numba-cuda 0.0.0__py3-none-any.whl → 0.0.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- _numba_cuda_redirector.pth +1 -0
- _numba_cuda_redirector.py +74 -0
- numba_cuda/VERSION +1 -0
- numba_cuda/__init__.py +5 -0
- numba_cuda/_version.py +19 -0
- numba_cuda/numba/cuda/__init__.py +22 -0
- numba_cuda/numba/cuda/api.py +526 -0
- numba_cuda/numba/cuda/api_util.py +30 -0
- numba_cuda/numba/cuda/args.py +77 -0
- numba_cuda/numba/cuda/cg.py +62 -0
- numba_cuda/numba/cuda/codegen.py +378 -0
- numba_cuda/numba/cuda/compiler.py +422 -0
- numba_cuda/numba/cuda/cpp_function_wrappers.cu +47 -0
- numba_cuda/numba/cuda/cuda_fp16.h +3631 -0
- numba_cuda/numba/cuda/cuda_fp16.hpp +2465 -0
- numba_cuda/numba/cuda/cuda_paths.py +258 -0
- numba_cuda/numba/cuda/cudadecl.py +806 -0
- numba_cuda/numba/cuda/cudadrv/__init__.py +9 -0
- numba_cuda/numba/cuda/cudadrv/devicearray.py +904 -0
- numba_cuda/numba/cuda/cudadrv/devices.py +248 -0
- numba_cuda/numba/cuda/cudadrv/driver.py +3201 -0
- numba_cuda/numba/cuda/cudadrv/drvapi.py +398 -0
- numba_cuda/numba/cuda/cudadrv/dummyarray.py +452 -0
- numba_cuda/numba/cuda/cudadrv/enums.py +607 -0
- numba_cuda/numba/cuda/cudadrv/error.py +36 -0
- numba_cuda/numba/cuda/cudadrv/libs.py +176 -0
- numba_cuda/numba/cuda/cudadrv/ndarray.py +20 -0
- numba_cuda/numba/cuda/cudadrv/nvrtc.py +260 -0
- numba_cuda/numba/cuda/cudadrv/nvvm.py +707 -0
- numba_cuda/numba/cuda/cudadrv/rtapi.py +10 -0
- numba_cuda/numba/cuda/cudadrv/runtime.py +142 -0
- numba_cuda/numba/cuda/cudaimpl.py +1055 -0
- numba_cuda/numba/cuda/cudamath.py +140 -0
- numba_cuda/numba/cuda/decorators.py +189 -0
- numba_cuda/numba/cuda/descriptor.py +33 -0
- numba_cuda/numba/cuda/device_init.py +89 -0
- numba_cuda/numba/cuda/deviceufunc.py +908 -0
- numba_cuda/numba/cuda/dispatcher.py +1057 -0
- numba_cuda/numba/cuda/errors.py +59 -0
- numba_cuda/numba/cuda/extending.py +7 -0
- numba_cuda/numba/cuda/initialize.py +13 -0
- numba_cuda/numba/cuda/intrinsic_wrapper.py +77 -0
- numba_cuda/numba/cuda/intrinsics.py +198 -0
- numba_cuda/numba/cuda/kernels/__init__.py +0 -0
- numba_cuda/numba/cuda/kernels/reduction.py +262 -0
- numba_cuda/numba/cuda/kernels/transpose.py +65 -0
- numba_cuda/numba/cuda/libdevice.py +3382 -0
- numba_cuda/numba/cuda/libdevicedecl.py +17 -0
- numba_cuda/numba/cuda/libdevicefuncs.py +1057 -0
- numba_cuda/numba/cuda/libdeviceimpl.py +83 -0
- numba_cuda/numba/cuda/mathimpl.py +448 -0
- numba_cuda/numba/cuda/models.py +48 -0
- numba_cuda/numba/cuda/nvvmutils.py +235 -0
- numba_cuda/numba/cuda/printimpl.py +86 -0
- numba_cuda/numba/cuda/random.py +292 -0
- numba_cuda/numba/cuda/simulator/__init__.py +38 -0
- numba_cuda/numba/cuda/simulator/api.py +110 -0
- numba_cuda/numba/cuda/simulator/compiler.py +9 -0
- numba_cuda/numba/cuda/simulator/cudadrv/__init__.py +2 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devicearray.py +432 -0
- numba_cuda/numba/cuda/simulator/cudadrv/devices.py +117 -0
- numba_cuda/numba/cuda/simulator/cudadrv/driver.py +62 -0
- numba_cuda/numba/cuda/simulator/cudadrv/drvapi.py +4 -0
- numba_cuda/numba/cuda/simulator/cudadrv/dummyarray.py +4 -0
- numba_cuda/numba/cuda/simulator/cudadrv/error.py +6 -0
- numba_cuda/numba/cuda/simulator/cudadrv/libs.py +2 -0
- numba_cuda/numba/cuda/simulator/cudadrv/nvvm.py +29 -0
- numba_cuda/numba/cuda/simulator/cudadrv/runtime.py +19 -0
- numba_cuda/numba/cuda/simulator/kernel.py +308 -0
- numba_cuda/numba/cuda/simulator/kernelapi.py +495 -0
- numba_cuda/numba/cuda/simulator/reduction.py +15 -0
- numba_cuda/numba/cuda/simulator/vector_types.py +58 -0
- numba_cuda/numba/cuda/simulator_init.py +17 -0
- numba_cuda/numba/cuda/stubs.py +902 -0
- numba_cuda/numba/cuda/target.py +440 -0
- numba_cuda/numba/cuda/testing.py +202 -0
- numba_cuda/numba/cuda/tests/__init__.py +58 -0
- numba_cuda/numba/cuda/tests/cudadrv/__init__.py +8 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_array_attr.py +145 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_context_stack.py +145 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_array_slicing.py +375 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_auto_context.py +21 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_devicerecord.py +179 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_driver.py +235 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_libraries.py +22 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_memory.py +193 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_cuda_ndarray.py +547 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_deallocations.py +249 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_detect.py +81 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_emm_plugins.py +192 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_events.py +38 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_host_alloc.py +65 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_init.py +139 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_inline_ptx.py +37 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_is_fp16.py +12 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_linker.py +317 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_managed_alloc.py +127 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_mvc.py +54 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_nvvm_driver.py +199 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_pinned.py +37 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_profiler.py +20 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_ptds.py +149 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_reset_device.py +36 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_runtime.py +85 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_select_device.py +41 -0
- numba_cuda/numba/cuda/tests/cudadrv/test_streams.py +122 -0
- numba_cuda/numba/cuda/tests/cudapy/__init__.py +8 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_usecases.py +234 -0
- numba_cuda/numba/cuda/tests/cudapy/cache_with_cpu_usecases.py +41 -0
- numba_cuda/numba/cuda/tests/cudapy/extensions_usecases.py +58 -0
- numba_cuda/numba/cuda/tests/cudapy/jitlink.ptx +30 -0
- numba_cuda/numba/cuda/tests/cudapy/recursion_usecases.py +100 -0
- numba_cuda/numba/cuda/tests/cudapy/test_alignment.py +42 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array.py +260 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_args.py +201 -0
- numba_cuda/numba/cuda/tests/cudapy/test_array_methods.py +35 -0
- numba_cuda/numba/cuda/tests/cudapy/test_atomics.py +1620 -0
- numba_cuda/numba/cuda/tests/cudapy/test_blackscholes.py +120 -0
- numba_cuda/numba/cuda/tests/cudapy/test_boolean.py +24 -0
- numba_cuda/numba/cuda/tests/cudapy/test_caching.py +545 -0
- numba_cuda/numba/cuda/tests/cudapy/test_casting.py +257 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cffi.py +33 -0
- numba_cuda/numba/cuda/tests/cudapy/test_compiler.py +276 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex.py +296 -0
- numba_cuda/numba/cuda/tests/cudapy/test_complex_kernel.py +20 -0
- numba_cuda/numba/cuda/tests/cudapy/test_const_string.py +129 -0
- numba_cuda/numba/cuda/tests/cudapy/test_constmem.py +176 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cooperative_groups.py +147 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_array_interface.py +435 -0
- numba_cuda/numba/cuda/tests/cudapy/test_cuda_jit_no_types.py +90 -0
- numba_cuda/numba/cuda/tests/cudapy/test_datetime.py +94 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debug.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py +221 -0
- numba_cuda/numba/cuda/tests/cudapy/test_device_func.py +222 -0
- numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py +700 -0
- numba_cuda/numba/cuda/tests/cudapy/test_enums.py +121 -0
- numba_cuda/numba/cuda/tests/cudapy/test_errors.py +79 -0
- numba_cuda/numba/cuda/tests/cudapy/test_exception.py +174 -0
- numba_cuda/numba/cuda/tests/cudapy/test_extending.py +155 -0
- numba_cuda/numba/cuda/tests/cudapy/test_fastmath.py +244 -0
- numba_cuda/numba/cuda/tests/cudapy/test_forall.py +52 -0
- numba_cuda/numba/cuda/tests/cudapy/test_freevar.py +29 -0
- numba_cuda/numba/cuda/tests/cudapy/test_frexp_ldexp.py +66 -0
- numba_cuda/numba/cuda/tests/cudapy/test_globals.py +60 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc.py +456 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scalar.py +159 -0
- numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scheduling.py +95 -0
- numba_cuda/numba/cuda/tests/cudapy/test_idiv.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_inspect.py +165 -0
- numba_cuda/numba/cuda/tests/cudapy/test_intrinsics.py +1106 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ipc.py +318 -0
- numba_cuda/numba/cuda/tests/cudapy/test_iterators.py +99 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lang.py +64 -0
- numba_cuda/numba/cuda/tests/cudapy/test_laplace.py +119 -0
- numba_cuda/numba/cuda/tests/cudapy/test_libdevice.py +187 -0
- numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py +199 -0
- numba_cuda/numba/cuda/tests/cudapy/test_localmem.py +164 -0
- numba_cuda/numba/cuda/tests/cudapy/test_mandel.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_math.py +786 -0
- numba_cuda/numba/cuda/tests/cudapy/test_matmul.py +74 -0
- numba_cuda/numba/cuda/tests/cudapy/test_minmax.py +113 -0
- numba_cuda/numba/cuda/tests/cudapy/test_montecarlo.py +22 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multigpu.py +140 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multiprocessing.py +46 -0
- numba_cuda/numba/cuda/tests/cudapy/test_multithreads.py +101 -0
- numba_cuda/numba/cuda/tests/cudapy/test_nondet.py +49 -0
- numba_cuda/numba/cuda/tests/cudapy/test_operator.py +401 -0
- numba_cuda/numba/cuda/tests/cudapy/test_optimization.py +86 -0
- numba_cuda/numba/cuda/tests/cudapy/test_overload.py +335 -0
- numba_cuda/numba/cuda/tests/cudapy/test_powi.py +124 -0
- numba_cuda/numba/cuda/tests/cudapy/test_print.py +128 -0
- numba_cuda/numba/cuda/tests/cudapy/test_py2_div_issue.py +33 -0
- numba_cuda/numba/cuda/tests/cudapy/test_random.py +104 -0
- numba_cuda/numba/cuda/tests/cudapy/test_record_dtype.py +610 -0
- numba_cuda/numba/cuda/tests/cudapy/test_recursion.py +125 -0
