numba-cuda 0.0.1__py3-none-any.whl → 0.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- _numba_cuda_redirector.pth +1 -0
- _numba_cuda_redirector.py +74 -0
- numba_cuda/VERSION +1 -0
- numba_cuda/__init__.py +5 -0
- numba_cuda/_version.py +19 -0
- numba_cuda/numba/cuda/__init__.py +22 -0
- numba_cuda/numba/cuda/api.py +526 -0
- numba_cuda/numba/cuda/api_util.py +30 -0
- numba_cuda/numba/cuda/args.py +77 -0
- numba_cuda/numba/cuda/cg.py +62 -0
- numba_cuda/numba/cuda/codegen.py +378 -0
- numba_cuda/numba/cuda/compiler.py +422 -0
- numba_cuda/numba/cuda/cpp_function_wrappers.cu +47 -0
- numba_cuda/numba/cuda/cuda_fp16.h +3631 -0
- numba_cuda/numba/cuda/cuda_fp16.hpp +2465 -0
- numba_cuda/numba/cuda/cuda_paths.py +258 -0
- numba_cuda/numba/cuda/cudadecl.py +806 -0
- numba_cuda/numba/cuda/cudadrv/__init__.py +9 -0
- numba_cuda/numba/cuda/cudadrv/devicearray.py +904 -0
- numba_cuda/numba/cuda/cudadrv/devices.py +248 -0
- numba_cuda/numba/cuda/cudadrv/driver.py +3201 -0
- numba_cuda/numba/cuda/cudadrv/drvapi.py +398 -0
- numba_cuda/numba/cuda/cudadrv/dummyarray.py +452 -0
- numba_cuda/numba/cuda/cudadrv/enums.py +607 -0
- numba_cuda/numba/cuda/cudadrv/error.py +36 -0
- numba_cuda/numba/cuda/cudadrv/libs.py +176 -0
- numba_cuda/numba/cuda/cudadrv/ndarray.py +20 -0
- numba_cuda/numba/cuda/cudadrv/nvrtc.py +260 -0
- numba_cuda/numba/cuda/cudadrv/nvvm.py +707 -0
- numba_cuda/numba/cuda/cudadrv/rtapi.py +10 -0
- numba_cuda/numba/cuda/cudadrv/runtime.py +142 -0
- numba_cuda/numba/cuda/cudaimpl.py +1055 -0
- numba_cuda/numba/cuda/cudamath.py +140 -0
- numba_cuda/numba/cuda/decorators.py +189 -0
- numba_cuda/numba/cuda/descriptor.py +33 -0
- numba_cuda/numba/cuda/device_init.py +89 -0
- numba_cuda/numba/cuda/deviceufunc.py +908 -0
- numba_cuda/numba/cuda/dispatcher.py +1057 -0
- numba_cuda/numba/cuda/errors.py +59 -0
- numba_cuda/numba/cuda/extending.py +7 -0
- numba_cuda/numba/cuda/initialize.py +13 -0
- numba_cuda/numba/cuda/intrinsic_wrapper.py +77 -0
- numba_cuda/numba/cuda/intrinsics.py +198 -0
- numba_cuda/numba/cuda/kernels/__init__.py +0 -0
- numba_cuda/numba/cuda/kernels/reduction.py +262 -0
- numba_cuda/numba/cuda/kernels/transpose.py +65 -0
- numba_cuda/numba/cuda/libdevice.py +3382 -0
- numba_cuda/numba/cuda/libdevicedecl.py +17 -0
- numba_cuda/numba/cuda/libdevicefuncs.py +1057 -0
- numba_cuda/numba/cuda/libdeviceimpl.py +83 -0
- numba_cuda/numba/cuda/mathimpl.py +448 -0
- numba_cuda/numba/cuda/models.py +48 -0
- numba_cuda/numba/cuda/nvvmutils.py +235 -0
- numba_cuda/numba/cuda/printimpl.py +86 -0
- numba_cuda/numba/cuda/random.py +292 -0
- numba_cuda/numba/cuda/simulator/__init__.py +38 -0
- numba_cuda/numba/cuda/simulator/api.py +110 -0
- numba_cuda/numba/cuda/simulator/compiler.py +9 -0
- numba_cuda/numba/cuda/simulator/cudadrv/__init__.py +2 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devicearray.py +432 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devices.py +117 -0
- numba_cuda/numba/cuda/simulator/cudadrv/driver.py +62 -0
- numba_cuda/numba/cuda/simulator/cudadrv/drvapi.py +4 -0
- numba_cuda/numba/cuda/simulator/cudadrv/dummyarray.py +4 -0
- numba_cuda/numba/cuda/simulator/cudadrv/error.py +6 -0
- numba_cuda/numba/cuda/simulator/cudadrv/libs.py +2 -0
- numba_cuda/numba/cuda/simulator/cudadrv/nvvm.py +29 -0
- numba_cuda/numba/cuda/simulator/cudadrv/runtime.py +19 -0
- numba_cuda/numba/cuda/simulator/kernel.py +308 -0
- numba_cuda/numba/cuda/simulator/kernelapi.py +495 -0
- numba_cuda/numba/cuda/simulator/reduction.py +15 -0
- numba_cuda/numba/cuda/simulator/vector_types.py +58 -0
- numba_cuda/numba/cuda/simulator_init.py +17 -0
- numba_cuda/numba/cuda/stubs.py +902 -0
- numba_cuda/numba/cuda/target.py +440 -0
- numba_cuda/numba/cuda/testing.py +202 -0
- numba_cuda/numba/cuda/tests/__init__.py +58 -0
- numba_cuda/numba/cuda/tests/cudadrv/__init__.py +8 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_array_attr.py +145 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_context_stack.py +145 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_array_slicing.py +375 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_auto_context.py +21 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_devicerecord.py +179 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_driver.py +235 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_libraries.py +22 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_memory.py +193 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_ndarray.py +547 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_deallocations.py +249 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_detect.py +81 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_emm_plugins.py +192 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_events.py +38 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_host_alloc.py +65 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_init.py +139 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_inline_ptx.py +37 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_is_fp16.py +12 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_linker.py +317 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_managed_alloc.py +127 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_mvc.py +54 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvvm_driver.py +199 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_pinned.py +37 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_profiler.py +20 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_ptds.py +149 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_reset_device.py +36 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_runtime.py +85 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_select_device.py +41 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_streams.py +122 -0
- numba_cuda/numba/cuda/tests/cudapy/__init__.py +8 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_usecases.py +234 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_with_cpu_usecases.py +41 -0
