numba-cuda 0.0.19__py3-none-any.whl → 0.0.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
numba_cuda/VERSION CHANGED
@@ -1 +1 @@
1
- 0.0.19
1
+ 0.0.21
@@ -9,7 +9,6 @@ import os
9
9
  import subprocess
10
10
  import tempfile
11
11
 
12
-
13
12
  CUDA_TRIPLE = 'nvptx64-nvidia-cuda'
14
13
 
15
14
 
@@ -181,17 +180,7 @@ class CUDACodeLibrary(serialize.ReduceMixin, CodeLibrary):
181
180
 
182
181
  return ltoir
183
182
 
184
- def get_cubin(self, cc=None):
185
- cc = self._ensure_cc(cc)
186
-
187
- cubin = self._cubin_cache.get(cc, None)
188
- if cubin:
189
- return cubin
190
-
191
- linker = driver.Linker.new(
192
- max_registers=self._max_registers, cc=cc, lto=self._lto
193
- )
194
-
183
+ def _link_all(self, linker, cc, ignore_nonlto=False):
195
184
  if linker.lto:
196
185
  ltoir = self.get_ltoir(cc=cc)
197
186
  linker.add_ltoir(ltoir)
@@ -200,11 +189,44 @@ class CUDACodeLibrary(serialize.ReduceMixin, CodeLibrary):
200
189
  linker.add_ptx(ptx.encode())
201
190
 
202
191
  for path in self._linking_files:
203
- linker.add_file_guess_ext(path)
192
+ linker.add_file_guess_ext(path, ignore_nonlto)
204
193
  if self.needs_cudadevrt:
205
- linker.add_file_guess_ext(get_cudalib('cudadevrt', static=True))
194
+ linker.add_file_guess_ext(
195
+ get_cudalib('cudadevrt', static=True), ignore_nonlto
196
+ )
197
+
198
+ def get_cubin(self, cc=None):
199
+ cc = self._ensure_cc(cc)
206
200
 
201
+ cubin = self._cubin_cache.get(cc, None)
202
+ if cubin:
203
+ return cubin
204
+
205
+ if self._lto and config.DUMP_ASSEMBLY:
206
+ linker = driver.Linker.new(
207
+ max_registers=self._max_registers,
208
+ cc=cc,
209
+ additional_flags=["-ptx"],
210
+ lto=self._lto
211
+ )
212
+ # `-ptx` flag is meant to view the optimized PTX for LTO objects.
213
+ # Non-LTO objects are not passed to linker.
214
+ self._link_all(linker, cc, ignore_nonlto=True)
215
+
216
+ ptx = linker.get_linked_ptx().decode('utf-8')
217
+
218
+ print(("ASSEMBLY (AFTER LTO) %s" % self._name).center(80, '-'))
219
+ print(ptx)
220
+ print('=' * 80)
221
+
222
+ linker = driver.Linker.new(
223
+ max_registers=self._max_registers,
224
+ cc=cc,
225
+ lto=self._lto
226
+ )
227
+ self._link_all(linker, cc, ignore_nonlto=False)
207
228
  cubin = linker.complete()
229
+
208
230
  self._cubin_cache[cc] = cubin
209
231
  self._linkerinfo_cache[cc] = linker.info_log
210
232
 
@@ -1,6 +1,7 @@
1
1
  from llvmlite import ir
2
2
  from numba.core.typing.templates import ConcreteTemplate
3
- from numba.core import types, typing, funcdesc, config, compiler, sigutils
3
+ from numba.core import (cgutils, types, typing, funcdesc, config, compiler,
4
+ sigutils, utils)
4
5
  from numba.core.compiler import (sanitize_compile_result_entries, CompilerBase,
5
6
  DefaultPassBuilder, Flags, Option,
6
7
  CompileResult)
@@ -11,7 +12,10 @@ from numba.core.errors import NumbaInvalidConfigWarning
11
12
  from numba.core.typed_passes import (IRLegalization, NativeLowering,
12
13
  AnnotateTypes)
13
14
  from warnings import warn
15
+ from numba.cuda import nvvmutils
14
16
  from numba.cuda.api import get_current_device
17
+ from numba.cuda.cudadrv import nvvm
18
+ from numba.cuda.descriptor import cuda_target
15
19
  from numba.cuda.target import CUDACABICallConv
16
20
 
17
21
 
@@ -24,6 +28,15 @@ def _nvvm_options_type(x):
24
28
  return x
25
29
 
26
30
 
31
+ def _optional_int_type(x):
32
+ if x is None:
33
+ return None
34
+
35
+ else:
36
+ assert isinstance(x, int)
37
+ return x
38
+
39
+
27
40
  class CUDAFlags(Flags):
28
41
  nvvm_options = Option(
29
42
  type=_nvvm_options_type,
@@ -35,6 +48,16 @@ class CUDAFlags(Flags):
35
48
  default=None,
36
49
  doc="Compute Capability",
37
50
  )
51
+ max_registers = Option(
52
+ type=_optional_int_type,
53
+ default=None,
54
+ doc="Max registers"
55
+ )
56
+ lto = Option(
57
+ type=bool,
58
+ default=False,
59
+ doc="Enable Link-time Optimization"
60
+ )
38
61
 
39
62
 
40
63
  # The CUDACompileResult (CCR) has a specially-defined entry point equal to its
@@ -109,7 +132,11 @@ class CreateLibrary(LoweringPass):
109
132
  codegen = state.targetctx.codegen()
110
133
  name = state.func_id.func_qualname
111
134
  nvvm_options = state.flags.nvvm_options
112
- state.library = codegen.create_library(name, nvvm_options=nvvm_options)
135
+ max_registers = state.flags.max_registers
136
+ lto = state.flags.lto
137
+ state.library = codegen.create_library(name, nvvm_options=nvvm_options,
138
+ max_registers=max_registers,
139
+ lto=lto)
113
140
  # Enable object caching upfront so that the library can be serialized.
114
141
  state.library.enable_object_caching()
115
142
 
@@ -152,7 +179,7 @@ class CUDACompiler(CompilerBase):
152
179
  @global_compiler_lock
153
180
  def compile_cuda(pyfunc, return_type, args, debug=False, lineinfo=False,
154
181
  inline=False, fastmath=False, nvvm_options=None,
155
- cc=None):
182
+ cc=None, max_registers=None, lto=False):
156
183
  if cc is None:
157
184
  raise ValueError('Compute Capability must be supplied')
158
185
 
@@ -189,6 +216,8 @@ def compile_cuda(pyfunc, return_type, args, debug=False, lineinfo=False,
189
216
  if nvvm_options:
190
217
  flags.nvvm_options = nvvm_options
191
218
  flags.compute_capability = cc
219
+ flags.max_registers = max_registers
220
+ flags.lto = lto
192
221
 
193
222
  # Run compilation pipeline
194
223
  from numba.core.target_extension import target_override
@@ -247,11 +276,155 @@ def cabi_wrap_function(context, lib, fndesc, wrapper_function_name,
247
276
  builder, func, restype, argtypes, callargs)
248
277
  builder.ret(return_value)
249
278
 
279
+ if config.DUMP_LLVM:
280
+ utils.dump_llvm(fndesc, wrapper_module)
281
+
250
282
  library.add_ir_module(wrapper_module)
251
283
  library.finalize()
252
284
  return library
253
285
 