- numba_cuda/numba/cuda/tests/cudapy/test_reduction.py +76 -0
- numba_cuda/numba/cuda/tests/cudapy/test_retrieve_autoconverted_arrays.py +83 -0
- numba_cuda/numba/cuda/tests/cudapy/test_serialize.py +85 -0
- numba_cuda/numba/cuda/tests/cudapy/test_slicing.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm.py +444 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sm_creation.py +205 -0
- numba_cuda/numba/cuda/tests/cudapy/test_sync.py +271 -0
- numba_cuda/numba/cuda/tests/cudapy/test_transpose.py +80 -0
- numba_cuda/numba/cuda/tests/cudapy/test_ufuncs.py +277 -0
- numba_cuda/numba/cuda/tests/cudapy/test_userexc.py +47 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vector_type.py +307 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize.py +283 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_complex.py +20 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_decor.py +69 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_device.py +36 -0
- numba_cuda/numba/cuda/tests/cudapy/test_vectorize_scalar_arg.py +37 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warning.py +139 -0
- numba_cuda/numba/cuda/tests/cudapy/test_warp_ops.py +276 -0
- numba_cuda/numba/cuda/tests/cudasim/__init__.py +6 -0
- numba_cuda/numba/cuda/tests/cudasim/support.py +6 -0
- numba_cuda/numba/cuda/tests/cudasim/test_cudasim_issues.py +102 -0
- numba_cuda/numba/cuda/tests/data/__init__.py +0 -0
- numba_cuda/numba/cuda/tests/data/cuda_include.cu +5 -0
- numba_cuda/numba/cuda/tests/data/error.cu +7 -0
- numba_cuda/numba/cuda/tests/data/jitlink.cu +23 -0
- numba_cuda/numba/cuda/tests/data/jitlink.ptx +51 -0
- numba_cuda/numba/cuda/tests/data/warn.cu +7 -0
- numba_cuda/numba/cuda/tests/doc_examples/__init__.py +6 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/__init__.py +0 -0
- numba_cuda/numba/cuda/tests/doc_examples/ffi/functions.cu +49 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cg.py +77 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_cpu_gpu_compat.py +76 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ffi.py +82 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_laplace.py +155 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_matmul.py +173 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_montecarlo.py +109 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_random.py +59 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_reduction.py +76 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_sessionize.py +130 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_ufunc.py +50 -0
- numba_cuda/numba/cuda/tests/doc_examples/test_vecadd.py +73 -0
- numba_cuda/numba/cuda/tests/nocuda/__init__.py +8 -0
- numba_cuda/numba/cuda/tests/nocuda/test_dummyarray.py +359 -0
- numba_cuda/numba/cuda/tests/nocuda/test_function_resolution.py +36 -0
- numba_cuda/numba/cuda/tests/nocuda/test_import.py +49 -0
- numba_cuda/numba/cuda/tests/nocuda/test_library_lookup.py +238 -0
- numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py +54 -0
- numba_cuda/numba/cuda/types.py +37 -0
- numba_cuda/numba/cuda/ufuncs.py +662 -0
- numba_cuda/numba/cuda/vector_types.py +209 -0
- numba_cuda/numba/cuda/vectorizers.py +252 -0
- numba_cuda-0.0.12.dist-info/LICENSE +25 -0
- numba_cuda-0.0.12.dist-info/METADATA +68 -0
- numba_cuda-0.0.12.dist-info/RECORD +231 -0
- {numba_cuda-0.0.0.dist-info → numba_cuda-0.0.12.dist-info}/WHEEL +1 -1
- numba_cuda-0.0.0.dist-info/METADATA +0 -6
- numba_cuda-0.0.0.dist-info/RECORD +0 -5
- {numba_cuda-0.0.0.dist-info → numba_cuda-0.0.12.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1620 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from textwrap import dedent
|
3
|
+
|
4
|
+
from numba import cuda, uint32, uint64, float32, float64
|
5
|
+
from numba.cuda.testing import unittest, CUDATestCase, cc_X_or_above
|
6
|
+
from numba.core import config
|
7
|
+
|
8
|
+
|
9
|
+
@cuda.jit(device=True)
|
10
|
+
def atomic_cast_to_uint64(num):
|
11
|
+
return uint64(num)
|
12
|
+
|
13
|
+
|
14
|
+
@cuda.jit(device=True)
|
15
|
+
def atomic_cast_to_int(num):
|
16
|
+
return int(num)
|
17
|
+
|
18
|
+
|
19
|
+
@cuda.jit(device=True)
|
20
|
+
def atomic_cast_none(num):
|
21
|
+
return num
|
22
|
+
|
23
|
+
|
24
|
+
@cuda.jit(device=True)
|
25
|
+
def atomic_binary_1dim_shared(ary, idx, op2, ary_dtype, ary_nelements,
|
26
|
+
binop_func, cast_func, initializer,
|
27
|
+
neg_idx):
|
28
|
+
tid = cuda.threadIdx.x
|
29
|
+
sm = cuda.shared.array(ary_nelements, ary_dtype)
|
30
|
+
sm[tid] = initializer
|
31
|
+
cuda.syncthreads()
|
32
|
+
bin = cast_func(idx[tid] % ary_nelements)
|
33
|
+
if neg_idx:
|
34
|
+
bin = bin % ary_nelements
|
35
|
+
binop_func(sm, bin, op2)
|
36
|
+
cuda.syncthreads()
|
37
|
+
ary[tid] = sm[tid]
|
38
|
+
|
39
|
+
|
40
|
+
@cuda.jit(device=True)
|
41
|
+
def atomic_binary_1dim_shared2(ary, idx, op2, ary_dtype, ary_nelements,
|
42
|
+
binop_func, cast_func):
|
43
|
+
tid = cuda.threadIdx.x
|
44
|
+
sm = cuda.shared.array(ary_nelements, ary_dtype)
|
45
|
+
sm[tid] = ary[tid]
|
46
|
+
cuda.syncthreads()
|
47
|
+
bin = cast_func(idx[tid] % ary_nelements)
|
48
|
+
binop_func(sm, bin, op2)
|
49
|
+
cuda.syncthreads()
|
50
|
+
ary[tid] = sm[tid]
|
51
|
+
|
52
|
+
|
53
|
+
@cuda.jit(device=True)
|
54
|
+
def atomic_binary_2dim_shared(ary, op2, ary_dtype, ary_shape,
|
55
|
+
binop_func, y_cast_func, neg_idx):
|
56
|
+
tx = cuda.threadIdx.x
|
57
|
+
ty = cuda.threadIdx.y
|
58
|
+
sm = cuda.shared.array(ary_shape, ary_dtype)
|
59
|
+
sm[tx, ty] = ary[tx, ty]
|
60
|
+
cuda.syncthreads()
|
61
|
+
bin = (tx, y_cast_func(ty))
|
62
|
+
if neg_idx:
|
63
|
+
bin = (bin[0] % ary_shape[0], bin[1] % ary_shape[1])
|
64
|
+
binop_func(sm, bin, op2)
|
65
|
+
cuda.syncthreads()
|
66
|
+
ary[tx, ty] = sm[tx, ty]
|
67
|
+
|
68
|
+
|
69
|
+
@cuda.jit(device=True)
|
70
|
+
def atomic_binary_2dim_global(ary, op2, binop_func, y_cast_func, neg_idx):
|
71
|
+
tx = cuda.threadIdx.x
|
72
|
+
ty = cuda.threadIdx.y
|
73
|
+
bin = (tx, y_cast_func(ty))
|
74
|
+
if neg_idx:
|
75
|
+
bin = (bin[0] % ary.shape[0], bin[1] % ary.shape[1])
|
76
|
+
binop_func(ary, bin, op2)
|
77
|
+
|
78
|
+
|
79
|
+
@cuda.jit(device=True)
|
80
|
+
def atomic_binary_1dim_global(ary, idx, ary_nelements, op2,
|
81
|
+
binop_func, neg_idx):
|
82
|
+
tid = cuda.threadIdx.x
|
83
|
+
bin = int(idx[tid] % ary_nelements)
|
84
|
+
if neg_idx:
|
85
|
+
bin = bin % ary_nelements
|
86
|
+
binop_func(ary, bin, op2)
|
87
|
+
|
88
|
+
|
89
|
+
def atomic_add(ary):
|
90
|
+
atomic_binary_1dim_shared(ary, ary, 1, uint32, 32,
|
91
|
+
cuda.atomic.add, atomic_cast_none, 0, False)
|
92
|
+
|
93
|
+
|
94
|
+
def atomic_add_wrap(ary):
|
95
|
+
atomic_binary_1dim_shared(ary, ary, 1, uint32, 32,
|
96
|
+
cuda.atomic.add, atomic_cast_none, 0, True)
|
97
|
+
|
98
|
+
|
99
|
+
def atomic_add2(ary):
|
100
|
+
atomic_binary_2dim_shared(ary, 1, uint32, (4, 8),
|
101
|
+
cuda.atomic.add, atomic_cast_none, False)
|
102
|
+
|
103
|
+
|
104
|
+
def atomic_add2_wrap(ary):
|
105
|
+
atomic_binary_2dim_shared(ary, 1, uint32, (4, 8),
|
106
|
+
cuda.atomic.add, atomic_cast_none, True)
|
107
|
+
|
108
|
+
|
109
|
+
def atomic_add3(ary):
|
110
|
+
atomic_binary_2dim_shared(ary, 1, uint32, (4, 8),
|
111
|
+
cuda.atomic.add, atomic_cast_to_uint64, False)
|
112
|
+
|
113
|
+
|
114
|
+
def atomic_add_float(ary):
|
115
|
+
atomic_binary_1dim_shared(ary, ary, 1.0, float32, 32,
|
116
|
+
cuda.atomic.add, atomic_cast_to_int, 0.0, False)
|
117
|
+
|
118
|
+
|
119
|
+
def atomic_add_float_wrap(ary):
|
120
|
+
atomic_binary_1dim_shared(ary, ary, 1.0, float32, 32,
|
121
|
+
cuda.atomic.add, atomic_cast_to_int, 0.0, True)
|
122
|
+
|
123
|
+
|
124
|
+
def atomic_add_float_2(ary):
|
125
|
+
atomic_binary_2dim_shared(ary, 1.0, float32, (4, 8),
|
126
|
+
cuda.atomic.add, atomic_cast_none, False)
|
127
|
+
|
128
|
+
|
129
|
+
def atomic_add_float_2_wrap(ary):
|
130
|
+
atomic_binary_2dim_shared(ary, 1.0, float32, (4, 8),
|
131
|
+
cuda.atomic.add, atomic_cast_none, True)
|
132
|
+
|
133
|
+
|
134
|
+
def atomic_add_float_3(ary):
|
135
|
+
atomic_binary_2dim_shared(ary, 1.0, float32, (4, 8),
|
136
|
+
cuda.atomic.add, atomic_cast_to_uint64, False)
|
137
|
+
|
138
|
+
|
139
|
+
def atomic_add_double_global(idx, ary):
|
140
|
+
atomic_binary_1dim_global(ary, idx, 32, 1.0, cuda.atomic.add, False)
|
141
|
+
|
142
|
+
|
143
|
+
def atomic_add_double_global_wrap(idx, ary):
|
144
|
+
atomic_binary_1dim_global(ary, idx, 32, 1.0, cuda.atomic.add, True)
|
145
|
+
|
146
|
+
|
147
|
+
def atomic_add_double_global_2(ary):
|
148
|
+
atomic_binary_2dim_global(ary, 1, cuda.atomic.add, atomic_cast_none, False)
|
149
|
+
|
150
|
+
|
151
|
+
def atomic_add_double_global_2_wrap(ary):
|
152
|
+
atomic_binary_2dim_global(ary, 1, cuda.atomic.add, atomic_cast_none, True)
|
153
|
+
|
154
|
+
|
155
|
+
def atomic_add_double_global_3(ary):
|
156
|
+
atomic_binary_2dim_global(ary, 1, cuda.atomic.add, atomic_cast_to_uint64,
|
157
|
+
False)
|
158
|
+
|
159
|
+
|
160
|
+
def atomic_add_double(idx, ary):
|
161
|
+
atomic_binary_1dim_shared(ary, idx, 1.0, float64, 32,
|
162
|
+
cuda.atomic.add, atomic_cast_none, 0.0, False)
|
163
|
+
|
164
|
+
|
165
|
+
def atomic_add_double_wrap(idx, ary):
|
166
|
+
atomic_binary_1dim_shared(ary, idx, 1.0, float64, 32,
|
167
|
+
cuda.atomic.add, atomic_cast_none, 0.0, True)
|
168
|
+
|
169
|
+
|
170
|
+
def atomic_add_double_2(ary):
|
171
|
+
atomic_binary_2dim_shared(ary, 1.0, float64, (4, 8),
|
172
|
+
cuda.atomic.add, atomic_cast_none, False)
|
173
|
+
|
174
|
+
|
175
|
+
def atomic_add_double_2_wrap(ary):
|
176
|
+
atomic_binary_2dim_shared(ary, 1.0, float64, (4, 8),
|
177
|
+
cuda.atomic.add, atomic_cast_none, True)
|
178
|
+
|
179
|
+
|
180
|
+
def atomic_add_double_3(ary):
|
181
|
+
atomic_binary_2dim_shared(ary, 1.0, float64, (4, 8),
|
182
|
+
cuda.atomic.add, atomic_cast_to_uint64, False)
|
183
|
+
|
184
|
+
|
185
|
+
def atomic_sub(ary):
|
186
|
+
atomic_binary_1dim_shared(ary, ary, 1, uint32, 32,
|
187
|
+
cuda.atomic.sub, atomic_cast_none, 0, False)
|
188
|
+
|
189
|
+
|
190
|
+
def atomic_sub2(ary):
|
191
|
+
atomic_binary_2dim_shared(ary, 1, uint32, (4, 8),
|
192
|
+
cuda.atomic.sub, atomic_cast_none, False)
|
193
|
+
|
194
|
+
|
195
|
+
def atomic_sub3(ary):
|
196
|
+
atomic_binary_2dim_shared(ary, 1, uint32, (4, 8),
