nucleardatapy 0.2.1__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (142) hide show
  1. nucleardatapy/__init__.py +3 -1
  2. nucleardatapy/astro/setup_gw.py +18 -18
  3. nucleardatapy/astro/setup_mr.py +9 -1
  4. nucleardatapy/astro/setup_mup.py +10 -10
  5. nucleardatapy/corr/setup_EsymDen.py +0 -5
  6. nucleardatapy/corr/setup_EsymLsym.py +50 -17
  7. nucleardatapy/corr/setup_KsatQsat.py +170 -69
  8. nucleardatapy/crust/setup_crust.py +363 -125
  9. nucleardatapy/data/astro/NICER/J0740+6620.dat +1 -0
  10. nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-E2A-NM.dat +8 -8
  11. nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
  12. nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
  13. nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
  14. nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
  15. nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
  16. nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
  17. nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
  18. nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
  19. nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
  20. nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
  21. nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
  22. nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
  23. nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
  24. nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
  25. nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
  26. nucleardatapy/env.py +1 -1
  27. nucleardatapy/eos/__init__.py +4 -3
  28. nucleardatapy/eos/setupCC.py +429 -0
  29. nucleardatapy/eos/setup_am.py +39 -14
  30. nucleardatapy/eos/setup_am_Beq.py +40 -15
  31. nucleardatapy/eos/setup_am_Leq.py +40 -15
  32. nucleardatapy/fig/__init__.py +24 -15
  33. nucleardatapy/fig/astro_setupGW_fig.py +5 -5
  34. nucleardatapy/fig/astro_setupMR_fig.py +12 -10
  35. nucleardatapy/fig/astro_setupMasses_fig.py +4 -4
  36. nucleardatapy/fig/astro_setupMtov_fig.py +4 -4
  37. nucleardatapy/fig/astro_setupMup_fig.py +5 -5
  38. nucleardatapy/fig/corr_setupEsymDen_fig.py +12 -5
  39. nucleardatapy/fig/corr_setupEsymLsym_fig.py +18 -5
  40. nucleardatapy/fig/corr_setupKsatQsat_fig.py +19 -15
  41. nucleardatapy/fig/crust_setupCrust_fig.py +5 -5
  42. nucleardatapy/fig/eos_setupAMBeq_fig.py +523 -66
  43. nucleardatapy/fig/eos_setupAMLeq_fig.py +18 -18
  44. nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +364 -0
  45. nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +337 -0
  46. nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +343 -0
  47. nucleardatapy/fig/eos_setupAM_fig.py +504 -0
  48. nucleardatapy/fig/eos_setupCC_fig.py +240 -0
  49. nucleardatapy/fig/hnuc_setupChart_fig.py +2 -2
  50. nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +3 -3
  51. nucleardatapy/fig/matter_all_fig.py +954 -0
  52. nucleardatapy/fig/matter_setupCheck_fig.py +103 -0
  53. nucleardatapy/fig/matter_setupFFGLep_fig.py +70 -0
  54. nucleardatapy/fig/matter_setupFFGNuc_fig.py +267 -104
  55. nucleardatapy/fig/matter_setupHIC_fig.py +98 -58
  56. nucleardatapy/fig/matter_setupMicroEsym_fig.py +248 -63
  57. nucleardatapy/fig/matter_setupMicro_LP_fig.py +175 -78
  58. nucleardatapy/fig/matter_setupMicro_band_fig.py +115 -47
  59. nucleardatapy/fig/matter_setupMicro_effmass_fig.py +248 -73
  60. nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +41 -18
  61. nucleardatapy/fig/matter_setupMicro_fig.py +299 -67
  62. nucleardatapy/fig/matter_setupMicro_gap_fig.py +219 -92
  63. nucleardatapy/fig/matter_setupNEPStats_fig.py +96 -0
  64. nucleardatapy/fig/matter_setupPhenoEsym_fig.py +193 -55
  65. nucleardatapy/fig/matter_setupPheno_fig.py +385 -88
  66. nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +59 -48
  67. nucleardatapy/fig/nuc_setupBEExp_fig.py +48 -41
  68. nucleardatapy/fig/nuc_setupBETheo_fig.py +59 -31
  69. nucleardatapy/fig/nuc_setupISGMRExp_fig.py +5 -5
  70. nucleardatapy/fig/nuc_setupRchExp_fig.py +2 -2
  71. nucleardatapy/fig/nuc_setupRchTheo_fig.py +21 -20
  72. nucleardatapy/fig/nuc_setupRnpExp_fig.py +77 -109
  73. nucleardatapy/fig/nuc_setupRnpTheo_fig.py +92 -93
  74. nucleardatapy/hello.py +6 -0
  75. nucleardatapy/hnuc/setup_re1L_exp.py +6 -6
  76. nucleardatapy/hnuc/setup_re1Xi_exp.py +5 -5