254
286
 
287
+ def kernel_fixup(kernel, debug):
288
+ if debug:
289
+ exc_helper = add_exception_store_helper(kernel)
290
+
291
+ # Pass 1 - replace:
292
+ #
293
+ # ret <value>
294
+ #
295
+ # with:
296
+ #
297
+ # exc_helper(<value>)
298
+ # ret void
299
+
300
+ for block in kernel.blocks:
301
+ for i, inst in enumerate(block.instructions):
302
+ if isinstance(inst, ir.Ret):
303
+ old_ret = block.instructions.pop()
304
+ block.terminator = None
305
+
306
+ # The original return's metadata will be set on the new
307
+ # instructions in order to preserve debug info
308
+ metadata = old_ret.metadata
309
+
310
+ builder = ir.IRBuilder(block)
311
+ if debug:
312
+ status_code = old_ret.operands[0]
313
+ exc_helper_call = builder.call(exc_helper, (status_code,))
314
+ exc_helper_call.metadata = metadata
315
+
316
+ new_ret = builder.ret_void()
317
+ new_ret.metadata = old_ret.metadata
318
+
319
+ # Need to break out so we don't carry on modifying what we are
320
+ # iterating over. There can only be one return in a block
321
+ # anyway.
322
+ break
323
+
324
+ # Pass 2: remove stores of null pointer to return value argument pointer
325
+
326
+ return_value = kernel.args[0]
327
+
328
+ for block in kernel.blocks:
329
+ remove_list = []
330
+
331
+ # Find all stores first
332
+ for inst in block.instructions:
333
+ if (isinstance(inst, ir.StoreInstr)
334
+ and inst.operands[1] == return_value):
335
+ remove_list.append(inst)
336
+
337
+ # Remove all stores
338
+ for to_remove in remove_list:
339
+ block.instructions.remove(to_remove)
340
+
341
+ # Replace non-void return type with void return type and remove return
342
+ # value
343
+
344
+ if isinstance(kernel.type, ir.PointerType):
345
+ new_type = ir.PointerType(ir.FunctionType(ir.VoidType(),
346
+ kernel.type.pointee.args[1:]))
347
+ else:
348
+ new_type = ir.FunctionType(ir.VoidType(), kernel.type.args[1:])
349
+
350
+ kernel.type = new_type
351
+ kernel.return_value = ir.ReturnValue(kernel, ir.VoidType())
352
+ kernel.args = kernel.args[1:]
353
+
354
+ # Mark as a kernel for NVVM
355
+
356
+ nvvm.set_cuda_kernel(kernel)
357
+
358
+ if config.DUMP_LLVM:
359
+ print(f"LLVM DUMP: Post kernel fixup {kernel.name}".center(80, '-'))
360
+ print(kernel.module)
361
+ print('=' * 80)
362
+
363
+
364
+ def add_exception_store_helper(kernel):
365
+
366
+ # Create global variables for exception state
367
+
368
+ def define_error_gv(postfix):
369
+ name = kernel.name + postfix
370
+ gv = cgutils.add_global_variable(kernel.module, ir.IntType(32),
371
+ name)
372
+ gv.initializer = ir.Constant(gv.type.pointee, None)
373
+ return gv
374
+
375
+ gv_exc = define_error_gv("__errcode__")
376
+ gv_tid = []
377
+ gv_ctaid = []
378
+ for i in 'xyz':
379
+ gv_tid.append(define_error_gv("__tid%s__" % i))
380
+ gv_ctaid.append(define_error_gv("__ctaid%s__" % i))
381
+
382
+ # Create exception store helper function
383
+
384
+ helper_name = kernel.name + "__exc_helper__"
385
+ helper_type = ir.FunctionType(ir.VoidType(), (ir.IntType(32),))
386
+ helper_func = ir.Function(kernel.module, helper_type, helper_name)
387
+
388
+ block = helper_func.append_basic_block(name="entry")
389
+ builder = ir.IRBuilder(block)
390
+
391
+ # Implement status check / exception store logic
392
+
393
+ status_code = helper_func.args[0]
394
+ call_conv = cuda_target.target_context.call_conv
395
+ status = call_conv._get_return_status(builder, status_code)
396
+
397
+ # Check error status
398
+ with cgutils.if_likely(builder, status.is_ok):
399
+ builder.ret_void()
400
+
401
+ with builder.if_then(builder.not_(status.is_python_exc)):
402
+ # User exception raised
403
+ old = ir.Constant(gv_exc.type.pointee, None)
404
+
405
+ # Use atomic cmpxchg to prevent rewriting the error status
406
+ # Only the first error is recorded
407
+
408
+ xchg = builder.cmpxchg(gv_exc, old, status.code,
409
+ 'monotonic', 'monotonic')
410
+ changed = builder.extract_value(xchg, 1)
411
+
412
+ # If the xchange is successful, save the thread ID.
413
+ sreg = nvvmutils.SRegBuilder(builder)
414
+ with builder.if_then(changed):
415
+ for dim, ptr, in zip("xyz", gv_tid):
416
+ val = sreg.tid(dim)
417
+ builder.store(val, ptr)
418
+
419
+ for dim, ptr, in zip("xyz", gv_ctaid):
420
+ val = sreg.ctaid(dim)
421
+ builder.store(val, ptr)
422
+
423
+ builder.ret_void()
424
+
425
+ return helper_func
426
+
427
+
255
428
  @global_compiler_lock
256
429
  def compile(pyfunc, sig, debug=None, lineinfo=False, device=True,
257
430
  fastmath=False, cc=None, opt=None, abi="c", abi_info=None,
@@ -347,13 +520,10 @@ def compile(pyfunc, sig, debug=None, lineinfo=False, device=True,
347
520
  lib = cabi_wrap_function(tgt, lib, cres.fndesc, wrapper_name,
348
521
  nvvm_options)
349
522
  else:
350
- code = pyfunc.__code__
351
- filename = code.co_filename
352
- linenum = code.co_firstlineno
353
-
354
- lib, kernel = tgt.prepare_cuda_kernel(cres.library, cres.fndesc, debug,
355
- lineinfo, nvvm_options, filename,
356
- linenum)
523
+ lib = cres.library
524
+ kernel = lib.get_function(cres.fndesc.llvm_func_name)
525
+ lib._entry_name = cres.fndesc.llvm_func_name
526
+ kernel_fixup(kernel, debug)
357
527
 
358
528
  if lto:
359
529
  code = lib.get_ltoir(cc=cc)
@@ -310,7 +310,9 @@ def get_conda_include_dir():
310
310
  # though usually it shouldn't.
311
311
  include_dir = os.path.join(sys.prefix, 'include')
312
312
 
313
- if os.path.exists(include_dir):
313
+ if (os.path.exists(include_dir) and os.path.isdir(include_dir)
314
+ and os.path.exists(os.path.join(include_dir,
315
+ 'cuda_device_runtime_api.h'))):
314
316
  return include_dir
315
317
  return
316
318
 
@@ -21,6 +21,9 @@ import threading
21
21
  import traceback
22
22
  import asyncio
23
23
  import pathlib
24
+ import subprocess
25
+ import tempfile
26
+ import re
24
27
  from itertools import product
25
28
  from abc import ABCMeta, abstractmethod
26
29
  from ctypes import (c_int, byref, c_size_t, c_char, c_char_p, addressof,
@@ -36,7 +39,7 @@ from .error import CudaSupportError, CudaDriverError
36
39
  from .drvapi import API_PROTOTYPES
37
40
  from .drvapi import cu_occupancy_b2d_size, cu_stream_callback_pyobj, cu_uuid
38
41
  from .mappings import FILE_EXTENSION_MAP
39
- from .linkable_code import LinkableCode
42
+ from .linkable_code import LinkableCode, LTOIR, Fatbin, Object
40
43
  from numba.cuda.cudadrv import enums, drvapi, nvrtc
41
44
 
42
45
  USE_NV_BINDING = config.CUDA_USE_NVIDIA_BINDING
@@ -2683,12 +2686,18 @@ class Linker(metaclass=ABCMeta):
2683
2686
  cu = f.read()
2684
2687
  self.add_cu(cu, os.path.basename(path))
2685
2688
 
