nucleardatapy 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +23 -0
- nucleardatapy/astro/__init__.py +9 -0
- nucleardatapy/astro/setup_gw.py +370 -0
- nucleardatapy/astro/setup_masses.py +366 -0
- nucleardatapy/astro/setup_mr.py +399 -0
- nucleardatapy/astro/setup_mtov.py +143 -0
- nucleardatapy/astro/setup_mup.py +302 -0
- nucleardatapy/corr/__init__.py +8 -0
- nucleardatapy/corr/setup_EsymDen.py +154 -0
- nucleardatapy/corr/setup_EsymLsym.py +468 -0
- nucleardatapy/corr/setup_KsatQsat.py +226 -0
- nucleardatapy/create_folder.py +7 -0
- nucleardatapy/crust/__init__.py +6 -0
- nucleardatapy/crust/setup_crust.py +475 -0
- nucleardatapy/cst.py +72 -0
- nucleardatapy/data/LandauParameters/micro/1994-BHF-SM.dat +33 -0
- nucleardatapy/data/LandauParameters/micro/2006-BHF-NM-AV18.dat +2701 -0
- nucleardatapy/data/LandauParameters/micro/2006-BHF-SM-AV18.dat +6001 -0
- nucleardatapy/data/LandauParameters/micro/2006-IBHF-NM-AV18.dat +2701 -0
- nucleardatapy/data/LandauParameters/micro/2006-IBHF-SM-AV18.dat +6001 -0
- nucleardatapy/data/LandauParameters/micro/2007-BHF-NM.dat +12 -0
- nucleardatapy/data/LandauParameters/pheno/2013-BSk22.dat +7 -0
- nucleardatapy/data/LandauParameters/pheno/2016-BSk31.dat +9 -0
- nucleardatapy/data/LandauParameters/pheno/2016-BSk32.dat +9 -0
- nucleardatapy/data/LandauParameters/pheno/2021-BSkG1.dat +9 -0
- nucleardatapy/data/LandauParameters/pheno/2022-BSkG2.dat +9 -0
- nucleardatapy/data/LandauParameters/pheno/2023-BSkG3.dat +9 -0
- nucleardatapy/data/NeutronSkin/ddrhNskin-208Pb.dat +6 -0
- nucleardatapy/data/NeutronSkin/ddrhNskin-48Ca.dat +6 -0
- nucleardatapy/data/NeutronSkin/nlrhNskin-208Pb.dat +6 -0
- nucleardatapy/data/NeutronSkin/nlrhNskin-48Ca.dat +6 -0
- nucleardatapy/data/NeutronSkin/skyrmeNskin-208Pb.dat +34 -0
- nucleardatapy/data/NeutronSkin/skyrmeNskin-48Ca.dat +34 -0
- nucleardatapy/data/astro/GW/GW170817.dat +6 -0
- nucleardatapy/data/astro/GW/GW190425.dat +3 -0
- nucleardatapy/data/astro/NICER/J0030+0451.dat +6 -0
- nucleardatapy/data/astro/NICER/J0437-4715.dat +3 -0
- nucleardatapy/data/astro/NICER/J0740+6620.dat +4 -0
- nucleardatapy/data/astro/masses/GW170817.dat +5 -0
- nucleardatapy/data/astro/masses/GW190814.dat +2 -0
- nucleardatapy/data/astro/masses/J0348+0432.dat +2 -0
- nucleardatapy/data/astro/masses/J0740+6620.dat +4 -0
- nucleardatapy/data/astro/masses/J1600+3053.dat +2 -0
- nucleardatapy/data/astro/masses/J1614/342/200/2232230.dat +6 -0
- nucleardatapy/data/astro/masses/J2215+5135.dat +2 -0
- nucleardatapy/data/corr/EsymDen/2014-IAS+NS.dat +8 -0
- nucleardatapy/data/corr/EsymDen/2014-IAS.dat +9 -0
- nucleardatapy/data/corr/EsymLsym/2010-RNP.dat +8 -0
- nucleardatapy/data/corr/EsymLsym/2012-FRDM.dat +6 -0
- nucleardatapy/data/corr/EsymLsym/2013-NS.dat +7 -0
- nucleardatapy/data/corr/EsymLsym/2014-IAS+RNP-err.dat +15 -0
- nucleardatapy/data/corr/EsymLsym/2014-IAS+RNP-plot.py +24 -0
- nucleardatapy/data/corr/EsymLsym/2014-IAS+RNP.dat +15 -0
- nucleardatapy/data/corr/EsymLsym/2014-IAS-err.dat +9 -0
- nucleardatapy/data/corr/EsymLsym/2014-IAS-plot.py +24 -0
- nucleardatapy/data/corr/EsymLsym/2014-IAS.dat +7 -0
- nucleardatapy/data/corr/EsymLsym/2021-PREXII-Reed.dat +3 -0
- nucleardatapy/data/corr/EsymLsym/2021-PREXII-Reinhard.dat +3 -0
- nucleardatapy/data/corr/EsymLsym/2023-PREXII-Zhang.dat +3 -0
- nucleardatapy/data/corr/EsymLsym/test.png +0 -0
- nucleardatapy/data/crust/1973-Negele-Vautherin.dat +18 -0
- nucleardatapy/data/crust/2020-MVCD-D1M.dat +16 -0
- nucleardatapy/data/crust/2020-MVCD-D1MS-full.dat +71 -0
- nucleardatapy/data/crust/2020-MVCD-D1MS.dat +17 -0
- nucleardatapy/data/crust/2020-MVCD-D1S.dat +17 -0
- nucleardatapy/data/crust/2022-crustGMRS-BSK14.dat +1455 -0
- nucleardatapy/data/crust/2022-crustGMRS-BSK16.dat +1538 -0
- nucleardatapy/data/crust/2022-crustGMRS-DHSL59.dat +1413 -0
- nucleardatapy/data/crust/2022-crustGMRS-DHSL69.dat +1424 -0
- nucleardatapy/data/crust/2022-crustGMRS-F0.dat +1525 -0
- nucleardatapy/data/crust/2022-crustGMRS-H1.dat +1651 -0
- nucleardatapy/data/crust/2022-crustGMRS-H2.dat +1621 -0
- nucleardatapy/data/crust/2022-crustGMRS-H3.dat +1537 -0
- nucleardatapy/data/crust/2022-crustGMRS-H4.dat +1598 -0
- nucleardatapy/data/crust/2022-crustGMRS-H5.dat +1562 -0
- nucleardatapy/data/crust/2022-crustGMRS-H7.dat +1523 -0
- nucleardatapy/data/crust/2022-crustGMRS-LNS5.dat +1396 -0
- nucleardatapy/data/crust/2022-crustGMRS-RATP.dat +1552 -0
- nucleardatapy/data/crust/2022-crustGMRS-SGII.dat +1345 -0
- nucleardatapy/data/crust/2022-crustGMRS-SLY5.dat +1455 -0
- nucleardatapy/data/hnuclei/2013-2L-Ahn.csv +5 -0
- nucleardatapy/data/hnuclei/2015-1Xi-Nakazawa.csv +5 -0
- nucleardatapy/data/hnuclei/2016-1L-GHM.csv +67 -0
- nucleardatapy/data/matter/hic/2002-DLL-NM-soft.dat +6 -0
- nucleardatapy/data/matter/hic/2002-DLL-NM-stiff.dat +5 -0
- nucleardatapy/data/matter/hic/2002-DLL-SM.dat +6 -0
- nucleardatapy/data/matter/hic/2002-KAON.dat +45 -0
- nucleardatapy/data/matter/hic/2009-ISO-DIFF.dat +3 -0
- nucleardatapy/data/matter/hic/2011-FOPI-LAND.dat +32 -0
- nucleardatapy/data/matter/hic/2016-ASY-EOS.dat +31 -0
- nucleardatapy/data/matter/hic/2016-FOPI-E2A.dat +19 -0
- nucleardatapy/data/matter/hic/2016-FOPI-SM.dat +31 -0
- nucleardatapy/data/matter/hic/2019-N2P-RATIO.dat +3 -0
- nucleardatapy/data/matter/hic/2021-SPIRIT.dat +3 -0
- nucleardatapy/data/matter/micro/1981-VAR-NM-FP.dat +26 -0
- nucleardatapy/data/matter/micro/1981-VAR-SM-FP.dat +26 -0
- nucleardatapy/data/matter/micro/1998-VAR-NM-APR.dat +16 -0
- nucleardatapy/data/matter/micro/1998-VAR-SM-APR.dat +15 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-E2A-AM.dat +17 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-E2A-NM.dat +21 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-E2A-SM.dat +30 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Esym2-SM.dat +19 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-GAP-NM-FreeSpectrum.dat +9 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-GAP-NM-SelfEnergy.dat +8 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-GAP-SM-FreeSpectrum.dat +8 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-GAP-SM-SelfEnergy.dat +6 -0
- nucleardatapy/data/matter/micro/2008-AFDMC-NM-bkup.dat +11 -0
- nucleardatapy/data/matter/micro/2008-AFDMC-NM.dat +11 -0
- nucleardatapy/data/matter/micro/2008-BCS-NM.dat +16 -0
- nucleardatapy/data/matter/micro/2008-QMC-NM-swave-bkup.dat +8 -0
- nucleardatapy/data/matter/micro/2008-QMC-NM-swave.dat +8 -0
- nucleardatapy/data/matter/micro/2009-AFDMC-NM.dat +7 -0
- nucleardatapy/data/matter/micro/2009-dQMC-NM.dat +7 -0
- nucleardatapy/data/matter/micro/2010-NM-Hebeler.dat +12 -0
- nucleardatapy/data/matter/micro/2010-QMC-NM-AV4-bkup.dat +9 -0
- nucleardatapy/data/matter/micro/2010-QMC-NM-AV4.dat +7 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-1.dat +29 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-2.dat +10 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-3.dat +11 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-4.dat +10 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-5.dat +11 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-6.dat +10 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-7.dat +37 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM-fit.dat +10 -0
- nucleardatapy/data/matter/micro/2012-AFDMC-NM.txt +252 -0
- nucleardatapy/data/matter/micro/2013-QMC-NM.dat +12 -0
- nucleardatapy/data/matter/micro/2014-AFQMC-NM.dat +14 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.0.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.1.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.2.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.3.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.4.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.5.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.6.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.7.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.8.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.9.txt +35 -0
- nucleardatapy/data/matter/micro/2016-MBPT-AM/EOS_spec_4_beta_1.0.txt +35 -0
- nucleardatapy/data/matter/micro/2016-QMC-NM.dat +10 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_effmass_1S0_HF_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_effmass_1S0_HF_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_effmass_3PF2_HF_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_effmass_3PF2_HF_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_1S0_HF_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_1S0_HF_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_1S0_free_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_1S0_free_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_3PF2_HF_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_3PF2_HF_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_3PF2_free_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_500_gap_3PF2_free_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_effmass_1S0_HF_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_effmass_1S0_HF_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_effmass_3PF2_HF_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_effmass_3PF2_HF_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_1S0_HF_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_1S0_HF_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_1S0_free_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_1S0_free_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_3PF2_HF_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_3PF2_HF_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_3PF2_free_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EGM450_700_gap_3PF2_free_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_effmass_1S0_HF_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_effmass_1S0_HF_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_effmass_3PF2_HF_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_effmass_3PF2_HF_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_1S0_HF_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_1S0_HF_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_1S0_free_spectrum_N2LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_1S0_free_spectrum_N3LO_3N_forces.csv +45 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_3PF2_HF_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_3PF2_HF_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_3PF2_free_spectrum_N2LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2017-Drischler/N3LO_EM500_gap_3PF2_free_spectrum_N3LO_3N_forces.csv +32 -0
- nucleardatapy/data/matter/micro/2018-QMC-NM.dat +18 -0
- nucleardatapy/data/matter/micro/2020-MBPT-NM-DHSL59.dat +18 -0
- nucleardatapy/data/matter/micro/2020-MBPT-NM-DHSL69.dat +18 -0
- nucleardatapy/data/matter/micro/2020-MBPT-SM-DHSL59.dat +18 -0
- nucleardatapy/data/matter/micro/2020-MBPT-SM-DHSL69.dat +18 -0
- nucleardatapy/data/matter/micro/2022-AFDMC-NM-gap.csv +17 -0
- nucleardatapy/data/matter/micro/2022-AFDMC-NM.csv +11 -0
- nucleardatapy/data/matter/micro/2023-MBPT-NM.csv +60 -0
- nucleardatapy/data/matter/micro/2023-MBPT-SM.csv +60 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_Av1823BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_Av1823BFmicro.dat +13 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_Av8p23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_BONN23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_BONNB23BFmicro.dat +13 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_CDBONN23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC9323BFmicro.dat +13 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97a23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97b23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97c23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97d23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97e23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97f23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-23BF/spin_isosp_SSCV1423BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_Av182BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_Av8p2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_BONN2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_CDBONN2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97a2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97b2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97c2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97d2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97e2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97f2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-NM-2BF/spin_isosp_SSCV142BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_Av1823BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_Av1823BFmicro.dat +13 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_Av8p23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_BONN23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_BONNB23BFmicro.dat +11 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_CDBONN23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC9323BFmicro.dat +13 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97a23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97b23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97c23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97d23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97e23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97f23BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-23BF/spin_isosp_SSCV1423BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_Av182BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_Av8p2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_BONN2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_CDBONN2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97a2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97b2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97c2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97d2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97e2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97f2BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-BHF-SM-2BF/spin_isosp_SSCV142BF.dat +14 -0
- nucleardatapy/data/matter/micro/2024-DMC-NM.dat +15 -0
- nucleardatapy/data/matter/micro/2024-NLEFT-NM-bkp.dat +38 -0
- nucleardatapy/data/matter/micro/2024-NLEFT-NM.dat +28 -0
- nucleardatapy/data/matter/micro/2024-NLEFT-SM-bkp.dat +33 -0
- nucleardatapy/data/matter/micro/2024-NLEFT-SM.dat +16 -0
- nucleardatapy/data/matter/micro/BSTmicro-NM.dat +12 -0
- nucleardatapy/data/matter/micro/BSTmicro-SM.dat +10 -0
- nucleardatapy/data/matter/micro/BSTph-NM.dat +13 -0
- nucleardatapy/data/matter/micro/BSTph-SM.dat +13 -0
- nucleardatapy/data/matter/micro/convert.sh +6 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +10 -0
- nucleardatapy/data/matter/nep/NEPFayans.dat +5 -0
- nucleardatapy/data/matter/nep/NEPGogny.dat +8 -0
- nucleardatapy/data/matter/nep/NEPMBPT2016.dat +8 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +45 -0
- nucleardatapy/data/matter/nep/NEPSkyrme2.dat +18 -0
- nucleardatapy/data/matter/nep/NEPddrh.dat +6 -0
- nucleardatapy/data/matter/nep/NEPddrhf.dat +5 -0
- nucleardatapy/data/matter/nep/NEPnlrh.dat +7 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk22-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk22-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk24-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk24-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk25-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk25-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk26-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk26-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk32-NM-old.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk32-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk32-SM-old.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk32-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG3-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG3-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK14-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK14-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK16-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK16-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK17-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK17-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK27-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSK27-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/F+-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/F+-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/F--NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/F--SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/F0-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/F0-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/FPL-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/FPL-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/LNS-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/LNS-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/LNS1-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/LNS1-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/LNS5-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/LNS5-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/NRAPR-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/NRAPR-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/RATP-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/RATP-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SAMI-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SAMI-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SGII-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SGII-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SIII-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SIII-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKGSIGMA-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKGSIGMA-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKI2-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKI2-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKI4-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKI4-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKMP-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKMP-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKMS-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKMS-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKO-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKO-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKOP-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKOP-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKP-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKP-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKRSIGMA-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKRSIGMA-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKX-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SKX-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY230A-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY230A-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY230B-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY230B-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY4-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY4-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY5-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SLY5-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SV-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/SV-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/Skz2-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/Skz2-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/T44-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/T44-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/T6-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/T6-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/UNEDF0-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/UNEDF0-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/UNEDF1-NM.dat +99 -0