|
197
|
+
cuda.atomic.sub, atomic_cast_to_uint64, False)
|
198
|
+
|
199
|
+
|
200
|
+
def atomic_sub_float(ary):
|
201
|
+
atomic_binary_1dim_shared(ary, ary, 1.0, float32, 32,
|
202
|
+
cuda.atomic.sub, atomic_cast_to_int, 0.0, False)
|
203
|
+
|
204
|
+
|
205
|
+
def atomic_sub_float_2(ary):
|
206
|
+
atomic_binary_2dim_shared(ary, 1.0, float32, (4, 8),
|
207
|
+
cuda.atomic.sub, atomic_cast_none, False)
|
208
|
+
|
209
|
+
|
210
|
+
def atomic_sub_float_3(ary):
|
211
|
+
atomic_binary_2dim_shared(ary, 1.0, float32, (4, 8),
|
212
|
+
cuda.atomic.sub, atomic_cast_to_uint64, False)
|
213
|
+
|
214
|
+
|
215
|
+
def atomic_sub_double(idx, ary):
|
216
|
+
atomic_binary_1dim_shared(ary, idx, 1.0, float64, 32,
|
217
|
+
cuda.atomic.sub, atomic_cast_none, 0.0, False)
|
218
|
+
|
219
|
+
|
220
|
+
def atomic_sub_double_2(ary):
|
221
|
+
atomic_binary_2dim_shared(ary, 1.0, float64, (4, 8),
|
222
|
+
cuda.atomic.sub, atomic_cast_none, False)
|
223
|
+
|
224
|
+
|
225
|
+
def atomic_sub_double_3(ary):
|
226
|
+
atomic_binary_2dim_shared(ary, 1.0, float64, (4, 8),
|
227
|
+
cuda.atomic.sub, atomic_cast_to_uint64, False)
|
228
|
+
|
229
|
+
|
230
|
+
def atomic_sub_double_global(idx, ary):
|
231
|
+
atomic_binary_1dim_global(ary, idx, 32, 1.0, cuda.atomic.sub, False)
|
232
|
+
|
233
|
+
|
234
|
+
def atomic_sub_double_global_2(ary):
|
235
|
+
atomic_binary_2dim_global(ary, 1.0, cuda.atomic.sub, atomic_cast_none,
|
236
|
+
False)
|
237
|
+
|
238
|
+
|
239
|
+
def atomic_sub_double_global_3(ary):
|
240
|
+
atomic_binary_2dim_shared(ary, 1.0, float64, (4, 8),
|
241
|
+
cuda.atomic.sub, atomic_cast_to_uint64, False)
|
242
|
+
|
243
|
+
|
244
|
+
def atomic_and(ary, op2):
|
245
|
+
atomic_binary_1dim_shared(ary, ary, op2, uint32, 32,
|
246
|
+
cuda.atomic.and_, atomic_cast_none, 1, False)
|
247
|
+
|
248
|
+
|
249
|
+
def atomic_and2(ary, op2):
|
250
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
251
|
+
cuda.atomic.and_, atomic_cast_none, False)
|
252
|
+
|
253
|
+
|
254
|
+
def atomic_and3(ary, op2):
|
255
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
256
|
+
cuda.atomic.and_, atomic_cast_to_uint64, False)
|
257
|
+
|
258
|
+
|
259
|
+
def atomic_and_global(idx, ary, op2):
|
260
|
+
atomic_binary_1dim_global(ary, idx, 32, op2, cuda.atomic.and_, False)
|
261
|
+
|
262
|
+
|
263
|
+
def atomic_and_global_2(ary, op2):
|
264
|
+
atomic_binary_2dim_global(ary, op2, cuda.atomic.and_,
|
265
|
+
atomic_cast_none, False)
|
266
|
+
|
267
|
+
|
268
|
+
def atomic_or(ary, op2):
|
269
|
+
atomic_binary_1dim_shared(ary, ary, op2, uint32, 32,
|
270
|
+
cuda.atomic.or_, atomic_cast_none, 0, False)
|
271
|
+
|
272
|
+
|
273
|
+
def atomic_or2(ary, op2):
|
274
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
275
|
+
cuda.atomic.or_, atomic_cast_none, False)
|
276
|
+
|
277
|
+
|
278
|
+
def atomic_or3(ary, op2):
|
279
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
280
|
+
cuda.atomic.or_, atomic_cast_to_uint64, False)
|
281
|
+
|
282
|
+
|
283
|
+
def atomic_or_global(idx, ary, op2):
|
284
|
+
atomic_binary_1dim_global(ary, idx, 32, op2, cuda.atomic.or_, False)
|
285
|
+
|
286
|
+
|
287
|
+
def atomic_or_global_2(ary, op2):
|
288
|
+
atomic_binary_2dim_global(ary, op2, cuda.atomic.or_,
|
289
|
+
atomic_cast_none, False)
|
290
|
+
|
291
|
+
|
292
|
+
def atomic_xor(ary, op2):
|
293
|
+
atomic_binary_1dim_shared(ary, ary, op2, uint32, 32,
|
294
|
+
cuda.atomic.xor, atomic_cast_none, 0, False)
|
295
|
+
|
296
|
+
|
297
|
+
def atomic_xor2(ary, op2):
|
298
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
299
|
+
cuda.atomic.xor, atomic_cast_none, False)
|
300
|
+
|
301
|
+
|
302
|
+
def atomic_xor3(ary, op2):
|
303
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
304
|
+
cuda.atomic.xor, atomic_cast_to_uint64, False)
|
305
|
+
|
306
|
+
|
307
|
+
def atomic_xor_global(idx, ary, op2):
|
308
|
+
atomic_binary_1dim_global(ary, idx, 32, op2, cuda.atomic.xor, False)
|
309
|
+
|
310
|
+
|
311
|
+
def atomic_xor_global_2(ary, op2):
|
312
|
+
atomic_binary_2dim_global(ary, op2, cuda.atomic.xor,
|
313
|
+
atomic_cast_none, False)
|
314
|
+
|
315
|
+
|
316
|
+
def atomic_inc32(ary, idx, op2):
|
317
|
+
atomic_binary_1dim_shared2(ary, idx, op2, uint32, 32,
|
318
|
+
cuda.atomic.inc, atomic_cast_none)
|
319
|
+
|
320
|
+
|
321
|
+
def atomic_inc64(ary, idx, op2):
|
322
|
+
atomic_binary_1dim_shared2(ary, idx, op2, uint64, 32,
|
323
|
+
cuda.atomic.inc, atomic_cast_to_int)
|
324
|
+
|
325
|
+
|
326
|
+
def atomic_inc2_32(ary, op2):
|
327
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
328
|
+
cuda.atomic.inc, atomic_cast_none, False)
|
329
|
+
|
330
|
+
|
331
|
+
def atomic_inc2_64(ary, op2):
|
332
|
+
atomic_binary_2dim_shared(ary, op2, uint64, (4, 8),
|
333
|
+
cuda.atomic.inc, atomic_cast_none, False)
|
334
|
+
|
335
|
+
|
336
|
+
def atomic_inc3(ary, op2):
|
337
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
338
|
+
cuda.atomic.inc, atomic_cast_to_uint64, False)
|
339
|
+
|
340
|
+
|
341
|
+
def atomic_inc_global(idx, ary, op2):
|
342
|
+
atomic_binary_1dim_global(ary, idx, 32, op2, cuda.atomic.inc, False)
|
343
|
+
|
344
|
+
|
345
|
+
def atomic_inc_global_2(ary, op2):
|
346
|
+
atomic_binary_2dim_global(ary, op2, cuda.atomic.inc,
|
347
|
+
atomic_cast_none, False)
|
348
|
+
|
349
|
+
|
350
|
+
def atomic_dec32(ary, idx, op2):
|
351
|
+
atomic_binary_1dim_shared2(ary, idx, op2, uint32, 32,
|
352
|
+
cuda.atomic.dec, atomic_cast_none)
|
353
|
+
|
354
|
+
|
355
|
+
def atomic_dec64(ary, idx, op2):
|
356
|
+
atomic_binary_1dim_shared2(ary, idx, op2, uint64, 32,
|
357
|
+
cuda.atomic.dec, atomic_cast_to_int)
|
358
|
+
|
359
|
+
|
360
|
+
def atomic_dec2_32(ary, op2):
|
361
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
362
|
+
cuda.atomic.dec, atomic_cast_none, False)
|
363
|
+
|
364
|
+
|
365
|
+
def atomic_dec2_64(ary, op2):
|
366
|
+
atomic_binary_2dim_shared(ary, op2, uint64, (4, 8),
|
367
|
+
cuda.atomic.dec, atomic_cast_none, False)
|
368
|
+
|
369
|
+
|
370
|
+
def atomic_dec3(ary, op2):
|
371
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
372
|
+
cuda.atomic.dec, atomic_cast_to_uint64, False)
|
373
|
+
|
374
|
+
|
375
|
+
def atomic_dec_global(idx, ary, op2):
|
376
|
+
atomic_binary_1dim_global(ary, idx, 32, op2, cuda.atomic.dec, False)
|
377
|
+
|
378
|
+
|
379
|
+
def atomic_dec_global_2(ary, op2):
|
380
|
+
atomic_binary_2dim_global(ary, op2, cuda.atomic.dec,
|
381
|
+
atomic_cast_none, False)
|
382
|
+
|
383
|
+
|
384
|
+
def atomic_exch(ary, idx, op2):
|
385
|
+
atomic_binary_1dim_shared2(ary, idx, op2, uint32, 32,
|
386
|
+
cuda.atomic.exch, atomic_cast_none)
|
387
|
+
|
388
|
+
|
389
|
+
def atomic_exch2(ary, op2):
|
390
|
+
atomic_binary_2dim_shared(ary, op2, uint32, (4, 8),
|
391
|
+
cuda.atomic.exch, atomic_cast_none, False)
|
392
|
+
|
393
|
+
|
394
|
+
def atomic_exch3(ary, op2):
|
395
|
+
atomic_binary_2dim_shared(ary, op2, uint64, (4, 8),
|
396
|
+
cuda.atomic.exch, atomic_cast_none, False)
|
397
|
+
|
398
|
+
|
399
|
+
def atomic_exch_global(idx, ary, op2):
|
400
|
+
atomic_binary_1dim_global(ary, idx, 32, op2, cuda.atomic.exch, False)
|
401
|
+
|
402
|
+
|
403
|
+
def gen_atomic_extreme_funcs(func):
|
404
|
+
|
405
|
+
fns = dedent("""
|
406
|
+
def atomic(res, ary):
|
407
|
+
tx = cuda.threadIdx.x
|
408
|
+
bx = cuda.blockIdx.x
|
409
|
+
{func}(res, 0, ary[tx, bx])
|
410
|
+
|
411
|
+
def atomic_double_normalizedindex(res, ary):
|
412
|
+
tx = cuda.threadIdx.x
|
413
|
+
bx = cuda.blockIdx.x
|
414
|
+
{func}(res, 0, ary[tx, uint64(bx)])
|
415
|
+
|
416
|
+
def atomic_double_oneindex(res, ary):
|
417
|
+
tx = cuda.threadIdx.x
|
418
|
+
{func}(res, 0, ary[tx])
|
419
|
+
|
420
|
+
def atomic_double_shared(res, ary):
|
421
|
+
tid = cuda.threadIdx.x
|
422
|
+
smary = cuda.shared.array(32, float64)
|
423
|
+
smary[tid] = ary[tid]
|
424
|
+
smres = cuda.shared.array(1, float64)
|
425
|
+
if tid == 0:
|
426
|
+
smres[0] = res[0]
|
427
|
+
cuda.syncthreads()
|
428
|
+
{func}(smres, 0, smary[tid])
|
429
|
+
cuda.syncthreads()
|
430
|
+
if tid == 0:
|
431
|
+
res[0] = smres[0]
|
432
|
+
""").format(func=func)
|
433
|
+
ld = {}
|
434
|
+
exec(fns, {'cuda': cuda, 'float64': float64, 'uint64': uint64}, ld)
|
435
|
+
return (ld['atomic'], ld['atomic_double_normalizedindex'],
|
436
|
+
ld['atomic_double_oneindex'], ld['atomic_double_shared'])
|
437
|
+
|
438
|
+
|
439
|
+
(atomic_max, atomic_max_double_normalizedindex, atomic_max_double_oneindex,
|
440
|
+
atomic_max_double_shared) = gen_atomic_extreme_funcs('cuda.atomic.max')
|
441
|
+
(atomic_min, atomic_min_double_normalizedindex, atomic_min_double_oneindex,
|
442
|
+
atomic_min_double_shared) = gen_atomic_extreme_funcs('cuda.atomic.min')
|
443
|
+
(atomic_nanmax, atomic_nanmax_double_normalizedindex,
|
444
|
+
atomic_nanmax_double_oneindex, atomic_nanmax_double_shared) = \
|
445
|
+
gen_atomic_extreme_funcs('cuda.atomic.nanmax')
|
446
|
+
(atomic_nanmin, atomic_nanmin_double_normalizedindex,
|
447
|
+
atomic_nanmin_double_oneindex, atomic_nanmin_double_shared) = \
|
448
|
+
gen_atomic_extreme_funcs('cuda.atomic.nanmin')
|
449
|
+
|
450
|
+
|
451
|
+
def atomic_compare_and_swap(res, old, ary, fill_val):
|
452
|
+
gid = cuda.grid(1)
|
453
|
+
if gid < res.size:
|
454
|
+
old[gid] = cuda.atomic.compare_and_swap(res[gid:], fill_val, ary[gid])
|
455
|
+
|
456
|
+
|
457
|
+
def atomic_cas_1dim(res, old, ary, fill_val):
|
458
|
+
gid = cuda.grid(1)
|
459
|
+
if gid < res.size:
|
460
|
+
old[gid] = cuda.atomic.cas(res, gid, fill_val, ary[gid])
|
461
|
+
|
462
|
+
|
463
|
+
def atomic_cas_2dim(res, old, ary, fill_val):
|
464
|
+
gid = cuda.grid(2)
|
465
|
+
if gid[0] < res.shape[0] and gid[1] < res.shape[1]:
|
466
|
+
old[gid] = cuda.atomic.cas(res, gid, fill_val, ary[gid])
|
467
|
+
|
468
|
+
|
469
|
+
class TestCudaAtomics(CUDATestCase):
|
470
|
+
def setUp(self):
|
471
|
+
super().setUp()
|
472
|
+
np.random.seed(0)
|
473
|
+
|
474
|
+
def test_atomic_add(self):
|
475
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32)
|
476
|
+
ary_wrap = ary.copy()
|
477
|
+
orig = ary.copy()
|
478
|
+
|
479
|
+
cuda_atomic_add = cuda.jit('void(uint32[:])')(atomic_add)
|
480
|
+
cuda_atomic_add[1, 32](ary)
|
481
|
+
|
482
|
+
cuda_atomic_add_wrap = cuda.jit('void(uint32[:])')(atomic_add_wrap)