2686
- def add_file_guess_ext(self, path_or_code):
2689
+ def add_file_guess_ext(self, path_or_code, ignore_nonlto=False):
2687
2690
  """
2688
2691
  Add a file or LinkableCode object to the link. If a file is
2689
2692
  passed, the type will be inferred from the extension. A LinkableCode
2690
2693
  object represents a file already in memory.
2694
+
2695
+ When `ignore_nonlto` is set to true, do not add code that will not
2696
+ be LTO-ed in the linking process. This is useful in inspecting the
2697
+ LTO-ed portion of the PTX when linker is added with objects that can be
2698
+ both LTO-ed and not LTO-ed.
2691
2699
  """
2700
+
2692
2701
  if isinstance(path_or_code, str):
2693
2702
  ext = pathlib.Path(path_or_code).suffix
2694
2703
  if ext == '':
@@ -2704,6 +2713,26 @@ class Linker(metaclass=ABCMeta):
2704
2713
  "Don't know how to link file with extension "
2705
2714
  f"{ext}"
2706
2715
  )
2716
+
2717
+ if ignore_nonlto:
2718
+ warn_and_return = False
2719
+ if kind in (
2720
+ FILE_EXTENSION_MAP["fatbin"], FILE_EXTENSION_MAP["o"]
2721
+ ):
2722
+ entry_types = inspect_obj_content(path_or_code)
2723
+ if "nvvm" not in entry_types:
2724
+ warn_and_return = True
2725
+ elif kind != FILE_EXTENSION_MAP["ltoir"]:
2726
+ warn_and_return = True
2727
+
2728
+ if warn_and_return:
2729
+ warnings.warn(
2730
+ f"Not adding {path_or_code} as it is not "
2731
+ "optimizable at link time, and `ignore_nonlto == "
2732
+ "True`."
2733
+ )
2734
+ return
2735
+
2707
2736
  self.add_file(path_or_code, kind)
2708
2737
  return
2709
2738
  else:
@@ -2716,6 +2745,25 @@ class Linker(metaclass=ABCMeta):
2716
2745
  if path_or_code.kind == "cu":
2717
2746
  self.add_cu(path_or_code.data, path_or_code.name)
2718
2747
  else:
2748
+ if ignore_nonlto:
2749
+ warn_and_return = False
2750
+ if isinstance(path_or_code, (Fatbin, Object)):
2751
+ with tempfile.NamedTemporaryFile("w") as fp:
2752
+ fp.write(path_or_code.data)
2753
+ entry_types = inspect_obj_content(fp.name)
2754
+ if "nvvm" not in entry_types:
2755
+ warn_and_return = True
2756
+ elif not isinstance(path_or_code, LTOIR):
2757
+ warn_and_return = True
2758
+
2759
+ if warn_and_return:
2760
+ warnings.warn(
2761
+ f"Not adding {path_or_code.name} as it is not "
2762
+ "optimizable at link time, and `ignore_nonlto == "
2763
+ "True`."
2764
+ )
2765
+ return
2766
+
2719
2767
  self.add_data(
2720
2768
  path_or_code.data, path_or_code.kind, path_or_code.name
2721
2769
  )
@@ -3065,6 +3113,28 @@ class PyNvJitLinker(Linker):
3065
3113
  name = pathlib.Path(path).name
3066
3114
  self.add_data(data, kind, name)
3067
3115
 
3116
+ def add_cu(self, cu, name):
3117
+ """Add CUDA source in a string to the link. The name of the source
3118
+ file should be specified in `name`."""
3119
+ with driver.get_active_context() as ac:
3120
+ dev = driver.get_device(ac.devnum)
3121
+ cc = dev.compute_capability
3122
+
3123
+ program, log = nvrtc.compile(cu, name, cc, ltoir=self.lto)
3124
+
3125
+ if not self.lto and config.DUMP_ASSEMBLY:
3126
+ print(("ASSEMBLY %s" % name).center(80, "-"))
3127
+ print(program)
3128
+ print("=" * 80)
3129
+
3130
+ suffix = ".ltoir" if self.lto else ".ptx"
3131
+ program_name = os.path.splitext(name)[0] + suffix
3132
+ # Link the program's PTX or LTOIR using the normal linker mechanism
3133
+ if self.lto:
3134
+ self.add_ltoir(program, program_name)
3135
+ else:
3136
+ self.add_ptx(program.encode(), program_name)
3137
+
3068
3138
  def add_data(self, data, kind, name):
3069
3139
  if kind == FILE_EXTENSION_MAP["cubin"]:
3070
3140
  fn = self._linker.add_cubin
@@ -3086,6 +3156,12 @@ class PyNvJitLinker(Linker):
3086
3156
  except NvJitLinkError as e:
3087
3157
  raise LinkerError from e
3088
3158
 
3159
+ def get_linked_ptx(self):
3160
+ try:
3161
+ return self._linker.get_linked_ptx()
3162
+ except NvJitLinkError as e:
3163
+ raise LinkerError from e
3164
+
3089
3165
  def complete(self):
3090
3166
  try:
3091
3167
  return self._linker.get_linked_cubin()
@@ -3361,3 +3437,28 @@ def get_version():
3361
3437
  Return the driver version as a tuple of (major, minor)
3362
3438
  """
3363
3439
  return driver.get_version()
3440
+
3441
+
3442
+ def inspect_obj_content(objpath: str):
3443
+ """
3444
+ Given path to a fatbin or object, use `cuobjdump` to examine its content
3445
+ Return the set of entries in the object.
3446
+ """
3447
+ code_types :set[str] = set()
3448
+
3449
+ try:
3450
+ out = subprocess.run(["cuobjdump", objpath], check=True,
3451
+ capture_output=True)
3452
+ except FileNotFoundError as e:
3453
+ msg = ("cuobjdump has not been found. You may need "
3454
+ "to install the CUDA toolkit and ensure that "
3455
+ "it is available on your PATH.\n")
3456
+ raise RuntimeError(msg) from e
3457
+
3458
+ objtable = out.stdout.decode('utf-8')
3459
+ entry_pattern = r"Fatbin (.*) code"
3460
+ for line in objtable.split("\n"):
3461
+ if match := re.match(entry_pattern, line):
3462
+ code_types.add(match.group(1))
3463
+
3464
+ return code_types
@@ -55,7 +55,7 @@ CUDA_ERROR_INVALID_HANDLE = 400
55
55
  CUDA_ERROR_ILLEGAL_STATE = 401
56
56
  CUDA_ERROR_NOT_FOUND = 500
57
57
  CUDA_ERROR_NOT_READY = 600
58
- CUDA_ERROR_LAUNCH_FAILED = 700
58
+ CUDA_ERROR_ILLEGAL_ADDRESS = 700
59
59
  CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES = 701
60
60
  CUDA_ERROR_LAUNCH_TIMEOUT = 702
61
61
  CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING = 703
@@ -61,6 +61,14 @@ class NVRTC:
61
61
  NVVM interface. Initialization is protected by a lock and uses the standard
62
62
  (for Numba) open_cudalib function to load the NVRTC library.
63
63
  """
64
+
65
+ _CU12ONLY_PROTOTYPES = {
66
+ # nvrtcResult nvrtcGetLTOIRSize(nvrtcProgram prog, size_t *ltoSizeRet);
67
+ "nvrtcGetLTOIRSize": (nvrtc_result, nvrtc_program, POINTER(c_size_t)),
68
+ # nvrtcResult nvrtcGetLTOIR(nvrtcProgram prog, char *lto);
69
+ "nvrtcGetLTOIR": (nvrtc_result, nvrtc_program, c_char_p)
70
+ }
71
+
64
72
  _PROTOTYPES = {
65
73
  # nvrtcResult nvrtcVersion(int *major, int *minor)
66
74
  'nvrtcVersion': (nvrtc_result, POINTER(c_int), POINTER(c_int)),
@@ -110,6 +118,10 @@ class NVRTC:
110
118
  cls.__INSTANCE = None
111
119
  raise NvrtcSupportError("NVRTC cannot be loaded") from e
112
120
 
121
+ from numba.cuda.cudadrv.runtime import get_version
122
+ if get_version() >= (12, 0):
123
+ inst._PROTOTYPES |= inst._CU12ONLY_PROTOTYPES
124
+
113
125
  # Find & populate functions
114
126
  for name, proto in inst._PROTOTYPES.items():
115
127
  func = getattr(lib, name)
@@ -208,10 +220,22 @@ class NVRTC:
208
220
 
209
221
  return ptx.value.decode()
210
222
 
223
+ def get_lto(self, program):
224
+ """
225
+ Get the compiled LTOIR as a Python bytes object.
226
+ """
227
+ lto_size = c_size_t()
228
+ self.nvrtcGetLTOIRSize(program.handle, byref(lto_size))
229
+
230
+ lto = b" " * lto_size.value
231
+ self.nvrtcGetLTOIR(program.handle, lto)
232
+
233
+ return lto
211
234
 
212
- def compile(src, name, cc):
235
+
236
+ def compile(src, name, cc, ltoir=False):
213
237
  """
214
- Compile a CUDA C/C++ source to PTX for a given compute capability.
238
+ Compile a CUDA C/C++ source to PTX or LTOIR for a given compute capability.
215
239
 