  77. nucleardatapy/hnuc/setup_re2L_exp.py +6 -6
  78. nucleardatapy/matter/__init__.py +14 -14
  79. nucleardatapy/matter/setup_check.py +6 -6
  80. nucleardatapy/matter/setup_ffg.py +66 -39
  81. nucleardatapy/matter/setup_hic.py +91 -74
  82. nucleardatapy/matter/setup_micro.py +1623 -1009
  83. nucleardatapy/matter/setup_micro_band.py +6 -6
  84. nucleardatapy/matter/setup_micro_esym.py +11 -13
  85. nucleardatapy/matter/setup_micro_gap.py +24 -17
  86. nucleardatapy/matter/setup_micro_lp.py +2 -2
  87. nucleardatapy/matter/setup_nep.py +175 -92
  88. nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
  89. nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
  90. nucleardatapy/matter/setup_pheno.py +121 -45
  91. nucleardatapy/matter/setup_pheno_esym.py +8 -13
  92. nucleardatapy/nuc/setup_be_exp.py +304 -292
  93. nucleardatapy/nuc/setup_be_theo.py +273 -97
  94. nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
  95. nucleardatapy/nuc/setup_rnp_exp.py +1 -0
  96. nucleardatapy/nuc/setup_rnp_theo.py +2 -1
  97. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.0.dist-info}/METADATA +48 -16
  98. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.0.dist-info}/RECORD +127 -120
  99. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.0.dist-info}/WHEEL +1 -1
  100. tests/test_corr_setupKsatQsat.py +3 -1
  101. tests/test_matter_setupMicro.py +37 -10
  102. nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
  103. nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
  104. nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
  105. nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
  106. nucleardatapy/fig/eos_setupAM_e_asy_lep_fig.py +0 -125
  107. nucleardatapy/fig/eos_setupAM_e_asy_nuc_fig.py +0 -115
  108. nucleardatapy/fig/eos_setupAM_e_asy_tot_fig.py +0 -117
  109. nucleardatapy/fig/eos_setupAM_e_fig.py +0 -173
  110. nucleardatapy/fig/matter_ENM_fig.py +0 -128
  111. nucleardatapy/fig/matter_ESM_fig.py +0 -140
  112. nucleardatapy/fig/matter_Esym_fig.py +0 -134
  113. nucleardatapy/fig/matter_cs2_fig.py +0 -83
  114. nucleardatapy/fig/matter_preNM_fig.py +0 -146
  115. nucleardatapy/fig/matter_preSM_fig.py +0 -144
  116. nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
  117. /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
  118. /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
  119. /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
  120. /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
  121. /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
  122. /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
  123. /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
  124. /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
  125. /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
  126. /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
  127. /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
  128. /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
  129. /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
  130. /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
  131. /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
  132. /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
  133. /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
  134. /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
  135. /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
  136. /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
  137. /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
  138. /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
  139. /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
  140. /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
  141. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.0.dist-info}/licenses/LICENSE +0 -0
  142. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.0.dist-info}/top_level.txt +0 -0
@@ -1,125 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def eos_setupAM_e_asy_lep_fig( pname, micro_mbs, pheno_models, asy, band ):
7
- """
8
- Plot nuclear chart (N versus Z).\
9
- The plot is 1x2 with:\
10
- [0]: nuclear chart.
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param table: table.
15
- :type table: str.
16
- :param version: version of table to run on.
