nsqdriver 0.12.11__cp310-cp310-macosx_10_9_universal2.whl → 0.12.13__cp310-cp310-macosx_10_9_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nsqdriver might be problematic. Click here for more details.
- nsqdriver/NS_DDS_v3.py +309 -122
- nsqdriver/NS_DDS_v4.py +778 -0
- nsqdriver/NS_MCI.py +28 -5
- nsqdriver/__init__.py +3 -3
- nsqdriver/compiler/assembler.cpython-310-darwin.so +0 -0
- nsqdriver/compiler/ns_wave.cpython-310-darwin.so +0 -0
- nsqdriver/compiler/py_wave_asm.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_checkers.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_errors.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_functions.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_ir.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_ir_pass.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_optimizations.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_rules.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_simulator.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/_translate.cpython-310-darwin.so +0 -0
- nsqdriver/nswave/kernel.cpython-310-darwin.so +0 -0
- {nsqdriver-0.12.11.dist-info → nsqdriver-0.12.13.dist-info}/METADATA +10 -2
- nsqdriver-0.12.13.dist-info/RECORD +41 -0
- {nsqdriver-0.12.11.dist-info → nsqdriver-0.12.13.dist-info}/WHEEL +1 -1
- nsqdriver-0.12.11.dist-info/RECORD +0 -39
- {nsqdriver-0.12.11.dist-info → nsqdriver-0.12.13.dist-info}/top_level.txt +0 -0
nsqdriver/NS_DDS_v4.py
ADDED
|
@@ -0,0 +1,778 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
import time
|
|
3
|
+
from enum import Enum
|
|
4
|
+
from math import ceil
|
|
5
|
+
from collections import namedtuple
|
|
6
|
+
from waveforms import Waveform, wave_eval, WaveVStack
|
|
7
|
+
from waveforms.waveform import _zero
|
|
8
|
+
# from waveforms.math.signal import getFTMatrix, shift
|
|
9
|
+
import nsqdriver.nswave as nw
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
|
|
13
|
+
try:
|
|
14
|
+
import waveforms
|
|
15
|
+
|
|
16
|
+
HAS_WAVEFORMS = True
|
|
17
|
+
except ImportError as e:
|
|
18
|
+
HAS_WAVEFORMS = False
|
|
19
|
+
|
|
20
|
+
try:
|
|
21
|
+
from .common import BaseDriver, Quantity, get_coef
|
|
22
|
+
except ImportError as e:
|
|
23
|
+
|
|
24
|
+
class BaseDriver:
|
|
25
|
+
|
|
26
|
+
def __init__(self, addr, timeout, **kw):
|
|
27
|
+
self.addr = addr
|
|
28
|
+
self.timeout = timeout
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class Quantity(object):
|
|
32
|
+
|
|
33
|
+
def __init__(self, name: str, value=None, ch: int = 1, unit: str = ''):
|
|
34
|
+
self.name = name
|
|
35
|
+
self.default = dict(value=value, ch=ch, unit=unit)
|
|
36
|
+
|
|
37
|
+
# def get_coef(*args):
|
|
38
|
+
# return '', '', '', ''
|
|
39
|
+
|
|
40
|
+
DEBUG_PRINT = False
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def get_coef(coef_info, sampleRate):
|
|
44
|
+
start, stop = coef_info['start'], coef_info['stop']
|
|
45
|
+
numberOfPoints = int(
|
|
46
|
+
(stop - start) * sampleRate)
|
|
47
|
+
if numberOfPoints % 64 != 0:
|
|
48
|
+
numberOfPoints = numberOfPoints + 64 - numberOfPoints % 64
|
|
49
|
+
t = np.arange(numberOfPoints) / sampleRate + start
|
|
50
|
+
|
|
51
|
+
fList = []
|
|
52
|
+
wList = []
|
|
53
|
+
phases = []
|
|
54
|
+
|
|
55
|
+
for kw in coef_info['wList']:
|
|
56
|
+
Delta, t0, weight, w, phase = kw['Delta'], kw['t0'], kw['weight'], kw['w'], kw['phase']
|
|
57
|
+
fList.append(Delta)
|
|
58
|
+
|
|
59
|
+
if w is not None:
|
|
60
|
+
w = np.zeros(numberOfPoints, dtype=complex)
|
|
61
|
+
w[:len(w)] = w
|
|
62
|
+
w = shift(w, t0 - start)
|
|
63
|
+
phases.append(np.mod(phase + 2 * np.pi * Delta * start, 2 * np.pi))
|
|
64
|
+
else:
|
|
65
|
+
weight = weight
|
|
66
|
+
if isinstance(weight, np.ndarray):
|
|
67
|
+
pass
|
|
68
|
+
else:
|
|
69
|
+
if isinstance(weight, str):
|
|
70
|
+
fun = wave_eval(weight) >> t0
|
|
71
|
+
elif isinstance(weight, Waveform):
|
|
72
|
+
fun = weight >> t0
|
|
73
|
+
else:
|
|
74
|
+
raise TypeError(f'Unsupported type {weight}')
|
|
75
|
+
weight = fun(t)
|
|
76
|
+
phase += 2 * np.pi * Delta * start
|
|
77
|
+
w = getFTMatrix([Delta],
|
|
78
|
+
numberOfPoints,
|
|
79
|
+
phaseList=[phase],
|
|
80
|
+
weight=weight,
|
|
81
|
+