216
240
  :param src: The source code to compile
217
241
  :type src: str
@@ -219,6 +243,8 @@ def compile(src, name, cc):
219
243
  :type name: str
220
244
  :param cc: A tuple ``(major, minor)`` of the compute capability
221
245
  :type cc: tuple
246
+ :param ltoir: Compile into LTOIR if True, otherwise into PTX
247
+ :type ltoir: bool
222
248
  :return: The compiled PTX and compilation log
223
249
  :rtype: tuple
224
250
  """
@@ -242,6 +268,9 @@ def compile(src, name, cc):
242
268
  numba_include = f'-I{numba_cuda_path}'
243
269
  options = [arch, *cuda_include, numba_include, '-rdc', 'true']
244
270
 
271
+ if ltoir:
272
+ options.append("-dlto")
273
+
245
274
  if nvrtc.get_version() < (12, 0):
246
275
  options += ["-std=c++17"]
247
276
 
@@ -261,5 +290,9 @@ def compile(src, name, cc):
261
290
  msg = (f"NVRTC log messages whilst compiling {name}:\n\n{log}")
262
291
  warnings.warn(msg)
263
292
 
264
- ptx = nvrtc.get_ptx(program)
265
- return ptx, log
293
+ if ltoir:
294
+ ltoir = nvrtc.get_lto(program)
295
+ return ltoir, log
296
+ else:
297
+ ptx = nvrtc.get_ptx(program)
298
+ return ptx, log
@@ -14,7 +14,7 @@ from numba.core.typing.typeof import Purpose, typeof
14
14
 
15
15
  from numba.cuda.api import get_current_device
16
16
  from numba.cuda.args import wrap_arg
17
- from numba.cuda.compiler import compile_cuda, CUDACompiler
17
+ from numba.cuda.compiler import compile_cuda, CUDACompiler, kernel_fixup
18
18
  from numba.cuda.cudadrv import driver
19
19
  from numba.cuda.cudadrv.devices import get_context
20
20
  from numba.cuda.descriptor import cuda_target
@@ -102,15 +102,14 @@ class _Kernel(serialize.ReduceMixin):
102
102
  inline=inline,
103
103
  fastmath=fastmath,
104
104
  nvvm_options=nvvm_options,
105
- cc=cc)
105
+ cc=cc,
106
+ max_registers=max_registers,
107
+ lto=lto)
106
108
  tgt_ctx = cres.target_context
107
- code = self.py_func.__code__
108
- filename = code.co_filename
109
- linenum = code.co_firstlineno
110
- lib, kernel = tgt_ctx.prepare_cuda_kernel(cres.library, cres.fndesc,
111
- debug, lineinfo, nvvm_options,
112
- filename, linenum,
113
- max_registers, lto)
109
+ lib = cres.library
110
+ kernel = lib.get_function(cres.fndesc.llvm_func_name)
111
+ lib._entry_name = cres.fndesc.llvm_func_name
112
+ kernel_fixup(kernel, self.debug)
114
113
 
115
114
  if not link:
116
115
  link = []
@@ -5,6 +5,10 @@ from numba.cuda.cudadrv.driver import PyNvJitLinker
5
5
 
6
6
  import itertools
7
7
  import os
8
+ import io
9
+ import contextlib
10
+ import warnings
11
+
8
12
  from numba.cuda import get_current_device
9
13
  from numba import cuda
10
14
  from numba import config
@@ -23,6 +27,9 @@ if TEST_BIN_DIR:
23
27
  test_device_functions_fatbin = os.path.join(
24
28
  TEST_BIN_DIR, "test_device_functions.fatbin"
25
29
  )
30
+ test_device_functions_fatbin_multi = os.path.join(
31
+ TEST_BIN_DIR, "test_device_functions_multi.fatbin"
32
+ )
26
33
  test_device_functions_o = os.path.join(
27
34
  TEST_BIN_DIR, "test_device_functions.o"
28
35
  )
@@ -156,32 +163,81 @@ class TestLinker(CUDATestCase):
156
163
  test_device_functions_o,
157
164
  test_device_functions_ptx,
158
165
  )
166
+ for lto in [True, False]:
167
+ for file in files:
168
+ with self.subTest(file=file):
169
+ sig = "uint32(uint32, uint32)"
170
+ add_from_numba = cuda.declare_device("add_from_numba", sig)
171
+
172
+ @cuda.jit(link=[file], lto=lto)
173
+ def kernel(result):
174
+ result[0] = add_from_numba(1, 2)
175
+
176
+ result = cuda.device_array(1)
177
+ kernel[1, 1](result)
178
+ assert result[0] == 3
179
+
180
+ def test_nvjitlink_jit_with_linkable_code_lto_dump_assembly(self):
181
+ files = [
182
+ test_device_functions_cu,
183
+ test_device_functions_ltoir,
184
+ test_device_functions_fatbin_multi
185
+ ]
186
+
187
+ config.DUMP_ASSEMBLY = True
188
+
159
189
  for file in files:
160
190
  with self.subTest(file=file):
161
- sig = "uint32(uint32, uint32)"
162
- add_from_numba = cuda.declare_device("add_from_numba", sig)
191
+ f = io.StringIO()
192
+ with contextlib.redirect_stdout(f):
193
+ sig = "uint32(uint32, uint32)"
194
+ add_from_numba = cuda.declare_device("add_from_numba", sig)
163
195
 
164
- @cuda.jit(link=[file])
165
- def kernel(result):
166
- result[0] = add_from_numba(1, 2)
196
+ @cuda.jit(link=[file], lto=True)
197
+ def kernel(result):
198
+ result[0] = add_from_numba(1, 2)
167
199
 
168
- result = cuda.device_array(1)
169
- kernel[1, 1](result)
170
- assert result[0] == 3
200
+ result = cuda.device_array(1)
201
+ kernel[1, 1](result)
202
+ assert result[0] == 3
171
203
 
172
- def test_nvjitlink_jit_with_linkable_code_lto(self):
173
- file = test_device_functions_ltoir
204
+ self.assertTrue("ASSEMBLY (AFTER LTO)" in f.getvalue())
174
205
 
175
- sig = "uint32(uint32, uint32)"
176
- add_from_numba = cuda.declare_device("add_from_numba", sig)
206
+ config.DUMP_ASSEMBLY = False
177
207
 
178
- @cuda.jit(link=[file], lto=True)
179
- def kernel(result):
180
- result[0] = add_from_numba(1, 2)
208
+ def test_nvjitlink_jit_with_linkable_code_lto_dump_assembly_warn(self):
209
+ files = [
210
+ test_device_functions_a,
211
+ test_device_functions_cubin,
212
+ test_device_functions_fatbin,
213
+ test_device_functions_o,
214
+ test_device_functions_ptx,
215
+ ]
181
216
 
182
- result = cuda.device_array(1)
183
- kernel[1, 1](result)
184
- assert result[0] == 3
217
+ config.DUMP_ASSEMBLY = True
218
+
219
+ for file in files:
220
+ with self.subTest(file=file):
221
+ with warnings.catch_warnings(record=True) as w:
222
+ with contextlib.redirect_stdout(None): # suppress other PTX
223
+ sig = "uint32(uint32, uint32)"
224
+ add_from_numba = cuda.declare_device(
225
+ "add_from_numba", sig
226
+ )
227
+
228
+ @cuda.jit(link=[file], lto=True)
229
+ def kernel(result):
230
+ result[0] = add_from_numba(1, 2)
231
+
232
+ result = cuda.device_array(1)
233
+ kernel[1, 1](result)
234
+ assert result[0] == 3
235
+
236
+ assert len(w) == 1
237
+ self.assertIn("it is not optimizable at link time, and "
238
+ "`ignore_nonlto == True`", str(w[0].message))
239
+
240
+ config.DUMP_ASSEMBLY = False
185
241
 
186
242
  def test_nvjitlink_jit_with_invalid_linkable_code(self):
187
243
  with open(test_device_functions_cubin, "rb") as f:
@@ -48,13 +48,11 @@ class TestDebugOutput(CUDATestCase):
48
48
  self.assertRaises(AssertionError, check_meth, out)
49
49
 
