nucliadb-admin-assets 1.0.0.post1936__py3-none-any.whl → 1.0.0.post1937__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nucliadb-admin-assets might be problematic. Click here for more details.

@@ -1,5 +1,5 @@
1
1
  {
2
- "version": "a1e15069487c9a99226a68c8372140744d247fc3",
2
+ "version": "f89146b15e5f2cf25e76c55ea6e547a270d36921",
3
3
  "production": true,
4
4
  "backend": {
5
5
  "app": "nucliadb-admin",
@@ -1069,14 +1069,14 @@
1069
1069
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only": "Només gràfo personalitzat",
1070
1070
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only_help": "Si està activat, només es tenen en compte les relacions extretes d'un agent d'extracció de gràfes per a l'expansió del context.",
1071
1071
  "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking": "Rànquing amb model generatiu",
1072
- "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking-help": "Després de la reclassificació regular, utilitzeu un model generatiu per classificar les relacions.\nÉs més lent i consumeix més fitxes, però pot proporcionar millors resultats.",
1072
+ "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking_help": "Després de la reclassificació regular, utilitzeu un model generatiu per classificar les relacions.\nÉs més lent i consumeix més fitxes, però pot proporcionar millors resultats.",
1073
1073
  "search.configuration.generative-answer.rag-strategies.graph.hops": "Salts",
1074
1074
  "search.configuration.generative-answer.rag-strategies.graph.hops-description": "Nombre de salts que cal fer en explorar el gràfic per a un context rellevant.\nPer exemple, hops=1 explorarà els veïns de les entitats inicials, hops=2 explorarà els veïns dels veïns de les entitats inicials, etc.\nEls valors més grans descobriran relacions més complexes, però també trigaran més temps a calcular.",
1075
1075
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs": "Utilitzar les relacions com a context",
1076
1076
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs_help": "Si està activat, el text de les relacions s'utilitza com a context en lloc de paràgrafs, això permet utilitzar un Top K més gran sense trobar-se amb els límits de context del model generatiu. Si està desactivat, els paràgrafs que contenen les relacions s'utilitzen com a context.",
1077
1077
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection": "Cerca difusa per detectar entitats",
1078
1078
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection_help": "Utilitza la cerca difusa per detectar entitats. És més ràpid i flexible, però pot tenir problemes per fer coincidir entitats compostes per diverses paraules (es tornarà a la detecció predeterminada si no es detecta cap entitat). La detecció predeterminada és més lenta i precisa, però requereix una coincidència de text exacta entre les entitats del Knowledge Box i les entitats de la consulta.",
1079
- "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Cerca entre les relacions amb els NERs esmentats a la pregunta.",
1079
+ "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Recolle peces de context explorant el Knowledge Graph, a partir dels NER presents a la consulta. Funciona millor si el Knowledge Box té activat un agent d'extracció de gràf definit per l'usuari.",
1080
1080
  "search.configuration.generative-answer.rag-strategies.graph.toggle-label": "Gràfo de coneixement",
1081
1081
  "search.configuration.generative-answer.rag-strategies.graph.top_k": "Top K",
1082
1082
  "search.configuration.generative-answer.rag-strategies.graph.top_k-description": "Quantitat màxima de resultats per recuperar.",
@@ -1069,14 +1069,14 @@
1069
1069
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only": "Custom graph only",
1070
1070
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only_help": "If enabled, only relationships extracted from a graph extraction agent are considered for context expansion.",
1071
1071
  "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking": "Ranking with generative model",
1072
- "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking-help": "After regular reranking, use a generative model to rank relationships.\nIt is slower and consumes more tokens, but can provide better results.",
1072
+ "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking_help": "After regular reranking, use a generative model to rank relationships.\nIt is slower and consumes more tokens, but can provide better results.",