sampleRate=sampleRate)[:, 0]
|
|
82
|
+
phases.append(np.mod(phase, 2 * np.pi))
|
|
83
|
+
wList.append(w)
|
|
84
|
+
return np.asarray(wList), fList, numberOfPoints, phases, round((stop - t0) * sampleRate), t
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def get_demod_envelope(coef_info, demod_map, freq_map, sampleRate):
|
|
88
|
+
start, stop = coef_info['start'], coef_info['stop']
|
|
89
|
+
# t0 = coef_info['wList']['t0']
|
|
90
|
+
# numberOfPoints = int(
|
|
91
|
+
# (stop - start) * sampleRate)
|
|
92
|
+
# if numberOfPoints % 64 != 0:
|
|
93
|
+
# numberOfPoints = numberOfPoints + 64 - numberOfPoints % 64
|
|
94
|
+
# t = np.arange(numberOfPoints) / sampleRate
|
|
95
|
+
demod_width = 2.048e-6
|
|
96
|
+
t_p = int(demod_width * sampleRate)
|
|
97
|
+
t = np.linspace(0, demod_width, round(demod_width*sampleRate), endpoint=False)
|
|
98
|
+
demod_map_list = demod_map
|
|
99
|
+
weight_sum = np.zeros((len(freq_map), t_p))
|
|
100
|
+
|
|
101
|
+
for idx, weight in enumerate(demod_map_list):
|
|
102
|
+
if isinstance(weight, np.ndarray):
|
|
103
|
+
weight_sum[idx] = weight
|
|
104
|
+
else:
|
|
105
|
+
if isinstance(weight, str):
|
|
106
|
+
fun = wave_eval(weight)
|
|
107
|
+
elif isinstance(weight, Waveform):
|
|
108
|
+
fun = weight
|
|
109
|
+
else:
|
|
110
|
+
raise TypeError(f'Unsupported type {weight}')
|
|
111
|
+
weight_sum[idx] = fun(t)
|
|
112
|
+
print(f'{freq_map=}, {len(freq_map)=}')
|
|
113
|
+
combined_wave = []
|
|
114
|
+
for idx, freq in enumerate(freq_map):
|
|
115
|
+
wave = (np.exp(2 * np.pi * freq * t * 1j)).reshape((1, -1))
|
|
116
|
+
print(f"wave {wave} {weight_sum[idx, :]}")
|
|
117
|
+
wave = weight_sum[idx, :] * wave
|
|
118
|
+
# plt.figure()
|
|
119
|
+
# plt.plot(weight_sum[idx, :])
|
|
120
|
+
# plt.plot(wave.T)
|
|
121
|
+
# plt.show()
|
|
122
|
+
combined_wave.append(wave)
|
|
123
|
+
combined_wave = np.concatenate(combined_wave, axis=0)
|
|
124
|
+
return weight_sum, combined_wave
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
@nw.kernel
|
|
128
|
+
def program_cap(param: nw.Var, indelay: nw.Var):
|
|
129
|
+
|
|
130
|
+
nw.wait_for_trigger()
|
|
131
|
+
i: nw.Var
|
|
132
|
+
# param: [[100e-9, 1e-6], [200e-9, 1e-6]]
|
|
133
|
+
nw.wait(indelay)
|
|
134
|
+
for i in param:
|
|
135
|
+
nw.wait(i[0])
|
|
136
|
+
nw.capture(i[1], 0, i[1])
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
@nw.kernel
|
|
140
|
+
def program_da(p: nw.Var):
|
|
141
|
+
i: nw.Var
|
|
142
|
+
e: nw.Var
|
|
143
|
+
nw.init_frame(0, 0)
|
|
144
|
+
nw.wait_for_trigger()
|
|
145
|
+
# nw.reset_frame()
|
|
146
|
+
e = nw.ins_envelope(p[0][1])
|
|
147
|
+
for i in p:
|
|
148
|
+
nw.wait(i[0])
|
|
149
|
+
# e = nw.ins_envelope(i[1])
|
|
150
|
+
nw.play_wave(e, 1, 0, 0)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
ProbeSegment = namedtuple('ProbeSegment', ['start', 'stop', 'freq', 'demod', 'idx'])
|
|
154
|
+
|
|
155
|
+
CaptureCmd = namedtuple('CaptureCmd', [
|
|
156
|
+
'start', 'ad_duration', 'delay', 'da_duration', 'freqs', 'delays', 'demod_wave_list', 'idx_list'
|
|
157
|
+
])
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class DemodulateMode(str, Enum):
|
|
161
|
+
MORE_QUBIT = 'more_qubit'
|
|
162
|
+
COMPLEX_SEQ = 'complex_seq'
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
class Driver(BaseDriver):
|
|
166
|
+
CHs = list(range(1, 25))
|
|
167
|
+
segment = ('ns', '111|112|113|114|115')
|
|
168
|
+
res_map = []
|
|
169
|
+
|
|
170
|
+
quants = [
|
|
171
|
+
Quantity('ReInit', value={}, ch=1), # set, 设备重新初始化
|
|
172
|
+
Quantity('Instruction', value=None, ch=1), # set 参数化波形指令队列配置
|
|
173
|
+
# 采集运行参数
|
|
174
|
+
Quantity('Shot', value=1024, ch=1), # set,运行次数
|
|
175
|
+
Quantity('PointNumber', value=16384, unit='point'), # set/get,AD采样点数
|
|
176
|
+
Quantity('TriggerDelay', value=0, ch=1, unit='s'), # set/get,AD采样延时
|
|
177
|
+
Quantity('FrequencyList', value=[], ch=1,
|
|
178
|
+
unit='Hz'), # set/get,解调频率列表,list,单位Hz
|
|
179
|
+
Quantity('PhaseList', value=[], ch=1,
|
|
180
|
+
unit='Hz'), # set/get,解调频率列表,list,单位Hz
|
|
181
|
+
Quantity('Coefficient', value=None, ch=1),
|
|
182
|
+
Quantity('DemodulationParam', value=None, ch=1),
|
|
183
|
+
Quantity('CaptureMode'),
|
|
184
|
+
Quantity('StartCapture'), # set,开启采集(执行前复位)