50
50
  def _check_dump_bytecode(self, out):
51
- if PYVERSION in ((3, 11), (3, 12)):
51
+ if PYVERSION > (3, 10):
52
52
  # binop with arg=0 is binary add, see CPython dis.py and opcode.py
53
53
  self.assertIn('BINARY_OP(arg=0', out)
54
- elif PYVERSION in ((3, 9), (3, 10)):
55
- self.assertIn('BINARY_ADD', out)
56
54
  else:
57
- raise NotImplementedError(PYVERSION)
55
+ self.assertIn('BINARY_ADD', out)
58
56
 
59
57
  def _check_dump_cfg(self, out):
60
58
  self.assertIn('CFG dominators', out)
@@ -72,6 +72,7 @@ class TestCudaDebugInfo(CUDATestCase):
72
72
  def f(x):
73
73
  x[0] = 0
74
74
 
75
+ @unittest.skip("Wrappers no longer exist")
75
76
  def test_wrapper_has_debuginfo(self):
76
77
  sig = (types.int32[::1],)
77
78
 
@@ -33,10 +33,7 @@ class TestInspect(CUDATestCase):
33
33
  self.assertIn("foo", llvm)
34
34
 
35
35
  # Kernel in LLVM
36
- self.assertIn('cuda.kernel.wrapper', llvm)
37
-
38
- # Wrapped device function body in LLVM
39
- self.assertIn("define linkonce_odr i32", llvm)
36
+ self.assertIn("define void @", llvm)
40
37
 
41
38
  asm = foo.inspect_asm(sig)
42
39
 
@@ -72,12 +69,8 @@ class TestInspect(CUDATestCase):
72
69
  self.assertIn("foo", llvmirs[float64, float64])
73
70
 
74
71
  # Kernels in LLVM
75
- self.assertIn('cuda.kernel.wrapper', llvmirs[intp, intp])
76
- self.assertIn('cuda.kernel.wrapper', llvmirs[float64, float64])
77
-
78
- # Wrapped device function bodies in LLVM
79
- self.assertIn("define linkonce_odr i32", llvmirs[intp, intp])
80
- self.assertIn("define linkonce_odr i32", llvmirs[float64, float64])
72
+ self.assertIn("define void @", llvmirs[intp, intp])
73
+ self.assertIn("define void @", llvmirs[float64, float64])
81
74
 
82
75
  asmdict = foo.inspect_asm()
83
76
 
@@ -170,10 +170,9 @@ class TestCudaLineInfo(CUDATestCase):
170
170
  subprograms += 1
171
171
 
172
172
  # One DISubprogram for each of:
173
- # - The kernel wrapper
174
173
  # - The caller
175
174
  # - The callee
176
- expected_subprograms = 3
175
+ expected_subprograms = 2
177
176
 
178
177
  self.assertEqual(subprograms, expected_subprograms,
179
178
  f'"Expected {expected_subprograms} DISubprograms; '
@@ -14,8 +14,11 @@ def device_func(x, y, z):
14
14
 
15
15
 
16
16
  # Fragments of code that are removed from kernel_func's PTX when optimization
17
- # is on
18
- removed_by_opt = ( '__local_depot0', 'call.uni', 'st.param.b64')
17
+ # is on. Previously this list was longer when kernel wrappers were used - if
18
+ # the test function were more complex it may be possible to isolate additional
19
+ # fragments of PTX we could check for the absence / presence of, but removal of
20
+ # the use of local memory is a good indicator that optimization was applied.
21
+ removed_by_opt = ( '__local_depot0',)
19
22
 
20
23
 
21
24
  @skip_on_cudasim('Simulator does not optimize code')
@@ -1,6 +1,6 @@
1
1
  from numba.cuda.testing import (skip_on_cudasim, skip_unless_cudasim, unittest,
2
2
  CUDATestCase)
3
- from numba import cuda
3
+ from numba import config, cuda
4
4
 
5
5
  # Basic tests that stream APIs execute on the hardware and in the simulator.
6
6
  #
@@ -34,7 +34,11 @@ class TestStreamAPI(CUDATestCase):
34
34
  # We don't test synchronization on the stream because it's not a real
35
35
  # stream - we used a dummy pointer for testing the API, so we just
36
36
  # ensure that the stream handle matches the external stream pointer.
37
- self.assertEqual(ptr, s.handle.value)
37
+ if config.CUDA_USE_NVIDIA_BINDING:
38
+ value = int(s.handle)
39
+ else:
40
+ value = s.handle.value
41
+ self.assertEqual(ptr, value)
38
42
 
39
43
  @skip_unless_cudasim("External streams are usable with hardware")
40
44
  def test_external_stream_simulator_unavailable(self):
@@ -14,9 +14,14 @@ endif
14
14
  # Gencode flags suitable for most tests
15
15
  GENCODE := -gencode arch=compute_$(GPU_CC),code=sm_$(GPU_CC)
16
16
 
17
+ MULTI_GENCODE := -gencode arch=compute_$(GPU_CC),code=[sm_$(GPU_CC),lto_$(GPU_CC)]
18
+
17
19
  # Fatbin tests need to generate code for an additional compute capability
18
20
  FATBIN_GENCODE := $(GENCODE) -gencode arch=compute_$(ALT_CC),code=sm_$(ALT_CC)
19
21
 
22
+ # Fatbin that contains both LTO, SASS for multiple architectures
23
+ MULTI_FATBIN_GENCODE := $(MULTI_GENCODE) -gencode arch=compute_$(ALT_CC),code=[sm_$(ALT_CC),lto_$(ALT_CC)]
24
+
20
25
  # LTO-IR tests need to generate for the LTO "architecture" instead
21
26
  LTOIR_GENCODE := -gencode arch=lto_$(GPU_CC),code=lto_$(GPU_CC)
22
27
 
@@ -30,6 +35,7 @@ PTX_FLAGS := $(GENCODE) -ptx
30
35
  OBJECT_FLAGS := $(GENCODE) -dc
31
36
  LIBRARY_FLAGS := $(GENCODE) -lib
32
37
  FATBIN_FLAGS := $(FATBIN_GENCODE) --fatbin
38
+ MULTI_FATBIN_FLAGS := $(MULTI_FATBIN_GENCODE) --fatbin
33
39
  LTOIR_FLAGS := $(LTOIR_GENCODE) -dc
34
40
 
35
41
  OUTPUT_DIR := ./
@@ -41,6 +47,7 @@ all:
41
47
  nvcc $(NVCC_FLAGS) $(CUBIN_FLAGS) -o $(OUTPUT_DIR)/undefined_extern.cubin undefined_extern.cu
42
48
  nvcc $(NVCC_FLAGS) $(CUBIN_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.cubin test_device_functions.cu
43
49
  nvcc $(NVCC_FLAGS) $(FATBIN_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.fatbin test_device_functions.cu
50
+ nvcc $(NVCC_FLAGS) $(MULTI_FATBIN_FLAGS) -o $(OUTPUT_DIR)/test_device_functions_multi.fatbin test_device_functions.cu
44
51
  nvcc $(NVCC_FLAGS) $(PTX_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.ptx test_device_functions.cu
45
52
  nvcc $(NVCC_FLAGS) $(OBJECT_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.o test_device_functions.cu
46
53
  nvcc $(NVCC_FLAGS) $(LIBRARY_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.a test_device_functions.cu
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: numba-cuda
3
- Version: 0.0.19
3
+ Version: 0.0.21
4
4
  Summary: CUDA target for Numba
5
5
  Author: Anaconda Inc., NVIDIA Corporation
6
6
  License: BSD 2-clause
@@ -13,17 +13,21 @@ Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  Requires-Dist: numba>=0.59.1
15
15
 
16
+ <div align="center"><img src="docs/source/_static/numba-green-icon-rgb.svg" width="200"/></div>
17
+
16
18
  # Numba CUDA Target
17
19
 
18
- An out-of-tree CUDA target for Numba.
20
+ The CUDA target for Numba. Please visit the [official
21
+ documentation](https://nvidia.github.io/numba-cuda) to get started!
22
+
19
23
 
