numba-mpi 0.41__py3-none-any.whl → 0.43__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numba_mpi/__init__.py +3 -1
- numba_mpi/api/requests.py +18 -0
- {numba_mpi-0.41.dist-info → numba_mpi-0.43.dist-info}/METADATA +32 -25
- {numba_mpi-0.41.dist-info → numba_mpi-0.43.dist-info}/RECORD +7 -7
- {numba_mpi-0.41.dist-info → numba_mpi-0.43.dist-info}/WHEEL +1 -1
- {numba_mpi-0.41.dist-info → numba_mpi-0.43.dist-info}/LICENSE +0 -0
- {numba_mpi-0.41.dist-info → numba_mpi-0.43.dist-info}/top_level.txt +0 -0
numba_mpi/__init__.py
CHANGED
numba_mpi/api/requests.py
CHANGED
@@ -34,6 +34,9 @@ def wait(request):
|
|
34
34
|
"""Wrapper for MPI_Wait. Returns integer status code (0 == MPI_SUCCESS).
|
35
35
|
Status is currently not handled. Requires 'request' parameter to be a
|
36
36
|
c-style pointer to MPI_Request (such as returned by 'isend'/'irecv').
|
37
|
+
|
38
|
+
Uninitialized contents of 'request' (e.g., from numpy.empty()) may
|
39
|
+
cause invalid pointer dereference and segmentation faults.
|
37
40
|
"""
|
38
41
|
|
39
42
|
status_buffer = create_status_buffer()
|
@@ -64,6 +67,9 @@ def waitall(requests):
|
|
64
67
|
"""Wrapper for MPI_Waitall. Returns integer status code (0 == MPI_SUCCESS).
|
65
68
|
Status is currently not handled. Requires 'requests' parameter to be an
|
66
69
|
array or tuple of MPI_Request objects.
|
70
|
+
|
71
|
+
Uninitialized contents of 'requests' (e.g., from numpy.empty()) may
|
72
|
+
cause invalid pointer dereference and segmentation faults.
|
67
73
|
"""
|
68
74
|
if isinstance(requests, np.ndarray):
|
69
75
|
return _waitall_array_impl(requests)
|
@@ -123,6 +129,9 @@ def waitany(requests):
|
|
123
129
|
status; second - the index of request that was completed. Status is
|
124
130
|
currently not handled. Requires 'requests' parameter to be an array
|
125
131
|
or tuple of MPI_Request objects.
|
132
|
+
|
133
|
+
Uninitialized contents of 'requests' (e.g., from numpy.empty()) may
|
134
|
+
cause invalid pointer dereference and segmentation faults.
|
126
135
|
"""
|
127
136
|
|
128
137
|
if isinstance(requests, np.ndarray):
|
@@ -167,6 +176,9 @@ def test(request):
|
|
167
176
|
flag that indicates whether given request is completed. Status is currently
|
168
177
|
not handled. Requires 'request' parameter to be a c-style pointer to
|
169
178
|
MPI_Request (such as returned by 'isend'/'irecv').
|
179
|
+
|
180
|
+
Uninitialized contents of 'request' (e.g., from numpy.empty()) may
|
181
|
+
cause invalid pointer dereference and segmentation faults.
|
170
182
|
"""
|
171
183
|
|
172
184
|
status_buffer = create_status_buffer()
|
@@ -203,6 +215,9 @@ def testall(requests):
|
|
203
215
|
flag that indicates whether given request is completed. Status is currently
|
204
216
|
not handled. Requires 'requests' parameter to be an array or tuple of
|
205
217
|
MPI_Request objects.
|
218
|
+
|
219
|
+
Uninitialized contents of 'requests' (e.g., from numpy.empty()) may
|
220
|
+
cause invalid pointer dereference and segmentation faults.
|
206
221
|
"""
|
207
222
|
if isinstance(requests, np.ndarray):
|
208
223
|
return _testall_array_impl(requests)
|
@@ -269,6 +284,9 @@ def testany(requests):
|
|
269
284
|
that indicates whether any of requests is completed, and index of request
|
270
285
|
that is guaranteed to be completed. Requires 'requests' parameter to be an
|
271
286
|
array or tuple of MPI_Request objects.
|
287
|
+
|
288
|
+
Uninitialized contents of 'requests' (e.g., from numpy.empty()) may
|
289
|
+
cause invalid pointer dereference and segmentation faults.
|
272
290
|
"""
|
273
291
|
|
274
292
|
if isinstance(requests, np.ndarray):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: numba-mpi
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.43
|
4
4
|
Summary: Numba @njittable MPI wrappers tested on Linux, macOS and Windows
|
5
5
|
Home-page: https://github.com/numba-mpi/numba-mpi
|
6
6
|
Author: https://github.com/numba-mpi/numba-mpi/graphs/contributors
|
@@ -8,6 +8,7 @@ License: GPL v3
|
|
8
8
|
Project-URL: Tracker, https://github.com/numba-mpi/numba-mpi/issues
|
9
9
|
Project-URL: Documentation, https://numba-mpi.github.io/numba-mpi
|
10
10
|
Project-URL: Source, https://github.com/numba-mpi/numba-mpi
|
11
|
+
Requires-Python: >=3.8
|
11
12
|
Description-Content-Type: text/markdown
|
12
13
|
License-File: LICENSE
|
13
14
|
Requires-Dist: numba
|
@@ -79,40 +80,46 @@ hello()
|
|
79
80
|
|
80
81
|
### Example comparing numba-mpi vs. mpi4py performance:
|
81
82
|
|
82
|
-
The example below compares Numba
|
83
|
-
The sample code estimates $\pi$ by integration of
|
83
|
+
The example below compares `Numba`+`mpi4py` vs. `Numba`+`numba-mpi` performance.