- nucleardatapy/data/matter/pheno/Skyrme/UNEDF1-SM.dat +99 -0
- nucleardatapy/data/matter/pheno/ddrh/DDME1-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrh/DDME1-SM.dat +176 -0
- nucleardatapy/data/matter/pheno/ddrh/DDME2-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrh/DDME2-SM.dat +169 -0
- nucleardatapy/data/matter/pheno/ddrh/DDMEd-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrh/DDMEd-SM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrh/PKDD-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrh/PKDD-SM.dat +191 -0
- nucleardatapy/data/matter/pheno/ddrh/PKDD.pdf +0 -0
- nucleardatapy/data/matter/pheno/ddrh/TW99-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrh/TW99-SM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKA1-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKA1-SM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKO1-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKO1-SM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKO2-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKO2-SM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKO3-NM.dat +200 -0
- nucleardatapy/data/matter/pheno/ddrhf/PKO3-SM.dat +200 -0
- nucleardatapy/data/matter/pheno/nlrh/NL-SH-NM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/NL-SH-SM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/NL3-NM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/NL3-SM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/NL3II-NM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/NL3II-SM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/PK1-NM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/PK1-SM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/PK1R-NM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/PK1R-SM.dat +101 -0
- nucleardatapy/data/matter/pheno/nlrh/TM1-NM.dat +157 -0
- nucleardatapy/data/matter/pheno/nlrh/TM1-SM.dat +140 -0
- nucleardatapy/data/nuclei/esym/Danielewicz-2014-S.dat +8 -0
- nucleardatapy/data/nuclei/isgmr/2010-ISGMR-Li.dat +16 -0
- nucleardatapy/data/nuclei/isgmr/2018-ISGMR-Garg.dat +17 -0
- nucleardatapy/data/nuclei/isgmr/2018-ISGMR-Garg.tex +76 -0
- nucleardatapy/data/nuclei/isgmr/2022-ISGMR-average.dat +17 -0
- nucleardatapy/data/nuclei/isgmr/isgmr.pdf +0 -0
- nucleardatapy/data/nuclei/masses/AME/2012_nubase.mas12.txt +5513 -0
- nucleardatapy/data/nuclei/masses/AME/2016_nubase2016.txt +5625 -0
- nucleardatapy/data/nuclei/masses/AME/2020_nubase_4.mas20.txt +5868 -0
- nucleardatapy/data/nuclei/masses/Theory/1988-GK.txt +1 -0
- nucleardatapy/data/nuclei/masses/Theory/1988-MJ.txt +1 -0
- nucleardatapy/data/nuclei/masses/Theory/1995-DZ.txt +1 -0
- nucleardatapy/data/nuclei/masses/Theory/1995-ETFSI.txt +8245 -0
- nucleardatapy/data/nuclei/masses/Theory/1995-FRDM.dat +8982 -0
- nucleardatapy/data/nuclei/masses/Theory/1995-FRDM.txt +8980 -0
- nucleardatapy/data/nuclei/masses/Theory/2005-KTUY.txt +9437 -0
- nucleardatapy/data/nuclei/masses/Theory/2007-HFB14.txt +8389 -0
- nucleardatapy/data/nuclei/masses/Theory/2010-HFB21.dat +8389 -0
- nucleardatapy/data/nuclei/masses/Theory/2010-WS3.txt +1 -0
- nucleardatapy/data/nuclei/masses/Theory/2011-WS3.txt +1 -0
- nucleardatapy/data/nuclei/masses/Theory/2013-HFB22.txt +8396 -0
- nucleardatapy/data/nuclei/masses/Theory/2013-HFB23.txt +8396 -0
- nucleardatapy/data/nuclei/masses/Theory/2013-HFB24.txt +8396 -0
- nucleardatapy/data/nuclei/masses/Theory/2013-HFB25.txt +9488 -0
- nucleardatapy/data/nuclei/masses/Theory/2013-HFB26-old.txt +9512 -0
- nucleardatapy/data/nuclei/masses/Theory/2013-HFB26.txt +9515 -0
- nucleardatapy/data/nuclei/masses/Theory/2021-BSkG1-old.txt +7017 -0
- nucleardatapy/data/nuclei/masses/Theory/2021-BSkG1.txt +6574 -0
- nucleardatapy/data/nuclei/masses/Theory/2022-BSkG2-old.txt +6722 -0
- nucleardatapy/data/nuclei/masses/Theory/2022-BSkG2.txt +6719 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3-old.txt +8489 -0
- nucleardatapy/data/nuclei/masses/Theory/2023-BSkG3.txt +8486 -0
- nucleardatapy/data/nuclei/masses/Theory/2024-BSkG4-old.txt +7848 -0
- nucleardatapy/data/nuclei/masses/Theory/2025-BSkG4.txt +7845 -0
- nucleardatapy/data/nuclei/masses/UNEDF/ExpDatabase_Fortran90_v04/DataSet04.dat +1497 -0
- nucleardatapy/data/nuclei/masses/UNEDF/ExpDatabase_Fortran90_v04/Makefile_ifc +16 -0
- nucleardatapy/data/nuclei/masses/UNEDF/ExpDatabase_Fortran90_v04/input04.f90 +515 -0
- nucleardatapy/data/nuclei/masses/UNEDF/ExpDatabase_Fortran90_v04/main04.f90 +14 -0
- nucleardatapy/data/nuclei/masses/UNEDF/ExpDatabase_Fortran90_v04.tar +0 -0
- nucleardatapy/data/nuclei/nskin/208Pb.dat +25 -0
- nucleardatapy/data/nuclei/nskin/48Ca.dat +21 -0
- nucleardatapy/data/nuclei/radch/2013-Angeli.csv +960 -0
- nucleardatapy/env.py +9 -0
- nucleardatapy/eos/__init__.py +7 -0
- nucleardatapy/eos/setup_am.py +198 -0
- nucleardatapy/eos/setup_am_Beq.py +240 -0
- nucleardatapy/eos/setup_am_Leq.py +229 -0
- nucleardatapy/fig/__init__.py +43 -0
- nucleardatapy/fig/astro_setupGW_fig.py +67 -0
- nucleardatapy/fig/astro_setupMR_fig.py +88 -0
- nucleardatapy/fig/astro_setupMasses_fig.py +64 -0
- nucleardatapy/fig/astro_setupMtov_fig.py +84 -0
- nucleardatapy/fig/astro_setupMup_fig.py +68 -0
- nucleardatapy/fig/corr_setupEsymDen_fig.py +47 -0
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +56 -0
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +64 -0
- nucleardatapy/fig/crust_setupCrust_fig.py +52 -0
- nucleardatapy/fig/eos_setupAMBeq_fig.py +204 -0
- nucleardatapy/fig/eos_setupAMLeq_fig.py +209 -0
- nucleardatapy/fig/eos_setupAM_fig.py +81 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +54 -0
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +44 -0
- nucleardatapy/fig/matter_ENM_fig.py +119 -0
- nucleardatapy/fig/matter_ESM_fig.py +119 -0
- nucleardatapy/fig/matter_Esym_fig.py +122 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +172 -0
- nucleardatapy/fig/matter_setupHIC_fig.py +101 -0
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +85 -0
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +109 -0
- nucleardatapy/fig/matter_setupMicro_band_fig.py +85 -0
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +70 -0
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +47 -0
- nucleardatapy/fig/matter_setupMicro_fig.py +165 -0
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +161 -0
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +68 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +100 -0
- nucleardatapy/fig/matter_setupPheno_fig.py +121 -0
- nucleardatapy/fig/nuc_setupBEExp_fig.py +122 -0
- nucleardatapy/hnuc/__init__.py +8 -0
- nucleardatapy/hnuc/setup_be1L_exp.py +233 -0
- nucleardatapy/hnuc/setup_be1Xi_exp.py +192 -0
- nucleardatapy/hnuc/setup_be2L_exp.py +202 -0
- nucleardatapy/matter/__init__.py +17 -0
- nucleardatapy/matter/setup_ffg.py +410 -0
- nucleardatapy/matter/setup_hic.py +314 -0
- nucleardatapy/matter/setup_micro.py +1635 -0
- nucleardatapy/matter/setup_micro_band.py +233 -0
- nucleardatapy/matter/setup_micro_effmass.py +215 -0
- nucleardatapy/matter/setup_micro_esym.py +352 -0
- nucleardatapy/matter/setup_micro_gap.py +381 -0
- nucleardatapy/matter/setup_micro_lp.py +347 -0
- nucleardatapy/matter/setup_nep.py +478 -0
- nucleardatapy/matter/setup_nep_dist.py +187 -0
- nucleardatapy/matter/setup_nep_model_dist.py +202 -0
- nucleardatapy/matter/setup_pheno.py +353 -0
- nucleardatapy/matter/setup_pheno_esym.py +271 -0
- nucleardatapy/nuc/__init__.py +12 -0
- nucleardatapy/nuc/setup_be_exp.py +1026 -0
- nucleardatapy/nuc/setup_be_theo.py +1086 -0
- nucleardatapy/nuc/setup_isgmr_exp.py +494 -0
- nucleardatapy/nuc/setup_nskin_exp.py +610 -0
- nucleardatapy/nuc/setup_nskin_theo.py +263 -0
- nucleardatapy/nuc/setup_rch_exp.py +159 -0
- nucleardatapy/nuc/setup_rch_theo.py +198 -0
- nucleardatapy/param.py +247 -0
- nucleardatapy-0.2.0.dist-info/LICENSE +402 -0
- nucleardatapy-0.2.0.dist-info/METADATA +115 -0
- nucleardatapy-0.2.0.dist-info/RECORD +491 -0
- nucleardatapy-0.2.0.dist-info/WHEEL +5 -0
- nucleardatapy-0.2.0.dist-info/top_level.txt +2 -0
- tests/__init__.py +16 -0
- tests/test_astro_setupMasses.py +18 -0
- tests/test_corr_setupKsatQsat.py +22 -0
- tests/test_matter_setupFFGNuc.py +21 -0
- tests/test_matter_setupMicro.py +20 -0
|
@@ -0,0 +1,1635 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import sys
|
|
3
|
+
import math
|
|
4
|
+
import numpy as np # 1.15.0
|
|
5
|
+
from scipy.interpolate import CubicSpline
|
|
6
|
+
from scipy.optimize import curve_fit
|
|
7
|
+
import random
|
|
8
|
+
|
|
9
|
+
import nucleardatapy as nuda
|
|
10
|
+
|
|
11
|
+
def uncertainty_stat( den , err = 'MBPT' ):
|
|
12
|
+
if err.lower() == 'qmc':
|
|
13
|
+
return 0.21*(den/nuda.cst.nsat)
|
|
14
|
+
elif err.lower() == 'mbpt':
|
|
15
|
+
return 0.07*(den/nuda.cst.nsat)
|
|
16
|
+
else:
|
|
17
|
+
print('no model uncertainty is given')
|
|
18
|
+
print('err:',err)
|
|
19
|
+
print('exit()')
|
|
20
|
+
exit()
|
|
21
|
+
|
|
22
|
+
def micro_mbs():
|
|
23
|
+
"""
|
|
24
|
+
Return a list of many-bodys (mbs) approaches available in this toolkit and print them all on the prompt.
|
|
25
|
+
|
|
26
|
+
:return: The list of models with can be 'VAR', 'AFDMC', 'BHF', 'QMC', 'MBPT', 'NLEFT'.
|
|
27
|
+
:rtype: list[str].
|
|
28
|
+
"""
|
|
29
|
+
#
|
|
30
|
+
if nuda.env.verb: print("\nEnter micro_mbs()")
|
|
31
|
+
#
|
|
32
|
+
mbs = [ 'VAR', 'AFDMC', 'BHF', 'QMC', 'MBPT', 'NLEFT' ]
|
|
33
|
+
mbs_lower = [ item.lower() for item in mbs ]
|
|
34
|
+
#
|
|
35
|
+
if nuda.env.verb: print("Exit micro_mbs()")
|
|
36
|
+
#
|
|
37
|
+
return mbs, mbs_lower
|
|
38
|
+
|
|
39
|
+
def micro_models_mb( mb ):
|
|
40
|
+
"""
|
|
41
|
+
Return a list with the name of the models available in this toolkit \
|
|
42
|
+
for a given mb appoach and print them all on the prompt.
|
|
43
|
+
|
|
44
|
+
:param mb: The mb approach for which there are parametrizations. \
|
|
45
|
+
They should be chosen among the following options: 'VAR', 'AFDMC', 'BHF', 'QMC', 'MBPT', 'NLEFT'.
|
|
46
|
+
:type mb: str.
|
|
47
|
+
:return: The list of parametrizations. \
|
|
48
|
+
|
|
49
|
+
These models are the following ones: \
|
|
50
|
+
If `mb` == 'VAR': \
|
|
51
|
+
'1981-VAR-AM-FP', '1998-VAR-AM-APR', '1998-VAR-AM-APR-fit', \
|
|
52
|
+
If `mb` == 'AFDMC': \
|
|
53
|
+
'2012-AFDMC-NM-RES-1', '2012-AFDMC-NM-RES-2', '2012-AFDMC-NM-RES-3', '2012-AFDMC-NM-RES-4', \
|
|
54
|
+
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
55
|
+
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
56
|
+
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7', \
|
|
57
|
+
'2022-AFDMC-NM',
|
|
58
|
+
If `mb` == 'BHF': \
|
|
59
|
+
'2006-BHF-AM', \
|
|
60
|
+
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
61
|
+
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
62
|
+
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14',\
|
|
63
|
+
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
64
|
+
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
65
|
+
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14',\
|
|
66
|
+
'2024-BHF-AM-23BFmicro-Av18', '2024-BHF-AM-23BFmicro-BONNB', '2024-BHF-AM-23BFmicro-NSC93',\
|
|
67
|
+
If `mb` == 'QMC': \
|
|
68
|
+
'2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', \
|
|
69
|
+
'2013-QMC-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
70
|
+
'2018-QMC-NM', '2024-QMC-NM', \
|
|
71
|
+
If `mb` == 'MBPT': \
|
|
72
|
+
'2010-MBPT-NM', '2020-MBPT-AM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69'
|
|
73
|
+
If `mb` == 'NLEFT': \
|
|
74
|
+
'2024-NLEFT-AM', \
|
|
75
|
+
"""
|
|
76
|
+
#
|
|
77
|
+
if nuda.env.verb: print("\nEnter micro_models_mb()")
|
|
78
|
+
#
|
|
79
|
+
#print('mb:',mb)
|
|
80
|
+
if mb.lower() == 'var':
|
|
81
|
+
models = [ '1981-VAR-AM-FP', '1998-VAR-AM-APR', '1998-VAR-AM-APR-fit' ]
|
|
82
|
+
elif mb.lower() == 'afdmc':
|
|
83
|
+
models = [ '2012-AFDMC-NM-RES-1', '2012-AFDMC-NM-RES-2', '2012-AFDMC-NM-RES-3', '2012-AFDMC-NM-RES-4', \
|
|
84
|
+
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
85
|
+
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
86
|
+
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7', '2022-AFDMC-NM' ]
|
|
87
|
+
elif mb.lower() == 'bhf':
|
|
88
|
+
models = [ '2006-BHF-AM', '2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
89
|
+
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
90
|
+
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14',\
|
|
91
|
+
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
92
|
+
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
93
|
+
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14' ]
|
|
94
|
+
elif mb.lower() == 'qmc':
|
|
95
|
+
models = [ '2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', \
|
|
96
|
+
'2013-QMC-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
97
|
+
'2018-QMC-NM', '2024-QMC-NM' ]
|
|
98
|
+
elif mb.lower() == 'mbpt':
|
|
99
|
+
models = [ '2010-MBPT-NM', '2016-MBPT-AM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69', '2020-MBPT-AM' ]
|
|
100
|
+
elif mb.lower() == 'nleft':
|
|
101
|
+
models = [ '2024-NLEFT-AM' ]
|
|
102
|
+
#
|
|
103
|
+
if nuda.env.verb: print('models available in the toolkit:',models)
|
|
104
|
+
#
|
|
105
|
+
models_lower = [ item.lower() for item in models ]
|
|
106
|
+
#
|
|
107
|
+
if nuda.env.verb: print("\nExit micro_models_mb()")
|
|
108
|
+
#
|
|
109
|
+
return models, models_lower
|
|
110
|
+
|
|
111
|
+
def micro_models_mbs( mbs ):
|
|
112
|
+
#
|
|
113
|
+
if nuda.env.verb: print("\nEnter micro_models_mbs()")
|
|
114
|
+
#
|
|
115
|
+
#print('mbs:',mbs)
|
|
116
|
+
#
|
|
117
|
+
models = []
|
|
118
|
+
for mb in mbs:
|
|
119
|
+
new_models, new_models_lower = micro_models_mb( mb )
|
|
120
|
+
models.extend( new_models )
|
|
121
|
+
#
|
|
122
|
+
if nuda.env.verb: print('models available in the toolkit:',models)
|
|
123
|
+
#
|
|
124
|
+
models_lower = [ item.lower() for item in models ]
|
|
125
|
+
#
|
|
126
|
+
if nuda.env.verb: print("Exit micro_models_mbs()")
|
|
127
|
+
#
|
|
128
|
+
return models, models_lower
|
|
129
|
+
|
|
130
|
+
def micro_models():
|
|
131
|
+
#
|
|
132
|
+
if nuda.env.verb: print("\nEnter micro_models()")
|
|
133
|
+
#
|
|
134
|
+
mbs, mbs_lower = micro_mbs()
|
|
135
|
+
#print('mbs:',mbs)
|
|
136
|
+
#
|
|
137
|
+
models, models_lower = micro_models_mbs( mbs )
|
|
138
|
+
#
|
|
139
|
+
if nuda.env.verb: print("Exit micro_models()")
|
|
140
|
+
#
|
|
141
|
+
return models, models_lower
|
|
142
|
+
|
|
143
|
+
def micro_models_old():
|
|
144
|
+
"""
|
|
145
|
+
Return a list with the name of the models available in this toolkit and \
|
|
146
|
+
print them all on the prompt. These models are the following ones: \
|
|
147
|
+
'1981-VAR-AM-FP', '1998-VAR-AM-APR', '1998-VAR-AM-APR-fit', '2006-BHF-AM*', \
|
|
148
|
+
'2012-AFDMC-NM-RES-1', '2012-AFDMC-NM-RES-2', '2012-AFDMC-NM-RES-3', '2012-AFDMC-NM-RES-4', \
|
|
149
|
+
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
150
|
+
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
151
|
+
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7', \
|
|
152
|
+
'2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', '2010-MBPT-NM', \
|
|
153
|
+
'2013-QMC-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
154
|
+
'2018-QMC-NM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69', \
|
|
155
|
+
'2020-MBPT-AM', '2022-AFDMC-NM', '2024-NLEFT-AM', \
|
|
156
|
+
'2006-BHF-AM', \
|
|
157
|
+
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
158
|
+
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
159
|
+
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14',\
|
|
160
|
+
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
161
|
+
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
162
|
+
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14',\
|
|
163
|
+
'2024-BHF-AM-23BFmicro-Av18', '2024-BHF-AM-23BFmicro-BONNB', '2024-BHF-AM-23BFmicro-NSC93',\
|
|
164
|
+
'2024-QMC-NM'
|
|
165
|
+
|
|
166
|
+
:return: The list of models.