|
|
185
|
+
Quantity('TraceIQ', ch=1), # get,获取原始时域数据
|
|
186
|
+
# 返回:array(shot, point)
|
|
187
|
+
Quantity('IQ', ch=1), # get,获取解调后数据,默认复数返回
|
|
188
|
+
# 系统参数,宏定义修改,open时下发
|
|
189
|
+
# 复数返回:array(shot,frequency)
|
|
190
|
+
# 实数返回:array(IQ,shot,frequency)
|
|
191
|
+
|
|
192
|
+
# 任意波形发生器
|
|
193
|
+
Quantity('Waveform', value=np.array([]), ch=1), # set/get,下发原始波形数据
|
|
194
|
+
Quantity('Delay', value=0, ch=1), # set/get,播放延时
|
|
195
|
+
Quantity('KeepAmp', value=0
|
|
196
|
+
), # set, 电平是否维持在波形最后一个值, 0:波形播放完成后归0,1:保持波形最后一个值,2:保持波形第一个值
|
|
197
|
+
Quantity('Biasing', value=0, ch=1), # set, 播放延迟
|
|
198
|
+
Quantity('LinSpace', value=[0, 30e-6, 1000],
|
|
199
|
+
ch=1), # set/get, np.linspace函数,用于生成timeline
|
|
200
|
+
Quantity('Output', value=True, ch=1), # set/get,播放通道开关设置
|
|
201
|
+
Quantity('GenWave', value=None,
|
|
202
|
+
ch=1), # set/get, 设备接收waveform对象,根据waveform对象直接生成波形
|
|
203
|
+
# set/get, 设备接收IQ分离的waveform对象列表,根据waveform对象列表直接生成波形
|
|
204
|
+
Quantity('GenWaveIQ', value=None, ch=1),
|
|
205
|
+
Quantity('MultiGenWave', value={1: np.ndarray([])}), # 多通道波形同时下发
|
|
206
|
+
Quantity('EnableWaveCache', value=False), # 是否开启waveform缓存
|
|
207
|
+
Quantity('PushWaveCache'), # 使waveform缓存中的波形数据生效
|
|
208
|
+
# 混频相关配置
|
|
209
|
+
Quantity('EnableDAMixer', value=False, ch=1), # DA通道混频模式开关
|
|
210
|
+
Quantity('MixingWave', ), # 修改完混频相关参数后,运行混频器
|
|
211
|
+
Quantity('DAIQRate', value=1e9, ch=1), # 基带信号采样率
|
|
212
|
+
Quantity('DALOFreq', value=100e6, ch=1), # 中频信号频率
|
|
213
|
+
Quantity('DALOPhase', value=0, ch=1), # 基带信号相位,弧度制
|
|
214
|
+
Quantity('DASideband', value='lower', ch=1), # 混频后取的边带
|
|
215
|
+
Quantity('DAWindow', value=None, ch=1),
|
|
216
|
+
# 基带信号升采样率时所使用的窗函数,默认不使用任何窗,
|
|
217
|
+
# 可选:None、boxcar、triang、blackman、hamming、hann、bartlett、flattop、parzen、bohman、blackmanharris、nuttall、
|
|
218
|
+
# barthann、cosine、exponential、tukey、taylor
|
|
219
|
+
|
|
220
|
+
# 内触发
|
|
221
|
+
Quantity('GenerateTrig', value=1e7,
|
|
222
|
+
unit='ns'), # set/get,触发周期单位ns,触发数量=shot
|
|
223
|
+
Quantity('UpdateFirmware', value='', ch=1), # qsync固件更新
|
|
224
|
+
Quantity('PipInstall'), # pip install in instance
|
|
225
|
+
Quantity('Timeout'),
|
|
226
|
+
]
|
|
227
|
+
|
|
228
|
+
def __init__(self, addr: str = '', timeout: float = 20.0, **kw):
|
|
229
|
+
super().__init__(addr, timeout=timeout, **kw)
|
|
230
|
+
self.handle = None
|
|
231
|
+
self.model = 'NS_MCI' # 默认为设备名字
|
|
232
|
+
self.srate = 8e9
|
|
233
|
+
self.ad_srate = 4e9
|
|
234
|
+
self.addr = addr
|
|
235
|
+
self.timeout = timeout
|
|
236
|
+
self.chs = set() # 记录配置过的ch通道
|
|
237
|
+
self.IQ_cache = {}
|
|
238
|
+
self.coef_cache = {}
|
|
239
|
+
self.res_maps = {}
|
|
240
|
+
self.demod_maps = {}
|
|
241
|
+
self.probe_da_wave = {}
|
|
242
|
+
self.programout_para = {} # {ch : para}
|
|
243
|
+
self.programin_para = {}
|
|
244
|
+
self.programin_para_indelay = {i: 136e-9 for i in range(1, 13)}
|
|
245
|
+
# self.probe_delay = 32e-9
|
|
246
|
+
self.probe_delay = 0
|
|
247
|
+
self.capture_cmds: "dict[int, list[CaptureCmd]]" = {}
|
|
248
|
+
self.capture_cali_param: "dict[int, np.ndarray]" = {}
|
|
249
|
+
self.capture_points: "dict[int, np.ndarray]" = {}
|
|
250
|
+
self.demodulate_mode = DemodulateMode.MORE_QUBIT
|
|
251
|
+
self.demode_calculus: "dict[int, np.ndarray]" = {}
|
|
252
|
+
|
|
253
|
+
def open(self, **kw):
|
|
254
|
+
"""
|
|
255
|
+
输入IP打开设备,配置默认超时时间为5秒
|
|
256
|
+
打开设备时配置RFSoC采样时钟,采样时钟以参数定义
|
|
257
|
+
"""
|
|
258
|
+
from nsqdriver import MCIDriver
|
|
259
|
+
|
|
260
|
+
DArate = 8e9
|
|
261
|
+
ADrate = 4e9
|
|
262
|
+
sysparam = {
|
|
263
|
+
"MixMode": 2,
|
|
264
|
+
"RefClock": "out",
|
|
265
|
+
"DArate": DArate,
|
|
266
|
+
"ADrate": ADrate,
|
|
267
|
+
"CaptureMode": 0,
|
|
268
|
+
"INMixMode": 2, # 4~6 GHz 取 1, 6 ~ 8 GHz 取 2
|
|
269
|
+
}
|
|
270
|
+
sysparam.update(kw.get('system_parameter', {}))
|
|
271
|
+
print(f"{self.timeout=}")
|
|
272
|
+
device = MCIDriver(self.addr, self.timeout)
|
|
273
|
+
device.open(system_parameter=sysparam)
|
|
274
|
+
self.handle = device
|
|
275
|
+
|
|
276
|
+
def granularity4ns(self, delay):
|
|
277
|
+
# points_4ns = 16 # self.ad_srate*4e-6
|
|
278
|
+
return delay // 4 * 4
|
|
279
|
+
|
|
280
|
+