20
- This contains an entire copy of Numba's CUDA target (the `numba.cuda` module),
21
- and a mechanism to ensure the code from this module (`numba_cuda.numba.cuda`) is
22
- used as the `numba.cuda` module instead of the code from the `numba` package.
24
+ To report issues or file feature requests, please use the [issue
25
+ tracker](https://github.com/NVIDIA/numba-cuda/issues).
23
26
 
24
- This is presently in an early state and is published for testing and feedback.
27
+ To raise questions or initiate discussions, please use the [Numba Discourse
28
+ forum](https://numba.discourse.group).
25
29
 
26
- ## Building / testing
30
+ ## Building from source
27
31
 
28
32
  Install as an editable install:
29
33
 
@@ -31,7 +35,7 @@ Install as an editable install:
31
35
  pip install -e .
32
36
  ```
33
37
 
34
- Running tests:
38
+ ## Running tests
35
39
 
36
40
  ```
37
41
  python -m numba.runtests numba.cuda.tests
@@ -1,6 +1,6 @@
1
1
  _numba_cuda_redirector.pth,sha256=cmfMMmV0JPh3yEpl4bGeM9AuXiVVMSo6Z_b7RaQL3XE,30
2
2
  _numba_cuda_redirector.py,sha256=rc56rnb40w3AtrqnhS66JSgYTSTsi3iTn8yP3NuoQV8,2401
3
- numba_cuda/VERSION,sha256=K2Wn4BRtrXcEkuPZYGGM_h_Orgai6flc272777m5MYQ,7
3
+ numba_cuda/VERSION,sha256=N0wu4MReU0U_7uoeU-17rOqTT3ZYtrLE_x8SJjefmc8,7
4
4
  numba_cuda/__init__.py,sha256=atXeUvJKR3JHcAiCFbXCVOJQUHgB1TulmsqSL_9RT3Q,114
5
5
  numba_cuda/_version.py,sha256=jbdUsbR7sVllw0KxQNB0-FMd929CGg3kH2fhHdrlkuc,719
6
6
  numba_cuda/numba/cuda/__init__.py,sha256=idyVHOObC9lTYnp62v7rVprSacRM4d5F6vhXfG5ElTI,621
@@ -8,12 +8,12 @@ numba_cuda/numba/cuda/api.py,sha256=shLu7NEZHRMcaZAMEXSoyA5Gi5m0tm6ZRymxKLEKCSg,
8
8
  numba_cuda/numba/cuda/api_util.py,sha256=aQfUV2-4RM_oGVvckMjbMr5e3effOQNX04v1T0O2EfQ,861
9
9
  numba_cuda/numba/cuda/args.py,sha256=HloHkw_PQal2DT-I70Xf_XbnGObS1jiUgcRrQ85Gq28,1978
10
10
  numba_cuda/numba/cuda/cg.py,sha256=9V1uZqyGOJX1aFd9c6GAPbLSqq83lE8LoP-vxxrKENY,1490
11
- numba_cuda/numba/cuda/codegen.py,sha256=9LnTlei-4JK7iq3Rg-H2Y19Oh_u5ZXMC_CPfattANjw,12358
12
- numba_cuda/numba/cuda/compiler.py,sha256=47SjuI5p4yWCujAglIq0Cb0ARO8QxRp4fOZropkNMtQ,16001
11
+ numba_cuda/numba/cuda/codegen.py,sha256=ghdYBKZ3Mzk2UlLE64HkrAjb60PN9fibSNkWFRQuj4M,13184
12
+ numba_cuda/numba/cuda/compiler.py,sha256=XQHzUCuXl6WCtWWxv1X3Y9ebcVQVJEkzOuckNwKa4Gg,21249
13
13
  numba_cuda/numba/cuda/cpp_function_wrappers.cu,sha256=iv84_F6Q9kFjV_kclrQz1msh6Dud8mI3qNkswTid7Qc,953
14
14
  numba_cuda/numba/cuda/cuda_fp16.h,sha256=1IC0mdNdkvKbvAe0-f4uYVS7WFrVqOyI1nRUbBiqr6A,126844
15
15
  numba_cuda/numba/cuda/cuda_fp16.hpp,sha256=vJ7NUr2X2tKhAP7ojydAiCoOjVO6n4QGoXD6m9Srrlw,89130
16
- numba_cuda/numba/cuda/cuda_paths.py,sha256=wwZKOUS0FyZloRUgDVDPPCwtm3t6Js7U369_YgMpEC0,9859
16
+ numba_cuda/numba/cuda/cuda_paths.py,sha256=C0gA72QLWUMfvXkFpw1WqqaFqfsQ7HM72hQVXG0A7RU,10023
17
17
  numba_cuda/numba/cuda/cudadecl.py,sha256=ynUidit8oPGjedc6p1miMGtS20DOji3DiQHzwmx6m0s,23192
18
18
  numba_cuda/numba/cuda/cudaimpl.py,sha256=3YMxQSCv2KClBrpuXGchrTNICV1F6NIjjL2rie5fDZ4,38628
19
19
  numba_cuda/numba/cuda/cudamath.py,sha256=EFNtdzEytAZuwijdRoFGzVKCeal76UzzaNy7wUFQx8I,3978
@@ -21,7 +21,7 @@ numba_cuda/numba/cuda/decorators.py,sha256=qSpir16-jPYSe2YuRZ6g9INeobmsMNg6ab9IZ
21
21
  numba_cuda/numba/cuda/descriptor.py,sha256=rNMaurJkjNjIBmHPozDoLC35DMURE0fn_LtnXRmaG_w,985
22
22
  numba_cuda/numba/cuda/device_init.py,sha256=lP79tCsQ0Np9xcbjv_lXcH4JOiVZvV8nwg3INdETxsc,3586
23
23
  numba_cuda/numba/cuda/deviceufunc.py,sha256=yxAH71dpgJWK8okmCJm0FUV6z2AqdThCYOTZspT7z0M,30775
24
- numba_cuda/numba/cuda/dispatcher.py,sha256=1ND28o_YeP_0YS2iFYwCH9Byc87qTvCVKjT7PHu2Fsg,41233
24
+ numba_cuda/numba/cuda/dispatcher.py,sha256=JuUr0-6xQtDkyaZv7CirWaU5_sSNX4BKCTDgQG5c1xc,41116
25
25
  numba_cuda/numba/cuda/errors.py,sha256=XwWHzCllx0DXU6BQdoRH0m3pznGxnTFOBTVYXMmCfqg,1724
26
26
  numba_cuda/numba/cuda/extending.py,sha256=URsyBYls2te-mgE0yvDY6akvawYCA0blBFfD7Lf9DO4,142
27
27
  numba_cuda/numba/cuda/initialize.py,sha256=TQGHGLQoq4ch4J6CLDcJdGsZzXM-g2kDgdyO1u-Rbhg,546
@@ -47,16 +47,16 @@ numba_cuda/numba/cuda/vectorizers.py,sha256=u_0EzaD5tqVH8uOz4Gmqn3FgPC1rckwDAQuR
47
47
  numba_cuda/numba/cuda/cudadrv/__init__.py,sha256=0TL4MZcJXUoo9qA7uu0vLv7eHrXRerVmyfi7O149ITw,199
48
48
  numba_cuda/numba/cuda/cudadrv/devicearray.py,sha256=06kM7iFcx1TYiFhs1o9r1kyoA3k5yS7mFAdZDf6nrxA,31215
49
49
  numba_cuda/numba/cuda/cudadrv/devices.py,sha256=6SneNmoq83gue0txFWWx4A65vViAa8xA06FzkApoqAk,7992
50
- numba_cuda/numba/cuda/cudadrv/driver.py,sha256=uPjKugdtSJfIwVSAo3KgkvQhctbABkQphHAfcq6Q7ec,110892
50
+ numba_cuda/numba/cuda/cudadrv/driver.py,sha256=bjlGcJvyjwMjRCNkNqmBIAA0HO_fzbrW2afXsp-YiCg,114794
51
51
  numba_cuda/numba/cuda/cudadrv/drvapi.py,sha256=52ms3X6hfPaQB8E1jb6g7QKqRvHzBMlDQ-V2DM1rXxQ,17178
52
52
  numba_cuda/numba/cuda/cudadrv/dummyarray.py,sha256=nXRngdr-k3h_BNGQuJUxmp89yGNWxqEDJedpwDPEZ44,14209