|
483
|
+
cuda_atomic_add_wrap[1, 32](ary_wrap)
|
484
|
+
|
485
|
+
gold = np.zeros(32, dtype=np.uint32)
|
486
|
+
for i in range(orig.size):
|
487
|
+
gold[orig[i]] += 1
|
488
|
+
|
489
|
+
self.assertTrue(np.all(ary == gold))
|
490
|
+
self.assertTrue(np.all(ary_wrap == gold))
|
491
|
+
|
492
|
+
def test_atomic_add2(self):
|
493
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
494
|
+
ary_wrap = ary.copy()
|
495
|
+
orig = ary.copy()
|
496
|
+
|
497
|
+
cuda_atomic_add2 = cuda.jit('void(uint32[:,:])')(atomic_add2)
|
498
|
+
cuda_atomic_add2[1, (4, 8)](ary)
|
499
|
+
|
500
|
+
cuda_atomic_add2_wrap = cuda.jit('void(uint32[:,:])')(atomic_add2_wrap)
|
501
|
+
cuda_atomic_add2_wrap[1, (4, 8)](ary_wrap)
|
502
|
+
|
503
|
+
self.assertTrue(np.all(ary == orig + 1))
|
504
|
+
self.assertTrue(np.all(ary_wrap == orig + 1))
|
505
|
+
|
506
|
+
def test_atomic_add3(self):
|
507
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
508
|
+
orig = ary.copy()
|
509
|
+
cuda_atomic_add3 = cuda.jit('void(uint32[:,:])')(atomic_add3)
|
510
|
+
cuda_atomic_add3[1, (4, 8)](ary)
|
511
|
+
|
512
|
+
self.assertTrue(np.all(ary == orig + 1))
|
513
|
+
|
514
|
+
def test_atomic_add_float(self):
|
515
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float32)
|
516
|
+
ary_wrap = ary.copy()
|
517
|
+
orig = ary.copy().astype(np.intp)
|
518
|
+
|
519
|
+
cuda_atomic_add_float = cuda.jit('void(float32[:])')(atomic_add_float)
|
520
|
+
cuda_atomic_add_float[1, 32](ary)
|
521
|
+
|
522
|
+
add_float_wrap = cuda.jit('void(float32[:])')(atomic_add_float_wrap)
|
523
|
+
add_float_wrap[1, 32](ary_wrap)
|
524
|
+
|
525
|
+
gold = np.zeros(32, dtype=np.uint32)
|
526
|
+
for i in range(orig.size):
|
527
|
+
gold[orig[i]] += 1.0
|
528
|
+
|
529
|
+
self.assertTrue(np.all(ary == gold))
|
530
|
+
self.assertTrue(np.all(ary_wrap == gold))
|
531
|
+
|
532
|
+
def test_atomic_add_float_2(self):
|
533
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float32).reshape(4, 8)
|
534
|
+
ary_wrap = ary.copy()
|
535
|
+
orig = ary.copy()
|
536
|
+
|
537
|
+
cuda_atomic_add2 = cuda.jit('void(float32[:,:])')(atomic_add_float_2)
|
538
|
+
cuda_atomic_add2[1, (4, 8)](ary)
|
539
|
+
|
540
|
+
cuda_func_wrap = cuda.jit('void(float32[:,:])')(atomic_add_float_2_wrap)
|
541
|
+
cuda_func_wrap[1, (4, 8)](ary_wrap)
|
542
|
+
|
543
|
+
self.assertTrue(np.all(ary == orig + 1))
|
544
|
+
self.assertTrue(np.all(ary_wrap == orig + 1))
|
545
|
+
|
546
|
+
def test_atomic_add_float_3(self):
|
547
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float32).reshape(4, 8)
|
548
|
+
orig = ary.copy()
|
549
|
+
cuda_atomic_add3 = cuda.jit('void(float32[:,:])')(atomic_add_float_3)
|
550
|
+
cuda_atomic_add3[1, (4, 8)](ary)
|
551
|
+
|
552
|
+
self.assertTrue(np.all(ary == orig + 1))
|
553
|
+
|
554
|
+
def assertCorrectFloat64Atomics(self, kernel, shared=True):
|
555
|
+
if config.ENABLE_CUDASIM:
|
556
|
+
return
|
557
|
+
|
558
|
+
# Use the first (and only) definition
|
559
|
+
asm = next(iter(kernel.inspect_asm().values()))
|
560
|
+
if cc_X_or_above(6, 0):
|
561
|
+
if cuda.runtime.get_version() > (12, 1):
|
562
|
+
# CUDA 12.2 and above generate a more optimized reduction
|
563
|
+
# instruction, because the result does not need to be
|
564
|
+
# placed in a register.
|
565
|
+
inst = 'red'
|
566
|
+
else:
|
567
|
+
inst = 'atom'
|
568
|
+
|
569
|
+
if shared:
|
570
|
+
inst = f'{inst}.shared'
|
571
|
+
|
572
|
+
self.assertIn(f'{inst}.add.f64', asm)
|
573
|
+
else:
|
574
|
+
if shared:
|
575
|
+
self.assertIn('atom.shared.cas.b64', asm)
|
576
|
+
else:
|
577
|
+
self.assertIn('atom.cas.b64', asm)
|
578
|
+
|
579
|
+
def test_atomic_add_double(self):
|
580
|
+
idx = np.random.randint(0, 32, size=32, dtype=np.int64)
|
581
|
+
ary = np.zeros(32, np.float64)
|
582
|
+
ary_wrap = ary.copy()
|
583
|
+
|
584
|
+
cuda_fn = cuda.jit('void(int64[:], float64[:])')(atomic_add_double)
|
585
|
+
cuda_fn[1, 32](idx, ary)
|
586
|
+
|
587
|
+
wrap_fn = cuda.jit('void(int64[:], float64[:])')(atomic_add_double_wrap)
|
588
|
+
wrap_fn[1, 32](idx, ary_wrap)
|
589
|
+
|
590
|
+
gold = np.zeros(32, dtype=np.uint32)
|
591
|
+
for i in range(idx.size):
|
592
|
+
gold[idx[i]] += 1.0
|
593
|
+
|
594
|
+
np.testing.assert_equal(ary, gold)
|
595
|
+
np.testing.assert_equal(ary_wrap, gold)
|
596
|
+
self.assertCorrectFloat64Atomics(cuda_fn)
|
597
|
+
self.assertCorrectFloat64Atomics(wrap_fn)
|
598
|
+
|
599
|
+
def test_atomic_add_double_2(self):
|
600
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
601
|
+
ary_wrap = ary.copy()
|
602
|
+
orig = ary.copy()
|
603
|
+
|
604
|
+
cuda_fn = cuda.jit('void(float64[:,:])')(atomic_add_double_2)
|
605
|
+
cuda_fn[1, (4, 8)](ary)
|
606
|
+
|
607
|
+
cuda_fn_wrap = cuda.jit('void(float64[:,:])')(atomic_add_double_2_wrap)
|
608
|
+
cuda_fn_wrap[1, (4, 8)](ary_wrap)
|
609
|
+
|
610
|
+
np.testing.assert_equal(ary, orig + 1)
|
611
|
+
np.testing.assert_equal(ary_wrap, orig + 1)
|
612
|
+
self.assertCorrectFloat64Atomics(cuda_fn)
|
613
|
+
self.assertCorrectFloat64Atomics(cuda_fn_wrap)
|
614
|
+
|
615
|
+
def test_atomic_add_double_3(self):
|
616
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
617
|
+
orig = ary.copy()
|
618
|
+
cuda_func = cuda.jit('void(float64[:,:])')(atomic_add_double_3)
|
619
|
+
cuda_func[1, (4, 8)](ary)
|
620
|
+
|
621
|
+
np.testing.assert_equal(ary, orig + 1)
|
622
|
+
self.assertCorrectFloat64Atomics(cuda_func)
|
623
|
+
|
624
|
+
def test_atomic_add_double_global(self):
|
625
|
+
idx = np.random.randint(0, 32, size=32, dtype=np.int64)
|
626
|
+
ary = np.zeros(32, np.float64)
|
627
|
+
ary_wrap = ary.copy()
|
628
|
+
|
629
|
+
sig = 'void(int64[:], float64[:])'
|
630
|
+
cuda_func = cuda.jit(sig)(atomic_add_double_global)
|
631
|
+
wrap_cuda_func = cuda.jit(sig)(atomic_add_double_global_wrap)
|
632
|
+
|
633
|
+
cuda_func[1, 32](idx, ary)
|
634
|
+
wrap_cuda_func[1, 32](idx, ary_wrap)
|
635
|
+
|
636
|
+
gold = np.zeros(32, dtype=np.uint32)
|
637
|
+
for i in range(idx.size):
|
638
|
+
gold[idx[i]] += 1.0
|
639
|
+
|
640
|
+
np.testing.assert_equal(ary, gold)
|
641
|
+
np.testing.assert_equal(ary_wrap, gold)
|
642
|
+
self.assertCorrectFloat64Atomics(cuda_func, shared=False)
|
643
|
+
self.assertCorrectFloat64Atomics(wrap_cuda_func, shared=False)
|
644
|
+
|
645
|
+
def test_atomic_add_double_global_2(self):
|
646
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
647
|
+
ary_wrap = ary.copy()
|
648
|
+
orig = ary.copy()
|
649
|
+
|
650
|
+
sig = 'void(float64[:,:])'
|
651
|
+
cuda_func = cuda.jit(sig)(atomic_add_double_global_2)
|
652
|
+
wrap_cuda_func = cuda.jit(sig)(atomic_add_double_global_2_wrap)
|
653
|
+
|
654
|
+
cuda_func[1, (4, 8)](ary)
|
655
|
+
wrap_cuda_func[1, (4, 8)](ary_wrap)
|
656
|
+
|
657
|
+
np.testing.assert_equal(ary, orig + 1)
|
658
|
+
np.testing.assert_equal(ary_wrap, orig + 1)
|
659
|
+
self.assertCorrectFloat64Atomics(cuda_func, shared=False)
|
660
|
+
self.assertCorrectFloat64Atomics(wrap_cuda_func, shared=False)
|
661
|
+
|
662
|
+
def test_atomic_add_double_global_3(self):
|
663
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
664
|
+
orig = ary.copy()
|
665
|
+
cuda_func = cuda.jit('void(float64[:,:])')(atomic_add_double_global_3)
|
666
|
+
cuda_func[1, (4, 8)](ary)
|
667
|
+
|
668
|
+
np.testing.assert_equal(ary, orig + 1)
|
669
|
+
self.assertCorrectFloat64Atomics(cuda_func, shared=False)
|
670
|
+
|
671
|
+
def test_atomic_sub(self):
|
672
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32)
|
673
|
+
orig = ary.copy()
|
674
|
+
cuda_atomic_sub = cuda.jit('void(uint32[:])')(atomic_sub)
|
675
|
+
cuda_atomic_sub[1, 32](ary)
|
676
|
+
|
677
|
+
gold = np.zeros(32, dtype=np.uint32)
|
678
|
+
for i in range(orig.size):
|
679
|
+
gold[orig[i]] -= 1
|
680
|
+
|
681
|
+
self.assertTrue(np.all(ary == gold))
|
682
|
+
|
683
|
+
def test_atomic_sub2(self):
|
684
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
685
|
+
orig = ary.copy()
|
686
|
+
cuda_atomic_sub2 = cuda.jit('void(uint32[:,:])')(atomic_sub2)
|
687
|
+
cuda_atomic_sub2[1, (4, 8)](ary)
|
688
|
+
self.assertTrue(np.all(ary == orig - 1))
|
689
|
+
|
690
|
+
def test_atomic_sub3(self):
|
691
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
692
|
+
orig = ary.copy()
|
693
|
+
cuda_atomic_sub3 = cuda.jit('void(uint32[:,:])')(atomic_sub3)
|
694
|
+
cuda_atomic_sub3[1, (4, 8)](ary)
|
695
|
+
self.assertTrue(np.all(ary == orig - 1))
|
696
|
+
|
697
|
+
def test_atomic_sub_float(self):
|
698
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float32)
|
699
|
+
orig = ary.copy().astype(np.intp)
|
700
|
+
cuda_atomic_sub_float = cuda.jit('void(float32[:])')(atomic_sub_float)
|
701
|
+
cuda_atomic_sub_float[1, 32](ary)
|
702
|
+
|
703
|
+
gold = np.zeros(32, dtype=np.float32)
|
704
|
+
for i in range(orig.size):
|
705
|
+
gold[orig[i]] -= 1.0
|
706
|
+
|
707
|
+
self.assertTrue(np.all(ary == gold))
|
708
|
+
|
709
|
+
def test_atomic_sub_float_2(self):
|
710
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float32).reshape(4, 8)
|
711
|
+
orig = ary.copy()
|
712
|
+
cuda_atomic_sub2 = cuda.jit('void(float32[:,:])')(atomic_sub_float_2)
|
713
|
+
cuda_atomic_sub2[1, (4, 8)](ary)
|
714
|
+
self.assertTrue(np.all(ary == orig - 1))
|
715
|
+
|
716
|
+
def test_atomic_sub_float_3(self):
|
717
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float32).reshape(4, 8)
|
718
|
+
orig = ary.copy()
|
719
|
+
cuda_atomic_sub3 = cuda.jit('void(float32[:,:])')(atomic_sub_float_3)
|
720
|
+
cuda_atomic_sub3[1, (4, 8)](ary)
|
721
|
+
self.assertTrue(np.all(ary == orig - 1))
|
722
|
+
|
723
|
+
def test_atomic_sub_double(self):
|
724
|
+
idx = np.random.randint(0, 32, size=32, dtype=np.int64)
|
725
|
+
ary = np.zeros(32, np.float64)
|
726
|
+
cuda_func = cuda.jit('void(int64[:], float64[:])')(atomic_sub_double)
|
727
|
+
cuda_func[1, 32](idx, ary)
|
728
|
+
|
729
|
+
gold = np.zeros(32, dtype=np.float64)
|
730
|
+
for i in range(idx.size):
|
731
|
+
gold[idx[i]] -= 1.0
|
732
|
+
|
733
|
+
np.testing.assert_equal(ary, gold)
|
734
|
+
|
735
|
+
def test_atomic_sub_double_2(self):
|
736
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
737
|
+
orig = ary.copy()
|
738
|
+
cuda_func = cuda.jit('void(float64[:,:])')(atomic_sub_double_2)
|
739
|
+
cuda_func[1, (4, 8)](ary)
|