|
|
167
|
+
:rtype: list[str].
|
|
168
|
+
"""
|
|
169
|
+
#
|
|
170
|
+
if nuda.env.verb: print("\nEnter micro_models_old()")
|
|
171
|
+
#
|
|
172
|
+
models = [ '1981-VAR-AM-FP', '1998-VAR-AM-APR', '1998-VAR-AM-APR-fit', \
|
|
173
|
+
'2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', '2010-MBPT-NM', \
|
|
174
|
+
'2012-AFDMC-NM-RES-1', '2012-AFDMC-NM-RES-2', '2012-AFDMC-NM-RES-3', '2012-AFDMC-NM-RES-4', \
|
|
175
|
+
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
176
|
+
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
177
|
+
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7',
|
|
178
|
+
'2013-QMC-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
179
|
+
'2018-QMC-NM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69', \
|
|
180
|
+
'2020-MBPT-AM', '2022-AFDMC-NM', '2024-NLEFT-AM', \
|
|
181
|
+
'2006-BHF-AM', \
|
|
182
|
+
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
183
|
+
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
184
|
+
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14',\
|
|
185
|
+
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
186
|
+
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
187
|
+
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14', '2024-QMC-NM' ]
|
|
188
|
+
#
|
|
189
|
+
if nuda.env.verb: print('models available in the toolkit:',models)
|
|
190
|
+
models_lower = [ item.lower() for item in models ]
|
|
191
|
+
#
|
|
192
|
+
if nuda.env.verb: print("Exit micro_models()")
|
|
193
|
+
#
|
|
194
|
+
return models, models_lower
|
|
195
|
+
|
|
196
|
+
def micro_models_mb_matter( mb, matter ):
|
|
197
|
+
"""
|
|
198
|
+
matter can be 'sm', 'SM' or 'nm', 'NM'
|
|
199
|
+
"""
|
|
200
|
+
#
|
|
201
|
+
if nuda.env.verb: print("\nEnter micro_models_mb_matter()")
|
|
202
|
+
#
|
|
203
|
+
print('For mb (in SM):',mb)
|
|
204
|
+
#
|
|
205
|
+
models, models_lower = micro_models()
|
|
206
|
+
#
|
|
207
|
+
models2 = []
|
|
208
|
+
for j,model in enumerate(models):
|
|
209
|
+
if mb in model and '2BF' not in model and ( matter.upper() in model or 'AM' in model ):
|
|
210
|
+
models2.append( model )
|
|
211
|
+
#print(' models:',model)
|
|
212
|
+
#
|
|
213
|
+
print('models2:',models2)
|
|
214
|
+
models2_lower = [ item.lower() for item in models2 ]
|
|
215
|
+
#
|
|
216
|
+
return models2, models2_lower
|
|
217
|
+
|
|
218
|
+
def micro_models_mb_SM( mb ):
|
|
219
|
+
"""
|
|
220
|
+
"""
|
|
221
|
+
#
|
|
222
|
+
if nuda.env.verb: print("\nEnter micro_models_mb_SM()")
|
|
223
|
+
#
|
|
224
|
+
print('For mb (in SM):',mb)
|
|
225
|
+
#
|
|
226
|
+
models, models_lower = micro_models()
|
|
227
|
+
#
|
|
228
|
+
models2 = []
|
|
229
|
+
for j,model in enumerate(models):
|
|
230
|
+
if mb in model and '2BF' not in model and ( 'SM' in model or 'AM' in model ):
|
|
231
|
+
models2.append( model )
|
|
232
|
+
#print(' models:',model)
|
|
233
|
+
#
|
|
234
|
+
print('models2:',models2)
|
|
235
|
+
models2_lower = [ item.lower() for item in models2 ]
|
|
236
|
+
#
|
|
237
|
+
return models2, models2_lower
|
|
238
|
+
|
|
239
|
+
def micro_models_mb_NM( mb ):
|
|
240
|
+
"""
|
|
241
|
+
"""
|
|
242
|
+
#
|
|
243
|
+
if nuda.env.verb: print("\nEnter micro_models_mb_NM()")
|
|
244
|
+
#
|
|
245
|
+
print('For mb (in NM):',mb)
|
|
246
|
+
#
|
|
247
|
+
models, models_lower = micro_models()
|
|
248
|
+
#
|
|
249
|
+
models2 = []
|
|
250
|
+
for j,model in enumerate(models):
|
|
251
|
+
if mb in model and '2BF' not in model and ( 'NM' in model or 'AM' in model ):
|
|
252
|
+
models2.append( model )
|
|
253
|
+
#print(' models:',model)
|
|
254
|
+
#
|
|
255
|
+
print('models2:',models2)
|
|
256
|
+
models2_lower = [ item.lower() for item in models2 ]
|
|
257
|
+
#
|
|
258
|
+
return models2, models2_lower
|
|
259
|
+
|
|
260
|
+
# Define functions for APRfit
|
|
261
|
+
|
|
262
|
+
def APRfit_compute( n, x ):
|
|
263
|
+
p53 = 5.0/3.0
|
|
264
|
+
p83 = 8.0/3.0
|
|
265
|
+
asy = 1.0-2.0*x
|
|
266
|
+
n2 = n * n
|
|
267
|
+
G = ( 3.0*np.pi**2 )**p53 / ( 5.0*np.pi**2 )
|
|
268
|
+
Hk = G * nuda.cst.hbc**2 / ( 2.0 * nuda.cst.mnuc2_approx ) * n**p53 * ( (1 - x)**p53 + x**p53 )
|
|
269
|
+
Hm = G * ( p3 * ( (1-x)**p53 + x**p53 ) + p5 * ( (1-x)**p83 + x**p83 ) ) * n**p83 * np.exp( -p4*n )
|
|
270
|
+
g1L = -n2 * ( p1 + p2*n + p6*n2 + (p10 + p11*n) * np.exp( -(p9**2)*n2 ) )
|
|
271
|
+
g2L = -n2 * ( p12/n + p7 + p8*n + p13*np.exp( -(p9**2)*n2 ) )
|
|
272
|
+
g1H = g1L - n2*( p17*(n-p19) + p21*(n-p19)**2)*np.exp( p18*(n-p19) )
|
|
273
|
+
g2H = g2L - n2*( p15*(n-p20) + p14*(n-p20)**2)*np.exp( p16*(n-p20) )
|
|
274
|
+
HdL = g1L * (1.0-asy**2) + g2L * asy**2
|
|
275
|
+
HdH = g1H * (1.0-asy**2) + g2H * asy**2
|
|
276
|
+
#
|
|
277
|
+
HL = Hk + Hm + HdL
|
|
278
|
+
HH = Hk + Hm + HdH
|
|
279
|
+
#
|
|
280
|
+
nt = 0.32-0.12*(1-2*x)**2 # transition density in fm^-3
|
|
281
|
+
#print('nt:',nt)
|
|
282
|
+
e2v = np.zeros( len(n) )
|
|
283
|
+
for ind,den in enumerate(n):
|
|
284
|
+
if den < nt:
|
|
285
|
+
e2v[ind] = HL[ind]
|
|
286
|
+
indref = ind
|
|
287
|
+
#print(ind,den,HL[ind],' low')
|
|
288
|
+
else:
|
|
289
|
+
e2v[ind] = HH[ind]
|
|
290
|
+
#print(ind,den,HH[ind],' high')
|
|
291
|
+
#print('indref:',indref,'/',len(n))
|
|
292
|
+
#imin = max( 0, indref-2 )
|
|
293
|
+
#imax = min( len(n), indref+3 )
|
|
294
|
+
#for ind in range(imin,imax+1):
|
|
295
|
+
#xh = ( n[ind] - n[imin] ) / ( n[imax] - n[imin] )
|
|
296
|
+
#print('ind:',ind,' xh',xh)
|
|
297
|
+
#e2v[ind] = (1-xh)*e2v[imin] + xh*e2v[imax]
|
|
298
|
+
return e2v
|
|
299
|
+
|
|
300
|
+
def func_GCR_e2a(den,a,alfa,b,beta):
|
|
301
|
+
return a * (den/nuda.cst.nsat)**alfa + b * (den/nuda.cst.nsat)**beta
|
|
302
|
+
|
|
303
|
+
def func_GCR_pre(den,a,alfa,b,beta):
|
|
304
|
+
return den * ( a * alfa * (den/nuda.cst.nsat)**alfa + b * beta * (den/nuda.cst.nsat)**beta )
|
|
305
|
+
|
|
306
|
+
def func_GCR_cs2(den,a,alfa,b,beta):
|
|
307
|
+
dp_dn = a * alfa * ( alfa + 1.0 ) * (den/nuda.cst.nsat)**alfa + b * beta * ( beta + 1.0 ) * (den/nuda.cst.nsat)**beta
|
|
308
|
+
enth = nuda.cst.mnuc2 + func_GCR_e2a(den,a,alfa,b,beta) + func_GCR_pre(den,a,alfa,b,beta) / den
|
|
309
|
+
return dp_dn / enth
|
|
310
|
+
|
|
311
|
+
def func_e2a_NLEFT2024( kfn, b, c, d ):
|
|
312
|
+
a = 1.0
|
|
313
|
+
func = a + b*kfn + c*kfn**2 + d*kfn**3
|
|
314
|
+
return func * nuda.effg_nr( kfn )
|
|
315
|
+
|
|
316
|
+
def func_pre_NLEFT2024( kfn, den, b, c, d ):
|
|
317
|
+
func = nuda.cst.two + nuda.cst.three * b * kfn + \
|
|
318
|
+
nuda.cst.four * c * kfn**2 + nuda.cst.five * d * kfn**3
|
|
319
|
+
return func * nuda.cst.third * den * nuda.effg_nr( kfn )
|
|
320
|
+
|
|
321
|
+
def func_dpredn_NLEFT2024( kfn, den, b, c, d ):
|
|
322
|
+
func = nuda.cst.four + 9.0 * b * kfn + 20.0 * c * kfn**2 + 25.0 * d * kfn**3
|
|
323
|
+
return func_pre_NLEFT2024( kfn, den, b, c, d ) / den + func * nuda.effg_nr( kfn ) / 9.0
|
|
324
|
+
|
|
325
|
+
class setupMicro():
|
|
326
|
+
"""
|
|
327
|
+
Instantiate the object with microscopic results choosen \
|
|
328
|
+
by the toolkit practitioner.
|
|
329
|
+
|
|
330
|
+
This choice is defined in `model`, which can chosen among \
|
|
331
|
+
the following choices: \
|
|
332
|
+
'1981-VAR-AM-FP', '1998-VAR-AM-APR', '1998-VAR-AM-APR-fit', '2006-BHF-AM*', \
|
|
333
|
+
'2008-QMC-NM-swave', '2010-QMC-NM-AV4', '2009-DLQMC-NM', '2010-MBPT-NM', \
|
|
334
|
+
'2012-AFDMC-NM-RES-1', '2012-AFDMC-NM-RES-2', '2012-AFDMC-NM-RES-3', '2012-AFDMC-NM-RES-4', \
|
|
335
|
+
'2012-AFDMC-NM-RES-5', '2012-AFDMC-NM-RES-6', '2012-AFDMC-NM-RES-7', \
|
|
336
|
+
'2012-AFDMC-NM-FIT-1', '2012-AFDMC-NM-FIT-2', '2012-AFDMC-NM-FIT-3', '2012-AFDMC-NM-FIT-4', \
|
|
337
|
+
'2012-AFDMC-NM-FIT-5', '2012-AFDMC-NM-FIT-6', '2012-AFDMC-NM-FIT-7', \
|
|
338
|
+
'2013-QMC-NM', '2014-AFQMC-NM', '2016-QMC-NM', '2016-MBPT-AM', \
|
|
339
|
+
'2018-QMC-NM', '2019-MBPT-AM-L59', '2019-MBPT-AM-L69', \
|
|
340
|
+
'2020-MBPT-AM', '2022-AFDMC-NM', '2024-NLEFT-AM', \
|
|
341
|
+
'2024-BHF-AM-2BF-Av8p', '2024-BHF-AM-2BF-Av18', '2024-BHF-AM-2BF-BONN', '2024-BHF-AM-2BF-CDBONN', \
|
|
342
|
+
'2024-BHF-AM-2BF-NSC97a', '2024-BHF-AM-2BF-NSC97b', '2024-BHF-AM-2BF-NSC97c', '2024-BHF-AM-2BF-NSC97d', \
|
|
343
|
+
'2024-BHF-AM-2BF-NSC97e', '2024-BHF-AM-2BF-NSC97f', '2024-BHF-AM-2BF-SSCV14', \
|
|
344
|
+
'2024-BHF-AM-23BF-Av8p', '2024-BHF-AM-23BF-Av18', '2024-BHF-AM-23BF-BONN', '2024-BHF-AM-23BF-CDBONN', \
|
|
345
|
+
'2024-BHF-AM-23BF-NSC97a', '2024-BHF-AM-23BF-NSC97b', '2024-BHF-AM-23BF-NSC97c', '2024-BHF-AM-23BF-NSC97d', \
|
|
346
|
+
'2024-BHF-AM-23BF-NSC97e', '2024-BHF-AM-23BF-NSC97f', '2024-BHF-AM-23BF-SSCV14', '2024-QMC-NM'
|
|
347
|
+
|
|
348
|
+
:param model: Fix the name of model. Default value: '1998-VAR-AM-APR'.
|
|
349
|
+
:type model: str, optional.
|
|
350
|
+
|
|
351
|
+
**Attributes:**
|
|
352
|
+
"""
|
|
353
|
+
#
|
|
354
|
+
def __init__( self, model = '1998-VAR-AM-APR', var1 = np.linspace(0.01,0.4,20), var2 = 0.0 ):
|
|
355
|
+
"""
|
|
356
|
+
Parameters
|
|
357
|
+
----------
|
|
358
|
+
model : str, optional
|
|
359
|
+
The model to consider. Choose between: 1998-VAR-AM-APR (default), 2008-AFDMC-NM, ...
|
|
360
|
+
var1 and var2 : densities (array) and isospin asymmetry (scalar) if necessary (for interpolation function in APRfit for instance)
|
|
361
|
+
var1 = np.array([0.1,0.15,0.16,0.17,0.2,0.25])
|
|
362
|
+
"""
|
|
363
|
+
#
|
|
364
|
+
if nuda.env.verb: print("Enter setupMicro()")
|
|
365
|
+
#
|
|
366
|
+
#: Attribute model.
|
|
367
|
+
self.model = model
|
|
368
|
+
if nuda.env.verb: print("model:",model)
|
|
369
|
+
print("model -> ",model)
|
|
370
|
+
#
|
|
371
|
+
self = setupMicro.init_self( self )
|
|
372
|
+
#
|
|
373
|
+
# read var and define den, asy and xpr:
|
|
374
|
+
self.den = var1[:] # density n_b=n_n+n_p
|
|
375
|
+
self.asy = var2 # asymmetry parameter = (n_n-n_p)/n_b
|
|
376
|
+
self.kfn = nuda.kf_n( (1.0+self.asy) / 2.0 * self.den )
|
|
377
|
+
self.xpr = ( 1.0 - self.asy ) / 2.0 # proton fraction = n_p/n_b
|
|
378
|
+
#print('den:',self.den)
|
|
379
|
+
#print('asy:',self.asy)
|
|
380
|
+
#print('xpr:',self.xpr)
|
|
381
|
+
#
|
|
382
|
+
models, models_lower = micro_models()
|
|
383
|
+
#
|
|
384
|
+
if model.lower() not in models_lower:
|
|
385
|
+
print('setup_micro: The model name ',model,' is not in the list of models.')
|
|
386
|
+
print('setup_micro: list of models:',models)
|
|
387
|
+
print('setup_micro: -- Exit the code --')
|
|
388
|
+
exit()
|
|
389
|
+
#
|
|
390
|
+
if model.lower() == '1981-var-am-fp':
|
|
391
|
+
#
|
|
392
|
+
self.flag_nm = True
|
|
393
|
+
self.flag_sm = True
|
|
394
|
+
self.flag_kf = True
|
|
395
|
+
self.flag_den = False
|
|
396
|
+
#
|
|
397
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/1981-VAR-NM-FP.dat')
|
|
398
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/1981-VAR-SM-FP.dat')
|
|
399
|
+
if nuda.env.verb: print('Reads file:',file_in1)
|
|
400
|
+
if nuda.env.verb: print('Reads file:',file_in2)
|
|
401
|
+
self.ref = 'Friedman and Pandharipande, Nucl. Phys. A. 361, 502 (1981)'
|
|
402
|
+
self.note = "write here notes about this EOS."