53
- numba_cuda/numba/cuda/cudadrv/enums.py,sha256=37zZmyrLvT-7R8wWtwKJkQhN8siLMxsDGiA3_NQ-yx8,23740
53
+ numba_cuda/numba/cuda/cudadrv/enums.py,sha256=Wy5dzukTk4TnWCowg_PLceET_v2xEyiWLu9TyH8pXr8,23742
54
54
  numba_cuda/numba/cuda/cudadrv/error.py,sha256=zEIryW6aIy8GG4ypmTliB6RgY4Gy2n8ckz7I6W99LUM,524
55
55
  numba_cuda/numba/cuda/cudadrv/libs.py,sha256=Gk9zQ1CKcsZsWl-_9QneXeP9VH5q5R1I3Cx043UOytk,7240
56
56
  numba_cuda/numba/cuda/cudadrv/linkable_code.py,sha256=Q_YTv0apBo9t8pkMlKrthPPSVeLd376ZTmVDF5NtVVo,1328
57
57
  numba_cuda/numba/cuda/cudadrv/mappings.py,sha256=-dTPHvAkDjdH6vS5OjgrB71AFuqKO6CRgf7hpOk2wiw,802
58
58
  numba_cuda/numba/cuda/cudadrv/ndarray.py,sha256=HtULWWFyDlgqvrH5459yyPTvU4UbUo2DSdtcNfvbH00,473
59
- numba_cuda/numba/cuda/cudadrv/nvrtc.py,sha256=rv-XQo0snJj4xyEbfeBqivziIxCwMOQzIIEOnvLQaJI,9825
59
+ numba_cuda/numba/cuda/cudadrv/nvrtc.py,sha256=RR096Ic2_Zu96C-GGh8x8WTOyxnmDkwtcwag8a_npkQ,10898
60
60
  numba_cuda/numba/cuda/cudadrv/nvvm.py,sha256=v2hJJTAQeRmoG59-hnhgMEp5BSVA73QHtEoy636VKao,24107
61
61
  numba_cuda/numba/cuda/cudadrv/rtapi.py,sha256=WdeUoWzsYNYodx8kMRLVIjnNs0QzwpCihd2Q0AaqItE,226
62
62
  numba_cuda/numba/cuda/cudadrv/runtime.py,sha256=Tj9ACrzQqNmDSO6xfpzw12EsQknSywQ-ZGuWMbDdHnQ,4255
@@ -103,7 +103,7 @@ numba_cuda/numba/cuda/tests/cudadrv/test_is_fp16.py,sha256=0KPe4E9wOZsSV_0QI0Lmj
103
103
  numba_cuda/numba/cuda/tests/cudadrv/test_linker.py,sha256=_l2_EQEko2Jet5ooj4XMT0L4BjOuqLjbONGj1_MVI50,10161
104
104
  numba_cuda/numba/cuda/tests/cudadrv/test_managed_alloc.py,sha256=kYXYMkx_3GPAITKp4reLeM8KSzKkpxiC8nxnBvXpaTA,4979
105
105
  numba_cuda/numba/cuda/tests/cudadrv/test_mvc.py,sha256=984jATSa01SRoSrVqxPeO6ujJ7w2jsnZa39ABInFLVI,1529
106
- numba_cuda/numba/cuda/tests/cudadrv/test_nvjitlink.py,sha256=m5zv6K6PHLnm-AqHKo5x9f_ZBrn3rmvPX_ZGjjrkPfI,6807
106
+ numba_cuda/numba/cuda/tests/cudadrv/test_nvjitlink.py,sha256=VOOl5fLxQL5IKHEi8hL47hAH0BUf_D8NyIxptLxIwus,8856
107
107
  numba_cuda/numba/cuda/tests/cudadrv/test_nvvm_driver.py,sha256=DF7KV5uh-yMztks0f47NhpalV64dvsNy-f8HY6GhAhE,7373
108
108
  numba_cuda/numba/cuda/tests/cudadrv/test_pinned.py,sha256=u_TthSS2N-2J4eBIuF4PGg33AjD-wxly7MKpz0vRAKc,944
109
109
  numba_cuda/numba/cuda/tests/cudadrv/test_profiler.py,sha256=MQWZx1j3lbEpWmIpQ1bV9szrGOV3VHN0QrEnJRjAhW4,508
@@ -137,8 +137,8 @@ numba_cuda/numba/cuda/tests/cudapy/test_cooperative_groups.py,sha256=ZQuct24GEZn
137
137
  numba_cuda/numba/cuda/tests/cudapy/test_cuda_array_interface.py,sha256=73FCQbNaAKpuybAwMOt4eW_dL_K6ZjrRgQw09ojkSbY,15844
138
138
  numba_cuda/numba/cuda/tests/cudapy/test_cuda_jit_no_types.py,sha256=y7cNQZOZJo5Sv16ql3E5QaRksw-U3RkXss9YDcNeiTk,2137
139
139
  numba_cuda/numba/cuda/tests/cudapy/test_datetime.py,sha256=2in1Cq8y9zAFoka7H72wF1D0awEd3n7bv56sUPgoNAQ,3508
140
- numba_cuda/numba/cuda/tests/cudapy/test_debug.py,sha256=jwYD1xdWKVOv_axf_ztvsPKL62SKYthBYLX3s9ryz7s,3555
141
- numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py,sha256=jDPgxSe0G0nAib3wgbfrOg6uvnwmCcuB9GhrzXEvlc0,7875
140
+ numba_cuda/numba/cuda/tests/cudapy/test_debug.py,sha256=3MYNiMe75rgBF1T0vsJ7r-nkW5jPvov_tDms9KXo2UU,3449
141
+ numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py,sha256=8Tm1iD2x1BRryB1QY6qp6tdjJCE6Tx9p0LzcYwiExIU,7922
142
142
  numba_cuda/numba/cuda/tests/cudapy/test_device_func.py,sha256=aTRyZSOJB3sAShw0YAEgHILrR-TCuowW9KYjtlRErKM,6892
143
143
  numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py,sha256=oX-l_L4H8rME1IolwhAyordSGJ152nnuqGAFdWjfgas,26587
144
144
  numba_cuda/numba/cuda/tests/cudapy/test_enums.py,sha256=0GWiwvZ1FTzSl1FfMxttkWaWrowASfXrSDT8XAR4ZHw,3560
@@ -154,14 +154,14 @@ numba_cuda/numba/cuda/tests/cudapy/test_gufunc.py,sha256=0NWfQqHmx7tFh6vdS7QtxT8
154
154
  numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scalar.py,sha256=Uhe8Q0u42jySrpwAZh8vCf4GMYkiy9NOMolyzEBuri0,5382
155
155
  numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scheduling.py,sha256=luDtBxFS_5ZbVemXe1Z7gfqMliaU_EAOR4SuLsU5rhw,2677
156
156
  numba_cuda/numba/cuda/tests/cudapy/test_idiv.py,sha256=HLJ_f2lX8m_NNJjUbl_8zZ0-8GsBlRdBP2CUo_yWb0Y,1056
157
- numba_cuda/numba/cuda/tests/cudapy/test_inspect.py,sha256=lP9-8SbWFn2Xc-qmF6UNhcY6LreKTnveaK5CGW2pu8E,5196
157
+ numba_cuda/numba/cuda/tests/cudapy/test_inspect.py,sha256=hzK1Kk2c-aKCIL2QSodHpyxemOYaghgsMx7H1WvMHX8,4879
158
158
  numba_cuda/numba/cuda/tests/cudapy/test_intrinsics.py,sha256=M6-pad8nVM0fuL18uFxvE6tmHw0spLNhnMBLVlO0FKU,36400
159
159
  numba_cuda/numba/cuda/tests/cudapy/test_ipc.py,sha256=fggyy-kmsOkCb906_q3kXPGRziccWu7Co7ir83zBMwM,10536
160
160
  numba_cuda/numba/cuda/tests/cudapy/test_iterators.py,sha256=daQW3kSkp7icCmlTn9pCvnaauz60k_eBf4x1UQF-XVY,2344
161
161
  numba_cuda/numba/cuda/tests/cudapy/test_lang.py,sha256=U1BCVZMjU1AZ4wDSmjsRIPPcAReiq4dB77Cz7GmrdmA,1691
162
162