17
- :type version: str.
18
- :param theo_tables: object instantiated on the reference band.
19
- :type theo_tables: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- fig, axs = plt.subplots(1,2)
26
- #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
27
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.90, wspace=0.05, hspace=0.3 )
28
- #
29
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
30
- axs[0].set_ylabel(r'$E_\text{lep}/A$')
31
- axs[0].set_xlim([0, 0.28])
32
- axs[0].set_ylim([-10, 35])
33
- #
34
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
35
- #axs[1].set_ylabel(r'$E/A$')
36
- axs[1].set_xlim([0, 0.28])
37
- axs[1].set_ylim([-10, 35])
38
- axs[1].tick_params('y', labelleft=False)
39
- #
40
- mb_check = []
41
- #
42
- for kmb,mb in enumerate(micro_mbs):
43
- #
44
- print('mb:',mb,kmb)
45
- #
46
- models, models_lower = nuda.matter.micro_esym_models_mb( mb )
47
- #
48
- print('models:',models)
49
- #
50
- if mb == 'VAR':
51
- models.remove('1998-VAR-AM-APR-fit')
52
- models_lower.remove('1998-var-am-apr-fit')
53
- #
54
- for model in models:
55
- #
56
- micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
57
- if nuda.env.verb_output: micro.print_outputs( )
58
- #
59
- check = nuda.matter.setupCheck( eos = micro, band = band )
60
- #
61
- if check.isInside:
62
- lstyle = 'solid'
63
- else:
64
- lstyle = 'dashed'
65
- #continue
66
- #
67
- if micro.esym is not None:
68
- print('model:',model)
69
- print('den:',micro.den)
70
- print('e2a_lep:',micro.e2a_lep)
71
- if mb in mb_check:
72
- axs[0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
73
- else:
74
- mb_check.append(mb)
75
- axs[0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
76
- # end of model
77
- # end of mb
78
- axs[0].text(0.02,-8,'microscopic models',fontsize='10')
79
- axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
80
- #
81
- model_check = []
82
- #
83
- for kmodel,model in enumerate(pheno_models):
84
- #
85
- params, params_lower = nuda.matter.pheno_esym_params( model = model )
86
- #
87
- for param in params:
88
- #
89
- pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
90
- if nuda.env.verb_output: pheno.print_outputs( )
91
- #
92
- check = nuda.matter.setupCheck( eos = pheno, band = band )
93
- #
94
- if check.isInside:
95
- lstyle = 'solid'
96
- else:
97
- lstyle = 'dashed'
98
- #continue
99
- #
100
- if pheno.e2a_lep is not None:
101
- print('model:',model,' param:',param)
102
- if model in model_check:
103
- axs[1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
104
- else:
105
- model_check.append(model)
106
- axs[1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
107
- # end of param
108
- # end of model
109
- #
110
- #axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
111
- #axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
112
- #axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
113
- axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
114
- axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
115
- #
116
- #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
117
- #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
118
- #axs[1].legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
119
- #fig.legend(loc='lower center',bbox_to_anchor=(0.5,1.02),mode='expand',columnspacing=0,fontsize='8', ncol=2,frameon=False)
120
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
121
- #
122
- if pname is not None:
123
- plt.savefig(pname, dpi=200)
124
- plt.close()
125
- #
@@ -1,115 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def eos_setupAM_e_asy_nuc_fig( pname, micro_mbs, pheno_models, asy, band ):
7
- """
8
- Plot nuclear chart (N versus Z).\
9
- The plot is 1x2 with:\
10
- [0]: nuclear chart.
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param table: table.
15
- :type table: str.
16
- :param version: version of table to run on.
17
- :type version: str.
18
- :param theo_tables: object instantiated on the reference band.