- numba_cuda/numba/cuda/tests/cudapy/extensions_usecases.py +58 -0
- numba_cuda/numba/cuda/tests/cudapy/jitlink.ptx +30 -0
- numba_cuda/numba/cuda/tests/cudapy/recursion_usecases.py +100 -0
- numba_cuda/numba/cuda/tests/cudapy/test_alignment.py +42 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array.py +260 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_args.py +201 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_methods.py +35 -0
- numba_cuda/numba/cuda/tests/cudapy/test_atomics.py +1620 -0
- numba_cuda/numba/cuda/tests/cudapy/test_blackscholes.py +120 -0
- numba_cuda/numba/cuda/tests/cudapy/test_boolean.py +24 -0
- numba_cuda/numba/cuda/tests/cudapy/test_caching.py +545 -0
- numba_cuda/numba/cuda/tests/cudapy/test_casting.py +257 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cffi.py +33 -0
- numba_cuda/numba/cuda/tests/cudapy/test_compiler.py +276 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex.py +296 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex_kernel.py +20 -0
- numba_cuda/numba/cuda/tests/cudapy/test_const_string.py +129 -0
- numba_cuda/numba/cuda/tests/cudapy/test_constmem.py +176 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cooperative_groups.py +147 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_array_interface.py +435 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_jit_no_types.py +90 -0
- numba_cuda/numba/cuda/tests/cudapy/test_datetime.py +94 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debug.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py +221 -0
- numba_cuda/numba/cuda/tests/cudapy/test_device_func.py +222 -0
- numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py +700 -0
- numba_cuda/numba/cuda/tests/cudapy/test_enums.py +121 -0
- numba_cuda/numba/cuda/tests/cudapy/test_errors.py +79 -0
- numba_cuda/numba/cuda/tests/cudapy/test_exception.py +174 -0
- numba_cuda/numba/cuda/tests/cudapy/test_extending.py +155 -0
- numba_cuda/numba/cuda/tests/cudapy/test_fastmath.py +244 -0
- numba_cuda/numba/cuda/tests/cudapy/test_forall.py +52 -0
- numba_cuda/numba/cuda/tests/cudapy/test_freevar.py +29 -0
- numba_cuda/numba/cuda/tests/cudapy/test_frexp_ldexp.py +66 -0
- numba_cuda/numba/cuda/tests/cudapy/test_globals.py +60 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc.py +456 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scalar.py +159 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scheduling.py +95 -0
- numba_cuda/numba/cuda/tests/cudapy/test_idiv.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_inspect.py +165 -0
- numba_cuda/numba/cuda/tests/cudapy/test_intrinsics.py +1106 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ipc.py +318 -0
- numba_cuda/numba/cuda/tests/cudapy/test_iterators.py +99 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lang.py +64 -0
- numba_cuda/numba/cuda/tests/cudapy/test_laplace.py +119 -0
- numba_cuda/numba/cuda/tests/cudapy/test_libdevice.py +187 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py +199 -0
- numba_cuda/numba/cuda/tests/cudapy/test_localmem.py +164 -0
- numba_cuda/numba/cuda/tests/cudapy/test_mandel.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_math.py +786 -0
- numba_cuda/numba/cuda/tests/cudapy/test_matmul.py +74 -0
- numba_cuda/numba/cuda/tests/cudapy/test_minmax.py +113 -0
- numba_cuda/numba/cuda/tests/cudapy/test_montecarlo.py +22 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multigpu.py +140 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multiprocessing.py +46 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multithreads.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_nondet.py +49 -0
- numba_cuda/numba/cuda/tests/cudapy/test_operator.py +401 -0
- numba_cuda/numba/cuda/tests/cudapy/test_optimization.py +86 -0
- numba_cuda/numba/cuda/tests/cudapy/test_overload.py +335 -0
- numba_cuda/numba/cuda/tests/cudapy/test_powi.py +124 -0
- numba_cuda/numba/cuda/tests/cudapy/test_print.py +128 -0
- numba_cuda/numba/cuda/tests/cudapy/test_py2_div_issue.py +33 -0
- numba_cuda/numba/cuda/tests/cudapy/test_random.py +104 -0
- numba_cuda/numba/cuda/tests/cudapy/test_record_dtype.py +610 -0
- numba_cuda/numba/cuda/tests/cudapy/test_recursion.py +125 -0
- numba_cuda/numba/cuda/tests/cudapy/test_reduction.py +76 -0
- numba_cuda/numba/cuda/tests/cudapy/test_retrieve_autoconverted_arrays.py +83 -0
- numba_cuda/numba/cuda/tests/cudapy/test_serialize.py +85 -0
- numba_cuda/numba/cuda/tests/cudapy/test_slicing.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm.py +444 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm_creation.py +205 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sync.py +271 -0
- numba_cuda/numba/cuda/tests/cudapy/test_transpose.py +80 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ufuncs.py +277 -0
- numba_cuda/numba/cuda/tests/cudapy/test_userexc.py +47 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vector_type.py +307 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize.py +283 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_complex.py +20 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_decor.py +69 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_device.py +36 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_scalar_arg.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warning.py +139 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warp_ops.py +276 -0
- numba_cuda/numba/cuda/tests/cudasim/__init__.py +6 -0
- numba_cuda/numba/cuda/tests/cudasim/support.py +6 -0
- numba_cuda/numba/cuda/tests/cudasim/test_cudasim_issues.py +102 -0
- numba_cuda/numba/cuda/tests/data/__init__.py +0 -0
- numba_cuda/numba/cuda/tests/data/cuda_include.cu +5 -0
- numba_cuda/numba/cuda/tests/data/error.cu +7 -0
- numba_cuda/numba/cuda/tests/data/jitlink.cu +23 -0
- numba_cuda/numba/cuda/tests/data/jitlink.ptx +51 -0
- numba_cuda/numba/cuda/tests/data/warn.cu +7 -0
