|
import numpy as np
|
|
12
11
|
import pypdfium2 as pdfium
|
|
13
12
|
import pypdfium2.raw as pdfium_c
|
|
@@ -20,8 +19,9 @@ from nv_ingest_api.util.image_processing.clustering import (
|
|
|
20
19
|
combine_groups_into_bboxes,
|
|
21
20
|
remove_superset_bboxes,
|
|
22
21
|
)
|
|
23
|
-
from nv_ingest_api.util.image_processing.transforms import pad_image, numpy_to_base64, crop_image
|
|
22
|
+
from nv_ingest_api.util.image_processing.transforms import pad_image, numpy_to_base64, crop_image, scale_numpy_image
|
|
24
23
|
from nv_ingest_api.util.metadata.aggregators import Base64Image
|
|
24
|
+
from nv_ingest_api.internal.primitives.nim.model_interface.yolox import YOLOX_PAGE_IMAGE_FORMAT
|
|
25
25
|
|
|
26
26
|
logger = logging.getLogger(__name__)
|
|
27
27
|
|
|
@@ -176,18 +176,10 @@ def pdfium_pages_to_numpy(
|
|
|
176
176
|
for idx, page in enumerate(pages):
|
|
177
177
|
# Render the page as a bitmap with the specified scale and rotation
|
|
178
178
|
page_bitmap = page.render(scale=scale, rotation=rotation)
|
|
179
|
-
|
|
180
|
-
# Convert the bitmap to a PIL image
|
|
181
|
-
pil_image = page_bitmap.to_pil()
|
|
182
|
-
|
|
179
|
+
img_arr = convert_bitmap_to_corrected_numpy(page_bitmap)
|
|
183
180
|
# Apply scaling using the thumbnail approach if specified
|
|
184
181
|
if scale_tuple:
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
# Convert the PIL image to a NumPy array and force a full copy,
|
|
188
|
-
# ensuring the returned array is entirely independent of the original buffer.
|
|
189
|
-
img_arr = np.array(pil_image).copy()
|
|
190
|
-
|
|
182
|
+
img_arr = scale_numpy_image(img_arr, scale_tuple)
|
|
191
183
|
# Apply padding if specified
|
|
192
184
|
if padding_tuple:
|
|
193
185
|
img_arr, (pad_width, pad_height) = pad_image(
|
|
@@ -250,7 +242,7 @@ def extract_simple_images_from_pdfium_page(page, max_depth):
|
|
|
250
242
|
try:
|
|
251
243
|
# Attempt to retrieve the image bitmap
|
|
252
244
|
image_numpy: np.ndarray = pdfium_try_get_bitmap_as_numpy(obj) # noqa
|
|
253
|
-
image_base64: str = numpy_to_base64(image_numpy)
|
|
245
|
+
image_base64: str = numpy_to_base64(image_numpy, format=YOLOX_PAGE_IMAGE_FORMAT)
|
|
254
246
|
image_bbox = obj.get_pos()
|
|
255
247
|
image_size = obj.get_size()
|
|
256
248
|
if image_size[0] < 10 and image_size[1] < 10:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: nv-ingest-api
|
|
3
|
-
Version: 2025.7.
|
|
3
|
+
Version: 2025.7.15.dev20250715
|
|
4
4
|
Summary: Python module with core document ingestion functions.