|
84
|
+
The sample code estimates $\pi$ by numerical integration of $\int_0^1 (4/(1+x^2))dx=\pi$
|
84
85
|
dividing the workload into `n_intervals` handled by separate MPI processes
|
85
|
-
and then obtaining a sum using `allreduce
|
86
|
-
The computation is carried out in a JIT-compiled function and is repeated
|
87
|
-
`N_TIMES
|
88
|
-
inside of the JIT-compiled block for mpi4py and numba-mpi
|
86
|
+
and then obtaining a sum using `allreduce` (see, e.g., analogous [Matlab docs example](https://www.mathworks.com/help/parallel-computing/numerical-estimation-of-pi-using-message-passing.html)).
|
87
|
+
The computation is carried out in a JIT-compiled function `get_pi_part()` and is repeated
|
88
|
+
`N_TIMES`. The repetitions and the MPI-handled reduction are done outside or
|
89
|
+
inside of the JIT-compiled block for `mpi4py` and `numba-mpi`, respectively.
|
89
90
|
Timing is repeated `N_REPEAT` times and the minimum time is reported.
|
90
|
-
The generated plot shown below depicts the speedup obtained by replacing mpi4py
|
91
|
-
with numba_mpi as a function of `n_intervals` - the
|
92
|
-
|
93
|
-
|
91
|
+
The generated plot shown below depicts the speedup obtained by replacing `mpi4py`
|
92
|
+
with `numba_mpi`, plotted as a function of `N_TIMES / n_intervals` - the number of MPI calls per
|
93
|
+
interval. The speedup, which stems from avoiding roundtrips between JIT-compiled
|
94
|
+
and Python code is significant (150%-300%) in all cases. The more often communication
|
95
|
+
is needed (smaller `n_intervals`), the larger the measured speedup. Note that nothing
|
96
|
+
in the actual number crunching (within the `get_pi_part()` function) or in the employed communication logic
|
97
|
+
(handled by the same MPI library) differs between the `mpi4py` or `numba-mpi` solutions.
|
98
|
+
These are the overhead of `mpi4py` higher-level abstractions and the overhead of
|
99
|
+
repeatedly entering and leaving the JIT-compiled block if using `mpi4py`, which can be
|
100
|
+
eliminated by using `numba-mpi`, and which the measured differences in execution time
|
101
|
+
stem from.
|
94
102
|
```python
|
95
103
|
import timeit, mpi4py, numba, numpy as np, numba_mpi
|
96
104
|
|
97
105
|
N_TIMES = 10000
|
98
|
-
N_REPEAT = 10
|
99
106
|
RTOL = 1e-3
|
100
107
|
|
101
|
-
@numba.
|
102
|
-
def get_pi_part(
|
108
|
+
@numba.jit
|
109
|
+
def get_pi_part(n_intervals=1000000, rank=0, size=1):
|
103
110
|
h = 1 / n_intervals
|
104
111
|
partial_sum = 0.0
|
105
112
|
for i in range(rank + 1, n_intervals, size):
|
106
113
|
x = h * (i - 0.5)
|
107
114
|
partial_sum += 4 / (1 + x**2)
|
108
|
-
|
115
|
+
return h * partial_sum
|
109
116
|
|
110
|
-
@numba.
|
117
|
+
@numba.jit
|
111
118
|
def pi_numba_mpi(n_intervals):
|
112
119
|
pi = np.array([0.])
|
113
120
|
part = np.empty_like(pi)
|
114
121
|
for _ in range(N_TIMES):
|
115
|
-
get_pi_part(
|
122
|
+
part[0] = get_pi_part(n_intervals, numba_mpi.rank(), numba_mpi.size())
|
116
123
|
numba_mpi.allreduce(part, pi, numba_mpi.Operator.SUM)
|
117
124
|
assert abs(pi[0] - np.pi) / np.pi < RTOL
|
118
125
|
|
@@ -120,30 +127,30 @@ def pi_mpi4py(n_intervals):
|
|
120
127
|
pi = np.array([0.])