  numba_cuda/numba/cuda/tests/cudapy/test_laplace.py,sha256=yD--H5p_NrBHklFNCnxuQ0S8yUIBYScBkvn7hBlZ5ZM,3211
163
163
  numba_cuda/numba/cuda/tests/cudapy/test_libdevice.py,sha256=4NsZBXweDPQpqfgo6T7eQHaWDVBof1CZDTpI1QTkV74,6545
164
- numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py,sha256=sKPF5l1cDTyA4UT0IO8Yeq6pYPGt9pIBQtrMAJMJHCM,6855
164
+ numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py,sha256=cimoEJqCWepvJPIqUumpLjQimg80je-WNul1MfT6KVY,6824
165
165
  numba_cuda/numba/cuda/tests/cudapy/test_localmem.py,sha256=uv9UYuytIXQgzHpPgEoWVVVq5-a7-6Io_mWMiNsZ45I,5376
166
166
  numba_cuda/numba/cuda/tests/cudapy/test_mandel.py,sha256=crVQBw46l4iyAv8_pu7v1eBy9ZJG7OkigB5zsyi6s3A,1085
167
167
  numba_cuda/numba/cuda/tests/cudapy/test_math.py,sha256=T-KRh9qzwOL3usl_6Cly3FVlvauzGhGnedfAG1hBQy8,27615
@@ -173,7 +173,7 @@ numba_cuda/numba/cuda/tests/cudapy/test_multiprocessing.py,sha256=AjYbSa9nOlv_yc
173
173
  numba_cuda/numba/cuda/tests/cudapy/test_multithreads.py,sha256=MfCbyJZu1XsCJOCSw6vvhs4eiP4LZPcF-e9huPmW-ys,2861
174
174
  numba_cuda/numba/cuda/tests/cudapy/test_nondet.py,sha256=mYMX0R1tmBLRe5ZAwiDVFFuSyMuPav5guuqL3WHWGPY,1378
175
175
  numba_cuda/numba/cuda/tests/cudapy/test_operator.py,sha256=0nJej4D898_JU-jhlif44fR2yu42keK4GoCLP810l3U,13295
176
- numba_cuda/numba/cuda/tests/cudapy/test_optimization.py,sha256=SvqRsSFgcGxkFDZS-kul5B-mi8GxINTS98uUzAy4dhw,2647
176
+ numba_cuda/numba/cuda/tests/cudapy/test_optimization.py,sha256=IRTI-b7hwMaJxtxFRzoTjpzzeqWGzNyCJPT6C4GugX4,2925
177
177
  numba_cuda/numba/cuda/tests/cudapy/test_overload.py,sha256=u4yUDVFcV9E3NWMlNjM81e3IW4KaIkcDtXig8JYevsw,8538
178
178
  numba_cuda/numba/cuda/tests/cudapy/test_powi.py,sha256=TI82rYRnkSnwv9VN6PMpBnr9JqMJ_F3HhH4cKY6O8tw,3276
179
179
  numba_cuda/numba/cuda/tests/cudapy/test_print.py,sha256=r2xmMNx80_ANi3uFB3CQt3AHAXG_JdhStY1S796hlK0,4466
@@ -187,7 +187,7 @@ numba_cuda/numba/cuda/tests/cudapy/test_serialize.py,sha256=alE5-lTwbjz3Tv6OvQPS
187
187
  numba_cuda/numba/cuda/tests/cudapy/test_slicing.py,sha256=bAh_sIk5V9_0_dOVGdzmyjwZkHMLjEbQuEI4e5zRMoU,903
188
188
  numba_cuda/numba/cuda/tests/cudapy/test_sm.py,sha256=kh1F0wwQ2_bd54Q4GUX99y2oiWHQwBpyC__ckk-jiTU,14575
189
189
  numba_cuda/numba/cuda/tests/cudapy/test_sm_creation.py,sha256=bTXDjU94ezo6Bz_lktlPyowTcJHBOWfy7-nJB9e-B_s,7231
190
- numba_cuda/numba/cuda/tests/cudapy/test_stream_api.py,sha256=alwSPm2xLvuYEwzpuCE6UUkOp6xcEoVqZjyJk3VJjtY,1743
190
+ numba_cuda/numba/cuda/tests/cudapy/test_stream_api.py,sha256=pCU0B-yBavHLgyhlKYAs1SCG8BWim9dSvl2BjXkhgQ4,1868
191
191
  numba_cuda/numba/cuda/tests/cudapy/test_sync.py,sha256=Y851UqNkT80U9q_C05SQfvPRCY7jjRARHOMk6g0lU4Y,7837
192
192
  numba_cuda/numba/cuda/tests/cudapy/test_transpose.py,sha256=JAQX2EUHwlpKCfJDGspaldmsIRbHxnXpsNUrvRrnIEE,3134
193
193
  numba_cuda/numba/cuda/tests/cudapy/test_ufuncs.py,sha256=-ehvkxelr45aT8sUNL9Hq8cn2GU_K4GL1yWeX-rHqEM,9680
@@ -232,12 +232,12 @@ numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py,sha256=n0_-xFaw6QqiZbhe55oy7lnEe
232
232
  numba_cuda/numba/cuda/tests/nrt/__init__.py,sha256=43EXdiXXRBd6yIcVGMrU9F_EJCD9Uw3mzOP3SB53AEE,260
233
233
  numba_cuda/numba/cuda/tests/nrt/mock_numpy.py,sha256=Qtn52GoKZ_ydre3oqkLWVdImC37tuPClUy4uHSutaJo,1568
234
234
  numba_cuda/numba/cuda/tests/nrt/test_nrt.py,sha256=Ox6ei2DldvSSS-CndTXRxLnsvWdteOQNgn6GvKHB244,2789
235
- numba_cuda/numba/cuda/tests/test_binary_generation/Makefile,sha256=OFC_6irwscCNGAyJJKq7fTchzWosCUuiVWU02m0bcUQ,2248
235
+ numba_cuda/numba/cuda/tests/test_binary_generation/Makefile,sha256=P2WzCc5d64JGq6pJwHEwmKVmJOJxPBtsMTbnuzqYkik,2679
236
236
  numba_cuda/numba/cuda/tests/test_binary_generation/generate_raw_ltoir.py,sha256=V0raLZLGSiWbE_K-JluI0CnmNkXbhlMVj-TH7P1OV8E,5014
237
237
  numba_cuda/numba/cuda/tests/test_binary_generation/test_device_functions.cu,sha256=cUf-t6ZM9MK_x7X_aKwsrKW1LdR97XcpR-qnYr5faOE,453
238
238
  numba_cuda/numba/cuda/tests/test_binary_generation/undefined_extern.cu,sha256=q3oxZziT8KDodeNcEBiWULH6vMrHCWucmJmtrg8C0d0,128
239
- numba_cuda-0.0.19.dist-info/LICENSE,sha256=eHeYE-XjASmwbxfsP5AImgfzRwZurZGqH1f6OFwJ4io,1326
240
- numba_cuda-0.0.19.dist-info/METADATA,sha256=GAWms3JiCaxTzo4WMk-5h31_Oqo8YFPgekLKFR_YfqA,1393
241
- numba_cuda-0.0.19.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
242
- numba_cuda-0.0.19.dist-info/top_level.txt,sha256=C50SsH-8tXDmt7I0Y3nlJYhS5s6pqWflCPdobe9vx2M,11
243
- numba_cuda-0.0.19.dist-info/RECORD,,
239
+ numba_cuda-0.0.21.dist-info/LICENSE,sha256=eHeYE-XjASmwbxfsP5AImgfzRwZurZGqH1f6OFwJ4io,1326
240
+ numba_cuda-0.0.21.dist-info/METADATA,sha256=U_oWdBsw_mdsI2AnFJDXdxTXL2ytOeuTHwS3wCZswTI,1497
241
+ numba_cuda-0.0.21.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
242
+ numba_cuda-0.0.21.dist-info/top_level.txt,sha256=C50SsH-8tXDmt7I0Y3nlJYhS5s6pqWflCPdobe9vx2M,11
243
+ numba_cuda-0.0.21.dist-info/RECORD,,