|
|
5
5
|
Author-email: Jeremy Dyer <jdyer@nvidia.com>
|
|
6
6
|
License: Apache License
|
|
@@ -217,6 +217,7 @@ Requires-Dist: backoff==2.2.1
|
|
|
217
217
|
Requires-Dist: pandas>=2.0
|
|
218
218
|
Requires-Dist: pydantic>2.0.0
|
|
219
219
|
Requires-Dist: pydantic-settings>2.0.0
|
|
220
|
+
Requires-Dist: tritonclient
|
|
220
221
|
Dynamic: license-file
|
|
221
222
|
|
|
222
223
|
# nv-ingest-api
|
|
@@ -31,8 +31,8 @@ nv_ingest_api/internal/extract/pdf/pdf_extractor.py,sha256=CxtWaD6mql9MEqSdk2CfS
|
|
|
31
31
|
nv_ingest_api/internal/extract/pdf/engines/__init__.py,sha256=u4GnAZmDKRl0RwYGIRiozIRw70Kybw3A72-lcKFeoTI,582
|
|
32
32
|
nv_ingest_api/internal/extract/pdf/engines/adobe.py,sha256=VT0dEqkU-y2uGkaCqxtKYov_Q8R1028UQVBchgMLca4,17466
|
|
33
33
|
nv_ingest_api/internal/extract/pdf/engines/llama.py,sha256=PpKTqS8jGHBV6mKLGZWwjpfT8ga6Fy8ffrvL-gPAf2c,8182
|
|
34
|
-
nv_ingest_api/internal/extract/pdf/engines/nemoretriever.py,sha256=
|
|
35
|
-
nv_ingest_api/internal/extract/pdf/engines/pdfium.py,sha256=
|
|
34
|
+
nv_ingest_api/internal/extract/pdf/engines/nemoretriever.py,sha256=XNYz4S2tMFBv0KFzXNERrVs-1raxJ_iIIXpBGlJFcD0,22987
|
|
35
|
+
nv_ingest_api/internal/extract/pdf/engines/pdfium.py,sha256=vtdBue1EEQJsHcBuX3NdPutbLfyKPIzily6JOK6yV0w,22421
|
|
36
36
|
nv_ingest_api/internal/extract/pdf/engines/tika.py,sha256=6GyR2l6EsgNZl9jnYDXLeKNK9Fj2Mw9y2UWDq-eSkOc,3169
|
|
37
37
|
nv_ingest_api/internal/extract/pdf/engines/unstructured_io.py,sha256=jrv2B4VZAH4PevAQrFz965qz8UyXq3rViiOTbGLejec,14908
|
|
38
38
|
nv_ingest_api/internal/extract/pdf/engines/pdf_helpers/__init__.py,sha256=Jk3wrQ2CZs167juvEZ-uV6qXWQjR08hhIu8otk2MWj4,4931
|
|
@@ -55,12 +55,12 @@ nv_ingest_api/internal/primitives/nim/model_interface/cached.py,sha256=b1HX-PY1E
|
|
|
55
55
|
nv_ingest_api/internal/primitives/nim/model_interface/decorators.py,sha256=qwubkHs4WjnexM6rI0wkjWCsrVNEbA4Wjk2oKL9OYCU,1499
|
|
56
56
|
nv_ingest_api/internal/primitives/nim/model_interface/deplot.py,sha256=TvKdk6PTuI1WNhRmNNrvygaI_DIutkJkDL-XdtLZQac,10787
|
|
57
57
|
nv_ingest_api/internal/primitives/nim/model_interface/helpers.py,sha256=x35a9AyTYxpESQflLo_YnhVOKblQKVen6vGGFaXmNiE,9927
|
|
58
|
-
nv_ingest_api/internal/primitives/nim/model_interface/nemoretriever_parse.py,sha256=
|
|
58
|
+
nv_ingest_api/internal/primitives/nim/model_interface/nemoretriever_parse.py,sha256=WysjDZeegclO3mZgVcGOwzWbr8wSI4pWRiYD4iC2EXo,7098
|
|
59
59
|
nv_ingest_api/internal/primitives/nim/model_interface/paddle.py,sha256=rSUPwl5XOrqneoS6aKhatVjrNBg_LhP3nwUWS_aTwz0,17950
|
|
60
60
|
nv_ingest_api/internal/primitives/nim/model_interface/parakeet.py,sha256=5PqD2JuHY2rwd-6SSB4axr2Dd79vm95sAEkcmI3U7ME,12977
|
|
61
61
|
nv_ingest_api/internal/primitives/nim/model_interface/text_embedding.py,sha256=lFhppNqrq5X_fzbCWKphvZQMzaJd3gHrkWsyJORzFrU,5010
|
|
62
62
|
nv_ingest_api/internal/primitives/nim/model_interface/vlm.py,sha256=qJ382PU1ZrIM-SR3cqIhtY_W2rmHec2HIa2aUB2SvaU,6031
|
|
63
|
-
nv_ingest_api/internal/primitives/nim/model_interface/yolox.py,sha256=
|
|
63
|
+
nv_ingest_api/internal/primitives/nim/model_interface/yolox.py,sha256=nsfDQgeupBe9Tdf3S5sfNpYcObEwVlzCZdfg1ObAW88,49584
|
|
64
64
|
nv_ingest_api/internal/primitives/tracing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
65
65
|