|
|
403
|
+
self.label = 'FP-1981'
|
|
404
|
+
self.marker = 'o'
|
|
405
|
+
self.every = 1
|
|
406
|
+
#self.linestyle = 'dashed'
|
|
407
|
+
self.nm_den, self.nm_e2a = np.loadtxt( file_in1, usecols=(0,1), unpack = True )
|
|
408
|
+
self.sm_den, self.sm_e2a = np.loadtxt( file_in2, usecols=(0,1), unpack = True )
|
|
409
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
410
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
411
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
412
|
+
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
413
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
414
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den,err='MBPT') * self.sm_e2a )
|
|
415
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
416
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
417
|
+
#
|
|
418
|
+
elif model.lower() == '1998-var-am-apr':
|
|
419
|
+
#
|
|
420
|
+
self.flag_nm = True
|
|
421
|
+
self.flag_sm = True
|
|
422
|
+
self.flag_kf = False
|
|
423
|
+
self.flag_den = True
|
|
424
|
+
#
|
|
425
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/1998-VAR-NM-APR.dat')
|
|
426
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/1998-VAR-SM-APR.dat')
|
|
427
|
+
if nuda.env.verb: print('Reads file:',file_in1)
|
|
428
|
+
if nuda.env.verb: print('Reads file:',file_in2)
|
|
429
|
+
self.ref = 'Akmal, Pandharipande and Ravenhall, Phys. Rev. C 58, 1804 (1998)'
|
|
430
|
+
self.note = "write here notes about this EOS."
|
|
431
|
+
self.label = 'APR-1998'
|
|
432
|
+
self.marker = '^'
|
|
433
|
+
self.every = 1
|
|
434
|
+
#self.linestyle = 'dashed'
|
|
435
|
+
self.nm_den, self.nm_e2a = np.loadtxt( file_in1, usecols=(0,1), unpack = True )
|
|
436
|
+
self.sm_den, self.sm_e2a = np.loadtxt( file_in2, usecols=(0,1), unpack = True )
|
|
437
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
438
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
439
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
440
|
+
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
441
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
442
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den,err='MBPT') * self.sm_e2a )
|
|
443
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
444
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
445
|
+
#
|
|
446
|
+
elif model.lower() == '1998-var-am-apr-fit':
|
|
447
|
+
#
|
|
448
|
+
self.flag_nm = True
|
|
449
|
+
self.flag_sm = True
|
|
450
|
+
self.flag_kf = False
|
|
451
|
+
self.flag_den = False
|
|
452
|
+
#
|
|
453
|
+
self.ref = 'Akmal, Pandharipande and Ravenhall, Phys. Rev. C 58, 1804 (1998)'
|
|
454
|
+
self.note = "Use interpolation functions suggested in APR paper."
|
|
455
|
+
self.label = 'APR-1998-Fit'
|
|
456
|
+
self.marker = None
|
|
457
|
+
self.every = 1
|
|
458
|
+
self.linestyle = 'solid'
|
|
459
|
+
# Define constants for APRfit and for A18+dv+UIX*
|
|
460
|
+
global p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21
|
|
461
|
+
( p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21 ) = \
|
|
462
|
+
( 337.2, -382.0, 89.8, 0.457, -59.0, -19.1, 214.6, -384.0, 6.4, 69.0, -33.0, 0.35, 0.0, 0.0, 287.0, -1.54, 175.0, -1.45, 0.32, 0.195, 0.0 )
|
|
463
|
+
#
|
|
464
|
+
# energy per unit volume
|
|
465
|
+
self.e2v = APRfit_compute( self.den, self.xpr )
|
|
466
|
+
# energy per particle
|
|
467
|
+
self.e2a = self.e2v / self.den
|
|
468
|
+
self.e2a_err = np.abs( uncertainty_stat(self.den,err='MBPT') * self.e2a )
|
|
469
|
+
self.e2v_err = self.e2a_err * self.den
|
|
470
|
+
# pressure as the first derivative of E/A
|
|
471
|
+
cs_e2a = CubicSpline( self.den, self.e2a )
|
|
472
|
+
#pre = n**2 * np.gradient( e2a, n)
|
|
473
|
+
self.pre = self.den**2 * cs_e2a( self.den, 1 )
|
|
474
|
+
# chemical potential
|
|
475
|
+
self.chempot = ( self.e2v + self.pre ) / self.den
|
|
476
|
+
# enthalpy
|
|
477
|
+
self.h2a = nuda.cst.mnuc2 + self.chempot
|
|
478
|
+
# sound speed
|
|
479
|
+
cs_pre = CubicSpline( self.den, self.pre )
|
|
480
|
+
self.cs2 = cs_pre( self.den, 1 ) / self.h2a
|
|
481
|
+
#
|
|
482
|
+
elif model.lower() == '2006-bhf-am':
|
|
483
|
+
#
|
|
484
|
+
self.flag_nm = True
|
|
485
|
+
self.flag_sm = True
|
|
486
|
+
self.flag_kf = False
|
|
487
|
+
self.flag_den = False
|
|
488
|
+
#
|
|
489
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2006-BHF/2006-BHF-E2A-NM.dat')
|
|
490
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2006-BHF/2006-BHF-E2A-SM.dat')
|
|
491
|
+
if nuda.env.verb: print('Reads file:',file_in1)
|
|
492
|
+
if nuda.env.verb: print('Reads file:',file_in2)
|
|
493
|
+
self.ref = 'L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73, 014313 (2006)'
|
|
494
|
+
self.note = ""
|
|
495
|
+
self.label = 'BHF-2006'
|
|
496
|
+
self.marker = 'o'
|
|
497
|
+
self.every = 1
|
|
498
|
+
#self.linestyle = 'solid'
|
|
499
|
+
self.err = True
|
|
500
|
+
#
|
|
501
|
+
self.nm_den, self.nm_e2a \
|
|
502
|
+
= np.loadtxt( file_in1, usecols=(0,1), unpack = True )
|
|
503
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
504
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
505
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
506
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
507
|
+
#
|
|
508
|
+
self.sm_den, self.sm_e2a \
|
|
509
|
+
= np.loadtxt( file_in2, usecols=(0,1), unpack = True )
|
|
510
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den,err='MBPT') * self.sm_e2a )
|
|
511
|
+
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
512
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
513
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
514
|
+
#
|
|
515
|
+
elif model.lower() == '2008-qmc-nm-swave':
|
|
516
|
+
#
|
|
517
|
+
self.flag_nm = True
|
|
518
|
+
self.flag_sm = False
|
|
519
|
+
self.flag_kf = True
|
|
520
|
+
self.flag_den = False
|
|
521
|
+
#
|
|
522
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2008-QMC-NM-swave.dat')
|
|
523
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
524
|
+
self.ref = 'A. Gezerlis and J. Carlson PRC 81, 025803 (2010)'
|
|
525
|
+
self.note = ""
|
|
526
|
+
self.label = 'QMC-swave-2008'
|
|
527
|
+
self.marker = 'o'
|
|
528
|
+
self.every = 1
|
|
529
|
+
#self.linestyle = 'solid'
|
|
530
|
+
self.err = True
|
|
531
|
+
self.nm_kfn, gap2ef, gap2ef_err, e2effg, e2effg_err \
|
|
532
|
+
= np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
533
|
+
self.nm_den = nuda.den_n( self.nm_kfn )
|
|
534
|
+
self.nm_e2a = e2effg * nuda.effg_nr( self.nm_kfn )
|
|
535
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr( self.nm_kfn )
|
|
536
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
537
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
538
|
+
#
|
|
539
|
+
elif model.lower() == '2009-afdmc-nm':
|
|
540
|
+
#
|
|
541
|
+
self.flag_nm = True
|
|
542
|
+
self.flag_sm = False
|
|
543
|
+
self.flag_kf = True
|
|
544
|
+
self.flag_den = False
|
|
545
|
+
#
|
|
546
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2009-AFDMC-NM.dat')
|
|
547
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
548
|
+
self.ref = 'S. Gandolfi, A.Y. Illarionov, F. Pederiva, K.E. Schmidt, S. Fantoni, Phys. Rev. C 80, 045802 (2009).'
|
|
549
|
+
self.note = ""
|
|
550
|
+
self.label = 'AFDMC-2009'
|
|
551
|
+
self.marker = 'o'
|
|
552
|
+
self.every = 1
|
|
553
|
+
#self.linestyle = 'solid'
|
|
554
|
+
self.err = True
|
|
555
|
+
self.nm_kfn, self.nm_e2a, self.nm_e2a_err \
|
|
556
|
+
= np.loadtxt( file_in, usecols=(0,1,2), unpack = True )
|
|
557
|
+
self.nm_den = nuda.den_n( self.nm_kfn )
|
|
558
|
+
#self.nm_e2a_err = abs( 0.01 * self.nm_e2a )
|
|
559
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
560
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
561
|
+
#
|
|
562
|
+
elif model.lower() == '2009-dlqmc-nm':
|
|
563
|
+
#
|
|
564
|
+
self.flag_nm = True
|
|
565
|
+
self.flag_sm = False
|
|
566
|
+
self.flag_kf = True
|
|
567
|
+
self.flag_den = False
|
|
568
|
+
#
|
|
569
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2009-dQMC-NM.dat')
|
|
570
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
571
|
+
self.ref = 'T. Abe, R. Seki, Phys. Rev. C 79, 054002 (2009)'
|
|
572
|
+
self.note = ""
|
|
573
|
+
self.label = 'dLQMC-2009'
|
|
574
|
+
self.marker = 'v'
|
|
575
|
+
self.every = 1
|
|
576
|
+
#self.linestyle = 'solid'
|
|
577
|
+
self.err = True
|
|
578
|
+
self.nm_kfn, gap2ef, gap2ef_err, e2effg, e2effg_err \
|
|
579
|
+
= np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
580
|
+
self.nm_den = nuda.den_n( self.nm_kfn )
|
|
581
|
+
self.nm_e2a = np.array( e2effg * nuda.effg_nr( self.nm_kfn ) )
|
|
582
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr( self.nm_kfn )
|
|
583
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
584
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
585
|
+
#
|
|
586
|
+
elif model.lower() == '2010-qmc-nm-av4':
|
|
587
|
+
#
|
|
588
|
+
self.flag_nm = True
|
|
589
|
+
self.flag_sm = False
|
|
590
|
+
self.flag_kf = True
|
|
591
|
+
self.flag_den = False
|
|
592
|
+
#
|
|
593
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2010-QMC-NM-AV4.dat')
|
|
594
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
595
|
+
self.ref = 'A. Gezerlis and J. Carlson PRC 81, 025803 (2010)'
|
|
596
|
+
self.note = ""
|
|
597
|
+
self.label = 'QMC-AV4-2008'
|
|
598
|
+
self.marker = 's'
|
|
599
|
+
self.every = 1
|
|
600
|
+
#self.linestyle = 'solid'
|
|
601
|
+
self.err = True
|
|
602
|
+
self.nm_kfn, gap2ef, gap2ef_err, e2effg, e2effg_err \
|
|
603
|
+
= np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
604
|
+
self.nm_den = nuda.den_n( self.nm_kfn )
|
|
605
|
+
self.nm_e2a = np.array( e2effg * nuda.effg_nr( self.nm_kfn ) )
|
|
606
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr( self.nm_kfn )
|
|
607
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
608
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
609
|
+
#
|
|
610
|
+
elif model.lower() == '2010-mbpt-nm':
|
|
611
|
+
#
|
|
612
|
+
self.flag_nm = True
|
|
613
|
+
self.flag_sm = False
|
|
614
|
+
self.flag_kf = False
|
|
615
|
+
self.flag_den = False
|
|
616
|
+
#
|
|
617
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2010-NM-Hebeler.dat')
|
|
618
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
619
|
+
self.ref = 'K. Hebeler, et al, Phys. Rev. Lett. 105, 161102 (2010)'
|
|
620
|
+
self.note = "chiral NN forces with SRG and leading 3N forces."
|
|
621
|
+
self.label = 'MBPT-2010'
|
|
622
|
+
self.marker = 's'
|
|
623
|
+
self.every = 1
|
|
624
|
+
#self.linestyle = 'solid'
|
|
625
|
+
self.nm_den, self.nm_pre = np.loadtxt( file_in, usecols=(0,1), unpack = True )
|
|
626
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
627
|
+
#self.nm_pre_err = np.abs( 0.01 * self.nm_pre )
|
|
628
|
+
#
|
|
629
|
+
# compute nm_e2v by integrating the pressure
|
|
630
|
+
#
|
|
631
|
+
# chemical potential
|
|
632
|
+
#self.nm_chempot = ( self.nm_pre + self.nm_e2v ) / self.nm_den
|
|
633
|
+
#
|
|
634
|
+
elif '2012-afdmc-nm-res' in model.lower():
|
|
635
|
+
#
|
|
636
|
+
self.flag_nm = True
|
|
637
|
+
self.flag_sm = False
|
|
638
|
+
self.flag_kf = False
|
|
639
|
+
self.flag_den = True
|
|
640
|
+
#
|
|
641
|
+
# We do not have the data for this model, but we have a fit of the data
|
|
642
|
+
k=int(model.split(sep='-')[4])
|
|
643
|
+
#print('k:',k)
|
|
644
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2012-AFDMC-NM-'+str(k)+'.dat')
|
|
645
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
646
|
+
self.ref = 'S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801(R) (2012).'
|
|
647
|
+
self.note = "We do not have the data for this model, but we have a fit of the data."
|
|
648
|
+
self.label = 'AFDMC-2012-'+str(k)
|
|
649
|
+
self.marker = 's'
|
|
650
|
+
self.every = 1
|
|
651
|
+
self.linestyle = 'None'
|
|
652
|
+
if k in [ 1, 7 ]:
|
|
653
|
+
self.nm_den, ETOT, ETOT_ERR = np.loadtxt( file_in, usecols=(0,1,2), unpack = True )
|
|
654
|
+
elif k in [ 2, 3, 4, 5, 6 ]:
|
|
655
|
+
V0, MU, self.nm_den, ETOT, ETOT_ERR = np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
656
|
+
else:
|
|
657
|
+
print('The value of k is no correct ',k)
|
|
658
|
+
exit()
|
|
659
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
660
|
+
self.nm_e2a = ETOT# / 66.0
|
|
661
|
+
self.nm_e2a_err = ETOT_ERR# / 66.0
|
|
662
|
+
self.nm_e2v = self.nm_den * self.nm_e2a
|
|
663
|
+
self.nm_e2v_err = self.nm_den * self.nm_e2a_err
|
|
664
|
+
#self.nm_pre =
|
|
665
|
+
#self.nm_chempot =
|
|
666
|
+
#self.nm_cs2 =
|
|
667
|
+
#
|
|
668
|
+
elif '2012-afdmc-nm-fit' in model.lower():
|
|
669
|
+
#
|
|
670
|
+
self.flag_nm = True
|
|
671
|
+
self.flag_sm = False
|
|
672
|
+
self.flag_kf = False
|
|
673
|
+
self.flag_den = False
|
|
674
|
+
#
|
|
675
|
+
# We do not have the data for this model, but we have a fit of the data
|
|
676
|
+
k=int(model.split(sep='-')[4])
|
|
677
|
+
#print('k:',k)
|
|
678
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2012-AFDMC-NM-fit.dat')
|
|
679
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
680
|
+
self.ref = 'S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801(R) (2012).'
|
|
681
|
+
self.note = "We do not have the data for this model, but we have a fit of the data."