- numba_cuda/numba/cuda/tests/doc_examples/__init__.py +6 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/__init__.py +0 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/functions.cu +49 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cg.py +77 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cpu_gpu_compat.py +76 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ffi.py +82 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_laplace.py +155 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_matmul.py +173 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_montecarlo.py +109 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_random.py +59 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_reduction.py +76 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_sessionize.py +130 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ufunc.py +50 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_vecadd.py +73 -0
- numba_cuda/numba/cuda/tests/nocuda/__init__.py +8 -0
- numba_cuda/numba/cuda/tests/nocuda/test_dummyarray.py +359 -0
- numba_cuda/numba/cuda/tests/nocuda/test_function_resolution.py +36 -0
- numba_cuda/numba/cuda/tests/nocuda/test_import.py +49 -0
- numba_cuda/numba/cuda/tests/nocuda/test_library_lookup.py +238 -0
- numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py +54 -0
- numba_cuda/numba/cuda/types.py +37 -0
- numba_cuda/numba/cuda/ufuncs.py +662 -0
- numba_cuda/numba/cuda/vector_types.py +209 -0
- numba_cuda/numba/cuda/vectorizers.py +252 -0
- numba_cuda-0.0.13.dist-info/LICENSE +25 -0
- numba_cuda-0.0.13.dist-info/METADATA +69 -0
- numba_cuda-0.0.13.dist-info/RECORD +231 -0
- {numba_cuda-0.0.1.dist-info → numba_cuda-0.0.13.dist-info}/WHEEL +1 -1
- numba_cuda-0.0.1.dist-info/METADATA +0 -10
- numba_cuda-0.0.1.dist-info/RECORD +0 -5
- {numba_cuda-0.0.1.dist-info → numba_cuda-0.0.13.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,786 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from numba.cuda.testing import (skip_unless_cc_53,
|
3
|
+
unittest,
|
4
|
+
CUDATestCase,
|
5
|
+
skip_on_cudasim)
|
6
|
+
from numba.np import numpy_support
|
7
|
+
from numba import cuda, float32, float64, int32, vectorize, void, int64
|
8
|
+
import math
|
9
|
+
|
10
|
+
|
11
|
+
def math_acos(A, B):
|
12
|
+
i = cuda.grid(1)
|
13
|
+
B[i] = math.acos(A[i])
|
14
|
+
|
15
|
+
|
16
|
+
def math_asin(A, B):
|
17
|
+
i = cuda.grid(1)
|
18
|
+
B[i] = math.asin(A[i])
|
19
|
+
|
20
|
+
|
21
|
+
def math_atan(A, B):
|
22
|
+
i = cuda.grid(1)
|
23
|
+
B[i] = math.atan(A[i])
|
24
|
+
|
25
|
+
|
26
|
+
def math_acosh(A, B):
|
27
|
+
i = cuda.grid(1)
|
28
|
+
B[i] = math.acosh(A[i])
|
29
|
+
|
30
|
+
|
31
|
+
def math_asinh(A, B):
|
32
|
+
i = cuda.grid(1)
|
33
|
+
B[i] = math.asinh(A[i])
|
34
|
+
|
35
|
+
|
36
|
+
def math_atanh(A, B):
|
37
|
+
i = cuda.grid(1)
|
38
|
+
B[i] = math.atanh(A[i])
|
39
|
+
|
40
|
+
|
41
|
+
def math_cos(A, B):
|
42
|
+
i = cuda.grid(1)
|
43
|
+
B[i] = math.cos(A[i])
|
44
|
+
|
45
|
+
|
46
|
+
def math_sin(A, B):
|
47
|
+
i = cuda.grid(1)
|
48
|
+
B[i] = math.sin(A[i])
|
49
|
+
|
50
|
+
|
51
|
+
def math_tan(A, B):
|
52
|
+
i = cuda.grid(1)
|
53
|
+
B[i] = math.tan(A[i])
|
54
|
+
|
55
|
+
|
56
|
+
def math_cosh(A, B):
|
57
|
+
i = cuda.grid(1)
|
58
|
+
B[i] = math.cosh(A[i])
|
59
|
+
|
60
|
+
|
61
|
+
def math_sinh(A, B):
|
62
|
+
i = cuda.grid(1)
|
63
|
+
B[i] = math.sinh(A[i])
|
64
|
+
|
65
|
+
|
66
|
+
def math_tanh(A, B):
|
67
|
+
i = cuda.grid(1)
|
68
|
+
B[i] = math.tanh(A[i])
|
69
|
+
|
70
|
+
|
71
|
+
def math_atan2(A, B, C):
|
72
|
+
i = cuda.grid(1)
|
73
|
+
C[i] = math.atan2(A[i], B[i])
|
74
|
+
|
75
|
+
|
76
|
+
def math_exp(A, B):
|
77
|
+
i = cuda.grid(1)
|
78
|
+
B[i] = math.exp(A[i])
|
79
|
+
|
80
|
+
|
81
|
+
def math_erf(A, B):
|
82
|
+
i = cuda.grid(1)
|
83
|
+
B[i] = math.erf(A[i])
|
84
|
+
|
85
|
+
|
86
|
+
def math_erfc(A, B):
|
87
|
+
i = cuda.grid(1)
|
88
|
+
B[i] = math.erfc(A[i])
|
89
|
+
|
90
|
+
|
91
|
+
def math_expm1(A, B):
|
92
|
+
i = cuda.grid(1)
|
93
|
+
B[i] = math.expm1(A[i])
|
94
|
+
|
95
|
+
|
96
|
+
def math_fabs(A, B):
|
97
|
+
i = cuda.grid(1)
|
98
|
+
B[i] = math.fabs(A[i])
|
99
|
+
|
100
|
+
|
101
|
+
def math_gamma(A, B):
|
102
|
+
i = cuda.grid(1)
|
103
|
+
B[i] = math.gamma(A[i])
|
104
|
+
|
105
|
+
|
106
|
+
def math_lgamma(A, B):
|
107
|
+
i = cuda.grid(1)
|
108
|
+
B[i] = math.lgamma(A[i])
|
109
|
+
|
110
|
+
|
111
|
+
def math_log(A, B):
|
112
|
+
i = cuda.grid(1)
|
113
|
+
B[i] = math.log(A[i])
|
114
|
+
|
115
|
+
|
116
|
+
def math_log2(A, B):
|
117
|
+
i = cuda.grid(1)
|
118
|
+
B[i] = math.log2(A[i])
|
119
|
+
|
120
|
+
|
121
|
+
def math_log10(A, B):
|
122
|
+
i = cuda.grid(1)
|
123
|
+
B[i] = math.log10(A[i])
|
124
|
+
|
125
|
+
|
126
|
+
def math_log1p(A, B):
|
127
|
+
i = cuda.grid(1)
|
128
|
+
B[i] = math.log1p(A[i])
|
129
|
+
|
130
|
+
|
131
|
+
def math_remainder(A, B, C):
|
132
|
+
i = cuda.grid(1)
|
133
|
+
C[i] = math.remainder(A[i], B[i])
|
134
|
+
|
135
|
+
|
136
|
+
def math_sqrt(A, B):
|
137
|
+
i = cuda.grid(1)
|
138
|
+
B[i] = math.sqrt(A[i])
|
139
|
+
|
140
|
+
|
141
|
+
def math_hypot(A, B, C):
|
142
|
+
i = cuda.grid(1)
|
143
|
+
C[i] = math.hypot(A[i], B[i])
|
144
|
+
|
145
|
+
|
146
|
+
def math_pow(A, B, C):
|
147
|
+
i = cuda.grid(1)
|
148
|
+
C[i] = math.pow(A[i], B[i])
|
149
|
+
|
150
|
+
|
151
|
+
def math_ceil(A, B):
|
152
|
+
i = cuda.grid(1)
|
153
|
+
B[i] = math.ceil(A[i])
|
154
|
+
|
155
|
+
|
156
|
+
def math_floor(A, B):
|
157
|
+
i = cuda.grid(1)
|
158
|
+
B[i] = math.floor(A[i])
|
159
|
+
|
160
|
+
|
161
|
+
def math_copysign(A, B, C):
|
162
|
+
i = cuda.grid(1)
|
163
|
+
C[i] = math.copysign(A[i], B[i])
|
164
|
+
|
165
|
+
|
166
|
+
def math_fmod(A, B, C):
|
167
|
+
i = cuda.grid(1)
|
168
|
+
C[i] = math.fmod(A[i], B[i])
|
169
|
+
|
170
|
+
|
171
|
+
def math_modf(A, B, C):
|
172
|
+
i = cuda.grid(1)
|
173
|
+
B[i], C[i] = math.modf(A[i])
|
174
|
+
|
175
|
+
|
176
|
+
def math_isnan(A, B):
|
177
|
+
i = cuda.grid(1)
|
178
|
+
B[i] = math.isnan(A[i])
|
179
|
+
|
180
|
+
|
181
|
+
def math_isinf(A, B):