@staticmethod
|
|
281
|
+
def _delay2_phase(delay, freq):
|
|
282
|
+
return 2 * np.pi * freq * (delay * 1e-9)
|
|
283
|
+
|
|
284
|
+
def in_sequence_in_time(self, coef_info: dict) -> list[CaptureCmd]:
|
|
285
|
+
"""
|
|
286
|
+
合并重叠项,取并集,记录合并延迟时间,合并频点,合并包络
|
|
287
|
+
"""
|
|
288
|
+
|
|
289
|
+
w_list = coef_info.get('wList', [])
|
|
290
|
+
time_segments: "list[ProbeSegment]" = []
|
|
291
|
+
|
|
292
|
+
for idx, wave in enumerate(w_list):
|
|
293
|
+
t0 = int(round(wave['t0'] * 1e9))
|
|
294
|
+
weight_expr = wave['weight']
|
|
295
|
+
|
|
296
|
+
# 假设 weight 表达式格式为 "square(X) >> Y",我们提取实际时间宽度
|
|
297
|
+
# duration = float(weight_expr.split('>>')[1].strip())
|
|
298
|
+
_start, _stop, _ = wave_eval(weight_expr).bounds
|
|
299
|
+
_start, _stop = int(round(_start * 1e9)), int(round(_stop * 1e9))
|
|
300
|
+
|
|
301
|
+
# 将区间加入列表
|
|
302
|
+
seg = ProbeSegment(t0 + _start, t0 + _stop, wave['Delta'], weight_expr, idx)
|
|
303
|
+
time_segments.append(seg)
|
|
304
|
+
|
|
305
|
+
# 按起始时间排序
|
|
306
|
+
time_segments.sort()
|
|
307
|
+
|
|
308
|
+
# 结果存储
|
|
309
|
+
non_overlapping_segments: list[CaptureCmd] = []
|
|
310
|
+
current_start, current_end = time_segments[0].start, time_segments[0].stop
|
|
311
|
+
current_cmd = CaptureCmd(0, 0, 0, 0, [time_segments[0].freq], [0.], [time_segments[0].demod],
|
|
312
|
+
[time_segments[0].idx])
|
|
313
|
+
pointer = 0
|
|
314
|
+
for seg in time_segments[1:]:
|
|
315
|
+
if seg.start > current_end:
|
|
316
|
+
# 如果不重叠,保存当前段并移动到下一段
|
|
317
|
+
if pointer == 0:
|
|
318
|
+
current_cmd = current_cmd._replace(start=current_start)
|
|
319
|
+
else:
|
|
320
|
+
current_cmd = current_cmd._replace(start=current_start - self.probe_delay)
|
|
321
|
+
current_cmd = current_cmd._replace(ad_duration=current_end - current_start)
|
|
322
|
+
current_cmd = current_cmd._replace(delay=self.probe_delay)
|
|
323
|
+
current_cmd = current_cmd._replace(da_duration=current_end - current_start)
|
|
324
|
+
non_overlapping_segments.append(current_cmd)
|
|
325
|
+
|
|
326
|
+
current_cmd = CaptureCmd(0, 0, 0, 0, [seg.freq], [0.], [seg.demod], [seg.idx])
|
|
327
|
+
pointer = current_end
|
|
328
|
+
current_start, current_end = seg.start, seg.stop
|
|
329
|
+
else:
|
|
330
|
+
# 如果有重叠,扩展当前段
|
|
331
|
+
current_end = max(current_end, seg.stop)
|
|
332
|
+
current_cmd.idx_list.append(seg.idx)
|
|
333
|
+
current_cmd.freqs.append(seg.freq)
|
|
334
|
+
current_cmd.demod_wave_list.append(seg.demod)
|
|
335
|
+
# 由delay换算解缠绕相位
|
|
336
|
+
current_cmd.delays.append(seg.start - current_start)
|
|
337
|
+
print(f'{current_cmd=}')
|
|
338
|
+
else:
|
|
339
|
+
# 添加最后一个段
|
|
340
|
+
current_cmd = current_cmd._replace(start=current_start - self.probe_delay)
|
|
341
|
+
current_cmd = current_cmd._replace(ad_duration=current_end - current_start)
|
|
342
|
+
current_cmd = current_cmd._replace(delay=self.probe_delay)
|
|
343
|
+
current_cmd = current_cmd._replace(da_duration=current_end - current_start)
|
|
344
|
+
non_overlapping_segments.append(current_cmd)
|
|
345
|
+
return non_overlapping_segments
|
|
346
|
+
|
|
347
|
+
def generate_in_program(self, coef_info, ch):
|
|
348
|
+
freq_map = []
|
|
349
|
+
demod_wave_map = []
|
|
350
|
+
seq_param = []
|
|
351
|
+
|
|
352
|
+
self.capture_cmds[ch] = seq = self.in_sequence_in_time(coef_info) # 得到合并重叠后的list
|
|
353
|
+
print(f'{seq=}')
|
|
354
|
+
# for segment in seq:
|
|
355
|
+
# demod_wave_map.extend(segment.demod_wave_list)
|
|
356
|
+
# demod_wave_map = list(set(demod_wave_map))
|
|
357
|
+
# freq_map.extend(segment.freqs)
|
|
358
|
+
# freq_map = list(set(freq_map))
|
|
359
|
+
|
|
360
|
+
for segment in seq:
|
|
361
|
+
for n, f in enumerate(segment.freqs):
|
|
362
|
+
if f not in freq_map:
|
|
363
|
+
demod_wave_map.append(segment.demod_wave_list[n])
|
|
364
|
+
freq_map.append(f)
|
|
365
|
+
|
|
366
|
+
_t_end = 0
|
|
367
|
+
res_map = [[]] * len(coef_info['wList'])
|
|
368
|
+
phase_map = [0] * len(coef_info['wList'])
|
|
369
|
+
points_map = [0] * len(coef_info['wList'])
|
|
370
|
+
for cap_num, segment in enumerate(seq):
|
|
371
|
+
_align_start = self.granularity4ns(segment.start) # 向前取整
|
|
372
|
+
_start_diff = segment.start - _align_start
|
|
373
|
+