19
- :type theo_tables: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- fig, axs = plt.subplots(1,2)
26
- #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
27
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.90, wspace=0.05, hspace=0.3 )
28
- #
29
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
30
- axs[0].set_ylabel(r'$E_\text{nuc}/A$')
31
- axs[0].set_xlim([0, 0.28])
32
- axs[0].set_ylim([-10, 35])
33
- #
34
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
35
- #axs[1].set_ylabel(r'$E/A$')
36
- axs[1].set_xlim([0, 0.28])
37
- axs[1].set_ylim([-10, 35])
38
- axs[1].tick_params('y', labelleft=False)
39
- #
40
- mb_check = []
41
- #
42
- for kmb,mb in enumerate(micro_mbs):
43
- #
44
- print('mb:',mb,kmb)
45
- #
46
- models, models_lower = nuda.matter.micro_esym_models_mb( mb )
47
- #
48
- print('models:',models)
49
- #
50
- if mb == 'VAR':
51
- models.remove('1998-VAR-AM-APR-fit')
52
- models_lower.remove('1998-var-am-apr-fit')
53
- #
54
- for model in models:
55
- #
56
- micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
57
- if nuda.env.verb_output: micro.print_outputs( )
58
- #
59
- check = nuda.matter.setupCheck( eos = micro, band = band )
60
- #
61
- if check.isInside:
62
- lstyle = 'solid'
63
- else:
64
- lstyle = 'dashed'
65
- #continue
66
- #
67
- if micro.e2a_nuc is not None:
68
- if mb in mb_check:
69
- axs[0].plot( micro.den, micro.e2a_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
70
- else:
71
- mb_check.append(mb)
72
- axs[0].plot( micro.den, micro.e2a_nuc, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
73
- # end of model
74
- # end of mb
75
- axs[0].text(0.02,-8,'microscopic models',fontsize='10')
76
- axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
77
- #
78
- model_check = []
79
- #
80
- for kmodel,model in enumerate(pheno_models):
81
- #
82
- params, params_lower = nuda.matter.pheno_esym_params( model = model )
83
- #
84
- for param in params:
85
- #
86
- pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
87
- if nuda.env.verb_output: pheno.print_outputs( )
88
- #
89
- check = nuda.matter.setupCheck( eos = pheno, band = band )
90
- #
91
- if check.isInside:
92
- lstyle = 'solid'
93
- else:
94
- lstyle = 'dashed'
95
- #continue
96
- #
97
- if pheno.e2a_nuc is not None:
98
- print('model:',model,' param:',param)
99
- if model in model_check:
100
- axs[1].plot( pheno.den, pheno.e2a_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
101
- else:
102
- model_check.append(model)
103
- axs[1].plot( pheno.den, pheno.e2a_nuc, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
104
- # end of param
105
- # end of model
106
- #
107
- axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
108
- axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
109
- #
110
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
111
- #
112
- if pname is not None:
113
- plt.savefig(pname, dpi=200)
114
- plt.close()
115
- #
@@ -1,117 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def eos_setupAM_e_asy_tot_fig( pname, micro_mbs, pheno_models, asy, band ):
7
- """
8
- Plot nuclear chart (N versus Z).\
9
- The plot is 1x2 with:\
10
- [0]: nuclear chart.
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param table: table.
15
- :type table: str.
16
- :param version: version of table to run on.
17
- :type version: str.
18
- :param theo_tables: object instantiated on the reference band.