|
|
682
|
+
self.label = 'AFDMC-2012-'+str(k)+'-FIT'
|
|
683
|
+
self.marker = 's'
|
|
684
|
+
self.every = 1
|
|
685
|
+
self.linestyle = 'solid'
|
|
686
|
+
ind, a, alfa, b, beta = np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
687
|
+
#name = np.loadtxt( file_in, usecols=(5), unpack = True )
|
|
688
|
+
nmodel = np.size(alfa)
|
|
689
|
+
#print('nmodel:',nmodel)
|
|
690
|
+
if k < 0 or k > nmodel:
|
|
691
|
+
print('issue with the model number k:',k)
|
|
692
|
+
print('exit')
|
|
693
|
+
exit()
|
|
694
|
+
#for i in range(nmodel):
|
|
695
|
+
# print('i:',i,' ind:',ind[i],' a:',a[i],' alfa:',alfa[i],' b:',b[i],' beta:',beta[i])
|
|
696
|
+
self.nm_den_fit = 0.04 + 0.45 * np.arange(self.nden+1)/float(self.nden)
|
|
697
|
+
self.nm_kfn_fit = nuda.kf_n( self.nm_den_fit )
|
|
698
|
+
# energy in NM
|
|
699
|
+
self.nm_e2a_fit = func_GCR_e2a(self.nm_den_fit,a[k-1],alfa[k-1],b[k-1],beta[k-1])
|
|
700
|
+
self.nm_e2a_fit_err = np.abs( uncertainty_stat(self.nm_den_fit,err='MBPT') * self.nm_e2a_fit )
|
|
701
|
+
self.nm_e2v_fit = self.nm_den_fit * self.nm_e2a_fit
|
|
702
|
+
self.nm_e2v_fit_err = self.nm_den_fit * self.nm_e2a_fit_err
|
|
703
|
+
# pressure in NM
|
|
704
|
+
self.nm_pre_fit = func_GCR_pre(self.nm_den_fit,a[k-1],alfa[k-1],b[k-1],beta[k-1])
|
|
705
|
+
# chemical potential
|
|
706
|
+
self.nm_chempot_fit = ( self.nm_pre_fit + self.nm_e2v_fit ) / self.nm_den_fit
|
|
707
|
+
# enthalpy per particle
|
|
708
|
+
self.nm_h2a_fit = nuda.cst.mnuc2 + self.nm_e2a_fit + self.nm_pre_fit / self.nm_den_fit
|
|
709
|
+
# sound speed in NM
|
|
710
|
+
self.nm_cs2_fit = func_GCR_cs2(self.nm_den_fit,a[k-1],alfa[k-1],b[k-1],beta[k-1])
|
|
711
|
+
#
|
|
712
|
+
self.nm_den = self.nm_den_fit
|
|
713
|
+
self.nm_kfn = self.nm_kfn_fit
|
|
714
|
+
self.nm_e2a = self.nm_e2a_fit
|
|
715
|
+
self.nm_e2a_err = self.nm_e2a_fit_err
|
|
716
|
+
self.nm_e2v = self.nm_e2v_fit
|
|
717
|
+
self.nm_e2v_err = self.nm_e2v_fit_err
|
|
718
|
+
self.nm_pre = self.nm_pre_fit
|
|
719
|
+
self.nm_chempot = self.nm_chempot_fit
|
|
720
|
+
self.nm_cs2 = self.nm_cs2_fit
|
|
721
|
+
#
|
|
722
|
+
elif model.lower() == '2013-qmc-nm':
|
|
723
|
+
#
|
|
724
|
+
self.flag_nm = True
|
|
725
|
+
self.flag_sm = False
|
|
726
|
+
self.flag_kf = False
|
|
727
|
+
self.flag_den = False
|
|
728
|
+
#
|
|
729
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2013-QMC-NM.dat')
|
|
730
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
731
|
+
self.ref = 'I. Tews et al., PRL 110, 032504 (2013)'
|
|
732
|
+
self.note = "write here notes about this EOS."
|
|
733
|
+
self.label = 'QMC-2013'
|
|
734
|
+
self.marker = 's'
|
|
735
|
+
self.every = 1
|
|
736
|
+
#self.linestyle = 'solid'
|
|
737
|
+
self.err = True
|
|
738
|
+
self.nm_den, self.nm_e2a_low, self.nm_e2a_up, self.nm_pre_low, self.nm_pre_up \
|
|
739
|
+
= np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
740
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
741
|
+
self.nm_e2a = np.array( 0.5 * ( self.nm_e2a_up + self.nm_e2a_low ) )
|
|
742
|
+
self.nm_e2a_err = 0.5 * ( self.nm_e2a_up - self.nm_e2a_low )
|
|
743
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
744
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
745
|
+
self.nm_pre = 0.5 * ( self.nm_pre_up + self.nm_pre_low )
|
|
746
|
+
self.nm_pre_err = 0.5 * ( self.nm_pre_up - self.nm_pre_low )
|
|
747
|
+
#
|
|
748
|
+
# chemical potential
|
|
749
|
+
self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.nm_e2v) ) / np.array(self.nm_den)
|
|
750
|
+
self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.nm_e2v_err) ) / np.array(self.nm_den)
|
|
751
|
+
#
|
|
752
|
+
# enthalpy
|
|
753
|
+
self.nm_h2a = nuda.cst.mnuc2 + self.nm_e2a + self.nm_pre / self.nm_den
|
|
754
|
+
#
|
|
755
|
+
# sound speed
|
|
756
|
+
x = np.insert( self.nm_den, 0, 0.0 )
|
|
757
|
+
y = np.insert( self.nm_pre, 0, 0.0 )
|
|
758
|
+
cs_nm_pre = CubicSpline( x, y )
|
|
759
|
+
nm_cs2 = cs_nm_pre( self.nm_den, 1) / self.nm_h2a
|
|
760
|
+
#
|
|
761
|
+
elif model.lower() == '2014-afqmc-nm':
|
|
762
|
+
#
|
|
763
|
+
self.flag_nm = True
|
|
764
|
+
self.flag_sm = False
|
|
765
|
+
self.flag_kf = True
|
|
766
|
+
self.flag_den = False
|
|
767
|
+
#
|
|
768
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2014-AFQMC-NM.dat')
|
|
769
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
770
|
+
self.ref = 'G. Wlazłowski, J.W. Holt, S. Moroz, A. Bulgac, and K.J. Roche Phys. Rev. Lett. 113, 182503 (2014)'
|
|
771
|
+
self.note = "write here notes about this EOS."
|
|
772
|
+
self.label = 'AFQMC-2014'
|
|
773
|
+
self.marker = 's'
|
|
774
|
+
self.every = 1
|
|
775
|
+
#self.linestyle = 'solid'
|
|
776
|
+
self.nm_den, self.nm_e2a_2bf, self.nm_e2a_23bf \
|
|
777
|
+
= np.loadtxt( file_in, usecols=(0,1,2), unpack = True )
|
|
778
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
779
|
+
self.nm_e2a = self.nm_e2a_23bf
|
|
780
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
781
|
+
#self.nm_e2a_err = np.abs( 0.01 * self.nm_e2a )
|
|
782
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
783
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
784
|
+
#
|
|
785
|
+
elif model.lower() == '2016-qmc-nm':
|
|
786
|
+
#
|
|
787
|
+
self.flag_nm = True
|
|
788
|
+
self.flag_sm = False
|
|
789
|
+
self.flag_kf = True
|
|
790
|
+
self.flag_den = False
|
|
791
|
+
#
|
|
792
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2016-QMC-NM.dat')
|
|
793
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
794
|
+
self.ref = ' I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, Phys. Rev. C 93, 024305 (2016).'
|
|
795
|
+
self.note = ""
|
|
796
|
+
self.label = 'QMC-2016'
|
|
797
|
+
self.marker = 's'
|
|
798
|
+
#self.linestyle = 'solid'
|
|
799
|
+
self.err = True
|
|
800
|
+
self.every = 1
|
|
801
|
+
self.nm_den, self.nm_e2a_low, self.nm_e2a_up \
|
|
802
|
+
= np.loadtxt( file_in, usecols=(0,1,2), unpack = True )
|
|
803
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
804
|
+
self.nm_e2a = np.array( 0.5 * ( self.nm_e2a_up + self.nm_e2a_low ) )
|
|
805
|
+
self.nm_e2a_err = 0.5 * ( self.nm_e2a_up - self.nm_e2a_low )
|
|
806
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
807
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
808
|
+
#
|
|
809
|
+
elif model.lower() == '2016-mbpt-am':
|
|
810
|
+
#
|
|
811
|
+
self.flag_nm = True
|
|
812
|
+
self.flag_sm = True
|
|
813
|
+
self.flag_kf = False
|
|
814
|
+
self.flag_den = True
|
|
815
|
+
#
|
|
816
|
+
self.ref = 'C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016).'
|
|
817
|
+
self.note = ""
|
|
818
|
+
self.label = 'MBPT-2016'
|
|
819
|
+
self.marker = 's'
|
|
820
|
+
#self.linestyle = 'solid'
|
|
821
|
+
self.err = True
|
|
822
|
+
self.every = 4
|
|
823
|
+
# read the results for the 7 hamiltonians
|
|
824
|
+
length = np.zeros( (11), dtype=int )
|
|
825
|
+
den = np.zeros( (11,35) )
|
|
826
|
+
e2a = np.zeros( (10,11,35) )
|
|
827
|
+
e2a_up = np.zeros( (11,35) )
|
|
828
|
+
e2a_low = np.zeros( (11,35) )
|
|
829
|
+
e2a_av = np.zeros( (11,35) )
|
|
830
|
+
e2a_err = np.zeros( (11,35) )
|
|
831
|
+
for i in range(0,11):
|
|
832
|
+
beta = i/10.0
|
|
833
|
+
if i<10:
|
|
834
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2016-MBPT-AM/EOS_spec_4_beta_0.'+str(i)+'.txt')
|
|
835
|
+
if i==10:
|
|
836
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2016-MBPT-AM/EOS_spec_4_beta_1.0.txt')
|
|
837
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
838
|
+
deni, e2a_1, e2a_2, e2a_3, e2a_4, e2a_5, e2a_6, e2a_7 = np.genfromtxt( file_in, usecols = (0, 1, 2, 3, 4, 5, 6, 7), comments='#', unpack = True)
|
|
839
|
+
length[i] = len(deni)
|
|
840
|
+
den[i,0:length[i]] = deni
|
|
841
|
+
den_n = deni * (1.0+beta)/2.0
|
|
842
|
+
e2a[1,i,0:length[i]] = e2a_1
|
|
843
|
+
e2a[2,i,0:length[i]] = e2a_2
|
|
844
|
+
e2a[3,i,0:length[i]] = e2a_3
|
|
845
|
+
e2a[4,i,0:length[i]] = e2a_4
|
|
846
|
+
e2a[5,i,0:length[i]] = e2a_5
|
|
847
|
+
e2a[6,i,0:length[i]] = e2a_6
|
|
848
|
+
e2a[7,i,0:length[i]] = e2a_7
|
|
849
|
+
# performs average and compute boundaries
|
|
850
|
+
e2a_up[i,0:length[i]] = e2a_1
|
|
851
|
+
e2a_low[i,0:length[i]] = e2a_1
|
|
852
|
+
for j in range(length[i]):
|
|
853
|
+
for k in range(2,8):
|
|
854
|
+
if e2a[k,i,j] > e2a_up[i,j]: e2a_up[i,j] = e2a[k,i,j]
|
|
855
|
+
if e2a[k,i,j] < e2a_low[i,j]: e2a_low[i,j] = e2a[k,i,j]
|
|
856
|
+
e2a_av[i,j] = 0.5* ( e2a_up[i,j] + e2a_low[i,j] )
|
|
857
|
+
e2a_err[i,j] = 0.5* ( e2a_up[i,j] - e2a_low[i,j] )
|
|
858
|
+
if nuda.env.verb: print('length:',length[:])
|
|
859
|
+
# NM
|
|
860
|
+
self.nm_den = np.array( den[10,:] )
|
|
861
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
862
|
+
self.nm_e2a_up = e2a_up[10,:]
|
|
863
|
+
self.nm_e2a_low = e2a_low[10,:]
|
|
864
|
+
self.nm_e2a = np.array( e2a_av[10,:] )
|
|
865
|
+
self.nm_e2a_err = e2a_err[10,:]
|
|
866
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
867
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
868
|
+
# SM
|
|
869
|
+
self.sm_den = np.array( den[0,:] )
|
|
870
|
+
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
871
|
+
self.sm_e2a_up = e2a_up[0,:]
|
|
872
|
+
self.sm_e2a_low = e2a_low[0,:]
|
|
873
|
+
self.sm_e2a = np.array( e2a_av[0,:] )
|
|
874
|
+
self.sm_e2a_err = e2a_err[0,:]
|
|
875
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
876
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
877
|
+
#
|
|
878
|
+
# Note: here I define the pressure as the derivative of the centroid energy
|
|
879
|
+
# It would however be better to compute the presure for each models and only
|
|
880
|
+
# after that, estimate the centroid and uncertainty.
|
|
881
|
+
#
|
|
882
|
+
elif model.lower() == '2018-qmc-nm':
|
|
883
|
+
#
|
|
884
|
+
self.flag_nm = True
|
|
885
|
+
self.flag_sm = False
|
|
886
|
+
self.flag_kf = True
|
|
887
|
+
self.flag_den = False
|
|
888
|
+
#
|
|
889
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2018-QMC-NM.dat')
|
|
890
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
891
|
+
self.ref = 'I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astroph. J. 860(2), 149 (2018).'
|
|
892
|
+
self.note = ""
|
|
893
|
+
self.label = 'QMC-2018'
|
|
894
|
+
self.marker = 's'
|
|
895
|
+
self.every = 2
|
|
896
|
+
#self.linestyle = 'solid'
|
|
897
|
+
self.err = True
|
|
898
|
+
self.nm_den, self.nm_e2a_low, self.nm_e2a_up, self.nm_e2a, self.nm_e2a_err \
|
|
899
|
+
= np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
900
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
901
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
902
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
903
|
+
#
|
|
904
|
+
elif model.lower() == '2019-mbpt-am-l59':
|
|
905
|
+
#
|
|
906
|
+
self.flag_nm = True
|
|
907
|
+
self.flag_sm = True
|
|
908
|
+
self.flag_kf = False
|
|
909
|
+
self.flag_den = True
|
|
910
|
+
#
|
|
911
|
+
# here, the L59 case is compute alone, it would be interesting to compute the uncertainty
|
|
912
|
+
# in the previous MBPT calculation (based on H1-H7) adding this new calculation.
|
|
913
|
+
#
|
|
914
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2020-MBPT-SM-DHSL59.dat')
|
|
915
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2020-MBPT-NM-DHSL59.dat')
|
|
916
|
+
if nuda.env.verb: print('Reads file1:',file_in1)
|
|
917
|
+
if nuda.env.verb: print('Reads file2:',file_in2)
|
|
918
|
+
self.ref = 'C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)'
|
|
919
|
+
self.note = ""
|
|
920
|
+
self.label = 'MBPT-2019-L59'
|
|
921
|
+
self.marker = 's'
|
|
922
|
+
self.every = 2
|
|
923
|
+
#self.linestyle = 'solid'
|
|
924
|
+
self.sm_kfn, self.sm_den, Kin, HF_tot, Scnd_tot, Trd_tot, Fth_tot, self.sm_e2a \
|
|
925
|
+
= np.loadtxt( file_in1, usecols = (0, 1, 2, 3, 4, 5, 6, 7), comments='#', unpack = True)
|
|
926
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den,err='MBPT') * self.sm_e2a )
|
|
927
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
928
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
929
|
+
self.nm_kfn, self.nm_den, Kin, HF_tot, Scnd_tot, Trd_tot, Fth_tot, self.nm_e2a \
|
|
930
|
+
= np.loadtxt( file_in2, usecols = (0, 1, 2, 3, 4, 5, 6, 7), comments='#', unpack = True)
|
|
931
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
932
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
933
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
934
|
+
#
|
|
935
|
+
elif model.lower() == '2019-mbpt-am-l69':
|
|
936
|
+
#
|
|
937
|
+
self.flag_nm = True
|
|
938
|
+
self.flag_sm = True
|
|
939
|
+
self.flag_kf = False
|
|
940
|
+
self.flag_den = True
|
|
941
|
+
#
|
|
942
|
+
# same remarck as for L59
|
|
943
|
+
#
|
|
944
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2020-MBPT-SM-DHSL69.dat')
|
|
945
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2020-MBPT-NM-DHSL69.dat')
|
|
946
|
+
if nuda.env.verb: print('Reads file1:',file_in1)
|
|
947
|
+
if nuda.env.verb: print('Reads file2:',file_in2)
|
|
948
|
+
self.ref = 'C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)'
|
|
949
|
+
self.note = ""
|
|
950
|
+
self.label = 'MBPT-2019-L69'
|
|
951
|
+
self.marker = 's'
|
|
952
|
+
self.every = 2
|
|
953
|
+
#self.linestyle = 'solid'
|
|
954
|
+
self.sm_kfn, self.sm_den, Kin, HF_tot, Scnd_tot, Trd_tot, Fth_tot, self.sm_e2a \
|
|
955
|
+
= np.loadtxt( file_in1, usecols = (0, 1, 2, 3, 4, 5, 6, 7), comments='#', unpack = True)
|
|
956
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den,err='MBPT') * self.sm_e2a )
|
|
957
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
958
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
959
|
+
self.nm_kfn, self.nm_den, Kin, HF_tot, Scnd_tot, Trd_tot, Fth_tot, self.nm_e2a \
|
|
960
|
+
= np.loadtxt( file_in2, usecols = (0, 1, 2, 3, 4, 5, 6, 7), comments='#', unpack = True)
|
|
961
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
962
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
963
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
964
|
+
#
|
|
965
|
+
elif model.lower() == '2020-mbpt-am':
|
|
966
|
+
#
|
|
967
|
+
self.flag_nm = True
|
|
968
|
+
self.flag_sm = True
|
|
969
|
+
self.flag_kf = False
|
|
970
|
+
self.flag_den = True
|
|
971
|
+
#
|
|
972
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2023-MBPT-SM.csv')
|
|
973
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2023-MBPT-NM.csv')
|
|
974
|
+
if nuda.env.verb: print('Reads file1:',file_in1)
|
|
975
|
+
if nuda.env.verb: print('Reads file2:',file_in2)
|
|
976
|
+
self.ref = 'C. Drischler, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Phys. Rev. Lett. 125(20), 202702 (2020).; C. Drischler, J. A. Melendez, R. J. Furnstahl, and D. R. Phillips, Phys. Rev. C 102, 054315'
|
|
977
|
+
self.note = ""
|
|
978
|
+
self.label = 'MBPT-2020'
|
|
979
|
+
self.marker = 's'
|
|
980
|
+
#self.linestyle = 'solid'
|
|
981
|
+
self.every = 6
|
|
982
|
+
self.err = True
|
|
983
|
+
self.sm_den, self.sm_e2a_lo, self.sm_e2a_lo_err, self.sm_e2a_nlo, self.sm_e2a_nlo_err, \
|
|
984
|
+
self.sm_e2a_n2lo, self.sm_e2a_n2lo_err, self.sm_e2a_n3lo, self.sm_e2a_n3lo_err \
|
|
985
|
+
= np.loadtxt( file_in1, usecols = (0, 1, 2, 3, 4, 5, 6, 7, 8), delimiter=',', comments='#', unpack = True)
|
|
986
|
+
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
987
|
+
self.sm_e2a = self.sm_e2a_n3lo
|
|
988
|
+
self.sm_e2a_err = self.sm_e2a_n3lo_err
|
|
989
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
990
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
991
|
+
self.nm_den, self.nm_e2a_lo, self.nm_e2a_lo_err, self.nm_e2a_nlo, self.nm_e2a_nlo_err, \
|
|
992
|
+
self.nm_e2a_n2lo, self.nm_e2a_n2lo_err, self.nm_e2a_n3lo, self.nm_e2a_n3lo_err \
|
|
993
|
+
= np.loadtxt( file_in2, usecols = (0, 1, 2, 3, 4, 5, 6, 7, 8), delimiter=',', comments='#', unpack = True)
|
|
994
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
995
|
+
self.nm_e2a = self.nm_e2a_n3lo
|
|
996
|
+
self.nm_e2a_err = self.nm_e2a_n3lo_err
|
|
997
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
998
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
999
|
+
#
|
|
1000
|
+
elif model.lower() == '2022-afdmc-nm':
|
|
1001
|
+
#
|
|
1002
|
+
self.flag_nm = True
|
|
1003
|
+
self.flag_sm = False
|
|
1004
|
+
self.flag_kf = False
|
|
1005
|
+
self.flag_den = True
|
|
1006
|
+
#
|
|
1007
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2022-AFDMC-NM.csv')
|
|
1008
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
1009
|
+
self.ref = 'S. Gandolfi, G. Palkanoglou, J. Carlson, A. Gezerlis, K.E. Schmidt, Condensed Matter 7(1) (2022).'