740
|
+
np.testing.assert_equal(ary, orig - 1)
|
741
|
+
|
742
|
+
def test_atomic_sub_double_3(self):
|
743
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
744
|
+
orig = ary.copy()
|
745
|
+
cuda_func = cuda.jit('void(float64[:,:])')(atomic_sub_double_3)
|
746
|
+
cuda_func[1, (4, 8)](ary)
|
747
|
+
np.testing.assert_equal(ary, orig - 1)
|
748
|
+
|
749
|
+
def test_atomic_sub_double_global(self):
|
750
|
+
idx = np.random.randint(0, 32, size=32, dtype=np.int64)
|
751
|
+
ary = np.zeros(32, np.float64)
|
752
|
+
sig = 'void(int64[:], float64[:])'
|
753
|
+
cuda_func = cuda.jit(sig)(atomic_sub_double_global)
|
754
|
+
cuda_func[1, 32](idx, ary)
|
755
|
+
|
756
|
+
gold = np.zeros(32, dtype=np.float64)
|
757
|
+
for i in range(idx.size):
|
758
|
+
gold[idx[i]] -= 1.0
|
759
|
+
|
760
|
+
np.testing.assert_equal(ary, gold)
|
761
|
+
|
762
|
+
def test_atomic_sub_double_global_2(self):
|
763
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
764
|
+
orig = ary.copy()
|
765
|
+
cuda_func = cuda.jit('void(float64[:,:])')(atomic_sub_double_global_2)
|
766
|
+
cuda_func[1, (4, 8)](ary)
|
767
|
+
np.testing.assert_equal(ary, orig - 1)
|
768
|
+
|
769
|
+
def test_atomic_sub_double_global_3(self):
|
770
|
+
ary = np.random.randint(0, 32, size=32).astype(np.float64).reshape(4, 8)
|
771
|
+
orig = ary.copy()
|
772
|
+
cuda_func = cuda.jit('void(float64[:,:])')(atomic_sub_double_global_3)
|
773
|
+
cuda_func[1, (4, 8)](ary)
|
774
|
+
np.testing.assert_equal(ary, orig - 1)
|
775
|
+
|
776
|
+
def test_atomic_and(self):
|
777
|
+
rand_const = np.random.randint(500)
|
778
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32)
|
779
|
+
orig = ary.copy()
|
780
|
+
cuda_func = cuda.jit('void(uint32[:], uint32)')(atomic_and)
|
781
|
+
cuda_func[1, 32](ary, rand_const)
|
782
|
+
|
783
|
+
gold = ary.copy()
|
784
|
+
for i in range(orig.size):
|
785
|
+
gold[orig[i]] &= rand_const
|
786
|
+
|
787
|
+
self.assertTrue(np.all(ary == gold))
|
788
|
+
|
789
|
+
def test_atomic_and2(self):
|
790
|
+
rand_const = np.random.randint(500)
|
791
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
792
|
+
orig = ary.copy()
|
793
|
+
cuda_atomic_and2 = cuda.jit('void(uint32[:,:], uint32)')(atomic_and2)
|
794
|
+
cuda_atomic_and2[1, (4, 8)](ary, rand_const)
|
795
|
+
self.assertTrue(np.all(ary == orig & rand_const))
|
796
|
+
|
797
|
+
def test_atomic_and3(self):
|
798
|
+
rand_const = np.random.randint(500)
|
799
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
800
|
+
orig = ary.copy()
|
801
|
+
cuda_atomic_and3 = cuda.jit('void(uint32[:,:], uint32)')(atomic_and3)
|
802
|
+
cuda_atomic_and3[1, (4, 8)](ary, rand_const)
|
803
|
+
self.assertTrue(np.all(ary == orig & rand_const))
|
804
|
+
|
805
|
+
def test_atomic_and_global(self):
|
806
|
+
rand_const = np.random.randint(500)
|
807
|
+
idx = np.random.randint(0, 32, size=32, dtype=np.int32)
|
808
|
+
ary = np.random.randint(0, 32, size=32, dtype=np.int32)
|
809
|
+
sig = 'void(int32[:], int32[:], int32)'
|
810
|
+
cuda_func = cuda.jit(sig)(atomic_and_global)
|
811
|
+
cuda_func[1, 32](idx, ary, rand_const)
|
812
|
+
|
813
|
+
gold = ary.copy()
|
814
|
+
for i in range(idx.size):
|
815
|
+
gold[idx[i]] &= rand_const
|
816
|
+
|
817
|
+
np.testing.assert_equal(ary, gold)
|
818
|
+
|
819
|
+
def test_atomic_and_global_2(self):
|
820
|
+
rand_const = np.random.randint(500)
|
821
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
822
|
+
orig = ary.copy()
|
823
|
+
cuda_func = cuda.jit('void(uint32[:,:], uint32)')(atomic_and_global_2)
|
824
|
+
cuda_func[1, (4, 8)](ary, rand_const)
|
825
|
+
np.testing.assert_equal(ary, orig & rand_const)
|
826
|
+
|
827
|
+
def test_atomic_or(self):
|
828
|
+
rand_const = np.random.randint(500)
|
829
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32)
|
830
|
+
orig = ary.copy()
|
831
|
+
cuda_func = cuda.jit('void(uint32[:], uint32)')(atomic_or)
|
832
|
+
cuda_func[1, 32](ary, rand_const)
|
833
|
+
|
834
|
+
gold = np.zeros(32, dtype=np.uint32)
|
835
|
+
for i in range(orig.size):
|
836
|
+
gold[orig[i]] |= rand_const
|
837
|
+
|
838
|
+
self.assertTrue(np.all(ary == gold))
|
839
|
+
|
840
|
+
def test_atomic_or2(self):
|
841
|
+
rand_const = np.random.randint(500)
|
842
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
843
|
+
orig = ary.copy()
|
844
|
+
cuda_atomic_and2 = cuda.jit('void(uint32[:,:], uint32)')(atomic_or2)
|
845
|
+
cuda_atomic_and2[1, (4, 8)](ary, rand_const)
|
846
|
+
self.assertTrue(np.all(ary == orig | rand_const))
|
847
|
+
|
848
|
+
def test_atomic_or3(self):
|
849
|
+
rand_const = np.random.randint(500)
|
850
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
851
|
+
orig = ary.copy()
|
852
|
+
cuda_atomic_and3 = cuda.jit('void(uint32[:,:], uint32)')(atomic_or3)
|
853
|
+
cuda_atomic_and3[1, (4, 8)](ary, rand_const)
|
854
|
+
self.assertTrue(np.all(ary == orig | rand_const))
|
855
|
+
|
856
|
+
def test_atomic_or_global(self):
|
857
|
+
rand_const = np.random.randint(500)
|
858
|
+
idx = np.random.randint(0, 32, size=32, dtype=np.int32)
|
859
|
+
ary = np.random.randint(0, 32, size=32, dtype=np.int32)
|
860
|
+
sig = 'void(int32[:], int32[:], int32)'
|
861
|
+
cuda_func = cuda.jit(sig)(atomic_or_global)
|
862
|
+
cuda_func[1, 32](idx, ary, rand_const)
|
863
|
+
|
864
|
+
gold = ary.copy()
|
865
|
+
for i in range(idx.size):
|
866
|
+
gold[idx[i]] |= rand_const
|
867
|
+
|
868
|
+
np.testing.assert_equal(ary, gold)
|
869
|
+
|
870
|
+
def test_atomic_or_global_2(self):
|
871
|
+
rand_const = np.random.randint(500)
|
872
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
873
|
+
orig = ary.copy()
|
874
|
+
cuda_func = cuda.jit('void(uint32[:,:], uint32)')(atomic_or_global_2)
|
875
|
+
cuda_func[1, (4, 8)](ary, rand_const)
|
876
|
+
np.testing.assert_equal(ary, orig | rand_const)
|
877
|
+
|
878
|
+
def test_atomic_xor(self):
|
879
|
+
rand_const = np.random.randint(500)
|
880
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32)
|
881
|
+
orig = ary.copy()
|
882
|
+
cuda_func = cuda.jit('void(uint32[:], uint32)')(atomic_xor)
|
883
|
+
cuda_func[1, 32](ary, rand_const)
|
884
|
+
|
885
|
+
gold = np.zeros(32, dtype=np.uint32)
|
886
|
+
for i in range(orig.size):
|
887
|
+
gold[orig[i]] ^= rand_const
|
888
|
+
|
889
|
+
self.assertTrue(np.all(ary == gold))
|
890
|
+
|
891
|
+
def test_atomic_xor2(self):
|
892
|
+
rand_const = np.random.randint(500)
|
893
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
894
|
+
orig = ary.copy()
|
895
|
+
cuda_atomic_xor2 = cuda.jit('void(uint32[:,:], uint32)')(atomic_xor2)
|
896
|
+
cuda_atomic_xor2[1, (4, 8)](ary, rand_const)
|
897
|
+
self.assertTrue(np.all(ary == orig ^ rand_const))
|
898
|
+
|
899
|
+
def test_atomic_xor3(self):
|
900
|
+
rand_const = np.random.randint(500)
|
901
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
902
|
+
orig = ary.copy()
|
903
|
+
cuda_atomic_xor3 = cuda.jit('void(uint32[:,:], uint32)')(atomic_xor3)
|
904
|
+
cuda_atomic_xor3[1, (4, 8)](ary, rand_const)
|
905
|
+
self.assertTrue(np.all(ary == orig ^ rand_const))
|
906
|
+
|
907
|
+
def test_atomic_xor_global(self):
|
908
|
+
rand_const = np.random.randint(500)
|
909
|
+
idx = np.random.randint(0, 32, size=32, dtype=np.int32)
|
910
|
+
ary = np.random.randint(0, 32, size=32, dtype=np.int32)
|
911
|
+
gold = ary.copy()
|
912
|
+
sig = 'void(int32[:], int32[:], int32)'
|
913
|
+
cuda_func = cuda.jit(sig)(atomic_xor_global)
|
914
|
+
cuda_func[1, 32](idx, ary, rand_const)
|
915
|
+
|
916
|
+
for i in range(idx.size):
|
917
|
+
gold[idx[i]] ^= rand_const
|
918
|
+
|
919
|
+
np.testing.assert_equal(ary, gold)
|
920
|
+
|
921
|
+
def test_atomic_xor_global_2(self):
|
922
|
+
rand_const = np.random.randint(500)
|
923
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
924
|
+
orig = ary.copy()
|
925
|
+
cuda_func = cuda.jit('void(uint32[:,:], uint32)')(atomic_xor_global_2)
|
926
|
+
cuda_func[1, (4, 8)](ary, rand_const)
|
927
|
+
np.testing.assert_equal(ary, orig ^ rand_const)
|
928
|
+
|
929
|
+
def inc_dec_1dim_setup(self, dtype):
|
930
|
+
rconst = np.random.randint(32, dtype=dtype)
|
931
|
+
rary = np.random.randint(0, 32, size=32).astype(dtype)
|
932
|
+
ary_idx = np.arange(32, dtype=dtype)
|
933
|
+
return rconst, rary, ary_idx
|
934
|
+
|
935
|
+
def inc_dec_2dim_setup(self, dtype):
|
936
|
+
rconst = np.random.randint(32, dtype=dtype)
|
937
|
+
rary = np.random.randint(0, 32, size=32).astype(dtype).reshape(4, 8)
|
938
|
+
return rconst, rary
|
939
|
+
|
940
|
+
def check_inc_index(self, ary, idx, rconst, sig, nblocks, blksize, func):
|
941
|
+
orig = ary.copy()
|
942
|
+
cuda_func = cuda.jit(sig)(func)
|
943
|
+
cuda_func[nblocks, blksize](ary, idx, rconst)
|
944
|
+
np.testing.assert_equal(ary, np.where(orig >= rconst, 0, orig + 1))
|
945
|
+
|
946
|
+
def check_inc_index2(self, ary, idx, rconst, sig, nblocks, blksize, func):
|
947
|
+
orig = ary.copy()
|
948
|
+
cuda_func = cuda.jit(sig)(func)
|
949
|
+
cuda_func[nblocks, blksize](idx, ary, rconst)
|
950
|
+
np.testing.assert_equal(ary, np.where(orig >= rconst, 0, orig + 1))
|
951
|
+
|
952
|
+
def check_inc(self, ary, rconst, sig, nblocks, blksize, func):
|
953
|
+
orig = ary.copy()
|
954
|
+
cuda_func = cuda.jit(sig)(func)
|
955
|
+
cuda_func[nblocks, blksize](ary, rconst)
|
956
|
+
np.testing.assert_equal(ary, np.where(orig >= rconst, 0, orig + 1))
|
957
|
+
|
958
|
+
def test_atomic_inc_32(self):
|
959
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint32)
|
960
|
+
sig = 'void(uint32[:], uint32[:], uint32)'
|
961
|
+
self.check_inc_index(ary, idx, rand_const, sig, 1, 32, atomic_inc32)
|
962
|
+
|
963
|
+
def test_atomic_inc_64(self):
|
964
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint64)
|
965
|
+
sig = 'void(uint64[:], uint64[:], uint64)'
|
966
|
+
self.check_inc_index(ary, idx, rand_const, sig, 1, 32, atomic_inc64)
|
967
|
+
|
968
|
+
def test_atomic_inc2_32(self):
|
969
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint32)
|
970
|
+
sig = 'void(uint32[:,:], uint32)'
|
971
|
+
self.check_inc(ary, rand_const, sig, 1, (4,8), atomic_inc2_32)
|
972
|
+
|
973
|
+
def test_atomic_inc2_64(self):
|
974
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint64)
|
975
|
+
sig = 'void(uint64[:,:], uint64)'
|
976
|
+
self.check_inc(ary, rand_const, sig, 1, (4,8), atomic_inc2_64)