# _align_end = ceil((segment.start + segment.ad_duration) / 4) * 4 # 向上取整
|
|
374
|
+
_align_end = (segment.start + segment.ad_duration) // 4 * 4 # 向上取整
|
|
375
|
+
seq_param.append([
|
|
376
|
+
(_align_start - _t_end) * 1e-9,
|
|
377
|
+
(_align_end - _align_start) * 1e-9,
|
|
378
|
+
segment.delay * 1e-9,
|
|
379
|
+
(_align_end - _align_start) * 1e-9,
|
|
380
|
+
])
|
|
381
|
+
print(f"{_align_start=} {_align_end=} {(_align_start - _t_end)} {_t_end=}")
|
|
382
|
+
_t_end = _align_end
|
|
383
|
+
for idx, delay, freq, demod_wave in zip(segment.idx_list, segment.delays, segment.freqs,
|
|
384
|
+
segment.demod_wave_list):
|
|
385
|
+
res_map[idx] = [freq_map.index(freq), cap_num]
|
|
386
|
+
# print("下面 + t0")
|
|
387
|
+
# phase_map[idx] = self._delay2_phase(delay + _start_diff, freq) # 向前取整的缩进加上起始时间的差值来计算相位
|
|
388
|
+
# phase_map[idx] = self._delay2_phase(_align_start + _start_diff, freq) # 向前取整的缩进加上起始时间的差值来计算相位
|
|
389
|
+
# phase_map[idx] = self._delay2_phase(0, freq) # 向前取整的缩进加上起始时间的差值来计算相位
|
|
390
|
+
points_map[idx] = (_align_end - _align_start) * 1e-9 * self.ad_srate
|
|
391
|
+
# points_map[idx] = segment.ad_duration * 1e-9 * self.ad_srate
|
|
392
|
+
|
|
393
|
+
ad_abs_end = 0
|
|
394
|
+
da_abs_end = 0
|
|
395
|
+
# 根据ad 的延迟重新下发da program
|
|
396
|
+
delta_t = self.programout_para[ch][0][0] - seq_param[0][0]
|
|
397
|
+
for n, i in enumerate(self.programout_para[ch]):
|
|
398
|
+
if n == 0:
|
|
399
|
+
continue
|
|
400
|
+
ad_abs_end += seq_param[n-1][0] + seq_param[n-1][1]
|
|
401
|
+
da_abs_end += self.programout_para[ch][n-1][0] + self.programout_para[ch][n-1][1].shape[0] / self.srate
|
|
402
|
+
da_next_start = ad_abs_end + seq_param[n][0] + delta_t
|
|
403
|
+
da_wait = da_next_start - da_abs_end
|
|
404
|
+
i[0] = da_wait
|
|
405
|
+
# kernel_da = program_da(self.programout_para[ch])
|
|
406
|
+
# self.handle.set("ProgramOUT", kernel_da, ch)
|
|
407
|
+
print(f"重下da 程序 {self.programout_para[ch]=}")
|
|
408
|
+
|
|
409
|
+
for idx, freq in zip(segment.idx_list, segment.freqs):
|
|
410
|
+
phase_map[idx] = self._delay2_phase(0 , freq)
|
|
411
|
+
|
|
412
|
+
self.res_maps[ch] = res_map
|
|
413
|
+
self.capture_cali_param[ch] = np.exp(-1j * np.array(phase_map)).reshape((-1, 1))
|
|
414
|
+
self.capture_points[ch] = np.array(points_map).reshape((-1, 1))
|
|
415
|
+
print(f"{seq_param=} para_angle {np.angle(self.capture_cali_param[ch], deg=True)} {self.capture_points}")
|
|
416
|
+
self.programin_para[ch] = seq_param
|
|
417
|
+
return program_cap(seq_param, self.programin_para_indelay[ch]), freq_map, demod_wave_map
|
|
418
|
+
|
|
419
|
+
def out_sequence_in_time(self, wave_list: list):
|
|
420
|
+
last_start = wave_list[0][0]
|
|
421
|
+
last_stop = wave_list[0][1]
|
|
422
|
+
temp_w = [wave_list[0][2]]
|
|
423
|
+
_res = []
|
|
424
|
+
|
|
425
|
+
for idx, (start, stop, seg) in enumerate(wave_list[1:]):
|
|
426
|
+
if start > last_stop:
|
|
427
|
+
_res.append([last_start, last_stop, np.hstack(temp_w)])
|
|
428
|
+
last_start = start
|
|
429
|
+
last_stop = stop
|
|
430
|
+
temp_w.clear()
|
|
431
|
+
temp_w.append(seg)
|
|
432
|
+
else:
|
|
433
|
+
last_stop = max(last_stop, stop)
|
|
434
|
+
temp_w.append(seg)
|
|
435
|
+
else:
|
|
436
|
+
_res.append([last_start, last_stop, np.hstack(temp_w)])
|
|
437
|
+
return _res
|
|
438
|
+
|
|
439
|
+
def gen_wave_frag(self, x, wave: "Waveform"):
|
|
440
|
+
range_list = np.searchsorted(x, wave.bounds)
|
|
441
|
+
# ret = np.zeros_like(x)
|
|
442
|
+
ret = []
|
|
443
|
+
start, stop = 0, 0
|
|
444
|
+
for i, stop in enumerate(range_list):
|
|
445
|
+
if start < stop and wave.seq[i] != _zero:
|
|
446
|
+
_w = copy.deepcopy(wave)
|
|
447
|
+
_w.start = start / self.srate
|
|
448
|
+
_w.stop = stop / self.srate
|
|
449
|
+
part = _w.sample(self.srate)
|
|
450
|
+
part = part if part is None else part[:(stop - start)]
|
|
451
|
+
ret.append((start, stop, part))
|
|
452
|
+
start = stop
|
|
453
|
+
else:
|
|
454
|
+
if not ret:
|
|
455
|
+
ret.append((0, 128, np.zeros((128,))))
|
|
456
|
+
return ret
|
|
457
|
+
|
|
458
|
+
def generate_out_program(self, _wave, ch):
|
|
459
|
+
align_points = 32 # 4ns*8e9
|
|
460
|
+
if isinstance(_wave, WaveVStack):
|
|
461
|
+
_wave = _wave.simplify()
|
|
462
|
+
if len(_wave.seq) == 1 and _wave.seq[0] == _zero:
|
|
463
|
+
wave_list = [(0, 128, np.zeros((128,)))]
|
|
464
|
+
else:
|
|
465
|
+
_wave.stop = _wave.bounds[-2]
|
|
466
|
+
wave_list = self.gen_wave_frag(
|
|
467
|
+
np.linspace(_wave.start, _wave.stop, int((_wave.stop - _wave.start) * self.srate)), _wave)
|
|
468
|
+
print(f'generate_out_program: {_wave.start=}, {_wave.stop=}, {len(wave_list)=}, {ch=}')
|
|
469
|
+
_t_end = 0
|
|
470
|
+
para = []
|
|
471
|
+
wave = self.out_sequence_in_time(wave_list) # 得到合并重叠后的list
|
|
472
|
+
|
|
473
|
+
for num, i in enumerate(wave):
|
|
474
|
+
wait = (i[0] - _t_end)
|
|
475
|
+
# if wait % 32 != 0:
|
|
476
|
+
# # 若wait 不是4ns整倍数,根据ad的逻辑会往后多财季4ns
|
|
477
|
+
align_wait = wait // align_points * align_points
|
|
478
|
+
zero_num = wait - align_wait
|
|
479
|
+
align_end = i[1] // align_points * align_points
|
|
480
|
+
align_wave = [i[2],]
|
|
481
|
+
para.append([align_wait / self.srate, np.hstack(align_wave)])
|
|
482
|
+
_t_end = align_end
|
|
483
|
+
print(f"out {para=}")
|
|
484
|
+
self.programout_para[ch] = para
|
|
485
|
+
# print(para[0][1].max())
|
|
486
|
+
# plt.plot(para[0][1])
|
|
487
|
+
# plt.show()
|
|
488
|
+
return program_da(para)
|
|
489
|
+
|
|
490
|
+
def get_coef_res(self, iq_res, ch):
|
|
491
|
+
res = []
|
|
492
|
+
print(f'{self.res_maps[ch]=}')
|
|
493
|
+
for (freq_num, cap_num) in self.res_maps[ch]:
|
|
494
|
+
res.append(iq_res[freq_num][cap_num::len(self.capture_cmds[ch])])
|
|
495
|
+
# 采样点归一化
|
|
496
|
+
res = np.array(res) / self.demode_calculus[ch]
|
|
497
|
+
# 校准相位
|
|
498
|
+
res *= self.capture_cali_param[ch]
|
|
499
|
+
|
|
500
|
+
return res
|
|
501
|
+
|
|
502
|
+
def close(self, **kw):
|
|
503
|
+
"""
|
|
504
|
+
关闭设备
|
|
505
|
+
"""
|
|
506
|
+
if getattr(self, 'handle', None) is not None:
|
|
507
|
+
self.handle.close()
|
|
508
|
+
self.handle = None
|
|
509
|
+
|
|
510
|
+
def set(self, *args, **kwargs):
|
|
511
|
+
return self.handle.set(*args, **kwargs)
|
|
512
|
+
|
|
513
|
+
def get(self, *args, **kwargs):
|
|
514
|
+
|
|
515
|
+
return self.handle.get(*args, **kwargs)
|
|
516
|
+
|
|
517
|
+
# def generate_demo(self, co):
|
|
518
|
+
# _wave = wf.zero()
|
|
519
|
+
# min_t0 = 10
|
|
520
|
+
# for _w in co['wList']:
|
|
521
|
+
# t0 = _w['t0']
|
|
522
|
+
# min_t0 = min(min_t0, t0)
|
|
523
|
+
# _wave += (wf.wave_eval(_w['weight']) * wf.cos(2 * np.pi * _w['Delta'])) >> t0
|
|
524
|
+
# _wave /= 8
|
|
525
|
+
# # _wave = _wave << 50e-9
|
|
526
|
+
# _wave.start = 0
|
|
527
|
+
# _wave.stop = co['stop']
|
|
528
|
+
# bk = self.srate
|
|
529
|
+
# self.srate = self.ad_srate
|
|
530
|
+
# _, para = self.generate_out_program(co, 1)
|
|
531
|
+
# self.srate = bk
|
|
532
|
+
# demo = para[0][1]
|
|
533
|
+
# return demo
|
|
534
|
+
|
|
535
|
+
def write(self, name: str, value, **kw):
|
|
536
|
+
channel = kw.get('ch', 1)
|
|
537
|
+
print(f'NS_DDS_v3 write: {name=}, {channel=}')
|
|
538
|
+
if name in {'Coefficient'}:
|
|
539
|
+
print("Coefficient" * 3)
|
|
540
|
+
coef_info = value
|
|
541
|
+
self.chs.add(channel)
|
|
542
|
+
kernel, freq_map, demod_wave_map = self.generate_in_program(coef_info, channel)
|
|
543
|
+
self.handle.set("ProgramIN", kernel, channel)
|
|
544
|
+
demode_weight, demode_wave = get_demod_envelope(coef_info, demod_wave_map, freq_map, sampleRate=4e9)
|
|
545
|
+
self.demode_calculus[channel] = np.sum(demode_weight[0])
|
|
546
|
+
self.handle.set("DemodulationParam", demode_wave, channel)
|
|
547
|
+
# print(f"demode_wave {demode_wave}")
|
|
548
|
+
# plt.figure()
|
|
549
|
+
# plt.plot(demode_wave[0].real)
|
|
550
|
+
# plt.plot(demode_wave[0].imag)
|
|
551
|
+
# plt.show()
|
|
552
|
+
self.handle.set('TimeWidth', self.capture_points[channel].max()/self.ad_srate, channel)
|
|
553
|
+
# self.handle.set('TimeWidth', 87 / self.ad_srate, channel)
|
|
554
|
+
# self.handle.set("FreqList", freq_map, channel)
|
|
555
|
+
self.coef_cache.update({channel: coef_info})
|
|
556
|
+
elif name in {"TriggerDelay", "INDelay"}:
|
|
557
|
+
print("INDelay" * 3)
|
|
558
|
+
self.programin_para_indelay[channel] = value
|
|
559
|
+
# kernel = program_cap(self.programin_para[channel], self.programin_para_indelay[channel])
|
|
560
|
+
# self.handle.set("ProgramIN", kernel, channel)
|
|
561
|
+