nv_ingest_api/internal/primitives/tracing/latency.py,sha256=5kVTeYRbRdTlT_aI4MeS20N_S7mqCcLqZR6YHtxhXkY,2215
|
|
66
66
|
nv_ingest_api/internal/primitives/tracing/logging.py,sha256=SSzIgS7afLH-e1C7VagYDmkkA6rTXmQ-bmtLjoEguhg,3851
|
|
@@ -123,7 +123,7 @@ nv_ingest_api/util/image_processing/__init__.py,sha256=Jiy8C1ZuSrNb_eBM1ZTV9IKFI
|
|
|
123
123
|
nv_ingest_api/util/image_processing/clustering.py,sha256=sUGlZI4cx1q8h4Pns1N9JVpdfSM2BOH8zRmn9QFCtzI,9236
|
|
124
124
|
nv_ingest_api/util/image_processing/processing.py,sha256=LSoDDEmahr7a-qSS12McVcowRe3dOrAZwa1h-PD_JPQ,6554
|
|
125
125
|
nv_ingest_api/util/image_processing/table_and_chart.py,sha256=bxOu9PZYkG_WFCDGw_JLaO60S2pDSN8EOWK3xkIwr2A,14376
|
|
126
|
-
nv_ingest_api/util/image_processing/transforms.py,sha256=
|
|
126
|
+
nv_ingest_api/util/image_processing/transforms.py,sha256=CJVGQgUvHk_mzihR8ZZrvwJUBgUYcgFAKzXyRTmKdCE,23371
|
|
127
127
|
nv_ingest_api/util/imports/__init__.py,sha256=wQSlVx3T14ZgQAt-EPzEczQusXVW0W8yynnUaFFGE3s,143
|
|
128
128
|
nv_ingest_api/util/imports/callable_signatures.py,sha256=e2bJB1pmkN4Ee-Bf-VggOSBaQ4RXofWF5eKkWXgIj2U,1855
|
|
129
129
|
nv_ingest_api/util/imports/dynamic_resolvers.py,sha256=7GByV_-8z2X0tnVoabCxVioxOP3sYMros3ZllVAW-wY,4343
|
|
@@ -140,7 +140,7 @@ nv_ingest_api/util/multi_processing/__init__.py,sha256=4fojP8Rp_5Hu1YAkqGylqTyEZ
|
|
|
140
140
|
nv_ingest_api/util/multi_processing/mp_pool_singleton.py,sha256=dTfP82DgGPaXEJH3jywTO8rNlLZUniD4FFzwv84_giE,7372
|
|
141
141
|
nv_ingest_api/util/nim/__init__.py,sha256=UqbiXFCqjWcjNvoduXd_0gOUOGBT8JvppiYHOmMyneA,1775
|
|
142
142
|
nv_ingest_api/util/pdf/__init__.py,sha256=uLsBITo_XfgbwpzqXUm1IYX6XlZrTfx6T1cIhdILwG8,140
|
|
143
|
-
nv_ingest_api/util/pdf/pdfium.py,sha256=
|
|
143
|
+
nv_ingest_api/util/pdf/pdfium.py,sha256=qTiTlSaiCk_rxm_eoQBoAFKq_5OQrioHVSbPbGDxVkE,15668
|
|
144
144
|
nv_ingest_api/util/schema/__init__.py,sha256=wQSlVx3T14ZgQAt-EPzEczQusXVW0W8yynnUaFFGE3s,143
|
|
145
145
|
nv_ingest_api/util/schema/schema_validator.py,sha256=H0yZ_i_HZaiBRUCGmTBfRB9-hURhVqyd10aS_ynM1_0,321
|
|
146
146
|
nv_ingest_api/util/service_clients/__init__.py,sha256=wQSlVx3T14ZgQAt-EPzEczQusXVW0W8yynnUaFFGE3s,143
|
|
@@ -153,8 +153,8 @@ nv_ingest_api/util/service_clients/rest/rest_client.py,sha256=dZ-jrk7IK7oNtHoXFS
|
|
|
153
153
|
nv_ingest_api/util/string_processing/__init__.py,sha256=mkwHthyS-IILcLcL1tJYeF6mpqX3pxEw5aUzDGjTSeU,1411
|
|
154
154
|
nv_ingest_api/util/system/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
155
155
|
nv_ingest_api/util/system/hardware_info.py,sha256=ORZeKpH9kSGU_vuPhyBwkIiMyCViKUX2CP__MCjrfbU,19463
|
|
156
|
-
nv_ingest_api-2025.7.
|
|
157
|
-
nv_ingest_api-2025.7.
|
|
158
|
-
nv_ingest_api-2025.7.
|
|
159
|
-
nv_ingest_api-2025.7.
|
|
160
|
-
nv_ingest_api-2025.7.
|
|
156
|
+
nv_ingest_api-2025.7.15.dev20250715.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
157
|
+
nv_ingest_api-2025.7.15.dev20250715.dist-info/METADATA,sha256=OWZyeCR9DZ23SdT0RcMdodCkxR508CZZaVczdM3qXPE,13947
|
|
158
|
+
nv_ingest_api-2025.7.15.dev20250715.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
159
|
+
nv_ingest_api-2025.7.15.dev20250715.dist-info/top_level.txt,sha256=abjYMlTJGoG5tOdfIB-IWvLyKclw6HLaRSc8MxX4X6I,14
|
|
160
|
+
nv_ingest_api-2025.7.15.dev20250715.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|