19
- :type theo_tables: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- fig, axs = plt.subplots(1,2)
26
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.90, wspace=0.05, hspace=0.3 )
27
- #
28
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
29
- axs[0].set_ylabel(r'$E_\text{tot}/A$')
30
- axs[0].set_xlim([0, 0.28])
31
- axs[0].set_ylim([-10, 35])
32
- #
33
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
34
- #axs[1].set_ylabel(r'$E/A$')
35
- axs[1].set_xlim([0, 0.28])
36
- axs[1].set_ylim([-10, 35])
37
- axs[1].tick_params('y', labelleft=False)
38
- #
39
- mb_check = []
40
- #
41
- for kmb,mb in enumerate(micro_mbs):
42
- #
43
- print('mb:',mb,kmb)
44
- #
45
- models, models_lower = nuda.matter.micro_esym_models_mb( mb )
46
- #
47
- print('models:',models)
48
- #
49
- if mb == 'VAR':
50
- models.remove('1998-VAR-AM-APR-fit')
51
- models_lower.remove('1998-var-am-apr-fit')
52
- #
53
- for model in models:
54
- #
55
- micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
56
- if nuda.env.verb_output: micro.print_outputs( )
57
- #
58
- check = nuda.matter.setupCheck( eos = micro, band = band )
59
- #
60
- if check.isInside:
61
- lstyle = 'solid'
62
- else:
63
- lstyle = 'dashed'
64
- #continue
65
- #
66
- if micro.esym is not None:
67
- print('model:',model)
68
- if mb in mb_check:
69
- axs[0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
70
- else:
71
- mb_check.append(mb)
72
- axs[0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
73
- # end of model
74
- # end of mb
75
- #
76
- axs[0].text(0.02,-8,'microscopic models',fontsize='10')
77
- axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
78
- #
79
- model_check = []
80
- #
81
- for kmodel,model in enumerate(pheno_models):
82
- #
83
- params, params_lower = nuda.matter.pheno_esym_params( model = model )
84
- #
85
- for param in params:
86
- #
87
- pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
88
- if nuda.env.verb_output: pheno.print_outputs( )
89
- #
90
- check = nuda.matter.setupCheck( eos = pheno, band = band )
91
- #
92
- if check.isInside:
93
- lstyle = 'solid'
94
- else:
95
- lstyle = 'dashed'
96
- #continue
97
- #
98
- if pheno.e2a_tot is not None:
99
- print('model:',model,' param:',param)
100
- #beta.label=None
101
- if model in model_check:
102
- axs[1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
103
- else:
104
- model_check.append(model)
105
- axs[1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
106
- # end of param
107
- # end of model
108
- #
109
- axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
110
- axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
111
- #
112
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
113
- #
114
- if pname is not None:
115
- plt.savefig(pname, dpi=200)
116
- plt.close()
117
- #
@@ -1,173 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def eos_setupAM_e_fig( pname, micro_mbs, pheno_models, band ):
7
- """
8
- Plot nuclear chart (N versus Z).\
9
- The plot is 1x2 with:\
10
- [0]: nuclear chart.
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param table: table.
15
- :type table: str.
16
- :param version: version of table to run on.
17
- :type version: str.
18
- :param theo_tables: object instantiated on the reference band.
19
- :type theo_tables: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- fig, axs = plt.subplots(3,2)
26
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.05 )
27
- #
28
- #axs[0,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
29
- axs[0,0].set_ylabel(r'$E_\text{lep}/A$')
30
- axs[0,0].set_xlim([0, 0.28])
31
- axs[0,0].set_ylim([-2, 38])
32
- axs[0,0].tick_params('x', labelbottom=False)
33
- #
34
- #axs[0,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
35
- axs[0,1].set_xlim([0, 0.28])
36
- axs[0,1].set_ylim([-2, 38])
37
- axs[0,1].tick_params('y', labelleft=False)
38
- axs[0,1].tick_params('x', labelbottom=False)
39
- #
40
- #axs[1,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
41
- axs[1,0].set_ylabel(r'$E_\text{nuc}/A$')
42
- axs[1,0].set_xlim([0, 0.28])
43
- axs[1,0].set_ylim([-10, 30])
44
- axs[1,0].tick_params('x', labelbottom=False)
45
- #
46
- #axs[1,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
47
- axs[1,1].set_xlim([0, 0.28])
48
- axs[1,1].set_ylim([-10, 30])
49
- axs[1,1].tick_params('y', labelleft=False)
50
- axs[1,1].tick_params('x', labelbottom=False)
51
- #
52
- axs[2,0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
53
- axs[2,0].set_ylabel(r'$E_\text{tot}/A$')
54
- axs[2,0].set_xlim([0, 0.28])