|
977
|
+
|
978
|
+
def test_atomic_inc3(self):
|
979
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint32)
|
980
|
+
sig = 'void(uint32[:,:], uint32)'
|
981
|
+
self.check_inc(ary, rand_const, sig, 1, (4,8), atomic_inc3)
|
982
|
+
|
983
|
+
def test_atomic_inc_global_32(self):
|
984
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint32)
|
985
|
+
sig = 'void(uint32[:], uint32[:], uint32)'
|
986
|
+
self.check_inc_index2(ary, idx, rand_const, sig, 1, 32,
|
987
|
+
atomic_inc_global)
|
988
|
+
|
989
|
+
def test_atomic_inc_global_64(self):
|
990
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint64)
|
991
|
+
sig = 'void(uint64[:], uint64[:], uint64)'
|
992
|
+
self.check_inc_index2(ary, idx, rand_const, sig, 1, 32,
|
993
|
+
atomic_inc_global)
|
994
|
+
|
995
|
+
def test_atomic_inc_global_2_32(self):
|
996
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint32)
|
997
|
+
sig = 'void(uint32[:,:], uint32)'
|
998
|
+
self.check_inc(ary, rand_const, sig, 1, (4,8), atomic_inc_global_2)
|
999
|
+
|
1000
|
+
def test_atomic_inc_global_2_64(self):
|
1001
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint64)
|
1002
|
+
sig = 'void(uint64[:,:], uint64)'
|
1003
|
+
self.check_inc(ary, rand_const, sig, 1, (4,8), atomic_inc_global_2)
|
1004
|
+
|
1005
|
+
def check_dec_index(self, ary, idx, rconst, sig, nblocks, blksize, func):
|
1006
|
+
orig = ary.copy()
|
1007
|
+
cuda_func = cuda.jit(sig)(func)
|
1008
|
+
cuda_func[nblocks, blksize](ary, idx, rconst)
|
1009
|
+
np.testing.assert_equal(ary, np.where(orig == 0, rconst,
|
1010
|
+
np.where(orig > rconst,
|
1011
|
+
rconst,
|
1012
|
+
orig - 1)))
|
1013
|
+
|
1014
|
+
def check_dec_index2(self, ary, idx, rconst, sig, nblocks, blksize, func):
|
1015
|
+
orig = ary.copy()
|
1016
|
+
cuda_func = cuda.jit(sig)(func)
|
1017
|
+
cuda_func[nblocks, blksize](idx, ary, rconst)
|
1018
|
+
np.testing.assert_equal(ary, np.where(orig == 0, rconst,
|
1019
|
+
np.where(orig > rconst,
|
1020
|
+
rconst,
|
1021
|
+
orig - 1)))
|
1022
|
+
|
1023
|
+
def check_dec(self, ary, rconst, sig, nblocks, blksize, func):
|
1024
|
+
orig = ary.copy()
|
1025
|
+
cuda_func = cuda.jit(sig)(func)
|
1026
|
+
cuda_func[nblocks, blksize](ary, rconst)
|
1027
|
+
np.testing.assert_equal(ary, np.where(orig == 0, rconst,
|
1028
|
+
np.where(orig > rconst,
|
1029
|
+
rconst,
|
1030
|
+
orig - 1)))
|
1031
|
+
|
1032
|
+
def test_atomic_dec_32(self):
|
1033
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint32)
|
1034
|
+
sig = 'void(uint32[:], uint32[:], uint32)'
|
1035
|
+
self.check_dec_index(ary, idx, rand_const, sig, 1, 32, atomic_dec32)
|
1036
|
+
|
1037
|
+
def test_atomic_dec_64(self):
|
1038
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint64)
|
1039
|
+
sig = 'void(uint64[:], uint64[:], uint64)'
|
1040
|
+
self.check_dec_index(ary, idx, rand_const, sig, 1, 32, atomic_dec64)
|
1041
|
+
|
1042
|
+
def test_atomic_dec2_32(self):
|
1043
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint32)
|
1044
|
+
sig = 'void(uint32[:,:], uint32)'
|
1045
|
+
self.check_dec(ary, rand_const, sig, 1, (4,8), atomic_dec2_32)
|
1046
|
+
|
1047
|
+
def test_atomic_dec2_64(self):
|
1048
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint64)
|
1049
|
+
sig = 'void(uint64[:,:], uint64)'
|
1050
|
+
self.check_dec(ary, rand_const, sig, 1, (4,8), atomic_dec2_64)
|
1051
|
+
|
1052
|
+
def test_atomic_dec3_new(self):
|
1053
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint32)
|
1054
|
+
sig = 'void(uint32[:,:], uint32)'
|
1055
|
+
self.check_dec(ary, rand_const, sig, 1, (4,8), atomic_dec3)
|
1056
|
+
|
1057
|
+
def test_atomic_dec_global_32(self):
|
1058
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint32)
|
1059
|
+
sig = 'void(uint32[:], uint32[:], uint32)'
|
1060
|
+
self.check_dec_index2(ary, idx, rand_const, sig, 1, 32,
|
1061
|
+
atomic_dec_global)
|
1062
|
+
|
1063
|
+
def test_atomic_dec_global_64(self):
|
1064
|
+
rand_const, ary, idx = self.inc_dec_1dim_setup(dtype=np.uint64)
|
1065
|
+
sig = 'void(uint64[:], uint64[:], uint64)'
|
1066
|
+
self.check_dec_index2(ary, idx, rand_const, sig, 1, 32,
|
1067
|
+
atomic_dec_global)
|
1068
|
+
|
1069
|
+
def test_atomic_dec_global2_32(self):
|
1070
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint32)
|
1071
|
+
sig = 'void(uint32[:,:], uint32)'
|
1072
|
+
self.check_dec(ary, rand_const, sig, 1, (4,8), atomic_dec_global_2)
|
1073
|
+
|
1074
|
+
def test_atomic_dec_global2_64(self):
|
1075
|
+
rand_const, ary = self.inc_dec_2dim_setup(np.uint64)
|
1076
|
+
sig = 'void(uint64[:,:], uint64)'
|
1077
|
+
self.check_dec(ary, rand_const, sig, 1, (4,8), atomic_dec_global_2)
|
1078
|
+
|
1079
|
+
def test_atomic_exch(self):
|
1080
|
+
rand_const = np.random.randint(50, 100, dtype=np.uint32)
|
1081
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32)
|
1082
|
+
idx = np.arange(32, dtype=np.uint32)
|
1083
|
+
|
1084
|
+
cuda_func = cuda.jit('void(uint32[:], uint32[:], uint32)')(atomic_exch)
|
1085
|
+
cuda_func[1, 32](ary, idx, rand_const)
|
1086
|
+
|
1087
|
+
np.testing.assert_equal(ary, rand_const)
|
1088
|
+
|
1089
|
+
def test_atomic_exch2(self):
|
1090
|
+
rand_const = np.random.randint(50, 100, dtype=np.uint32)
|
1091
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint32).reshape(4, 8)
|
1092
|
+
|
1093
|
+
cuda_func = cuda.jit('void(uint32[:,:], uint32)')(atomic_exch2)
|
1094
|
+
cuda_func[1, (4, 8)](ary, rand_const)
|
1095
|
+
np.testing.assert_equal(ary, rand_const)
|
1096
|
+
|
1097
|
+
def test_atomic_exch3(self):
|
1098
|
+
rand_const = np.random.randint(50, 100, dtype=np.uint64)
|
1099
|
+
ary = np.random.randint(0, 32, size=32).astype(np.uint64).reshape(4, 8)
|
1100
|
+
|
1101
|
+
cuda_func = cuda.jit('void(uint64[:,:], uint64)')(atomic_exch3)
|
1102
|
+
cuda_func[1, (4, 8)](ary, rand_const)
|
1103
|
+
np.testing.assert_equal(ary, rand_const)
|
1104
|
+
|
1105
|
+
def test_atomic_exch_global(self):
|
1106
|
+
rand_const = np.random.randint(50, 100, dtype=np.uint32)
|
1107
|
+
idx = np.arange(32, dtype=np.uint32)
|
1108
|
+
ary = np.random.randint(0, 32, size=32, dtype=np.uint32)
|
1109
|
+
|
1110
|
+
sig = 'void(uint32[:], uint32[:], uint32)'
|
1111
|
+
cuda_func = cuda.jit(sig)(atomic_exch_global)
|
1112
|
+
cuda_func[1, 32](idx, ary, rand_const)
|
1113
|
+
np.testing.assert_equal(ary, rand_const)
|
1114
|
+
|
1115
|
+
def check_atomic_max(self, dtype, lo, hi):
|
1116
|
+
vals = np.random.randint(lo, hi, size=(32, 32)).astype(dtype)
|
1117
|
+
res = np.zeros(1, dtype=vals.dtype)
|
1118
|
+
cuda_func = cuda.jit(atomic_max)
|
1119
|
+
cuda_func[32, 32](res, vals)
|
1120
|
+
gold = np.max(vals)
|
1121
|
+
np.testing.assert_equal(res, gold)
|
1122
|
+
|
1123
|
+
def test_atomic_max_int32(self):
|
1124
|
+
self.check_atomic_max(dtype=np.int32, lo=-65535, hi=65535)
|
1125
|
+
|
1126
|
+
def test_atomic_max_uint32(self):
|
1127
|
+
self.check_atomic_max(dtype=np.uint32, lo=0, hi=65535)
|
1128
|
+
|
1129
|
+
def test_atomic_max_int64(self):
|
1130
|
+
self.check_atomic_max(dtype=np.int64, lo=-65535, hi=65535)
|
1131
|
+
|
1132
|
+
def test_atomic_max_uint64(self):
|
1133
|
+
self.check_atomic_max(dtype=np.uint64, lo=0, hi=65535)
|
1134
|
+
|
1135
|
+
def test_atomic_max_float32(self):
|
1136
|
+
self.check_atomic_max(dtype=np.float32, lo=-65535, hi=65535)
|
1137
|
+
|
1138
|
+
def test_atomic_max_double(self):
|
1139
|
+
self.check_atomic_max(dtype=np.float64, lo=-65535, hi=65535)
|
1140
|
+
|
1141
|
+
def test_atomic_max_double_normalizedindex(self):
|
1142
|
+
vals = np.random.randint(0, 65535, size=(32, 32)).astype(np.float64)
|
1143
|
+
res = np.zeros(1, np.float64)
|
1144
|
+
cuda_func = cuda.jit('void(float64[:], float64[:,:])')(
|
1145
|
+
atomic_max_double_normalizedindex)
|
1146
|
+
cuda_func[32, 32](res, vals)
|
1147
|
+
|
1148
|
+
gold = np.max(vals)
|
1149
|
+
np.testing.assert_equal(res, gold)
|
1150
|
+
|
1151
|
+
def test_atomic_max_double_oneindex(self):
|
1152
|
+
vals = np.random.randint(0, 128, size=32).astype(np.float64)
|
1153
|
+
res = np.zeros(1, np.float64)
|
1154
|
+
cuda_func = cuda.jit('void(float64[:], float64[:])')(
|
1155
|
+
atomic_max_double_oneindex)
|
1156
|
+
cuda_func[1, 32](res, vals)
|
1157
|
+
|
1158
|
+
gold = np.max(vals)
|
1159
|
+
np.testing.assert_equal(res, gold)
|
1160
|
+
|
1161
|
+
def check_atomic_min(self, dtype, lo, hi):
|
1162
|
+
vals = np.random.randint(lo, hi, size=(32, 32)).astype(dtype)
|
1163
|
+
res = np.array([65535], dtype=vals.dtype)
|
1164
|
+
cuda_func = cuda.jit(atomic_min)
|
1165
|
+
cuda_func[32, 32](res, vals)
|
1166
|
+
|
1167
|
+
gold = np.min(vals)
|
1168
|
+
np.testing.assert_equal(res, gold)
|
1169
|
+
|
1170
|
+
def test_atomic_min_int32(self):
|
1171
|
+
self.check_atomic_min(dtype=np.int32, lo=-65535, hi=65535)
|
1172
|
+
|
1173
|
+
def test_atomic_min_uint32(self):
|
1174
|
+
self.check_atomic_min(dtype=np.uint32, lo=0, hi=65535)
|
1175
|
+
|
1176
|
+
def test_atomic_min_int64(self):
|
1177
|
+
self.check_atomic_min(dtype=np.int64, lo=-65535, hi=65535)
|
1178
|
+
|
1179
|
+
def test_atomic_min_uint64(self):
|
1180
|
+
self.check_atomic_min(dtype=np.uint64, lo=0, hi=65535)
|
1181
|
+
|
1182
|
+
def test_atomic_min_float(self):
|
1183
|
+
self.check_atomic_min(dtype=np.float32, lo=-65535, hi=65535)
|
1184
|
+
|
1185
|
+
def test_atomic_min_double(self):
|
1186
|
+
self.check_atomic_min(dtype=np.float64, lo=-65535, hi=65535)
|
1187
|
+
|
1188
|
+
def test_atomic_min_double_normalizedindex(self):
|
1189
|
+
vals = np.random.randint(0, 65535, size=(32, 32)).astype(np.float64)
|
1190
|
+
res = np.ones(1, np.float64) * 65535
|
1191
|
+
cuda_func = cuda.jit('void(float64[:], float64[:,:])')(
|
1192
|
+
atomic_min_double_normalizedindex)
|
1193
|
+
cuda_func[32, 32](res, vals)
|
1194
|
+
|
1195
|
+
gold = np.min(vals)
|
1196
|
+
np.testing.assert_equal(res, gold)
|
1197
|
+
|
1198
|
+
def test_atomic_min_double_oneindex(self):
|
1199
|
+
vals = np.random.randint(0, 128, size=32).astype(np.float64)
|
1200
|
+
res = np.ones(1, np.float64) * 128
|
1201
|
+
cuda_func = cuda.jit('void(float64[:], float64[:])')(
|
1202
|
+
atomic_min_double_oneindex)
|
1203
|
+
cuda_func[1, 32](res, vals)
|
1204
|
+
|
1205
|
+
gold = np.min(vals)
|
1206
|
+
np.testing.assert_equal(res, gold)