|
182
|
+
i = cuda.grid(1)
|
183
|
+
B[i] = math.isinf(A[i])
|
184
|
+
|
185
|
+
|
186
|
+
def math_isfinite(A, B):
|
187
|
+
i = cuda.grid(1)
|
188
|
+
B[i] = math.isfinite(A[i])
|
189
|
+
|
190
|
+
|
191
|
+
def math_degrees(A, B):
|
192
|
+
i = cuda.grid(1)
|
193
|
+
B[i] = math.degrees(A[i])
|
194
|
+
|
195
|
+
|
196
|
+
def math_radians(A, B):
|
197
|
+
i = cuda.grid(1)
|
198
|
+
B[i] = math.radians(A[i])
|
199
|
+
|
200
|
+
|
201
|
+
def math_trunc(A, B):
|
202
|
+
i = cuda.grid(1)
|
203
|
+
B[i] = math.trunc(A[i])
|
204
|
+
|
205
|
+
|
206
|
+
def math_pow_binop(A, B, C):
|
207
|
+
i = cuda.grid(1)
|
208
|
+
C[i] = A[i] ** B[i]
|
209
|
+
|
210
|
+
|
211
|
+
def math_mod_binop(A, B, C):
|
212
|
+
i = cuda.grid(1)
|
213
|
+
C[i] = A[i] % B[i]
|
214
|
+
|
215
|
+
|
216
|
+
class TestCudaMath(CUDATestCase):
|
217
|
+
def unary_template_float16(self, func, npfunc, start=0, stop=1):
|
218
|
+
self.unary_template(func, npfunc, np.float16, np.float16, start, stop)
|
219
|
+
|
220
|
+
def unary_template_float32(self, func, npfunc, start=0, stop=1):
|
221
|
+
self.unary_template(func, npfunc, np.float32, np.float32, start, stop)
|
222
|
+
|
223
|
+
def unary_template_float64(self, func, npfunc, start=0, stop=1):
|
224
|
+
self.unary_template(func, npfunc, np.float64, np.float64, start, stop)
|
225
|
+
|
226
|
+
def unary_template_int64(self, func, npfunc, start=0, stop=50):
|
227
|
+
self.unary_template(func, npfunc, np.int64, np.float64, start, stop)
|
228
|
+
|
229
|
+
def unary_template_uint64(self, func, npfunc, start=0, stop=50):
|
230
|
+
self.unary_template(func, npfunc, np.uint64, np.float64, start, stop)
|
231
|
+
|
232
|
+
def unary_template(self, func, npfunc, npdtype, nprestype, start, stop):
|
233
|
+
nelem = 50
|
234
|
+
A = np.linspace(start, stop, nelem).astype(npdtype)
|
235
|
+
B = np.empty_like(A).astype(nprestype)
|
236
|
+
arytype = numpy_support.from_dtype(npdtype)[::1]
|
237
|
+
restype = numpy_support.from_dtype(nprestype)[::1]
|
238
|
+
cfunc = cuda.jit((arytype, restype))(func)
|
239
|
+
cfunc[1, nelem](A, B)
|
240
|
+
|
241
|
+
# When this test was originally written it used
|
242
|
+
# assertTrue(np.allclose(...), which has different default tolerance
|
243
|
+
# values to assert_allclose. The tolerance values here are chosen as
|
244
|
+
# the tightest under which the tests will pass.
|
245
|
+
if npdtype == np.float64:
|
246
|
+
rtol = 1e-13
|
247
|
+
elif npdtype == np.float32:
|
248
|
+
rtol = 1e-6
|
249
|
+
else:
|
250
|
+
rtol = 1e-3
|
251
|
+
np.testing.assert_allclose(npfunc(A), B, rtol=rtol)
|
252
|
+
|
253
|
+
def unary_bool_special_values(self, func, npfunc, npdtype, npmtype):
|
254
|
+
fi = np.finfo(npdtype)
|
255
|
+
denorm = fi.tiny / 4
|
256
|
+
A = np.array([0., denorm, fi.tiny, 0.5, 1., fi.max, np.inf, np.nan],
|
257
|
+
dtype=npdtype)
|
258
|
+
B = np.empty_like(A, dtype=np.int32)
|
259
|
+
cfunc = cuda.jit((npmtype[::1], int32[::1]))(func)
|
260
|
+
|
261
|
+
cfunc[1, A.size](A, B)
|
262
|
+
np.testing.assert_array_equal(B, npfunc(A))
|
263
|
+
|
264
|
+
cfunc[1, A.size](-A, B)
|
265
|
+
np.testing.assert_array_equal(B, npfunc(-A))
|
266
|
+
|
267
|
+
def unary_bool_special_values_float32(self, func, npfunc):
|
268
|
+
self.unary_bool_special_values(func, npfunc, np.float32, float32)
|
269
|
+
|
270
|
+
def unary_bool_special_values_float64(self, func, npfunc):
|
271
|
+
self.unary_bool_special_values(func, npfunc, np.float64, float64)
|
272
|
+
|
273
|
+
def unary_bool_template_float32(self, func, npfunc, start=0, stop=1):
|
274
|
+
self.unary_template(func, npfunc, np.float32, np.float32, start, stop)
|
275
|
+
|
276
|
+
def unary_bool_template_float64(self, func, npfunc, start=0, stop=1):
|
277
|
+
self.unary_template(func, npfunc, np.float64, np.float64, start, stop)
|
278
|
+
|
279
|
+
def unary_bool_template_int32(self, func, npfunc, start=0, stop=49):
|
280
|
+
self.unary_template(func, npfunc, np.int32, np.int32, start, stop)
|
281
|
+
|
282
|
+
def unary_bool_template_int64(self, func, npfunc, start=0, stop=49):
|
283
|
+
self.unary_template(func, npfunc, np.int64, np.int64, start, stop)
|
284
|
+
|
285
|
+
def unary_bool_template(self, func, npfunc, npdtype, npmtype, start, stop):
|
286
|
+
nelem = 50
|
287
|
+
A = np.linspace(start, stop, nelem).astype(npdtype)
|
288
|
+
B = np.empty(A.shape, dtype=np.int32)
|
289
|
+
iarytype = npmtype[::1]
|
290
|
+
oarytype = int32[::1]
|
291
|
+
cfunc = cuda.jit((iarytype, oarytype))(func)
|
292
|
+
cfunc[1, nelem](A, B)
|
293
|
+
np.testing.assert_allclose(npfunc(A), B)
|
294
|
+
|
295
|
+
def binary_template_float32(self, func, npfunc, start=0, stop=1):
|
296
|
+
self.binary_template(func, npfunc, np.float32, np.float32, start, stop)
|
297
|
+
|
298
|
+
def binary_template_float64(self, func, npfunc, start=0, stop=1):
|
299
|
+
self.binary_template(func, npfunc, np.float64, np.float64, start, stop)
|
300
|
+
|
301
|
+
def binary_template_int64(self, func, npfunc, start=0, stop=50):
|
302
|
+
self.binary_template(func, npfunc, np.int64, np.float64, start, stop)
|
303
|
+
|
304
|
+
def binary_template_uint64(self, func, npfunc, start=0, stop=50):
|
305
|
+
self.binary_template(func, npfunc, np.uint64, np.float64, start, stop)
|
306
|
+
|
307
|
+
def binary_template(self, func, npfunc, npdtype, nprestype, start, stop):
|
308
|
+
nelem = 50
|
309
|
+
A = np.linspace(start, stop, nelem).astype(npdtype)
|
310
|
+
B = np.empty_like(A).astype(nprestype)
|
311
|
+
arytype = numpy_support.from_dtype(npdtype)[::1]
|
312
|
+
restype = numpy_support.from_dtype(nprestype)[::1]
|
313
|
+
cfunc = cuda.jit((arytype, arytype, restype))(func)
|
314
|
+
cfunc[1, nelem](A, A, B)
|
315
|
+
np.testing.assert_allclose(npfunc(A, A), B)
|
316
|
+
|
317
|
+
#---------------------------------------------------------------------------
|
318
|
+
# test_math_acos
|
319
|
+
|
320
|
+
def test_math_acos(self):
|
321
|
+
self.unary_template_float32(math_acos, np.arccos)
|
322
|
+
self.unary_template_float64(math_acos, np.arccos)