55
- axs[2,0].set_ylim([-2, 38])
56
- #
57
- axs[2,1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
58
- axs[2,1].set_xlim([0, 0.28])
59
- axs[2,1].set_ylim([-2, 38])
60
- axs[2,1].tick_params('y', labelleft=False)
61
- #
62
- # fix the asymmetry parameters
63
- #
64
- asys = [ 0.6, 0.8 ]
65
- #
66
- mb_check = []
67
- model_check = []
68
- #
69
- for asy in asys:
70
- #
71
- print('asy:',asy)
72
- #
73
- for kmb,mb in enumerate(micro_mbs):
74
- #
75
- print('mb:',mb,kmb)
76
- #
77
- models, models_lower = nuda.matter.micro_esym_models_mb( mb )
78
- #models, models_lower = nuda.matter.micro_models_mb( mb )
79
- #
80
- print('models:',models)
81
- #
82
- if mb == 'VAR':
83
- models.remove('1998-VAR-AM-APR-fit')
84
- models_lower.remove('1998-var-am-apr-fit')
85
- #
86
- for model in models:
87
- #
88
- micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
89
- if nuda.env.verb_output: micro.print_outputs( )
90
- #
91
- check = nuda.matter.setupCheck( eos = micro, band = band )
92
- #
93
- if check.isInside:
94
- lstyle = 'solid'
95
- else:
96
- lstyle = 'dashed'
97
- continue
98
- #
99
- if micro.e2a_lep is not None:
100
- if mb in mb_check:
101
- print('model:',model)
102
- print('den:',micro.den)
103
- print('e2a_lep:',micro.e2a_lep)
104
- axs[0,0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
105
- axs[1,0].plot( micro.den, micro.e2a_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
106
- axs[2,0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
107
- else:
108
- mb_check.append(mb)
109
- print('mb:',mb)
110
- print('model:',model)
111
- print('den:',micro.den)
112
- print('e2a_lep:',micro.e2a_lep)
113
- axs[0,0].plot( micro.den, micro.e2a_lep, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
114
- axs[1,0].plot( micro.den, micro.e2a_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
115
- axs[2,0].plot( micro.den, micro.e2a_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
116
- # end of model
117
- # end of mb
118
- #
119
- for kmodel,model in enumerate(pheno_models):
120
- #
121
- params, params_lower = nuda.matter.pheno_esym_params( model = model )
122
- #
123
- for param in params:
124
- #
125
- pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
126
- if nuda.env.verb_output: pheno.print_outputs( )
127
- #
128
- check = nuda.matter.setupCheck( eos = pheno, band = band )
129
- #
130
- if check.isInside:
131
- lstyle = 'solid'
132
- else:
133
- lstyle = 'dashed'
134
- continue
135
- #
136
- if pheno.e2a_lep is not None:
137
- print('model:',model,' param:',param)
138
- if model in model_check:
139
- axs[0,1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
140
- axs[1,1].plot( pheno.den, pheno.e2a_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
141
- axs[2,1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
142
- else:
143
- model_check.append(model)
144
- axs[0,1].plot( pheno.den, pheno.e2a_lep, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
145
- axs[1,1].plot( pheno.den, pheno.e2a_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
146
- axs[2,1].plot( pheno.den, pheno.e2a_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
147
- # end of param
148
- # end of model
149
- #
150
- axs[0,0].text(0.02,0,'microscopic models',fontsize='10')
151
- axs[0,1].text(0.02,0,'phenomenological models',fontsize='10')
152
- #
153
- axs[0,0].text(0.1,30,r'$\delta=0.6$',fontsize='10')
154
- axs[0,1].text(0.1,30,r'$\delta=0.6$',fontsize='10')
155
- axs[0,0].text(0.1,13,r'$\delta=0.8$',fontsize='10')
156
- axs[0,1].text(0.1,13,r'$\delta=0.8$',fontsize='10')
157
- #
158
- axs[1,0].text(0.1,-2,r'$\delta=0.6$',fontsize='10')
159
- axs[1,1].text(0.1,-2,r'$\delta=0.6$',fontsize='10')
160
- axs[1,0].text(0.1,7,r'$\delta=0.8$',fontsize='10')
161
- axs[1,1].text(0.1,7,r'$\delta=0.8$',fontsize='10')
162
- #
163
- axs[2,0].text(0.1,27,r'$\delta=0.6$',fontsize='10')
164
- axs[2,1].text(0.1,27,r'$\delta=0.6$',fontsize='10')
165
- axs[2,0].text(0.1,15,r'$\delta=0.8$',fontsize='10')
166
- axs[2,1].text(0.1,15,r'$\delta=0.8$',fontsize='10')
167
- #
168
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
169
- #
170
- if pname is not None:
171
- plt.savefig(pname, dpi=200)
172
- plt.close()
173
- #
@@ -1,128 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def matter_ENM_fig( pname, micro_mbs, pheno_models, band ):
7
- """
8
- Plot nucleonic energy per particle E/A in NM.\
9
- The plot is 1x2 with:\
10
- [0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param micro_mbs: many-body (mb) approach considered.