|
|
1010
|
+
self.note = ""
|
|
1011
|
+
self.label = 'AFDMC+corr.-2022'
|
|
1012
|
+
self.linestyle = 'solid'
|
|
1013
|
+
self.marker = 'o'
|
|
1014
|
+
#self.linestyle = 'solid'
|
|
1015
|
+
self.every = 1
|
|
1016
|
+
self.err = True
|
|
1017
|
+
# read e2a
|
|
1018
|
+
self.nm_kfn, e2effg, e2effg_err = np.loadtxt( file_in, usecols=(0,1,2), delimiter=',', comments='#', unpack = True )
|
|
1019
|
+
self.nm_den = nuda.den_n( self.nm_kfn )
|
|
1020
|
+
self.nm_e2a = e2effg * nuda.effg_nr( self.nm_kfn )
|
|
1021
|
+
self.nm_e2a_err = e2effg_err * nuda.effg_nr( self.nm_kfn )
|
|
1022
|
+
#
|
|
1023
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
1024
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
1025
|
+
#self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
1026
|
+
#self.nm_e2a_err = self.nm_e2v_err / self.nm_den
|
|
1027
|
+
#
|
|
1028
|
+
elif model.lower() == '2024-nleft-am':
|
|
1029
|
+
#
|
|
1030
|
+
#print('enter here:',model)
|
|
1031
|
+
self.flag_nm = True
|
|
1032
|
+
self.flag_sm = True
|
|
1033
|
+
self.flag_kf = False
|
|
1034
|
+
self.flag_den = False
|
|
1035
|
+
#
|
|
1036
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-NLEFT-SM.dat')
|
|
1037
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-NLEFT-NM.dat')
|
|
1038
|
+
if nuda.env.verb: print('Reads file1:',file_in1)
|
|
1039
|
+
if nuda.env.verb: print('Reads file2:',file_in2)
|
|
1040
|
+
self.ref = 'S. Elhatisari, L. Bovermann, Y.-Z. Ma et al., Nature 630, 59 (2024).'
|
|
1041
|
+
self.note = ""
|
|
1042
|
+
self.label = 'NLEFT-2024'
|
|
1043
|
+
self.marker = 's'
|
|
1044
|
+
#self.linestyle = 'solid'
|
|
1045
|
+
self.every = 2
|
|
1046
|
+
self.err = True
|
|
1047
|
+
#
|
|
1048
|
+
# Read SM results
|
|
1049
|
+
#
|
|
1050
|
+
self.sm_A, self.sm_L, self.sm_den, self.sm_etot_2bf, self.sm_etot_2bf_err, self.sm_etot, self.sm_etot_err \
|
|
1051
|
+
= np.loadtxt( file_in1, usecols = (0, 1, 2, 3, 4, 5, 6), comments='#', unpack = True, delimiter=',' )
|
|
1052
|
+
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
1053
|
+
self.sm_e2adata = self.sm_etot / self.sm_A
|
|
1054
|
+
self.sm_e2adata_err = self.sm_etot_err / self.sm_A
|
|
1055
|
+
self.sm_e2adata_2bf = self.sm_etot_2bf / self.sm_A
|
|
1056
|
+
self.sm_e2adata_2bf_err = self.sm_etot_2bf_err / self.sm_A
|
|
1057
|
+
self.sm_e2vdata = self.sm_e2adata * self.sm_den
|
|
1058
|
+
self.sm_e2vdata_err = self.sm_e2adata_err * self.sm_den
|
|
1059
|
+
# fit with EFFG
|
|
1060
|
+
xdata = self.sm_kfn
|
|
1061
|
+
ydata = self.sm_e2adata
|
|
1062
|
+
sm_popt, sm_pcov = curve_fit( func_e2a_NLEFT2024, xdata, ydata )
|
|
1063
|
+
print('sm_popt:',sm_popt)
|
|
1064
|
+
print('sm_pcov:',sm_pcov)
|
|
1065
|
+
self.sm_pfit = sm_popt
|
|
1066
|
+
self.sm_perr = np.sqrt( np.diag( sm_pcov ) )
|
|
1067
|
+
# analyse the uncertainties for e2a, pre, cs2
|
|
1068
|
+
self.sm_pcerr = np.zeros( (100,3), dtype=float )
|
|
1069
|
+
self.sm_e2a = func_e2a_NLEFT2024( xdata, *self.sm_pfit )
|
|
1070
|
+
self.sm_e2a_min = self.sm_e2a.copy()
|
|
1071
|
+
self.sm_e2a_max = self.sm_e2a.copy()
|
|
1072
|
+
self.sm_pre = func_pre_NLEFT2024( xdata, self.sm_den, *self.sm_pfit )
|
|
1073
|
+
self.sm_pre_min = self.sm_pre.copy()
|
|
1074
|
+
self.sm_pre_max = self.sm_pre.copy()
|
|
1075
|
+
self.sm_dpredn = func_dpredn_NLEFT2024( xdata, self.sm_den, *self.sm_pfit )
|
|
1076
|
+
self.sm_dpredn_min = self.sm_dpredn.copy()
|
|
1077
|
+
self.sm_dpredn_max = self.sm_dpredn.copy()
|
|
1078
|
+
for k in range(100):
|
|
1079
|
+
b = self.sm_pfit[0] + 0.1*(random.random()-0.5)*self.sm_perr[0]
|
|
1080
|
+
c = self.sm_pfit[1] + 0.1*(random.random()-0.5)*self.sm_perr[1]
|
|
1081
|
+
d = self.sm_pfit[2] + 0.1*(random.random()-0.5)*self.sm_perr[2]
|
|
1082
|
+
self.sm_pcerr[k,0] = b
|
|
1083
|
+
self.sm_pcerr[k,1] = c
|
|
1084
|
+
self.sm_pcerr[k,2] = d
|
|
1085
|
+
param = np.array( [ b, c, d ] )
|
|
1086
|
+
# e2a
|
|
1087
|
+
af = func_e2a_NLEFT2024( xdata, *param )
|
|
1088
|
+
for l,val in enumerate(af):
|
|
1089
|
+
if val > self.sm_e2a_max[l]: self.sm_e2a_max[l] = val
|
|
1090
|
+
if val < self.sm_e2a_min[l]: self.sm_e2a_min[l] = val
|
|
1091
|
+
self.sm_e2a_err = 0.5 * ( self.sm_e2a_max - self.sm_e2a_min )
|
|
1092
|
+
# pre
|
|
1093
|
+
af = func_pre_NLEFT2024( xdata, self.sm_den, *param )
|
|
1094
|
+
for l,val in enumerate(af):
|
|
1095
|
+
if val > self.sm_pre_max[l]: self.sm_pre_max[l] = val
|
|
1096
|
+
if val < self.sm_pre_min[l]: self.sm_pre_min[l] = val
|
|
1097
|
+
self.sm_pre_err = 0.5 * ( self.sm_pre_max - self.sm_pre_min )
|
|
1098
|
+
# dpdn
|
|
1099
|
+
af = func_dpredn_NLEFT2024( xdata, self.sm_den, *param )
|
|
1100
|
+
for l,val in enumerate(af):
|
|
1101
|
+
if val > self.sm_dpredn_max[l]: self.sm_dpredn_max[l] = val
|
|
1102
|
+
if val < self.sm_dpredn_min[l]: self.sm_dpredn_min[l] = val
|
|
1103
|
+
self.sm_dpredn_err = 0.5 * ( self.sm_dpredn_max - self.sm_dpredn_min )
|
|
1104
|
+
#print('sm_pcerr:',self.sm_pcerr)
|
|
1105
|
+
#self.sm_e2a = self.sm_e2a_fit
|
|
1106
|
+
#self.sm_e2a_err = self.sm_e2a_fit_err
|
|
1107
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
1108
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
1109
|
+
#
|
|
1110
|
+
# Read NM results
|
|
1111
|
+
self.nm_A, self.nm_L, self.nm_den, self.nm_etot, self.nm_etot_err \
|
|
1112
|
+
= np.loadtxt( file_in2, usecols = (0, 1, 2, 3, 4), comments='#', unpack = True, delimiter=',' )
|
|
1113
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
1114
|
+
self.nm_e2adata = self.nm_etot / self.nm_A
|
|
1115
|
+
self.nm_e2adata_err = self.nm_etot_err / self.nm_A
|
|
1116
|
+
self.nm_e2vdata = self.nm_e2adata * self.nm_den
|
|
1117
|
+
self.nm_e2vdata_err = self.nm_e2adata_err * self.nm_den
|
|
1118
|
+
# fit with EFFG
|
|
1119
|
+
xdata = self.nm_kfn
|
|
1120
|
+
ydata = self.nm_e2adata
|
|
1121
|
+
nm_popt, nm_pcov = curve_fit( func_e2a_NLEFT2024, xdata, ydata )
|
|
1122
|
+
print('nm_popt:',nm_popt)
|
|
1123
|
+
print('nm_pcov:',nm_pcov)
|
|
1124
|
+
self.nm_pfit = nm_popt
|
|
1125
|
+
self.nm_perr = np.sqrt( np.diag( nm_pcov ) )
|
|
1126
|
+
self.nm_pcerr = np.zeros( (100,3), dtype=float )
|
|
1127
|
+
self.nm_e2a = func_e2a_NLEFT2024( xdata, *self.nm_pfit )
|
|
1128
|
+
self.nm_e2a_min = self.nm_e2a.copy()
|
|
1129
|
+
self.nm_e2a_max = self.nm_e2a.copy()
|
|
1130
|
+
self.nm_pre = func_pre_NLEFT2024( xdata, self.nm_den, *self.nm_pfit )
|
|
1131
|
+
self.nm_pre_min = self.nm_pre.copy()
|
|
1132
|
+
self.nm_pre_max = self.nm_pre.copy()
|
|
1133
|
+
self.nm_dpredn = func_dpredn_NLEFT2024( xdata, self.nm_den, *self.nm_pfit )
|
|
1134
|
+
self.nm_dpredn_min = self.nm_dpredn.copy()
|
|
1135
|
+
self.nm_dpredn_max = self.nm_dpredn.copy()
|
|
1136
|
+
for k in range(100):
|
|
1137
|
+
b = self.nm_pfit[0] + 0.2*(random.random()-0.5)*self.nm_perr[0]
|
|
1138
|
+
c = self.nm_pfit[1] + 0.2*(random.random()-0.5)*self.nm_perr[1]
|
|
1139
|
+
d = self.nm_pfit[2] + 0.2*(random.random()-0.5)*self.nm_perr[2]
|
|
1140
|
+
self.nm_pcerr[k,0] = b
|
|
1141
|
+
self.nm_pcerr[k,1] = c
|
|
1142
|
+
self.nm_pcerr[k,2] = d
|
|
1143
|
+
param = np.array( [ b, c, d ] )
|
|
1144
|
+
# e2a
|
|
1145
|
+
af = func_e2a_NLEFT2024( xdata, *param )
|
|
1146
|
+
for l,val in enumerate(af):
|
|
1147
|
+
if val > self.nm_e2a_max[l]: self.nm_e2a_max[l] = val
|
|
1148
|
+
if val < self.nm_e2a_min[l]: self.nm_e2a_min[l] = val
|
|
1149
|
+
self.nm_e2a_err = 0.5 * ( self.nm_e2a_max - self.nm_e2a_min )
|
|
1150
|
+
# pre
|
|
1151
|
+
af = func_pre_NLEFT2024( xdata, self.nm_den, *param )
|
|
1152
|
+
for l,val in enumerate(af):
|
|
1153
|
+
if val > self.nm_pre_max[l]: self.nm_pre_max[l] = val
|
|
1154
|
+
if val < self.nm_pre_min[l]: self.nm_pre_min[l] = val
|
|
1155
|
+
self.nm_pre_err = 0.5 * ( self.nm_pre_max - self.nm_pre_min )
|
|
1156
|
+
# dpdn
|
|
1157
|
+
af = func_dpredn_NLEFT2024( xdata, self.nm_den, *param )
|
|
1158
|
+
for l,val in enumerate(af):
|
|
1159
|
+
if val > self.nm_dpredn_max[l]: self.nm_dpredn_max[l] = val
|
|
1160
|
+
if val < self.nm_dpredn_min[l]: self.nm_dpredn_min[l] = val
|
|
1161
|
+
self.nm_dpredn_err = 0.5 * ( self.nm_dpredn_max - self.nm_dpredn_min )
|
|
1162
|
+
#print('nm_pcerr:',self.nm_pcerr)
|
|
1163
|
+
#self.nm_e2a = self.nm_e2a_fit
|
|
1164
|
+
#self.nm_e2a_err = self.nm_e2a_fit_err
|
|
1165
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
1166
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
1167
|
+
self.nm_pre = self.nm_pre
|
|
1168
|
+
self.nm_pre_err = self.nm_pre_err
|
|
1169
|
+
self.nm_dpredn = self.nm_dpredn
|
|
1170
|
+
self.nm_dpredn_err = self.nm_dpredn_err
|
|
1171
|
+
#
|
|
1172
|
+
# chemical potential
|
|
1173
|
+
self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.nm_e2v) ) / np.array(self.nm_den)
|
|
1174
|
+
self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.nm_e2v_err) ) / np.array(self.nm_den)
|
|
1175
|
+
self.sm_chempot = ( np.array(self.sm_pre) + np.array(self.sm_e2v) ) / np.array(self.sm_den)
|
|
1176
|
+
self.sm_chempot_err = ( np.array(self.sm_pre_err) + np.array(self.sm_e2v_err) ) / np.array(self.sm_den)
|
|
1177
|
+
#
|
|
1178
|
+
# enthalpy
|
|
1179
|
+
self.sm_h2a = nuda.cst.mnuc2 + self.sm_e2a + self.sm_pre / self.sm_den
|
|
1180
|
+
self.sm_h2a_err = self.sm_e2a_err + self.sm_pre_err / self.sm_den
|
|
1181
|
+
self.nm_h2a = nuda.cst.mnuc2 + self.nm_e2a + self.nm_pre / self.nm_den
|
|
1182
|
+
self.nm_h2a_err = self.nm_e2a_err + self.nm_pre_err / self.nm_den
|
|
1183
|
+
#
|
|
1184
|
+
# sound speed
|
|
1185
|
+
self.sm_cs2 = self.sm_dpredn / self.sm_h2a
|
|
1186
|
+
self.sm_cs2_err = np.abs( self.sm_dpredn_err / self.sm_h2a ) + \
|
|
1187
|
+
np.abs( self.sm_dpredn * self.sm_h2a_err / self.sm_h2a )
|
|
1188
|
+
self.nm_cs2 = self.nm_dpredn / self.nm_h2a
|
|
1189
|
+
self.nm_cs2_err = np.abs( self.nm_dpredn_err / self.nm_h2a ) + \
|
|
1190
|
+
np.abs( self.nm_dpredn * self.nm_h2a_err / self.nm_h2a )
|
|
1191
|
+
#
|
|
1192
|
+
elif '2024-bhf-am' in model.lower():
|
|
1193
|
+
#
|
|
1194
|
+
self.flag_nm = True
|
|
1195
|
+
self.flag_sm = True
|
|
1196
|
+
self.flag_kf = False
|
|
1197
|
+
self.flag_den = True
|
|
1198
|
+
# 2BF
|
|
1199
|
+
if model.lower() == '2024-bhf-am-2bf-av8p':
|
|
1200
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_Av8p2BF.dat')
|
|
1201
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_Av8p2BF.dat')
|
|
1202
|
+
self.label = 'BHF-2024-2BF-Av8p'
|
|
1203
|
+
elif model.lower() == '2024-bhf-am-2bf-av18':
|
|
1204
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_Av182BF.dat')
|
|
1205
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_Av182BF.dat')
|
|
1206
|
+
self.label = 'BHF-2024-2BF-Av18'
|
|
1207
|
+
elif model.lower() == '2024-bhf-am-2bf-bonn':
|
|
1208
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_BONN2BF.dat')
|
|
1209
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_BONN2BF.dat')
|
|
1210
|
+
self.label = 'BHF-2024-2BF-Bonn'
|
|
1211
|
+
elif model.lower() == '2024-bhf-am-2bf-cdbonn':
|
|
1212
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_CDBONN2BF.dat')
|
|
1213
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_CDBONN2BF.dat')
|
|
1214
|
+
self.label = 'BHF-2024-2BF-CDBonn'
|
|
1215
|
+
elif model.lower() == '2024-bhf-am-2bf-sscv14':
|
|
1216
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_SSCV142BF.dat')
|
|
1217
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_SSCV142BF.dat')
|
|
1218
|
+
self.label = 'BHF-2024-2BF-SSCV14'
|
|
1219
|
+
elif model.lower() == '2024-bhf-am-2bf-nsc97a':
|
|
1220
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97a2BF.dat')
|
|
1221
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97a2BF.dat')
|
|
1222
|
+
self.label = 'BHF-2024-2BF-NSC97a'
|
|
1223
|
+
elif model.lower() == '2024-bhf-am-2bf-nsc97b':
|
|
1224
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97b2BF.dat')
|
|
1225
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97b2BF.dat')
|
|
1226
|
+
self.label = 'BHF-2024-2BF-NSC97b'
|
|
1227
|
+
elif model.lower() == '2024-bhf-am-2bf-nsc97c':
|
|
1228
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97c2BF.dat')
|
|
1229
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97c2BF.dat')
|
|
1230
|
+
self.label = 'BHF-2024-2BF-NSC97c'
|
|
1231
|
+
elif model.lower() == '2024-bhf-am-2bf-nsc97d':
|
|
1232
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97d2BF.dat')
|
|
1233
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97d2BF.dat')
|
|
1234
|
+