|
323
|
+
# For integers we can only test with zero, since <=-1 and >=1 result in
|
324
|
+
# invalid values.
|
325
|
+
self.unary_template_int64(math_acos, np.arccos, start=0, stop=0)
|
326
|
+
self.unary_template_uint64(math_acos, np.arccos, start=0, stop=0)
|
327
|
+
|
328
|
+
#---------------------------------------------------------------------------
|
329
|
+
# test_math_asin
|
330
|
+
|
331
|
+
def test_math_asin(self):
|
332
|
+
self.unary_template_float32(math_asin, np.arcsin)
|
333
|
+
self.unary_template_float64(math_asin, np.arcsin)
|
334
|
+
# For integers we can only test with zero, since <=-1 and >=1 result in
|
335
|
+
# invalid values.
|
336
|
+
self.unary_template_int64(math_asin, np.arcsin, start=0, stop=0)
|
337
|
+
self.unary_template_uint64(math_asin, np.arcsin, start=0, stop=0)
|
338
|
+
|
339
|
+
#---------------------------------------------------------------------------
|
340
|
+
# test_math_atan
|
341
|
+
|
342
|
+
def test_math_atan(self):
|
343
|
+
self.unary_template_float32(math_atan, np.arctan)
|
344
|
+
self.unary_template_float64(math_atan, np.arctan)
|
345
|
+
self.unary_template_int64(math_atan, np.arctan)
|
346
|
+
self.unary_template_uint64(math_atan, np.arctan)
|
347
|
+
|
348
|
+
#---------------------------------------------------------------------------
|
349
|
+
# test_math_acosh
|
350
|
+
|
351
|
+
def test_math_acosh(self):
|
352
|
+
self.unary_template_float32(math_acosh, np.arccosh, start=1, stop=2)
|
353
|
+
self.unary_template_float64(math_acosh, np.arccosh, start=1, stop=2)
|
354
|
+
self.unary_template_int64(math_acosh, np.arccosh, start=1, stop=2)
|
355
|
+
self.unary_template_uint64(math_acosh, np.arccosh, start=1, stop=2)
|
356
|
+
|
357
|
+
#---------------------------------------------------------------------------
|
358
|
+
# test_math_asinh
|
359
|
+
|
360
|
+
def test_math_asinh(self):
|
361
|
+
self.unary_template_float32(math_asinh, np.arcsinh)
|
362
|
+
self.unary_template_float64(math_asinh, np.arcsinh)
|
363
|
+
self.unary_template_int64(math_asinh, np.arcsinh)
|
364
|
+
self.unary_template_uint64(math_asinh, np.arcsinh)
|
365
|
+
|
366
|
+
#---------------------------------------------------------------------------
|
367
|
+
# test_math_atanh
|
368
|
+
|
369
|
+
def test_math_atanh(self):
|
370
|
+
self.unary_template_float32(math_atanh, np.arctanh, start=0, stop=.9)
|
371
|
+
self.unary_template_float64(math_atanh, np.arctanh, start=0, stop=.9)
|
372
|
+
self.unary_template_int64(math_atanh, np.arctanh, start=0, stop=.9)
|
373
|
+
self.unary_template_uint64(math_atanh, np.arctanh, start=0, stop=.9)
|
374
|
+
|
375
|
+
#---------------------------------------------------------------------------
|
376
|
+
# test_math_cos
|
377
|
+
|
378
|
+
def test_math_cos(self):
|
379
|
+
self.unary_template_float32(math_cos, np.cos)
|
380
|
+
self.unary_template_float64(math_cos, np.cos)
|
381
|
+
self.unary_template_int64(math_cos, np.cos)
|
382
|
+
self.unary_template_uint64(math_cos, np.cos)
|
383
|
+
|
384
|
+
@skip_unless_cc_53
|
385
|
+
def test_math_fp16(self):
|
386
|
+
self.unary_template_float16(math_sin, np.sin)
|
387
|
+
self.unary_template_float16(math_cos, np.cos)
|
388
|
+
self.unary_template_float16(math_exp, np.exp)
|
389
|
+
self.unary_template_float16(math_log, np.log, start=1)
|
390
|
+
self.unary_template_float16(math_log2, np.log2, start=1)
|
391
|
+
self.unary_template_float16(math_log10, np.log10, start=1)
|
392
|
+
self.unary_template_float16(math_fabs, np.fabs, start=-1)
|
393
|
+
self.unary_template_float16(math_sqrt, np.sqrt)
|
394
|
+
self.unary_template_float16(math_ceil, np.ceil)
|
395
|
+
self.unary_template_float16(math_floor, np.floor)
|
396
|
+
|
397
|
+
@skip_on_cudasim("numpy does not support trunc for float16")
|
398
|
+
@skip_unless_cc_53
|
399
|
+
def test_math_fp16_trunc(self):
|
400
|
+
self.unary_template_float16(math_trunc, np.trunc)
|
401
|
+
|
402
|
+
#---------------------------------------------------------------------------
|
403
|
+
# test_math_sin
|
404
|
+
|
405
|
+
def test_math_sin(self):
|
406
|
+
self.unary_template_float32(math_sin, np.sin)
|
407
|
+
self.unary_template_float64(math_sin, np.sin)
|
408
|
+
self.unary_template_int64(math_sin, np.sin)
|
409
|
+
self.unary_template_uint64(math_sin, np.sin)
|
410
|
+
|
411
|
+
#---------------------------------------------------------------------------
|
412
|
+
# test_math_tan
|
413
|
+
|
414
|
+
def test_math_tan(self):
|
415
|
+
self.unary_template_float32(math_tan, np.tan)
|
416
|
+
self.unary_template_float64(math_tan, np.tan)
|
417
|
+
self.unary_template_int64(math_tan, np.tan)
|
418
|
+
self.unary_template_uint64(math_tan, np.tan)
|
419
|
+
|
420
|
+
#---------------------------------------------------------------------------
|
421
|
+
# test_math_cosh
|
422
|
+
|
423
|
+
def test_math_cosh(self):
|
424
|
+
self.unary_template_float32(math_cosh, np.cosh)
|
425
|
+
self.unary_template_float64(math_cosh, np.cosh)
|
426
|
+
self.unary_template_int64(math_cosh, np.cosh)
|
427
|
+
self.unary_template_uint64(math_cosh, np.cosh)
|
428
|
+
|
429
|
+
#---------------------------------------------------------------------------
|
430
|
+
# test_math_sinh
|
431
|
+
|
432
|
+
def test_math_sinh(self):
|
433
|
+
self.unary_template_float32(math_sinh, np.sinh)
|
434
|
+
self.unary_template_float64(math_sinh, np.sinh)