elif name in {
|
|
562
|
+
'CaptureMode', 'SystemSync', 'ResetTrig', 'TrigPeriod',
|
|
563
|
+
'TrigFrom'
|
|
564
|
+
}:
|
|
565
|
+
pass
|
|
566
|
+
elif name in {
|
|
567
|
+
'GenWave', 'Waveform'
|
|
568
|
+
} and isinstance(value, Waveform):
|
|
569
|
+
kernel_da = self.generate_out_program(value, channel)
|
|
570
|
+
# self.handle.set("ProgramOUT", kernel_da, channel)
|
|
571
|
+
elif name in {
|
|
572
|
+
'StartCapture', 'Capture'
|
|
573
|
+
}:
|
|
574
|
+
for channel, param in self.programin_para.items():
|
|
575
|
+
kernel = program_cap(self.programin_para[channel], self.programin_para_indelay[channel])
|
|
576
|
+
self.handle.set("ProgramIN", kernel, channel)
|
|
577
|
+
for channel in self.programout_para:
|
|
578
|
+
kernel = program_da(self.programout_para[channel])
|
|
579
|
+
self.handle.set("ProgramOUT", kernel, channel)
|
|
580
|
+
print(f"{self.programin_para=} {self.programin_para_indelay=} {self.programout_para=}")
|
|
581
|
+
return self.handle.set(name, value)
|
|
582
|
+
else:
|
|
583
|
+
if name in {"Shot"}:
|
|
584
|
+
self.shots = value
|
|
585
|
+
return self.handle.set(name, value, channel)
|
|
586
|
+
|
|
587
|
+
def read(self, name: str, **kw):
|
|
588
|
+
channel = kw.get('ch', 1)
|
|
589
|
+
if name in {"IQ"}:
|
|
590
|
+
iq_res = self.handle.get(
|
|
591
|
+
"IQ", channel, round(self.shots * len(self.capture_cmds[channel]))
|
|
592
|
+
)
|
|
593
|
+
result = self.get_coef_res(iq_res, channel).T
|
|
594
|
+
if len(self.chs) != 0 and channel in self.chs:
|
|
595
|
+
self.chs.remove(channel)
|
|
596
|
+
# self.IQ_cache.update({channel: result})
|
|
597
|
+
if len(self.chs) == 0:
|
|
598
|
+
self.write("TerminateUpload", 1) # 实验的开始必须加此句话
|
|
599
|
+
elif name in {'TraceIQ'}:
|
|
600
|
+
print(f"{self.shots=} {len(self.capture_cmds[channel])=}")
|
|
601
|
+
result = self.handle.get(
|
|
602
|
+
"TraceIQ", channel, round(self.shots * len(self.capture_cmds[channel]))
|
|
603
|
+
)
|
|
604
|
+
else:
|
|
605
|
+
result = self.handle.get(name, channel)
|
|
606
|
+
return result
|
|
607
|
+
|
|
608
|
+
|
|
609
|
+
if __name__ == '__main__':
|
|
610
|
+
# 7.052186177715091e9 1.418e-6 7.062146892655367e9 1.416e-6 6.191950464396285e9 1.615e-6
|
|
611
|
+
# 6.188118811881188e9 1.616e-6
|
|
612
|
+
# 6.184291898577612e9 1.617e-6
|
|
613
|
+
# 6.180469715698393e9 1.618e-6
|
|
614
|
+
# 6.176652254478073e9 1.619e-6
|
|
615
|
+
co = {'start': 0.0, 'stop': 70.605e-06, 'wList': [
|
|
616
|
+
{'Delta': 6967500000.0, 'phase': -0.0, 'weight': 'square(0.8e-06)>>(4e-07)', 'window': (0, 1024), 'w': None,
|
|
617
|
+
't0': 1.618e-6, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
618
|
+
# {'Delta': 4.176652254478073e9, 'phase': -0.0, 'weight': 'gaussian(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
619
|
+
# 't0': 1.618e-6, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
620
|
+
# {'Delta': 6.180469715698393e9, 'phase': -0.0, 'weight': 'gaussian(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
621
|
+
# 't0': 1.618e-6 * 20, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
622
|
+
# {'Delta': 4.176652254478073e9, 'phase': -0.0, 'weight': 'gaussian(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
623
|
+
# 't0': 1.618e-6 * 20, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
624
|
+
# {'Delta': 6.180469715698393e9, 'phase': -0.0, 'weight': 'gaussian(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
625
|
+
# 't0': 1.618e-6 * 40, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
626
|
+
# {'Delta': 6.176652254478073e9, 'phase': -0.0, 'weight': 'gaussian(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
627
|
+
# 't0': 1.618e-6 * 40, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
628
|
+
# {'Delta': 5.12311e9, 'phase': -0.0, 'weight': 'square(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
629
|
+
# 't0': 1/5.12311 * 1e-4 * 2, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
630
|
+
# {'Delta': 5.2231e9, 'phase': -0.0, 'weight': 'square(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
631
|
+
# 't0': 1/5.12311 * 1e-4 * 2, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
632
|
+
# {'Delta': 5.1e9, 'phase': -0.0, 'weight': 'square(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
633