1073
1073
  "search.configuration.generative-answer.rag-strategies.graph.hops": "Hops",
1074
1074
  "search.configuration.generative-answer.rag-strategies.graph.hops-description": "Number of hops to take when exploring the graph for relevant context.\nFor example, hops=1 will explore the neighbors of the starting entities, hops=2 will explore the neighbors of the neighbors of the starting entities, and so on.\nBigger values will discover more intricate relationships but will also take more time to compute.",
1075
1075
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs": "Use relations as context",
1076
1076
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs_help": "If enabled, the text of the relationships is used as context instead of paragraphs, this enables to use bigger top K values without running into the generative model's context limits. If disabled, the paragraphs that contain the relationships are used as context.",
1077
1077
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection": "Fuzzy search to detect entities",
1078
1078
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection_help": "Uses fuzzy search to detect entities. It's faster and more flexible but might have trouble matching entities composed of multiple words (it will fallback to default detection if no entities are detected). The default detection is slower and more accurate but requires an exact text match between Knowledge Box entities and entities in the query.",
1079
- "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Search accross relations with NERs mentioned in the question.",
1079
+ "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Collect context pieces by exploring the Knowledge Graph, starting from the NERs present in the query. It works best if the Knowledge Box has a user-defined Graph Extraction agent enabled.",
1080
1080
  "search.configuration.generative-answer.rag-strategies.graph.toggle-label": "Knowledge graph",
1081
1081
  "search.configuration.generative-answer.rag-strategies.graph.top_k": "Top K",
1082
1082
  "search.configuration.generative-answer.rag-strategies.graph.top_k-description": "Maximum amount of results to retrieve.",
@@ -1069,14 +1069,14 @@
1069
1069
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only": "Solo gráfo personalizado",
1070
1070
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only_help": "Si está habilitado, solo se consideran las relaciones extraídas de un agente de extracción de gráfos para la expansión del contexto.",
1071
1071
  "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking": "Ranking con modelo generativo",
1072
- "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking-help": "Después de la reclasificación periódica, utilice un modelo generativo para clasificar las relaciones.\nEs más lento y consume más tokens, pero puede brindar mejores resultados.",
1072
+ "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking_help": "Después de la reclasificación periódica, utilice un modelo generativo para clasificar las relaciones.\nEs más lento y consume más tokens, pero puede brindar mejores resultados.",
1073
1073
  "search.configuration.generative-answer.rag-strategies.graph.hops": "Saltos",
1074
1074
  "search.configuration.generative-answer.rag-strategies.graph.hops-description": "Número de saltos que se deben realizar al explorar el gráfico para obtener el contexto relevante.\nPor ejemplo, hops=1 explorará los vecinos de las entidades iniciales, hops=2 explorará los vecinos de los vecinos de las entidades iniciales, y así sucesivamente.\nLos valores más grandes descubrirán relaciones más complejas, pero también llevarán más tiempo de cálculo.",
1075
1075
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs": "Utilice las relaciones como contexto",
1076
1076
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs_help": "Si está habilitado, el texto de las relaciones se usa como contexto en lugar de párrafos, lo que permite un Top K más alto sin entrar en los límites de contexto del modelo generativo. Si está deshabilitado, los párrafos que contienen las relaciones se usan como contexto.",
1077
1077
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection": "Búsqueda difusa para detectar entidades",
1078
1078