|
121
128
|
part = np.empty_like(pi)
|
122
129
|
for _ in range(N_TIMES):
|
123
|
-
get_pi_part(
|
130
|
+
part[0] = get_pi_part(n_intervals, mpi4py.MPI.COMM_WORLD.rank, mpi4py.MPI.COMM_WORLD.size)
|
124
131
|
mpi4py.MPI.COMM_WORLD.Allreduce(part, (pi, mpi4py.MPI.DOUBLE), op=mpi4py.MPI.SUM)
|
125
132
|
assert abs(pi[0] - np.pi) / np.pi < RTOL
|
126
133
|
|
127
|
-
plot_x = [
|
134
|
+
plot_x = [x for x in range(1, 11)]
|
128
135
|
plot_y = {'numba_mpi': [], 'mpi4py': []}
|
129
|
-
for
|
136
|
+
for x in plot_x:
|
130
137
|
for impl in plot_y:
|
131
138
|
plot_y[impl].append(min(timeit.repeat(
|
132
|
-
f"pi_{impl}({
|
139
|
+
f"pi_{impl}(n_intervals={N_TIMES // x})",
|
133
140
|
globals=locals(),
|
134
141
|
number=1,
|
135
|
-
repeat=
|
142
|
+
repeat=10
|
136
143
|
)))
|
137
144
|
|
138
145
|
if numba_mpi.rank() == 0:
|
139
146
|
from matplotlib import pyplot
|
140
147
|
pyplot.figure(figsize=(8.3, 3.5), tight_layout=True)
|
141
148
|
pyplot.plot(plot_x, np.array(plot_y['mpi4py'])/np.array(plot_y['numba_mpi']), marker='o')
|
142
|
-
pyplot.xlabel('
|
143
|
-
pyplot.ylabel('wall
|
149
|
+
pyplot.xlabel('number of MPI calls per interval')
|
150
|
+
pyplot.ylabel('mpi4py/numba-mpi wall-time ratio')
|
144
151
|
pyplot.title(f'mpiexec -np {numba_mpi.size()}')
|
145
152
|
pyplot.grid()
|
146
|
-
pyplot.savefig('readme_plot.
|
153
|
+
pyplot.savefig('readme_plot.svg')
|
147
154
|
```
|
148
155
|
|
149
156
|

|
@@ -1,4 +1,4 @@
|
|
1
|
-
numba_mpi/__init__.py,sha256=
|
1
|
+
numba_mpi/__init__.py,sha256=VkDzjRJcaS6j739oHdCqhdUcZLBlMFxfcn58zDjevoQ,741
|
2
2
|
numba_mpi/common.py,sha256=2JJoUrd3Qa6GIFk6Zlt2NudS7ZurPxpVwBLRGSkCg5E,2266
|
3
3
|
numba_mpi/utils.py,sha256=gfGFuzmGgs4FnBqzPI91ftAq4UHgXb_HFkvxrVWkcIo,1866
|
4
4
|
numba_mpi/api/__init__.py,sha256=Zj5df4lWeGpxAXV8jKGFnmtLBQ50HwNU8dPf-os06X8,51
|
@@ -11,13 +11,13 @@ numba_mpi/api/isend.py,sha256=2mpP4FhMk0GrikjDluKwRnpVywdLj9RD4HVVEMSj9A8,1080
|
|
11
11
|
numba_mpi/api/operator.py,sha256=3VTPZAdOP05bxdqt3lA0hRDICM-iaBMa4m-krEdO91s,342
|
12
12
|
numba_mpi/api/rank.py,sha256=pqayxw-5QDJ7VJ3gKrvuu1G0sBlYEZt1juhnaDi_JD8,549
|
13
13
|
numba_mpi/api/recv.py,sha256=YsYK-q7PNfi3zt0ftVddM363VsnJ4XFfmgMq8aeCr-o,1260
|
14
|
-
numba_mpi/api/requests.py,sha256=
|
14
|
+
numba_mpi/api/requests.py,sha256=5EhgFyeQCGP8YclSPwxP95c2AhBo19CLlShK0TxCR2U,9114
|
15
15
|
numba_mpi/api/scatter_gather.py,sha256=goZn4BxMKakWQHjfXIOdjzK3DJ-lTeaiQQwgnyQeZ_s,2410
|
16
16
|
numba_mpi/api/send.py,sha256=jn1hPw0YHBHOaeJop_ZbjaBChaqgfw3nM1xGhW9sabI,909
|
17
17
|
numba_mpi/api/size.py,sha256=fYLeUrygvz_XcxIDsLiZlMtS-aiWfp58Zi7aIOAgaj8,549
|
18
18
|
numba_mpi/api/wtime.py,sha256=qrTqlefW7K7hqnAQKkGYm8kgdiRGuSAGiHmPcTrhLzE,279
|
19
|
-
numba_mpi-0.
|
20
|
-
numba_mpi-0.
|
21
|
-
numba_mpi-0.
|
22
|
-
numba_mpi-0.
|
23
|
-
numba_mpi-0.
|
19
|
+
numba_mpi-0.43.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
20
|
+
numba_mpi-0.43.dist-info/METADATA,sha256=oMga9o3BuVvyY-f-9tCWPqkYjj06J7cIbhLZHGZgW4g,8995
|
21
|
+
numba_mpi-0.43.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
|
22
|
+
numba_mpi-0.43.dist-info/top_level.txt,sha256=yb_ktLmrfuhOZS0rjS81FFNC-gK_4c19WbLG2ViP73g,10
|
23
|
+
numba_mpi-0.43.dist-info/RECORD,,
|
File without changes
|
File without changes
|