|
1207
|
+
|
1208
|
+
# Taken together, _test_atomic_minmax_nan_location and
|
1209
|
+
# _test_atomic_minmax_nan_val check that NaNs are treated similarly to the
|
1210
|
+
# way they are in Python / NumPy - that is, {min,max}(a, b) == a if either
|
1211
|
+
# a or b is a NaN. For the atomics, this means that the max is taken as the
|
1212
|
+
# value stored in the memory location rather than the value supplied - i.e.
|
1213
|
+
# for:
|
1214
|
+
#
|
1215
|
+
# cuda.atomic.{min,max}(ary, idx, val)
|
1216
|
+
#
|
1217
|
+
# the result will be ary[idx] for either of ary[idx] or val being NaN.
|
1218
|
+
|
1219
|
+
def _test_atomic_minmax_nan_location(self, func):
|
1220
|
+
|
1221
|
+
cuda_func = cuda.jit('void(float64[:], float64[:,:])')(func)
|
1222
|
+
|
1223
|
+
vals = np.random.randint(0, 128, size=(1,1)).astype(np.float64)
|
1224
|
+
res = np.zeros(1, np.float64) + np.nan
|
1225
|
+
cuda_func[1, 1](res, vals)
|
1226
|
+
np.testing.assert_equal(res, [np.nan])
|
1227
|
+
|
1228
|
+
def _test_atomic_minmax_nan_val(self, func):
|
1229
|
+
cuda_func = cuda.jit('void(float64[:], float64[:,:])')(func)
|
1230
|
+
|
1231
|
+
res = np.random.randint(0, 128, size=1).astype(np.float64)
|
1232
|
+
gold = res.copy()
|
1233
|
+
vals = np.zeros((1, 1), np.float64) + np.nan
|
1234
|
+
cuda_func[1, 1](res, vals)
|
1235
|
+
|
1236
|
+
np.testing.assert_equal(res, gold)
|
1237
|
+
|
1238
|
+
def test_atomic_min_nan_location(self):
|
1239
|
+
self._test_atomic_minmax_nan_location(atomic_min)
|
1240
|
+
|
1241
|
+
def test_atomic_max_nan_location(self):
|
1242
|
+
self._test_atomic_minmax_nan_location(atomic_max)
|
1243
|
+
|
1244
|
+
def test_atomic_min_nan_val(self):
|
1245
|
+
self._test_atomic_minmax_nan_val(atomic_min)
|
1246
|
+
|
1247
|
+
def test_atomic_max_nan_val(self):
|
1248
|
+
self._test_atomic_minmax_nan_val(atomic_max)
|
1249
|
+
|
1250
|
+
def test_atomic_max_double_shared(self):
|
1251
|
+
vals = np.random.randint(0, 32, size=32).astype(np.float64)
|
1252
|
+
res = np.zeros(1, np.float64)
|
1253
|
+
sig = 'void(float64[:], float64[:])'
|
1254
|
+
cuda_func = cuda.jit(sig)(atomic_max_double_shared)
|
1255
|
+
cuda_func[1, 32](res, vals)
|
1256
|
+
|
1257
|
+
gold = np.max(vals)
|
1258
|
+
np.testing.assert_equal(res, gold)
|
1259
|
+
|
1260
|
+
def test_atomic_min_double_shared(self):
|
1261
|
+
vals = np.random.randint(0, 32, size=32).astype(np.float64)
|
1262
|
+
res = np.ones(1, np.float64) * 32
|
1263
|
+
sig = 'void(float64[:], float64[:])'
|
1264
|
+
cuda_func = cuda.jit(sig)(atomic_min_double_shared)
|
1265
|
+
cuda_func[1, 32](res, vals)
|
1266
|
+
|
1267
|
+
gold = np.min(vals)
|
1268
|
+
np.testing.assert_equal(res, gold)
|
1269
|
+
|
1270
|
+
def check_cas(self, n, fill, unfill, dtype, cas_func, ndim=1):
|
1271
|
+
res = [fill] * (n // 2) + [unfill] * (n // 2)
|
1272
|
+
np.random.shuffle(res)
|
1273
|
+
res = np.asarray(res, dtype=dtype)
|
1274
|
+
if ndim == 2:
|
1275
|
+
res.shape = (10, -1)
|
1276
|
+
out = np.zeros_like(res)
|
1277
|
+
ary = np.random.randint(1, 10, size=res.shape).astype(res.dtype)
|
1278
|
+
|
1279
|
+
fill_mask = res == fill
|
1280
|
+
unfill_mask = res == unfill
|
1281
|
+
|
1282
|
+
expect_res = np.zeros_like(res)
|
1283
|
+
expect_res[fill_mask] = ary[fill_mask]
|
1284
|
+
expect_res[unfill_mask] = unfill
|
1285
|
+
|
1286
|
+
expect_out = res.copy()
|
1287
|
+
|
1288
|
+
cuda_func = cuda.jit(cas_func)
|
1289
|
+
if ndim == 1:
|
1290
|
+
cuda_func[10, 10](res, out, ary, fill)
|
1291
|
+
else:
|
1292
|
+
cuda_func[(10, 10), (10, 10)](res, out, ary, fill)
|
1293
|
+
|
1294
|
+
np.testing.assert_array_equal(expect_res, res)
|
1295
|
+
np.testing.assert_array_equal(expect_out, out)
|
1296
|
+
|
1297
|
+
def test_atomic_compare_and_swap(self):
|
1298
|
+
self.check_cas(n=100, fill=-99, unfill=-1, dtype=np.int32,
|
1299
|
+
cas_func=atomic_compare_and_swap)
|
1300
|
+
|
1301
|
+
def test_atomic_compare_and_swap2(self):
|
1302
|
+
self.check_cas(n=100, fill=-45, unfill=-1, dtype=np.int64,
|
1303
|
+
cas_func=atomic_compare_and_swap)
|
1304
|
+
|
1305
|
+
def test_atomic_compare_and_swap3(self):
|
1306
|
+
rfill = np.random.randint(50, 500, dtype=np.uint32)
|
1307
|
+
runfill = np.random.randint(1, 25, dtype=np.uint32)
|
1308
|
+
self.check_cas(n=100, fill=rfill, unfill=runfill, dtype=np.uint32,
|
1309
|
+
cas_func=atomic_compare_and_swap)
|
1310
|
+
|
1311
|
+
def test_atomic_compare_and_swap4(self):
|
1312
|
+
rfill = np.random.randint(50, 500, dtype=np.uint64)
|
1313
|
+
runfill = np.random.randint(1, 25, dtype=np.uint64)
|
1314
|
+
self.check_cas(n=100, fill=rfill, unfill=runfill, dtype=np.uint64,
|
1315
|
+
cas_func=atomic_compare_and_swap)
|
1316
|
+
|
1317
|
+
def test_atomic_cas_1dim(self):
|
1318
|
+
self.check_cas(n=100, fill=-99, unfill=-1, dtype=np.int32,
|
1319
|
+
cas_func=atomic_cas_1dim)
|
1320
|
+
|
1321
|
+
def test_atomic_cas_2dim(self):
|
1322
|
+
self.check_cas(n=100, fill=-99, unfill=-1, dtype=np.int32,
|
1323
|
+
cas_func=atomic_cas_2dim, ndim=2)
|
1324
|
+
|
1325
|
+
def test_atomic_cas2_1dim(self):
|
1326
|
+
self.check_cas(n=100, fill=-45, unfill=-1, dtype=np.int64,
|
1327
|
+
cas_func=atomic_cas_1dim)
|
1328
|
+
|
1329
|
+
def test_atomic_cas2_2dim(self):
|
1330
|
+
self.check_cas(n=100, fill=-45, unfill=-1, dtype=np.int64,
|
1331
|
+
cas_func=atomic_cas_2dim, ndim=2)
|
1332
|
+
|
1333
|
+
def test_atomic_cas3_1dim(self):
|
1334
|
+
rfill = np.random.randint(50, 500, dtype=np.uint32)
|
1335
|
+
runfill = np.random.randint(1, 25, dtype=np.uint32)
|
1336
|
+
self.check_cas(n=100, fill=rfill, unfill=runfill, dtype=np.uint32,
|
1337
|
+
cas_func=atomic_cas_1dim)
|
1338
|
+
|
1339
|
+
def test_atomic_cas3_2dim(self):
|
1340
|
+
rfill = np.random.randint(50, 500, dtype=np.uint32)
|
1341
|
+
runfill = np.random.randint(1, 25, dtype=np.uint32)
|
1342
|
+
self.check_cas(n=100, fill=rfill, unfill=runfill, dtype=np.uint32,
|
1343
|
+
cas_func=atomic_cas_2dim, ndim=2)
|
1344
|
+
|
1345
|
+
def test_atomic_cas4_1dim(self):
|
1346
|
+
rfill = np.random.randint(50, 500, dtype=np.uint64)
|
1347
|
+
runfill = np.random.randint(1, 25, dtype=np.uint64)
|
1348
|
+
self.check_cas(n=100, fill=rfill, unfill=runfill, dtype=np.uint64,
|
1349
|
+
cas_func=atomic_cas_1dim)
|
1350
|
+
|
1351
|
+
def test_atomic_cas4_2dim(self):
|
1352
|
+
rfill = np.random.randint(50, 500, dtype=np.uint64)
|
1353
|
+
runfill = np.random.randint(1, 25, dtype=np.uint64)
|
1354
|
+
self.check_cas(n=100, fill=rfill, unfill=runfill, dtype=np.uint64,
|
1355
|
+
cas_func=atomic_cas_2dim, ndim=2)