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection_help": "Utiliza la búsqueda difusa para detectar entidades. Es más rápida y más flexible, pero puede tener problemas para encontrar entidades compuestas por varias palabras (recurrirá a la detección predeterminada si no se detectan entidades). La detección predeterminada es más lenta y precisa, pero requiere una coincidencia exacta de texto entre las entidades de Knowledge Box y las entidades de la consulta.",
1079
- "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Busque entre las relaciones con los NERs mencionados en la pregunta.",
1079
+ "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Recopile fragmentos de contexto explorando el gráfico de conocimiento, comenzando por los NER presentes en la consulta. Funciona mejor si el cuadro de conocimiento tiene habilitado un agente de extracción de gráfos definido por el usuario.",
1080
1080
  "search.configuration.generative-answer.rag-strategies.graph.toggle-label": "Gráfo de conocimiento",
1081
1081
  "search.configuration.generative-answer.rag-strategies.graph.top_k": "Top K",
1082
1082
  "search.configuration.generative-answer.rag-strategies.graph.top_k-description": "Cantidad máxima de resultados a recuperar.",
@@ -1069,14 +1069,14 @@
1069
1069
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only": "Graphe personnalisé uniquement",
1070
1070
  "search.configuration.generative-answer.rag-strategies.graph.agentic_graph_only_help": "Si cette option est activée, seules les relations extraites d'un agent d'extraction de graphe sont prises en compte pour l'extension de contexte.",
1071
1071
  "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking": "Classement avec modèle génératif",
1072
- "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking-help": "Après un reclassement régulier, utilisez un modèle génératif pour classer les relations.\nIl est plus lent et consomme plus de jetons, mais peut fournir de meilleurs résultats.",
1072
+ "search.configuration.generative-answer.rag-strategies.graph.generative_relation_ranking_help": "Après un reclassement régulier, utilisez un modèle génératif pour classer les relations.\nIl est plus lent et consomme plus de jetons, mais peut fournir de meilleurs résultats.",
1073
1073
  "search.configuration.generative-answer.rag-strategies.graph.hops": "Sauts",
1074
1074
  "search.configuration.generative-answer.rag-strategies.graph.hops-description": "Nombre de sauts à effectuer lors de l'exploration du graphique pour un contexte pertinent.\nPar exemple, hops=1 explorera les voisins des entités de départ, hops=2 explorera les voisins des voisins des entités de départ, et ainsi de suite.\nDes valeurs plus élevées découvriront des relations plus complexes mais prendront également plus de temps à calculer.",
1075
1075
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs": "Utiliser les relations comme contexte",
1076
1076
  "search.configuration.generative-answer.rag-strategies.graph.relation_text_as_paragraphs_help": "Si cette option est activée, le texte des relations est utilisé comme contexte au lieu des paragraphes, ce qui permet d'utiliser un Top K plus grand sans atteindre les limites de contexte du modèle génératif. Si elle est désactivée, les paragraphes qui contiennent les relations sont utilisés comme contexte.",
1077
1077
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection": "Recherche floue pour détecter des entités",
1078
1078
  "search.configuration.generative-answer.rag-strategies.graph.suggest_query_entity_detection_help": "Utilise la recherche floue pour détecter les entités. Elle est plus rapide et plus flexible, mais peut rencontrer des difficultés pour faire correspondre les entités composées de plusieurs mots (elle reviendra à la détection par défaut si aucune entité n'est détectée). La détection par défaut est plus lente et plus précise, mais nécessite une correspondance exacte du texte entre les entités de Knowledge Box et les entités de la requête.",
1079
- "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Rechercher parmi les relations avec les NERs mentionnés dans la question.",
1079
+ "search.configuration.generative-answer.rag-strategies.graph.toggle-description": "Collecte des éléments de contexte en explorant le Knowledge Graph, à partir des NER présents dans la requête. Cela fonctionne mieux si la Knowledge Box dispose d'un agent d'extraction de graphes défini par l'utilisateur activé.",
1080
1080
  "search.configuration.generative-answer.rag-strategies.graph.toggle-label": "Graphe de connaissances",
1081
1081
  "search.configuration.generative-answer.rag-strategies.graph.top_k": "Top K",