|
435
|
+
self.unary_template_int64(math_sinh, np.sinh)
|
436
|
+
self.unary_template_uint64(math_sinh, np.sinh)
|
437
|
+
|
438
|
+
#---------------------------------------------------------------------------
|
439
|
+
# test_math_tanh
|
440
|
+
|
441
|
+
def test_math_tanh(self):
|
442
|
+
self.unary_template_float32(math_tanh, np.tanh)
|
443
|
+
self.unary_template_float64(math_tanh, np.tanh)
|
444
|
+
self.unary_template_int64(math_tanh, np.tanh)
|
445
|
+
self.unary_template_uint64(math_tanh, np.tanh)
|
446
|
+
|
447
|
+
#---------------------------------------------------------------------------
|
448
|
+
# test_math_atan2
|
449
|
+
|
450
|
+
def test_math_atan2(self):
|
451
|
+
self.binary_template_float32(math_atan2, np.arctan2)
|
452
|
+
self.binary_template_float64(math_atan2, np.arctan2)
|
453
|
+
self.binary_template_int64(math_atan2, np.arctan2)
|
454
|
+
self.binary_template_uint64(math_atan2, np.arctan2)
|
455
|
+
|
456
|
+
#---------------------------------------------------------------------------
|
457
|
+
# test_math_erf
|
458
|
+
|
459
|
+
def test_math_erf(self):
|
460
|
+
@vectorize
|
461
|
+
def ufunc(x):
|
462
|
+
return math.erf(x)
|
463
|
+
self.unary_template_float32(math_erf, ufunc)
|
464
|
+
self.unary_template_float64(math_erf, ufunc)
|
465
|
+
self.unary_template_int64(math_erf, ufunc)
|
466
|
+
self.unary_template_uint64(math_erf, ufunc)
|
467
|
+
|
468
|
+
#---------------------------------------------------------------------------
|
469
|
+
# test_math_erfc
|
470
|
+
|
471
|
+
def test_math_erfc(self):
|
472
|
+
@vectorize
|
473
|
+
def ufunc(x):
|
474
|
+
return math.erfc(x)
|
475
|
+
self.unary_template_float32(math_erfc, ufunc)
|
476
|
+
self.unary_template_float64(math_erfc, ufunc)
|
477
|
+
self.unary_template_int64(math_erfc, ufunc)
|
478
|
+
self.unary_template_uint64(math_erfc, ufunc)
|
479
|
+
|
480
|
+
#---------------------------------------------------------------------------
|
481
|
+
# test_math_exp
|
482
|
+
|
483
|
+
def test_math_exp(self):
|
484
|
+
self.unary_template_float32(math_exp, np.exp)
|
485
|
+
self.unary_template_float64(math_exp, np.exp)
|
486
|
+
self.unary_template_int64(math_exp, np.exp)
|
487
|
+
self.unary_template_uint64(math_exp, np.exp)
|
488
|
+
|
489
|
+
#---------------------------------------------------------------------------
|
490
|
+
# test_math_expm1
|
491
|
+
|
492
|
+
def test_math_expm1(self):
|
493
|
+
self.unary_template_float32(math_expm1, np.expm1)
|
494
|
+
self.unary_template_float64(math_expm1, np.expm1)
|
495
|
+
self.unary_template_int64(math_expm1, np.expm1)
|
496
|
+
self.unary_template_uint64(math_expm1, np.expm1)
|
497
|
+
|
498
|
+
#---------------------------------------------------------------------------
|
499
|
+
# test_math_fabs
|
500
|
+
|
501
|
+
def test_math_fabs(self):
|
502
|
+
self.unary_template_float32(math_fabs, np.fabs, start=-1)
|
503
|
+
self.unary_template_float64(math_fabs, np.fabs, start=-1)
|
504
|
+
self.unary_template_int64(math_fabs, np.fabs, start=-1)
|
505
|
+
self.unary_template_uint64(math_fabs, np.fabs, start=-1)
|
506
|
+
|
507
|
+
#---------------------------------------------------------------------------
|
508
|
+
# test_math_gamma
|
509
|
+
|
510
|
+
def test_math_gamma(self):
|
511
|
+
@vectorize
|
512
|
+
def ufunc(x):
|
513
|
+
return math.gamma(x)
|
514
|
+
self.unary_template_float32(math_gamma, ufunc, start=0.1)
|
515
|
+
self.unary_template_float64(math_gamma, ufunc, start=0.1)
|
516
|
+
self.unary_template_int64(math_gamma, ufunc, start=1)
|
517
|
+
self.unary_template_uint64(math_gamma, ufunc, start=1)
|
518
|
+
|
519
|
+
#---------------------------------------------------------------------------
|
520
|
+
# test_math_lgamma
|
521
|
+
|
522
|
+
def test_math_lgamma(self):
|
523
|
+
@vectorize
|
524
|
+
def ufunc(x):
|
525
|
+
return math.lgamma(x)
|
526
|
+
self.unary_template_float32(math_lgamma, ufunc, start=0.1)
|
527
|
+
self.unary_template_float64(math_lgamma, ufunc, start=0.1)
|
528
|
+
self.unary_template_int64(math_lgamma, ufunc, start=1)
|
529
|
+
self.unary_template_uint64(math_lgamma, ufunc, start=1)
|
530
|
+
|
531
|
+
#---------------------------------------------------------------------------
|
532
|
+
# test_math_log
|
533
|
+
|
534
|
+
def test_math_log(self):
|
535
|
+
self.unary_template_float32(math_log, np.log, start=1)
|
536
|
+
self.unary_template_float64(math_log, np.log, start=1)
|
537
|
+
self.unary_template_int64(math_log, np.log, start=1)
|
538
|
+
self.unary_template_uint64(math_log, np.log, start=1)
|
539
|
+
|
540
|
+
#---------------------------------------------------------------------------
|
541
|
+
# test_math_log2
|
542
|
+
|
543
|
+
def test_math_log2(self):
|
544
|
+
self.unary_template_float32(math_log2, np.log2, start=1)
|
545
|
+
self.unary_template_float64(math_log2, np.log2, start=1)
|
546
|
+
self.unary_template_int64(math_log2, np.log2, start=1)
|
547
|
+
self.unary_template_uint64(math_log2, np.log2, start=1)
|
548
|
+
|
549
|
+
#---------------------------------------------------------------------------
|
550
|
+
# test_math_log10
|
551
|
+
|
552
|
+
def test_math_log10(self):
|
553
|
+
self.unary_template_float32(math_log10, np.log10, start=1)
|
554
|
+
self.unary_template_float64(math_log10, np.log10, start=1)
|
555
|
+