15
- :type micro_mbs: str.
16
- :param pheno_models: models to run on.
17
- :type pheno_models: array of str.
18
- :param band: object instantiated on the reference band.
19
- :type band: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- fig, axs = plt.subplots(1,2)
26
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
27
- #
28
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
29
- axs[0].set_ylabel(r'$e_\text{NM}(n_\text{nuc})$')
30
- axs[0].set_xlim([0, 0.34])
31
- axs[0].set_ylim([0, 35])
32
- #
33
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
34
- #axs[1].set_ylabel(r'$e_{sym}(n)$')
35
- axs[1].set_xlim([0, 0.34])
36
- axs[1].set_ylim([0, 35])
37
- axs[1].tick_params('y', labelleft=False)
38
- #
39
- mb_check = []
40
- #
41
- for kmb,mb in enumerate(micro_mbs):
42
- #
43
- models, models_lower = nuda.matter.micro_models_mb( mb )
44
- #
45
- for model in models:
46
- #
47
- micro = nuda.matter.setupMicro( model = model )
48
- if nuda.env.verb: micro.print_outputs( )
49
- #
50
- check = nuda.matter.setupCheck( eos = micro, band = band )
51
- #
52
- if check.isInside:
53
- lstyle = 'solid'
54
- else:
55
- lstyle = 'dashed'
56
- #
57
- if micro.nm_e2a is not None:
58
- print('mb:',mb,'model:',model)
59
- if mb in mb_check:
60
- if micro.marker:
61
- if micro.e_err:
62
- axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
63
- else:
64
- axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
65
- else:
66
- if micro.e_err:
67
- axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
68
- else:
69
- axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
70
- else:
71
- mb_check.append(mb)
72
- if micro.marker:
73
- if micro.e_err:
74
- axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
75
- else:
76
- axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, color=nuda.param.col[kmb] )
77
- else:
78
- if micro.e_err:
79
- axs[0].errorbar( micro.nm_den, micro.nm_e2a, yerr=micro.nm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
80
- else:
81
- axs[0].plot( micro.nm_den, micro.nm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, color=nuda.param.col[kmb] )
82
- # end model
83
- # end mb
84
- axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
85
- axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
86
- axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
87
- axs[0].text(0.06,2,'microscopic models',fontsize='10')
88
- #
89
- model_check = []
90
- #
91
- for kmodel,model in enumerate(pheno_models):
92
- #
93
- params, params_lower = nuda.matter.pheno_params( model = model )
94
- #
95
- for param in params:
96
- #
97
- pheno = nuda.matter.setupPheno( model = model, param = param )
98
- if nuda.env.verb: pheno.print_outputs( )
99
- #
100
- check = nuda.matter.setupCheck( eos = pheno, band = band )
101
- #
102
- if check.isInside:
103
- lstyle = 'solid'
104
- else:
105
- lstyle = 'dashed'
106
- #
107
- if pheno.nm_e2a is not None:
108
- print('model:',model,' param:',param)
109
- if model in model_check:
110
- axs[1].plot( pheno.nm_den, pheno.nm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel] )
111
- else:
112
- model_check.append(model)
113
- axs[1].plot( pheno.nm_den, pheno.nm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
114
- # end param
115
- # end model
116
- axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
117
- axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
118
- axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
119
- axs[1].text(0.06,2,'phenomenological models',fontsize='10')
120
- #
121
- #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
122
- #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
123
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
124
- #
125
- if pname is not None:
126
- plt.savefig(pname, dpi=200)
127
- plt.close()
128
- #