1082
1082
  "search.configuration.generative-answer.rag-strategies.graph.top_k-description": "Quantité maximale de résultats à récupérer.",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nucliadb-admin-assets
3
- Version: 1.0.0.post1936
3
+ Version: 1.0.0.post1937
4
4
  Summary: Packaging of NucliaDB admin JS app
5
5
  Home-page: https://github.com/nuclia/frontend
6
6
  Author: Nuclia
@@ -22,16 +22,16 @@ nucliadb_admin_assets/assets/connector-logos/rss.svg,sha256=rO7Tpi6UlDmSeNnRTeL5
22
22
  nucliadb_admin_assets/assets/connector-logos/s3.svg,sha256=Epeegdcu-r4zLQi7Kpk0B3vBFaA8Fjw6SzkZF-ige6Q,1376
23
23
  nucliadb_admin_assets/assets/connector-logos/sharepoint.svg,sha256=TtgboCPM2euyPJRK0b5Q3XdQl9oEhKZgrYHb-n8zV8M,4803
24
24
  nucliadb_admin_assets/assets/connector-logos/sitemap.svg,sha256=R8Cx7rgI-gOBCRqzS_mDhBg4zKog08XIX1fH-0UnUMk,1744
25
- nucliadb_admin_assets/assets/deployment/app-config.json,sha256=S8ts2KSZicvqgh9-vAMOJ8VRndEdZenelxbI7jxiiEs,388
25
+ nucliadb_admin_assets/assets/deployment/app-config.json,sha256=T0PcZF4xW4nmybMJnTw6g_ZoTqfWymwSN6PB7PtFeL8,388
26
26
  nucliadb_admin_assets/assets/deployment/app-config.json.bak,sha256=lbaBuAGjHtFWWuL5zHhJPMtky7_9FauLwmjY2T5ZGgA,373
27
27
  nucliadb_admin_assets/assets/fonts/source-code-pro/source-code-pro-v14-latin-regular.woff,sha256=GV4qsmC5J3Vp_LIKREDLIiTMyOLV-cZjRz_ZpH28hus,17580
28
28
  nucliadb_admin_assets/assets/fonts/source-code-pro/source-code-pro-v14-latin-regular.woff2,sha256=T6BrAKCLCUSQ5K9RAXKslv4oA538WqwmxDni4CMsnMc,13764
29
29
  nucliadb_admin_assets/assets/fonts/videoagular/Videogular.json,sha256=tmp9XQvGJmARb5HELAE0gqfoyGTEDopaAsWkcjoJE1Y,522679
30
30
  nucliadb_admin_assets/assets/fonts/videoagular/videogular.woff,sha256=x1eUFvuNLjRHkGZUpAbWqagayNFDMhyILQ7LoSsWtxI,3892
31
- nucliadb_admin_assets/assets/i18n/common/ca.json,sha256=8Sy0P0Hm8foRA9nRq7HA8z_hp_n5CoG-npAk0o_iynM,140719
32
- nucliadb_admin_assets/assets/i18n/common/en.json,sha256=DF5sLbltc7FUUni_X6f8OPx4Vkw0hIsfLXoreIij9B0,131091
33
- nucliadb_admin_assets/assets/i18n/common/es.json,sha256=66Txc4EMLNYNrFra3AXU8yoJWutr-2gDczGd_pjjeQc,141246
34
- nucliadb_admin_assets/assets/i18n/common/fr.json,sha256=4HQV4Fd6hsyEa_xWjh6p-TqOgoQrh-1ILYca-Dwgni8,148028
31
+ nucliadb_admin_assets/assets/i18n/common/ca.json,sha256=inUrBHpkg4iKBxPyFZ06jfP0VNz6UQNLwlXQEHgCWRk,140853
32
+ nucliadb_admin_assets/assets/i18n/common/en.json,sha256=SbHAhiPIzae1wX4keyd_fCnUuPNSp4dukYegUiqbFRs,131217
33
+ nucliadb_admin_assets/assets/i18n/common/es.json,sha256=NgvXH_v58vY19cvi8OzgWt18rkrwbhvTCZGtcjbNbmU,141420
34
+ nucliadb_admin_assets/assets/i18n/common/fr.json,sha256=uk88K2YtUJyvJH_VInQrKXfhafCcklhemLGDp_ro7ac,148188
35
35
  nucliadb_admin_assets/assets/i18n/sync/ca.json,sha256=wfPJq6KuO16AzfHO1-Fb4nH0BNPknIt4XXVH1lEIlnk,13242
36
36
  nucliadb_admin_assets/assets/i18n/sync/en.json,sha256=XdzRQasdMCt1jNlkWNS45KxedzPu0Gqbz8UAaq0vcS0,12221
37
37
  nucliadb_admin_assets/assets/i18n/sync/es.json,sha256=XcN2yUPCav1oe8bkStoAKzA5IgpQIoeoZ3X-85QzoLo,13103
@@ -52,8 +52,8 @@ nucliadb_admin_assets/assets/logos/stage-icon.svg,sha256=dILym0sV2wfBjTBghwDexmI
52
52
  nucliadb_admin_assets/assets/signup/check-email.png,sha256=w61IaLxWx2sH4AHYTXkU_rZuUlEF8u238kgkZGD3GYI,40175
53
53
  nucliadb_admin_assets/assets/sso-icons/github.svg,sha256=ec0987nvzdqyYKJy_Fqu9h3q2gEraVP38jD80s3lh70,1782
54
54
  nucliadb_admin_assets/assets/sso-icons/google.svg,sha256=X8pb0LT48dHF6av2iM8W7iy2Ww8Qtu1nrWygTMTM7Mc,1268
55
- nucliadb_admin_assets-1.0.0.post1936.dist-info/METADATA,sha256=E8fGr40wF2VqAP36rDQyYJr-ocqHMB6h-Rb64CH7RGs,251
56
- nucliadb_admin_assets-1.0.0.post1936.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
57
- nucliadb_admin_assets-1.0.0.post1936.dist-info/top_level.txt,sha256=OL7L9uvpjIDq52Fb7PjKMalAh0X76FpN062pJMxqmNo,22
58
- nucliadb_admin_assets-1.0.0.post1936.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
59
- nucliadb_admin_assets-1.0.0.post1936.dist-info/RECORD,,
55
+ nucliadb_admin_assets-1.0.0.post1937.dist-info/METADATA,sha256=L0dJ26hPgQIPReThgIH77jTI5IYta1AOpX0j524f2N4,251
56
+ nucliadb_admin_assets-1.0.0.post1937.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
57
+ nucliadb_admin_assets-1.0.0.post1937.dist-info/top_level.txt,sha256=OL7L9uvpjIDq52Fb7PjKMalAh0X76FpN062pJMxqmNo,22
58
+ nucliadb_admin_assets-1.0.0.post1937.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
59
+ nucliadb_admin_assets-1.0.0.post1937.dist-info/RECORD,,