|
1356
|
+
|
1357
|
+
# Tests that the atomic add, min, and max operations return the old value -
|
1358
|
+
# in the simulator, they did not (see Issue #5458). The max and min have
|
1359
|
+
# special handling for NaN values, so we explicitly test with a NaN in the
|
1360
|
+
# array being modified and the value provided.
|
1361
|
+
|
1362
|
+
def _test_atomic_returns_old(self, kernel, initial):
|
1363
|
+
x = np.zeros(2, dtype=np.float32)
|
1364
|
+
x[0] = initial
|
1365
|
+
kernel[1, 1](x)
|
1366
|
+
if np.isnan(initial):
|
1367
|
+
self.assertTrue(np.isnan(x[1]))
|
1368
|
+
else:
|
1369
|
+
self.assertEqual(x[1], initial)
|
1370
|
+
|
1371
|
+
def test_atomic_add_returns_old(self):
|
1372
|
+
@cuda.jit
|
1373
|
+
def kernel(x):
|
1374
|
+
x[1] = cuda.atomic.add(x, 0, 1)
|
1375
|
+
|
1376
|
+
self._test_atomic_returns_old(kernel, 10)
|
1377
|
+
|
1378
|
+
def test_atomic_max_returns_no_replace(self):
|
1379
|
+
@cuda.jit
|
1380
|
+
def kernel(x):
|
1381
|
+
x[1] = cuda.atomic.max(x, 0, 1)
|
1382
|
+
|
1383
|
+
self._test_atomic_returns_old(kernel, 10)
|
1384
|
+
|
1385
|
+
def test_atomic_max_returns_old_replace(self):
|
1386
|
+
@cuda.jit
|
1387
|
+
def kernel(x):
|
1388
|
+
x[1] = cuda.atomic.max(x, 0, 10)
|
1389
|
+
|
1390
|
+
self._test_atomic_returns_old(kernel, 1)
|
1391
|
+
|
1392
|
+
def test_atomic_max_returns_old_nan_in_array(self):
|
1393
|
+
@cuda.jit
|
1394
|
+
def kernel(x):
|
1395
|
+
x[1] = cuda.atomic.max(x, 0, 1)
|
1396
|
+
|
1397
|
+
self._test_atomic_returns_old(kernel, np.nan)
|
1398
|
+
|
1399
|
+
def test_atomic_max_returns_old_nan_val(self):
|
1400
|
+
@cuda.jit
|
1401
|
+
def kernel(x):
|
1402
|
+
x[1] = cuda.atomic.max(x, 0, np.nan)
|
1403
|
+
|
1404
|
+
self._test_atomic_returns_old(kernel, 10)
|
1405
|
+
|
1406
|
+
def test_atomic_min_returns_old_no_replace(self):
|
1407
|
+
@cuda.jit
|
1408
|
+
def kernel(x):
|
1409
|
+
x[1] = cuda.atomic.min(x, 0, 11)
|
1410
|
+
|
1411
|
+
self._test_atomic_returns_old(kernel, 10)
|
1412
|
+
|
1413
|
+
def test_atomic_min_returns_old_replace(self):
|
1414
|
+
@cuda.jit
|
1415
|
+
def kernel(x):
|
1416
|
+
x[1] = cuda.atomic.min(x, 0, 10)
|
1417
|
+
|
1418
|
+
self._test_atomic_returns_old(kernel, 11)
|
1419
|
+
|
1420
|
+
def test_atomic_min_returns_old_nan_in_array(self):
|
1421
|
+
@cuda.jit
|
1422
|
+
def kernel(x):
|
1423
|
+
x[1] = cuda.atomic.min(x, 0, 11)
|
1424
|
+
|
1425
|
+
self._test_atomic_returns_old(kernel, np.nan)
|
1426
|
+
|
1427
|
+
def test_atomic_min_returns_old_nan_val(self):
|
1428
|
+
@cuda.jit
|
1429
|
+
def kernel(x):
|
1430
|
+
x[1] = cuda.atomic.min(x, 0, np.nan)
|
1431
|
+
|
1432
|
+
self._test_atomic_returns_old(kernel, 11)
|
1433
|
+
|
1434
|
+
# Tests for atomic nanmin/nanmax
|
1435
|
+
|
1436
|
+
# nanmax tests
|
1437
|
+
def check_atomic_nanmax(self, dtype, lo, hi, init_val):
|
1438
|
+
vals = np.random.randint(lo, hi, size=(32, 32)).astype(dtype)
|
1439
|
+
vals[1::2] = init_val
|
1440
|
+
res = np.zeros(1, dtype=vals.dtype)
|
1441
|
+
cuda_func = cuda.jit(atomic_nanmax)
|
1442
|
+
cuda_func[32, 32](res, vals)
|
1443
|
+
gold = np.nanmax(vals)
|
1444
|
+
np.testing.assert_equal(res, gold)
|
1445
|
+
|
1446
|
+
def test_atomic_nanmax_int32(self):
|
1447
|
+
self.check_atomic_nanmax(dtype=np.int32, lo=-65535, hi=65535,
|
1448
|
+
init_val=0)
|
1449
|
+
|
1450
|
+
def test_atomic_nanmax_uint32(self):
|
1451
|
+
self.check_atomic_nanmax(dtype=np.uint32, lo=0, hi=65535,
|
1452
|
+
init_val=0)
|
1453
|
+
|
1454
|
+
def test_atomic_nanmax_int64(self):
|
1455
|
+
self.check_atomic_nanmax(dtype=np.int64, lo=-65535, hi=65535,
|
1456
|
+
init_val=0)
|
1457
|
+
|
1458
|
+
def test_atomic_nanmax_uint64(self):
|
1459
|
+
self.check_atomic_nanmax(dtype=np.uint64, lo=0, hi=65535,
|
1460
|
+
init_val=0)
|
1461
|
+
|
1462
|
+
def test_atomic_nanmax_float32(self):
|
1463
|
+
self.check_atomic_nanmax(dtype=np.float32, lo=-65535, hi=65535,
|
1464
|
+
init_val=np.nan)
|
1465
|
+
|
1466
|
+
def test_atomic_nanmax_double(self):
|
1467
|
+
self.check_atomic_nanmax(dtype=np.float64, lo=-65535, hi=65535,
|
1468
|
+
init_val=np.nan)
|
1469
|
+
|
1470
|
+
def test_atomic_nanmax_double_shared(self):
|
1471
|
+
vals = np.random.randint(0, 32, size=32).astype(np.float64)
|
1472
|
+
vals[1::2] = np.nan
|
1473
|
+
res = np.array([0], dtype=vals.dtype)
|
1474
|
+
sig = 'void(float64[:], float64[:])'
|
1475
|
+
cuda_func = cuda.jit(sig)(atomic_nanmax_double_shared)
|
1476
|
+
cuda_func[1, 32](res, vals)
|
1477
|
+
|
1478
|
+
gold = np.nanmax(vals)
|
1479
|
+
np.testing.assert_equal(res, gold)
|
1480
|
+
|
1481
|
+
def test_atomic_nanmax_double_oneindex(self):
|
1482
|
+
vals = np.random.randint(0, 128, size=32).astype(np.float64)
|
1483
|
+
vals[1::2] = np.nan
|
1484
|
+
res = np.zeros(1, np.float64)
|
1485
|
+
cuda_func = cuda.jit('void(float64[:], float64[:])')(
|
1486
|
+
atomic_max_double_oneindex)
|
1487
|
+
cuda_func[1, 32](res, vals)
|
1488
|
+
|
1489
|
+
gold = np.nanmax(vals)
|
1490
|
+
np.testing.assert_equal(res, gold)
|
1491
|
+
|
1492
|
+
# nanmin tests
|
1493
|
+
def check_atomic_nanmin(self, dtype, lo, hi, init_val):
|
1494
|
+
vals = np.random.randint(lo, hi, size=(32, 32)).astype(dtype)
|
1495
|
+
vals[1::2] = init_val
|
1496
|
+
res = np.array([65535], dtype=vals.dtype)
|
1497
|
+
cuda_func = cuda.jit(atomic_nanmin)
|
1498
|
+
cuda_func[32, 32](res, vals)
|
1499
|
+
|
1500
|
+
gold = np.nanmin(vals)
|
1501
|
+
np.testing.assert_equal(res, gold)
|
1502
|
+
|
1503
|
+
def test_atomic_nanmin_int32(self):
|
1504
|
+
self.check_atomic_nanmin(dtype=np.int32, lo=-65535, hi=65535,
|
1505
|
+
init_val=0)
|
1506
|
+
|
1507
|
+
def test_atomic_nanmin_uint32(self):
|
1508
|
+
self.check_atomic_nanmin(dtype=np.uint32, lo=0, hi=65535,
|
1509
|
+
init_val=0)
|
1510
|
+
|
1511
|
+
def test_atomic_nanmin_int64(self):
|
1512
|
+
self.check_atomic_nanmin(dtype=np.int64, lo=-65535, hi=65535,
|
1513
|
+
init_val=0)
|
1514
|
+
|
1515
|
+
def test_atomic_nanmin_uint64(self):
|
1516
|
+
self.check_atomic_nanmin(dtype=np.uint64, lo=0, hi=65535,
|
1517
|
+
init_val=0)
|
1518
|
+
|
1519
|
+
def test_atomic_nanmin_float(self):
|
1520
|
+
self.check_atomic_nanmin(dtype=np.float32, lo=-65535, hi=65535,
|
1521
|
+
init_val=np.nan)
|
1522
|
+
|
1523
|
+
def test_atomic_nanmin_double(self):
|
1524
|
+
self.check_atomic_nanmin(dtype=np.float64, lo=-65535, hi=65535,
|
1525
|
+
init_val=np.nan)
|
1526
|
+
|
1527
|
+
def test_atomic_nanmin_double_shared(self):
|
1528
|
+
vals = np.random.randint(0, 32, size=32).astype(np.float64)
|
1529
|
+
vals[1::2] = np.nan
|
1530
|
+
res = np.array([32], dtype=vals.dtype)
|
1531
|
+
sig = 'void(float64[:], float64[:])'
|
1532
|
+
cuda_func = cuda.jit(sig)(atomic_nanmin_double_shared)
|
1533
|
+
cuda_func[1, 32](res, vals)
|
1534
|
+
|
1535
|
+
gold = np.nanmin(vals)
|
1536
|
+
np.testing.assert_equal(res, gold)
|
1537
|
+
|
1538
|
+
def test_atomic_nanmin_double_oneindex(self):
|
1539
|
+
vals = np.random.randint(0, 128, size=32).astype(np.float64)
|
1540
|
+
vals[1::2] = np.nan
|
1541
|
+
res = np.array([128], np.float64)
|
1542
|
+
cuda_func = cuda.jit('void(float64[:], float64[:])')(
|
1543
|
+
atomic_min_double_oneindex)
|
1544
|
+
cuda_func[1, 32](res, vals)
|
1545
|
+
|
1546
|
+
gold = np.nanmin(vals)
|
1547
|
+
np.testing.assert_equal(res, gold)
|
1548
|
+
|
1549
|
+
# Returning old value tests
|
1550
|
+
|
1551
|
+
def _test_atomic_nan_returns_old(self, kernel, initial):
|
1552
|
+
x = np.zeros(2, dtype=np.float32)
|
1553
|
+
x[0] = initial
|
1554
|
+
x[1] = np.nan
|
1555
|
+
kernel[1, 1](x)
|
1556
|
+
if np.isnan(initial):
|
1557
|
+
self.assertFalse(np.isnan(x[0]))
|
1558
|
+
self.assertTrue(np.isnan(x[1]))
|
1559
|
+
else:
|
1560
|
+
self.assertEqual(x[1], initial)
|
1561
|
+
|
1562
|
+
def test_atomic_nanmax_returns_old_no_replace(self):
|
1563
|
+
@cuda.jit
|
1564
|
+
def kernel(x):
|
1565
|
+
x[1] = cuda.atomic.nanmax(x, 0, 1)
|
1566
|
+
|
1567
|
+
self._test_atomic_nan_returns_old(kernel, 10)
|
1568
|
+
|
1569
|
+
def test_atomic_nanmax_returns_old_replace(self):
|
1570
|
+
@cuda.jit
|
1571
|
+
def kernel(x):
|
1572
|
+
x[1] = cuda.atomic.nanmax(x, 0, 10)
|
1573
|
+
|
1574
|
+
self._test_atomic_nan_returns_old(kernel, 1)
|
1575
|
+
|
1576
|
+
def test_atomic_nanmax_returns_old_nan_in_array(self):
|
1577
|
+
@cuda.jit
|
1578
|
+
def kernel(x):
|
1579
|
+
x[1] = cuda.atomic.nanmax(x, 0, 1)
|
1580
|
+
|
1581
|
+
self._test_atomic_nan_returns_old(kernel, np.nan)
|
1582
|
+
|
1583
|
+
def test_atomic_nanmax_returns_old_nan_val(self):
|
1584
|
+
@cuda.jit
|
1585
|
+
def kernel(x):
|
1586
|
+
x[1] = cuda.atomic.nanmax(x, 0, np.nan)
|
1587
|
+
|
1588
|
+
self._test_atomic_nan_returns_old(kernel, 10)
|
1589
|
+
|
1590
|
+
def test_atomic_nanmin_returns_old_no_replace(self):
|
1591
|
+
@cuda.jit
|
1592
|
+
def kernel(x):
|
1593
|
+
x[1] = cuda.atomic.nanmin(x, 0, 11)
|
1594
|
+
|
1595
|
+
self._test_atomic_nan_returns_old(kernel, 10)
|
1596
|
+
|
1597
|
+
def test_atomic_nanmin_returns_old_replace(self):
|
1598
|
+
@cuda.jit
|
1599
|
+
def kernel(x):
|
1600
|
+
x[1] = cuda.atomic.nanmin(x, 0, 10)
|
1601
|
+
|
1602
|
+
self._test_atomic_nan_returns_old(kernel, 11)
|
1603
|
+
|
1604
|
+
def test_atomic_nanmin_returns_old_nan_in_array(self):
|
1605
|
+
@cuda.jit
|
1606
|
+
def kernel(x):
|
1607
|
+
x[1] = cuda.atomic.nanmin(x, 0, 11)
|
1608
|
+
|
1609
|
+
self._test_atomic_nan_returns_old(kernel, np.nan)
|
1610
|
+
|
1611
|
+
def test_atomic_nanmin_returns_old_nan_val(self):
|
1612
|
+
@cuda.jit
|
1613
|
+
def kernel(x):
|
1614
|
+
x[1] = cuda.atomic.nanmin(x, 0, np.nan)
|
1615
|
+
|
1616
|
+
self._test_atomic_nan_returns_old(kernel, 11)
|
1617
|
+
|
1618
|
+
|
1619
|
+
if __name__ == '__main__':
|
1620
|
+
unittest.main()
|