self.label = 'BHF-2024-2BF-NSC97d'
|
|
1235
|
+
elif model.lower() == '2024-bhf-am-2bf-nsc97e':
|
|
1236
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97e2BF.dat')
|
|
1237
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97e2BF.dat')
|
|
1238
|
+
self.label = 'BHF-2024-2BF-NSC97e'
|
|
1239
|
+
elif model.lower() == '2024-bhf-am-2bf-nsc97f':
|
|
1240
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-2BF/spin_isosp_NSC97f2BF.dat')
|
|
1241
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-2BF/spin_isosp_NSC97f2BF.dat')
|
|
1242
|
+
self.label = 'BHF-2024-2BF-NSC97f'
|
|
1243
|
+
# 2+3BF
|
|
1244
|
+
elif model.lower() == '2024-bhf-am-23bf-av8p':
|
|
1245
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_Av8p23BF.dat')
|
|
1246
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_Av8p23BF.dat')
|
|
1247
|
+
self.label = 'BHF-2024-23BF-Av8p'
|
|
1248
|
+
elif model.lower() == '2024-bhf-am-23bf-av18':
|
|
1249
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_Av1823BF.dat')
|
|
1250
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_Av1823BF.dat')
|
|
1251
|
+
self.label = 'BHF-2024-23BF-Av18'
|
|
1252
|
+
elif model.lower() == '2024-bhf-am-23bfmicro-av18':
|
|
1253
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_Av1823BFmicro.dat')
|
|
1254
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_Av1823BFmicro.dat')
|
|
1255
|
+
self.label = 'BHF-2024-23BFmicro-Av18'
|
|
1256
|
+
elif model.lower() == '2024-bhf-am-23bf-bonn':
|
|
1257
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_BONN23BF.dat')
|
|
1258
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_BONN23BF.dat')
|
|
1259
|
+
self.label = 'BHF-2024-23BF-Bonn'
|
|
1260
|
+
elif model.lower() == '2024-bhf-am-23bfmicro-bonnb':
|
|
1261
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_BONNB23BFmicro.dat')
|
|
1262
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_BONNB23BFmicro.dat')
|
|
1263
|
+
self.label = 'BHF-2024-23BFMicro-BonnB'
|
|
1264
|
+
elif model.lower() == '2024-bhf-am-23bf-cdbonn':
|
|
1265
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_CDBONN23BF.dat')
|
|
1266
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_CDBONN23BF.dat')
|
|
1267
|
+
self.label = 'BHF-2024-23BF-CDBonn'
|
|
1268
|
+
elif model.lower() == '2024-bhf-am-23bf-sscv14':
|
|
1269
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_SSCV1423BF.dat')
|
|
1270
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_SSCV1423BF.dat')
|
|
1271
|
+
self.label = 'BHF-2024-23BF-SSCV14'
|
|
1272
|
+
elif model.lower() == '2024-bhf-am-23bfmicro-nsc93':
|
|
1273
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC9323BFmicro.dat')
|
|
1274
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC9323BFmicro.dat')
|
|
1275
|
+
self.label = 'BHF-2024-23BFmicro-NSC93'
|
|
1276
|
+
elif model.lower() == '2024-bhf-am-23bf-nsc97a':
|
|
1277
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97a23BF.dat')
|
|
1278
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97a23BF.dat')
|
|
1279
|
+
self.label = 'BHF-2024-23BF-NSC97a'
|
|
1280
|
+
elif model.lower() == '2024-bhf-am-23bf-nsc97b':
|
|
1281
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97b23BF.dat')
|
|
1282
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97b23BF.dat')
|
|
1283
|
+
self.label = 'BHF-2024-23BF-NSC97b'
|
|
1284
|
+
elif model.lower() == '2024-bhf-am-23bf-nsc97c':
|
|
1285
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97c23BF.dat')
|
|
1286
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97c23BF.dat')
|
|
1287
|
+
self.label = 'BHF-2024-23BF-NSC97c'
|
|
1288
|
+
elif model.lower() == '2024-bhf-am-23bf-nsc97d':
|
|
1289
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97d23BF.dat')
|
|
1290
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97d23BF.dat')
|
|
1291
|
+
self.label = 'BHF-2024-23BF-NSC9d7'
|
|
1292
|
+
elif model.lower() == '2024-bhf-am-23bf-nsc97e':
|
|
1293
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97e23BF.dat')
|
|
1294
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97e23BF.dat')
|
|
1295
|
+
self.label = 'BHF-2024-23BF-NSC97e'
|
|
1296
|
+
elif model.lower() == '2024-bhf-am-23bf-nsc97f':
|
|
1297
|
+
file_in1 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-SM-23BF/spin_isosp_NSC97f23BF.dat')
|
|
1298
|
+
file_in2 = os.path.join(nuda.param.path_data,'matter/micro/2024-BHF-NM-23BF/spin_isosp_NSC97f23BF.dat')
|
|
1299
|
+
self.label = 'BHF-2024-23BF-NSC97f'
|
|
1300
|
+
#
|
|
1301
|
+
if nuda.env.verb: print('Reads file:',file_in1)
|
|
1302
|
+
if nuda.env.verb: print('Reads file:',file_in2)
|
|
1303
|
+
self.ref = 'I. Vida\\~na, J. Margueron, H.J. Schulze, Universe 10, 5 (2024).'
|
|
1304
|
+
self.note = ""
|
|
1305
|
+
self.marker = 's'
|
|
1306
|
+
#self.linestyle = 'solid'
|
|
1307
|
+
self.every = 2
|
|
1308
|
+
self.err = False
|
|
1309
|
+
#
|
|
1310
|
+
self.sm_den, self.sm_vS0T0, self.sm_vS0T1, self.sm_vS1T0, self.sm_vS1T1, self.sm_vtot, self.sm_kin, self.sm_etot \
|
|
1311
|
+
= np.loadtxt( file_in1, usecols = (0, 1, 2, 3, 4, 5, 6, 7), comments='#', unpack = True)
|
|
1312
|
+
self.sm_den_min = min( self.sm_den ); self.sm_den_max = max( self.sm_den )
|
|
1313
|
+
self.sm_kfn = nuda.kf_n( nuda.cst.half * self.sm_den )
|
|
1314
|
+
self.sm_kf = self.sm_kfn
|
|
1315
|
+
self.sm_e2a = self.sm_etot
|
|
1316
|
+
self.sm_e2a_err = np.abs( uncertainty_stat(self.sm_den,err='MBPT') * self.sm_e2a )
|
|
1317
|
+
self.sm_e2v = self.sm_e2a * self.sm_den
|
|
1318
|
+
self.sm_e2v_err = self.sm_e2a_err * self.sm_den
|
|
1319
|
+
#
|
|
1320
|
+
self.nm_den, self.nm_vS0T0, self.nm_vS0T1, self.nm_vS1T0, self.nm_vS1T1, self.nm_vtot, self.nm_kin, self.nm_etot \
|
|
1321
|
+
= np.loadtxt( file_in2, usecols = (0, 1, 2, 3, 4, 5, 6, 7), comments='#', unpack = True)
|
|
1322
|
+
self.nm_den_min = min( self.sm_den ); self.sm_den_max = max( self.sm_den )
|
|
1323
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
1324
|
+
self.nm_e2a = self.nm_etot
|
|
1325
|
+
self.nm_e2a_err = np.abs( uncertainty_stat(self.nm_den,err='MBPT') * self.nm_e2a )
|
|
1326
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
1327
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
1328
|
+
#
|
|
1329
|
+
elif model.lower() == '2024-qmc-nm':
|
|
1330
|
+
#
|
|
1331
|
+
self.flag_nm = True
|
|
1332
|
+
self.flag_sm = False
|
|
1333
|
+
self.flag_kf = False
|
|
1334
|
+
self.flag_den = True
|
|
1335
|
+
#
|
|
1336
|
+
file_in = os.path.join(nuda.param.path_data,'matter/micro/2024-DMC-NM.dat')
|
|
1337
|
+
if nuda.env.verb: print('Reads file:',file_in)
|
|
1338
|
+
self.ref = 'I. Tews, R. Somasundaram, D. Lonardoni, H. Göttling, R. Seutin, J. Carlson, S. Gandolfi, K. Hebeler, A. Schwenk, arXiv:2407.08979 [nucl-th]'
|
|
1339
|
+
self.note = ""
|
|
1340
|
+
self.label = 'QMC-2024'
|
|
1341
|
+
self.marker = 's'
|
|
1342
|
+
self.every = 1
|
|
1343
|
+
#self.linestyle = 'solid'
|
|
1344
|
+
self.err = True
|
|
1345
|
+
self.nm_den, self.nm_e2a, self.nm_e2a_err_stat, self.nm_e2a_err_ekm, self.nm_e2a_err_gp \
|
|
1346
|
+
= np.loadtxt( file_in, usecols=(0,1,2,3,4), unpack = True )
|
|
1347
|
+
self.nm_kfn = nuda.kf_n( self.nm_den )
|
|
1348
|
+
self.nm_e2a_err = self.nm_e2a_err_stat + self.nm_e2a_err_ekm + self.nm_e2a_err_gp
|
|
1349
|
+
self.nm_e2v = self.nm_e2a * self.nm_den
|
|
1350
|
+
self.nm_e2v_err = self.nm_e2a_err * self.nm_den
|
|
1351
|
+
#
|
|
1352
|
+
if self.flag_nm:
|
|
1353
|
+
if self.flag_kf:
|
|
1354
|
+
# pressure in NM
|
|
1355
|
+
x = np.insert( self.nm_kfn, 0, 0.0 )
|
|
1356
|
+
y = np.insert( self.nm_e2a, 0, 0.0 )
|
|
1357
|
+
cs_nm_e2a = CubicSpline( x, y )
|
|
1358
|
+
self.nm_pre = np.array( nuda.cst.three * self.nm_kfn * self.nm_den * cs_nm_e2a( self.nm_kfn, 1 ) )
|
|
1359
|
+
y_err = np.insert( self.nm_e2a_err, 0, 0.0 )
|
|
1360
|
+
cs_nm_e2a_err = CubicSpline( x, y_err )
|
|
1361
|
+
self.nm_pre_err = nuda.cst.three * self.nm_kfn * self.nm_den * cs_nm_e2a_err( self.nm_kfn, 1 )
|
|
1362
|
+
# chemical potential
|
|
1363
|
+
self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.nm_e2v) ) / np.array(self.nm_den)
|
|
1364
|
+
self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.nm_e2v_err) ) / np.array(self.nm_den)
|
|
1365
|
+
#
|
|
1366
|
+
# enthalpy
|
|
1367
|
+
self.nm_h2a = nuda.cst.mnuc2 + self.nm_e2a + self.nm_pre / self.nm_den
|
|
1368
|
+
#
|
|
1369
|
+
# sound speed
|
|
1370
|
+
x = np.insert( self.nm_den, 0, 0.0 )
|
|
1371
|
+
y = np.insert( self.nm_pre, 0, 0.0 )
|
|
1372
|
+
cs_nm_pre = CubicSpline( x, y )
|
|
1373
|
+
nm_cs2 = cs_nm_pre( self.nm_den, 1) / self.nm_h2a
|
|
1374
|
+
if self.flag_den:
|
|
1375
|
+
# pressure in NM
|
|
1376
|
+
x = np.insert( self.nm_den, 0, 0.0 )
|
|
1377
|
+
y = np.insert( self.nm_e2a, 0, 0.0 )
|
|
1378
|
+
cs_nm_e2a = CubicSpline( x, y )
|
|
1379
|
+
self.nm_pre = np.array( cs_nm_e2a( self.nm_den, 1 ) )
|
|
1380
|
+
y_err = np.insert( self.nm_e2a_err, 0, 0.0 )
|
|
1381
|
+
cs_nm_e2a_err = CubicSpline( x, y_err )
|
|
1382
|
+
self.nm_pre_err = cs_nm_e2a_err( self.nm_den, 1 )
|
|
1383
|
+
#
|
|
1384
|
+
# chemical potential
|
|
1385
|
+
self.nm_chempot = ( np.array(self.nm_pre) + np.array(self.nm_e2v) ) / np.array(self.nm_den)
|
|
1386
|
+
self.nm_chempot_err = ( np.array(self.nm_pre_err) + np.array(self.nm_e2v_err) ) / np.array(self.nm_den)
|
|
1387
|
+
#
|
|
1388
|
+
# enthalpy
|
|
1389
|
+
self.nm_h2a = nuda.cst.mnuc2 + self.nm_e2a + self.nm_pre / self.nm_den
|
|
1390
|
+
#
|
|
1391
|
+
# sound speed
|
|
1392
|
+
x = np.insert( self.nm_den, 0, 0.0 )
|
|
1393
|
+
y = np.insert( self.nm_pre, 0, 0.0 )
|
|
1394
|
+
cs_nm_pre = CubicSpline( x, y )
|
|
1395
|
+
nm_cs2 = cs_nm_pre( self.nm_den, 1) / self.nm_h2a
|
|
1396
|
+
#
|
|
1397
|
+
if self.flag_sm:
|
|
1398
|
+
if self.flag_kf:
|
|
1399
|
+
# pressure in SM
|
|
1400
|
+
x = np.insert( self.sm_kfn, 0, 0.0 )
|
|
1401
|
+
y = np.insert( self.sm_e2a, 0, 0.0 )
|
|
1402
|
+
cs_sm_e2a = CubicSpline( x, y )
|
|
1403
|
+
self.sm_pre = np.array( nuda.cst.three * self.sm_kfn * self.sm_den * cs_sm_e2a( self.sm_kfn, 1 ) )
|
|
1404
|
+
y_err = np.insert( self.sm_e2a_err, 0, 0.0 )
|
|
1405
|
+
cs_sm_e2a_err = CubicSpline( x, y_err )
|
|
1406
|
+
self.sm_pre_err = nuda.cst.three * self.sm_kfn * self.sm_den * cs_sm_e2a_err( self.sm_kfn, 1 )
|
|
1407
|
+
#
|
|
1408
|
+
# chemical potential
|
|
1409
|
+
self.sm_chempot = ( np.array(self.sm_pre) + np.array(self.sm_e2v) ) / np.array(self.sm_den)
|
|
1410
|
+
self.sm_chempot_err = ( np.array(self.sm_pre_err) + np.array(self.sm_e2v_err) ) / np.array(self.sm_den)
|
|
1411
|
+
#
|
|
1412
|
+
# enthalpy
|
|
1413
|
+
self.sm_h2a = nuda.cst.mnuc2 + self.sm_e2a + self.sm_pre / self.sm_den
|
|
1414
|
+
#
|
|
1415
|
+
# sound speed
|
|
1416
|
+
x = np.insert( self.sm_den, 0, 0.0 )
|
|
1417
|
+
y = np.insert( self.sm_pre, 0, 0.0 )
|
|
1418
|
+
cs_sm_pre = CubicSpline( x, y )
|
|
1419
|
+
sm_cs2 = cs_sm_pre( self.sm_den, 1) / self.sm_h2a
|
|
1420
|
+
#
|
|
1421
|
+
if self.flag_den:
|
|
1422
|
+
# pressure in NM
|
|
1423
|
+
x = np.insert( self.sm_den, 0, 0.0 )
|
|
1424
|
+
y = np.insert( self.sm_e2a, 0, 0.0 )
|
|
1425
|
+
cs_sm_e2a = CubicSpline( x, y )
|
|
1426
|
+
self.sm_pre = np.array( cs_sm_e2a( self.sm_den, 1 ) )
|
|
1427
|
+
y_err = np.insert( self.sm_e2a_err, 0, 0.0 )
|
|
1428
|
+
cs_sm_e2a_err = CubicSpline( x, y_err )
|
|
1429
|
+
self.sm_pre_err = cs_sm_e2a_err( self.sm_den, 1 )
|
|
1430
|
+
#
|
|
1431
|
+
# chemical potential
|
|
1432
|
+
self.sm_chempot = ( np.array(self.sm_pre) + np.array(self.sm_e2v) ) / np.array(self.sm_den)
|
|
1433
|
+
self.sm_chempot_err = ( np.array(self.sm_pre_err) + np.array(self.sm_e2v_err) ) / np.array(self.sm_den)
|
|
1434
|
+
#
|
|
1435
|
+
# enthalpy
|
|
1436
|
+
self.sm_h2a = nuda.cst.mnuc2 + self.sm_e2a + self.sm_pre / self.sm_den
|
|
1437
|
+
#
|
|
1438
|
+
# sound speed
|
|
1439
|
+
x = np.insert( self.sm_den, 0, 0.0 )
|
|
1440
|
+
y = np.insert( self.sm_pre, 0, 0.0 )
|
|
1441
|
+
cs_sm_pre = CubicSpline( x, y )
|
|
1442
|
+
sm_cs2 = cs_sm_pre( self.sm_den, 1) / self.sm_h2a
|
|
1443
|
+
#
|
|
1444
|
+
#
|
|
1445
|
+
self.den_unit = 'fm$^{-3}$'
|
|
1446
|
+
self.kf_unit = 'fm$^{-1}$'
|
|
1447
|
+
self.e2a_unit = 'MeV'
|
|
1448
|
+
self.e2v_unit = 'MeV fm$^{-3}$'
|
|
1449
|
+
self.pre_unit = 'MeV fm$^{-3}$'
|
|
1450
|
+
#
|
|
1451
|
+
if nuda.env.verb: print("Exit setupMicro()")
|
|
1452
|
+
#
|
|
1453
|
+
def print_outputs( self ):
|
|
1454
|
+
"""
|
|
1455
|
+
Method which print outputs on terminal's screen.