self.unary_template_int64(math_log10, np.log10, start=1)
|
556
|
+
self.unary_template_uint64(math_log10, np.log10, start=1)
|
557
|
+
|
558
|
+
#---------------------------------------------------------------------------
|
559
|
+
# test_math_log1p
|
560
|
+
|
561
|
+
def test_math_log1p(self):
|
562
|
+
self.unary_template_float32(math_log1p, np.log1p)
|
563
|
+
self.unary_template_float64(math_log1p, np.log1p)
|
564
|
+
self.unary_template_int64(math_log1p, np.log1p)
|
565
|
+
self.unary_template_uint64(math_log1p, np.log1p)
|
566
|
+
|
567
|
+
#---------------------------------------------------------------------------
|
568
|
+
# test_math_remainder
|
569
|
+
|
570
|
+
def test_math_remainder(self):
|
571
|
+
self.binary_template_float32(math_remainder, np.remainder, start=1e-11)
|
572
|
+
self.binary_template_float64(math_remainder, np.remainder, start=1e-11)
|
573
|
+
self.binary_template_int64(math_remainder, np.remainder, start=1)
|
574
|
+
self.binary_template_uint64(math_remainder, np.remainder, start=1)
|
575
|
+
|
576
|
+
@skip_on_cudasim('math.remainder(0, 0) raises a ValueError on CUDASim')
|
577
|
+
def test_math_remainder_0_0(self):
|
578
|
+
@cuda.jit(void(float64[::1], int64, int64))
|
579
|
+
def test_0_0(r, x, y):
|
580
|
+
r[0] = math.remainder(x, y)
|
581
|
+
r = np.zeros(1, np.float64)
|
582
|
+
test_0_0[1, 1](r, 0, 0)
|
583
|
+
self.assertTrue(np.isnan(r[0]))
|
584
|
+
|
585
|
+
#---------------------------------------------------------------------------
|
586
|
+
# test_math_sqrt
|
587
|
+
|
588
|
+
def test_math_sqrt(self):
|
589
|
+
self.unary_template_float32(math_sqrt, np.sqrt)
|
590
|
+
self.unary_template_float64(math_sqrt, np.sqrt)
|
591
|
+
self.unary_template_int64(math_sqrt, np.sqrt)
|
592
|
+
self.unary_template_uint64(math_sqrt, np.sqrt)
|
593
|
+
|
594
|
+
#---------------------------------------------------------------------------
|
595
|
+
# test_math_hypot
|
596
|
+
|
597
|
+
def test_math_hypot(self):
|
598
|
+
self.binary_template_float32(math_hypot, np.hypot)
|
599
|
+
self.binary_template_float64(math_hypot, np.hypot)
|
600
|
+
self.binary_template_int64(math_hypot, np.hypot)
|
601
|
+
self.binary_template_uint64(math_hypot, np.hypot)
|
602
|
+
|
603
|
+
#---------------------------------------------------------------------------
|
604
|
+
# test_math_pow
|
605
|
+
|
606
|
+
def pow_template_int32(self, npdtype):
|
607
|
+
nelem = 50
|
608
|
+
A = np.linspace(0, 25, nelem).astype(npdtype)
|
609
|
+
B = np.arange(nelem, dtype=np.int32)
|
610
|
+
C = np.empty_like(A)
|
611
|
+
arytype = numpy_support.from_dtype(npdtype)[::1]
|
612
|
+
cfunc = cuda.jit((arytype, int32[::1], arytype))(math_pow)
|
613
|
+
cfunc[1, nelem](A, B, C)
|
614
|
+
|
615
|
+
# NumPy casting rules result in a float64 output always, which doesn't
|
616
|
+
# match the overflow to inf of math.pow and libdevice.powi for large
|
617
|
+
# values of float32, so we compute the reference result with math.pow.
|
618
|
+
Cref = np.empty_like(A)
|
619
|
+
for i in range(len(A)):
|
620
|
+
Cref[i] = math.pow(A[i], B[i])
|
621
|
+
np.testing.assert_allclose(np.power(A, B).astype(npdtype), C, rtol=1e-6)
|
622
|
+
|
623
|
+
def test_math_pow(self):
|
624
|
+
self.binary_template_float32(math_pow, np.power)
|
625
|
+
self.binary_template_float64(math_pow, np.power)
|
626
|
+
self.pow_template_int32(np.float32)
|
627
|
+
self.pow_template_int32(np.float64)
|
628
|
+
|
629
|
+
#---------------------------------------------------------------------------
|
630
|
+
# test_math_pow_binop
|
631
|
+
|
632
|
+
def test_math_pow_binop(self):
|
633
|
+
self.binary_template_float32(math_pow_binop, np.power)
|
634
|
+
self.binary_template_float64(math_pow_binop, np.power)
|
635
|
+
|
636
|
+
#---------------------------------------------------------------------------
|
637
|
+
# test_math_ceil
|
638
|
+
|
639
|
+
def test_math_ceil(self):
|
640
|
+
self.unary_template_float32(math_ceil, np.ceil)
|
641
|
+
self.unary_template_float64(math_ceil, np.ceil)
|
642
|
+
self.unary_template_int64(math_ceil, np.ceil)
|
643
|
+
self.unary_template_uint64(math_ceil, np.ceil)
|
644
|
+
|
645
|
+
#---------------------------------------------------------------------------
|
646
|
+
# test_math_floor
|
647
|
+
|
648
|
+
def test_math_floor(self):
|
649
|
+
self.unary_template_float32(math_floor, np.floor)
|
650
|
+
self.unary_template_float64(math_floor, np.floor)
|
651
|
+
self.unary_template_int64(math_floor, np.floor)
|
652
|
+
self.unary_template_uint64(math_floor, np.floor)
|
653
|
+
|
654
|
+
#---------------------------------------------------------------------------
|
655
|
+
# test_math_trunc
|
656
|
+
#
|
657
|
+
# Note that math.trunc() is only supported on NumPy float64s, and not
|
658
|
+
# other float types or int types. See NumPy Issue #13375:
|
659
|
+
#
|
660
|
+
# - https://github.com/numpy/numpy/issues/13375 - "Add methods from the
|
661
|
+
# builtin float types to the numpy floating point types"
|
662
|
+
|
663
|
+
def test_math_trunc(self):
|
664
|
+
self.unary_template_float64(math_trunc, np.trunc)
|
665
|
+
|
666
|
+
@skip_on_cudasim('trunc only supported on NumPy float64')
|
667
|
+
def test_math_trunc_non_float64(self):
|
668
|
+
self.unary_template_float32(math_trunc, np.trunc)
|
669
|
+
self.unary_template_int64(math_trunc, np.trunc)
|
670
|
+
self.unary_template_uint64(math_trunc, np.trunc)
|
671
|
+
|
672
|
+
#---------------------------------------------------------------------------
|
673
|
+
# test_math_copysign
|
674
|
+
|
675
|
+
def test_math_copysign(self):
|
676
|
+
self.binary_template_float32(math_copysign, np.copysign, start=-1)
|
677
|
+
self.binary_template_float64(math_copysign, np.copysign, start=-1)
|
678
|
+
|
679
|
+
#---------------------------------------------------------------------------
|
680
|
+
# test_math_modf
|
681
|
+
|
682
|
+
def test_math_modf(self):
|
683
|
+
def modf_template_nan(dtype, arytype):
|
684
|
+
A = np.array([np.nan], dtype=dtype)
|
685
|
+
B = np.zeros_like(A)
|
686
|
+
C = np.zeros_like(A)
|
687
|
+
cfunc = cuda.jit((arytype, arytype, arytype))(math_modf)
|
688
|
+
cfunc[1, len(A)](A, B, C)
|
689
|
+
self.assertTrue(np.isnan(B))
|
690
|
+
self.assertTrue(np.isnan(C))
|
691
|
+
|
692
|
+
def modf_template_compare(A, dtype, arytype):
|
693
|
+
A = A.astype(dtype)
|
694
|
+
B = np.zeros_like(A)
|
695
|
+
C = np.zeros_like(A)
|
696
|
+
cfunc = cuda.jit((arytype, arytype, arytype))(math_modf)
|
697
|
+
cfunc[1, len(A)](A, B, C)
|
698
|
+
D, E = np.modf(A)
|
699
|
+
self.assertTrue(np.array_equal(B,D))
|
700
|
+
self.assertTrue(np.array_equal(C,E))
|
701
|
+
|
702
|
+
nelem = 50
|
703
|
+
#32 bit float
|
704
|
+
with self.subTest("float32 modf on simple float"):
|
705
|
+
modf_template_compare(np.linspace(0, 10, nelem), dtype=np.float32,
|
706
|
+
arytype=float32[:])
|
707
|
+
with self.subTest("float32 modf on +- infinity"):
|
708
|
+
modf_template_compare(np.array([np.inf, -np.inf]), dtype=np.float32,
|
709
|
+
arytype=float32[:])
|
710
|
+
with self.subTest("float32 modf on nan"):
|
711
|
+
modf_template_nan(dtype=np.float32, arytype=float32[:])
|
712
|
+
|
713
|
+
#64 bit float
|
714
|
+
with self.subTest("float64 modf on simple float"):
|
715
|
+
modf_template_compare(np.linspace(0, 10, nelem), dtype=np.float64,
|
716
|
+
arytype=float64[:])
|
717
|
+
with self.subTest("float64 modf on +- infinity"):
|
718
|
+
modf_template_compare(np.array([np.inf, -np.inf]), dtype=np.float64,
|
719
|
+
arytype=float64[:])
|
720
|
+
with self.subTest("float64 modf on nan"):
|
721
|
+
modf_template_nan(dtype=np.float64, arytype=float64[:])
|
722
|
+
|
723
|
+
#---------------------------------------------------------------------------
|
724
|
+
# test_math_fmod
|
725
|
+
|
726
|
+
def test_math_fmod(self):
|
727
|
+
self.binary_template_float32(math_fmod, np.fmod, start=1)
|
728
|
+
self.binary_template_float64(math_fmod, np.fmod, start=1)
|
729
|
+
|
730
|
+
#---------------------------------------------------------------------------
|
731
|
+
# test_math_mod_binop
|
732
|
+
|
733
|
+
def test_math_mod_binop(self):
|
734
|
+
self.binary_template_float32(math_mod_binop, np.fmod, start=1)
|
735
|
+
self.binary_template_float64(math_mod_binop, np.fmod, start=1)
|
736
|
+
|
737
|
+
#---------------------------------------------------------------------------
|
738
|
+
# test_math_isnan
|
739
|
+
|
740
|
+
def test_math_isnan(self):
|
741
|
+
self.unary_bool_template_float32(math_isnan, np.isnan)
|
742
|
+
self.unary_bool_template_float64(math_isnan, np.isnan)
|
743
|
+
self.unary_bool_template_int32(math_isnan, np.isnan)
|
744
|
+
self.unary_bool_template_int64(math_isnan, np.isnan)
|
745
|
+
self.unary_bool_special_values_float32(math_isnan, np.isnan)
|
746
|
+
self.unary_bool_special_values_float64(math_isnan, np.isnan)
|
747
|
+
|
748
|
+
#---------------------------------------------------------------------------
|
749
|
+
# test_math_isinf
|
750
|
+
|
751
|
+
def test_math_isinf(self):
|
752
|
+
self.unary_bool_template_float32(math_isinf, np.isinf)
|
753
|
+
self.unary_bool_template_float64(math_isinf, np.isinf)
|
754
|
+
self.unary_bool_template_int32(math_isinf, np.isinf)
|
755
|
+
self.unary_bool_template_int64(math_isinf, np.isinf)
|
756
|
+
self.unary_bool_special_values_float32(math_isinf, np.isinf)
|
757
|
+
self.unary_bool_special_values_float64(math_isinf, np.isinf)
|
758
|
+
|
759
|
+
#---------------------------------------------------------------------------
|
760
|
+
# test_math_isfinite
|
761
|
+
|
762
|
+
def test_math_isfinite(self):
|
763
|
+
self.unary_bool_template_float32(math_isfinite, np.isfinite)
|
764
|
+
self.unary_bool_template_float64(math_isfinite, np.isfinite)
|
765
|
+
self.unary_bool_template_int32(math_isfinite, np.isfinite)
|
766
|
+
self.unary_bool_template_int64(math_isfinite, np.isfinite)
|
767
|
+
self.unary_bool_special_values_float32(math_isfinite, np.isfinite)
|
768
|
+
self.unary_bool_special_values_float64(math_isfinite, np.isfinite)
|
769
|
+
|
770
|
+
#---------------------------------------------------------------------------
|
771
|
+
# test_math_degrees
|
772
|
+
|
773
|
+
def test_math_degrees(self):
|
774
|
+
self.unary_bool_template_float32(math_degrees, np.degrees)
|
775
|
+
self.unary_bool_template_float64(math_degrees, np.degrees)
|
776
|
+
|
777
|
+
#---------------------------------------------------------------------------
|
778
|
+
# test_math_radians
|
779
|
+
|
780
|
+
def test_math_radians(self):
|
781
|
+
self.unary_bool_template_float32(math_radians, np.radians)
|
782
|
+
self.unary_bool_template_float64(math_radians, np.radians)
|
783
|
+
|
784
|
+
|
785
|
+
if __name__ == '__main__':
|
786
|
+
unittest.main()
|