|
|
1456
|
+
"""
|
|
1457
|
+
#
|
|
1458
|
+
if nuda.env.verb: print("Enter print_outputs()")
|
|
1459
|
+
#
|
|
1460
|
+
print("- Print output:")
|
|
1461
|
+
print(" model:",self.model)
|
|
1462
|
+
print(" ref: ",self.ref)
|
|
1463
|
+
print(" label:",self.label)
|
|
1464
|
+
print(" note: ",self.note)
|
|
1465
|
+
print(" self.sm_den: ",self.sm_den)
|
|
1466
|
+
print(" self.sm_effmass: ",self.sm_effmass)
|
|
1467
|
+
#if any(self.sm_den): print(f" sm_den: {np.round(self.sm_den,3)} in {self.den_unit}")
|
|
1468
|
+
if self.den is not None: print(f" den: {np.round(self.den,3)} in {self.den_unit}")
|
|
1469
|
+
if self.kfn is not None: print(f" kfn: {np.round(self.den,3)} in {self.kf_unit}")
|
|
1470
|
+
if self.asy is not None: print(f" asy: {np.round(self.asy,3)}")
|
|
1471
|
+
if self.e2a is not None: print(f" e2a: {np.round(self.e2a,3)} in {self.e2a_unit}")
|
|
1472
|
+
if self.e2v is not None: print(f" e2v: {np.round(self.e2v,3)} in {self.e2v_unit}")
|
|
1473
|
+
if self.pre is not None: print(f" pre: {np.round(self.pre,3)} in {self.pre_unit}")
|
|
1474
|
+
if self.cs2 is not None: print(f" cs2: {np.round(self.cs2,2)}")
|
|
1475
|
+
if self.sm_den is not None: print(f" sm_den: {np.round(self.sm_den,3)} in {self.den_unit}")
|
|
1476
|
+
if self.sm_kfn is not None: print(f" sm_kfn: {np.round(self.sm_kfn,3)} in {self.kf_unit}")
|
|
1477
|
+
if self.sm_chempot is not None: print(f" sm_chempot: {np.round(self.sm_chempot,3)} in {self.e2a_unit}")
|
|
1478
|
+
if self.sm_effmass is not None: print(f" sm_effmass: {np.round(self.sm_effmass,3)}")
|
|
1479
|
+
if self.sm_e2a is not None: print(f" sm_e2a: {np.round(self.sm_e2a,3)} in {self.e2a_unit}")
|
|
1480
|
+
if self.sm_e2a_err is not None: print(f" sm_e2a_err: {np.round(self.sm_e2a_err,3)} in {self.e2a_unit}")
|
|
1481
|
+
if self.sm_e2a_fit is not None: print(f" sm_e2a_fit: {np.round(self.sm_e2a_fit,3)} in {self.e2a_unit}")
|
|
1482
|
+
if self.sm_e2a_fit_err is not None: print(f" sm_e2a_fit_err: {np.round(self.sm_e2a_fit_err,3)} in {self.e2a_unit}")
|
|
1483
|
+
if self.sm_e2v is not None: print(f" sm_e2v: {np.round(self.sm_e2v,3)} in {self.e2v_unit}")
|
|
1484
|
+
if self.sm_e2v_err is not None: print(f" sm_e2v_err: {np.round(self.sm_e2v_err,3)} in {self.e2v_unit}")
|
|
1485
|
+
if self.sm_pre is not None: print(f" sm_pre: {np.round(self.sm_pre,3)} in {self.pre_unit}")
|
|
1486
|
+
if self.nm_den is not None: print(f" nm_den: {np.round(self.nm_den,3)} in {self.den_unit}")
|
|
1487
|
+
if self.nm_kfn is not None: print(f" nm_kfn: {np.round(self.nm_kfn,3)} in {self.kf_unit}")
|
|
1488
|
+
if self.nm_chempot is not None: print(f" nm_chempot: {np.round(self.nm_chempot,3)} in {self.e2a_unit}")
|
|
1489
|
+
if self.nm_effmass is not None: print(f" nm_effmass: {np.round(self.nm_effmass,3)}")
|
|
1490
|
+
if self.nm_e2a is not None: print(f" nm_e2a: {np.round(self.nm_e2a,3)} in {self.e2a_unit}")
|
|
1491
|
+
if self.nm_e2a_err is not None: print(f" nm_e2a_err: {np.round(self.nm_e2a_err,3)} in {self.e2a_unit}")
|
|
1492
|
+
if self.nm_e2a_fit is not None: print(f" nm_e2a_fit: {np.round(self.nm_e2a_fit,3)} in {self.e2a_unit}")
|
|
1493
|
+
if self.nm_e2a_fit_err is not None: print(f" nm_e2a_fit_err: {np.round(self.nm_e2a_fit_err,3)} in {self.e2a_unit}")
|
|
1494
|
+
if self.nm_e2v is not None: print(f" nm_e2v: {np.round(self.nm_e2v,3)} in {self.e2v_unit}")
|
|
1495
|
+
if self.nm_e2v_err is not None: print(f" nm_e2v_err: {np.round(self.nm_e2v_err,3)} in {self.e2v_unit}")
|
|
1496
|
+
if self.nm_pre is not None: print(f" nm_pre: {np.round(self.nm_pre,3)} in {self.pre_unit}")
|
|
1497
|
+
if self.nm_cs2 is not None: print(f" nm_cs2: {np.round(self.nm_cs2,3)}")
|
|
1498
|
+
#
|
|
1499
|
+
if nuda.env.verb: print("Exit print_outputs()")
|
|
1500
|
+
#
|
|
1501
|
+
def init_self( self ):
|
|
1502
|
+
"""
|
|
1503
|
+
Initialize variables in self.
|
|
1504
|
+
"""
|
|
1505
|
+
#
|
|
1506
|
+
if nuda.env.verb: print("Enter init_self()")
|
|
1507
|
+
#
|
|
1508
|
+
#: Attribute the number of points for the density.
|
|
1509
|
+
self.nden = 10;
|
|
1510
|
+
#: Attribute providing the full reference to the paper to be citted.
|
|
1511
|
+
self.ref = ''
|
|
1512
|
+
#: Attribute providing additional notes about the data.
|
|
1513
|
+
self.note = ''
|
|
1514
|
+
#: Attribute the plot linestyle.
|
|
1515
|
+
self.linestyle = None
|
|
1516
|
+
#: Attribute the plot to discriminate True uncertainties from False ones.
|
|
1517
|
+
self.err = False
|
|
1518
|
+
#: Attribute the plot label data.
|
|
1519
|
+
self.label = ''
|
|
1520
|
+
#: Attribute the plot marker.
|
|
1521
|
+
self.marker = None
|
|
1522
|
+
#: Attribute the plot every data.
|
|
1523
|
+
self.every = 1
|
|
1524
|
+
#
|
|
1525
|
+
#: Attribute the matter density.
|
|
1526
|
+
self.den = None
|
|
1527
|
+
#: Attribute the neutron Fermi momentum.
|
|
1528
|
+
self.kfn = None
|
|
1529
|
+
#: Attribute the matter asymmetry parameter (n_n-n_p)/(n_n+n_p).
|
|
1530
|
+
self.asy = None
|
|
1531
|
+
#: Attribute the energy per particle.
|
|
1532
|
+
self.e2a = None
|
|
1533
|
+
#: Attribute the energy per unit volume.
|
|
1534
|
+
self.e2v = None
|
|
1535
|
+
#: Attribute the pressure.
|
|
1536
|
+
self.pre = None
|
|
1537
|
+
#: Attribute the sound speed.
|
|
1538
|
+
self.cs2 = None
|
|
1539
|
+
#: Attribute the neutron matter density.
|
|
1540
|
+
self.nm_den = None
|
|
1541
|
+
#: Attribute the symmetric matter density.
|
|
1542
|
+
self.sm_den = None
|
|
1543
|
+
#: Attribute the minimum of the neutron matter density.
|
|
1544
|
+
self.nm_den_min = None
|
|
1545
|
+
#: Attribute the minimum of the symmetric matter density.
|
|
1546
|
+
self.sm_den_min = None
|
|
1547
|
+
#: Attribute the maximum of the neutron matter density.
|
|
1548
|
+
self.nm_den_max = None
|
|
1549
|
+
#: Attribute the maximum of the symmetric matter density.
|
|
1550
|
+
self.sm_den_max = None
|
|
1551
|
+
#: Attribute the neutron matter neutron Fermi momentum.
|
|
1552
|
+
self.nm_kfn = None
|
|
1553
|
+
#: Attribute the symmetric matter neutron Fermi momentum.
|
|
1554
|
+
self.sm_kfn = None
|
|
1555
|
+
#: Attribute the symmetric matter Fermi momentum.
|
|
1556
|
+
self.nm_kf = None
|
|
1557
|
+
#: Attribute the symmetric matter Fermi momentum.
|
|
1558
|
+
self.sm_kf = None
|
|
1559
|
+
#: Attribute the neutron matter chemical potential.
|
|
1560
|
+
self.nm_chempot = None
|
|
1561
|
+
#: Attribute the uncertainty in the neutron matter chemical potential.
|
|
1562
|
+
self.nm_chempot_err = None
|
|
1563
|
+
#: Attribute the symmetric matter chemical potential.
|
|
1564
|
+
self.sm_chempot = None
|
|
1565
|
+
#: Attribute the uncertainty in the symmetric matter chemical potential.
|
|
1566
|
+
self.sm_chempot_err = None
|
|
1567
|
+
#: Attribute the neutron matter effective mass.
|
|
1568
|
+
self.nm_effmass = None
|
|
1569
|
+
#: Attribute the symmetric matter effective mass.
|
|
1570
|
+
self.sm_effmass = None
|
|
1571
|
+
#: Attribute the neutron matter energy per particle.
|
|
1572
|
+
self.nm_e2a = None
|
|
1573
|
+
#: Attribute the uncertainty in the neutron matter energy per particle.
|
|
1574
|
+
self.nm_e2a_err = None
|
|
1575
|
+
#: Attribute the neutron matter energy per particle (fit).
|
|
1576
|
+
self.nm_e2a_fit = None
|
|
1577
|
+
#: Attribute the uncertainty in the neutron matter energy per particle (fit).
|
|
1578
|
+
self.nm_e2a_fit_err = None
|
|
1579
|
+
#: Attribute the neutron matter potential per particle in the (S=0,T=0) channel.
|
|
1580
|
+
self.nm_vS0T0 = None
|
|
1581
|
+
#: Attribute the neutron matter potential per particle in the (S=0,T=1) channel.
|
|
1582
|
+
self.nm_vS0T1 = None
|
|
1583
|
+
#: Attribute the neutron matter potential per particle in the (S=1,T=0) channel.
|
|
1584
|
+
self.nm_vS1T0 = None
|
|
1585
|
+
#: Attribute the neutron matter potential per particle in the (S=1,T=1) channel.
|
|
1586
|
+
self.nm_vS1T1 = None
|
|
1587
|
+
#: Attribute the neutron matter total potential per particle.
|
|
1588
|
+
self.nm_vtot = None
|
|
1589
|
+
#: Attribute the symmetric matter energy per particle.
|
|
1590
|
+
self.sm_e2a = None
|
|
1591
|
+
#: Attribute the uncertainty in the symmetric matter energy per particle.
|
|
1592
|
+
self.sm_e2a_err = None
|
|
1593
|
+
#: Attribute the symmetric matter energy per particle (fit).
|
|
1594
|
+
self.sm_e2a_fit = None
|
|
1595
|
+
#: Attribute the uncertainty in the symmetric matter energy per particle (fit).
|
|
1596
|
+
self.sm_e2a_fit_err = None
|
|
1597
|
+
#: Attribute the symmetric matter energy per particle in the (S=0,T=0) channel.
|
|
1598
|
+
self.sm_vS0T0 = None
|
|
1599
|
+
#: Attribute the symmetric matter energy per particle in the (S=0,T=1) channel.
|
|
1600
|
+
self.sm_vS0T1 = None
|
|
1601
|
+
#: Attribute the symmetric matter energy per particle in the (S=1,T=0) channel.
|
|
1602
|
+
self.sm_vS1T0 = None
|
|
1603
|
+
#: Attribute the symmetric matter energy per particle in the (S=1,T=1) channel.
|
|
1604
|
+
self.sm_vS1T1 = None
|
|
1605
|
+
#: Attribute the symmetric matter total potential per particle.
|
|
1606
|
+
self.sm_vtot = None
|
|
1607
|
+
#: Attribute the neutron matter energy per unit volume.
|
|
1608
|
+
self.nm_e2v = None
|
|
1609
|
+
#: Attribute the uncertainty in the neutron matter energy per unit volume.
|
|
1610
|
+
self.nm_e2v_err = None
|
|
1611
|
+
#: Attribute the symmetric matter energy per unit volume.
|
|
1612
|
+
self.sm_e2v = None
|
|
1613
|
+
#: Attribute the uncertainty in the symmetric matter energy per unit volume.
|
|
1614
|
+
self.sm_e2v_err = None
|
|
1615
|
+
#: Attribute the neutron matter pressure.
|
|
1616
|
+
self.nm_pre = None
|
|
1617
|
+
#: Attribute the uncertainty in the neutron matter pressure.
|
|
1618
|
+
self.nm_pre_err = None
|
|
1619
|
+
#: Attribute the neutron matter sound speed.
|
|
1620
|
+
self.nm_cs2 = None
|
|
1621
|
+
#: Attribute the uncertainty in the neutron matter sound speed.
|
|
1622
|
+
self.nm_cs2_err = None
|
|
1623
|
+
#: Attribute the symmetric matter pressure.
|
|
1624
|
+
self.sm_pre = None
|
|
1625
|
+
#: Attribute the uncertainty in the symmetric matter pressure.
|
|
1626
|
+
self.sm_pre_err = None
|
|
1627
|
+
#: Attribute the symmetric matter sound speed.
|
|
1628
|
+
self.sm_cs2 = None
|
|
1629
|
+
#: Attribute the uncertainty in the symmetric matter sound speed.
|
|
1630
|
+
self.sm_cs2_err = None
|
|
1631
|
+
#
|
|
1632
|
+
if nuda.env.verb: print("Exit init_self()")
|
|
1633
|
+
#
|
|
1634
|
+
return self
|
|
1635
|
+
|