|
+
# 't0': 6.401e-06, 'phi': 2.1739656328752264, 'threshold': 20.36802101135254},
|
|
634
|
+
# {'Delta': 5.2e9, 'phase': -0.0, 'weight': 'square(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
635
|
+
# 't0': 6.401e-06, 'phi': 1.851749364542847, 'threshold': 21.65827751159668},
|
|
636
|
+
# {'Delta': 1e9, 'phase': -0.0, 'weight': 'square(8e-07) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
637
|
+
# 't0': 5.5e-06, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
638
|
+
# {'Delta': 1.1e9, 'phase': -0.0, 'weight': 'square(8e-07) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
639
|
+
# 't0': 5.5e-06, 'phi': 2.1739656328752264, 'threshold': 20.36802101135254},
|
|
640
|
+
# {'Delta': 1.2e9, 'phase': -0.0, 'weight': 'square(8e-07) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
641
|
+
# 't0': 5.5e-06, 'phi': 1.851749364542847, 'threshold': 21.65827751159668},
|
|
642
|
+
# {'Delta': 1e9, 'phase': -0.0, 'weight': 'square(8e-07) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
643
|
+
# 't0': 7.805e-06, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
644
|
+
# {'Delta': 1e9, 'phase': -0.0, 'weight': 'square(8e-07) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
645
|
+
# 't0': 8.805e-06, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
646
|
+
# {'Delta': 1.1e9, 'phase': -0.0, 'weight': 'square(8e-07) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
647
|
+
# 't0': 9.005e-06, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926}
|
|
648
|
+
]}
|
|
649
|
+
co = {'start': 5.760000000000001e-07, 'stop': 1.581e-06, 'wList': [{'Delta': 6967500000.0, 'phase': -0.0, 'weight': '(sin(3141592.6535897935)**3)*(square(1e-06)>>(5e-07))',
|
|
650
|
+
'window': (0, 1024), 'w': None, 't0': 5.81e-07, 'phi': -0.16222877291938465, 'threshold': 0.4922424554824829}]}
|
|
651
|
+
co = {'start': 5.760000000000001e-07, 'stop': 9.310000000000001e-07, 'wList': [{'Delta': 6967500000.0, 'phase': -0.0, 'weight': '(sin(8975979.010256553)**3)*(square(3.5e-07)>>(1.75e-07))', 'window': (0, 1024), 'w': None, 't0': 5.81e-07,
|
|
652
|
+
'phi': 2.4011441876721005, 'threshold': 3.5368497371673584}]}
|
|
653
|
+
co = {'start': 5.760000000000001e-07, 'stop': 9.310000000000001e-07, 'wList': [{'Delta': 6967500000.0, 'phase': -0.0, 'weight': '(sin(8975979.010256553)**3)*(square(3.5e-07)>>(1.74e-07))', 'window': (0, 1024), 'w': None, 't0': 5.81e-07,
|
|
654
|
+
'phi': 2.4011441876721005, 'threshold': 3.5368497371673584}]}
|
|
655
|
+
|
|
656
|
+
import numpy as np
|
|
657
|
+
# from nsqdriver.NS_DDS_v3_2 import Driver, get_coef
|
|
658
|
+
from nsqdriver import QSYNCDriver
|
|
659
|
+
from nsqdriver.NS_MCI import SHARED_DEVICE_MEM
|
|
660
|
+
import matplotlib.pyplot as plt
|
|
661
|
+
import waveforms as wf
|
|
662
|
+
|
|
663
|
+
SHARED_DEVICE_MEM.clear_ip()
|
|
664
|
+
_d = Driver('192.168.0.229', 50)
|
|
665
|
+
_q = QSYNCDriver('192.168.0.229')
|
|
666
|
+
_q.open(system_parameter={'RefClock': 'in'})
|
|
667
|
+
_d.open(system_parameter={'MixMode': 2, 'CaptureMode': 0, "DArate": 8e9, "RefClock": "out"})
|
|
668
|
+
_q.sync_system()
|
|
669
|
+
time.sleep(2)
|
|
670
|
+
_wave = wf.zero()
|
|
671
|
+
min_t0 = 10
|
|
672
|
+
for _w in co['wList']:
|
|
673
|
+
t0 = _w['t0']
|
|
674
|
+
min_t0 = min(min_t0, t0)
|
|
675
|
+
_wave += (wf.wave_eval(_w['weight']) * wf.cos(2 * np.pi * _w['Delta'])) >> t0
|
|
676
|
+
_wave /= 8
|
|
677
|
+
# _wave = _wave << 50e-9
|
|
678
|
+
_wave.start = 0
|
|
679
|
+
_wave.stop = co['stop']
|
|
680
|
+
|
|
681
|
+
_wave(np.linspace(0, _wave.stop, int(_wave.stop * 8e9)), frag=True)
|
|
682
|
+
|
|
683
|
+
wave = _wave.sample(8e9)
|
|
684
|
+
# plt.figure()
|
|
685
|
+
# plt.plot(wave)
|
|
686
|
+
# plt.show()
|
|
687
|
+
ch = 1
|
|
688
|
+
_wave.start = 0
|
|
689
|
+
_wave.stop = co["stop"]
|
|
690
|
+
shots = 8192
|
|
691
|
+
|
|
692
|
+
_q.set('Shot', shots)
|
|
693
|
+
_d.write('Shot', shots)
|
|
694
|
+
|
|
695
|
+
|
|
696
|
+
# 测试解模数据
|
|
697
|
+
|
|
698
|
+
# _d.write("INDelay", 136e-9, ch=ch) # INDelay 要在 Coefficient前面
|
|
699
|
+
# _d.write("Coefficient", co, ch=ch)
|
|
700
|
+
# _d.write("GenWave", _wave, ch=ch)
|
|
701
|
+
|
|
702
|
+
# _d.set('StartCapture')
|
|
703
|
+
# _q.set('GenerateTrig', 90e-6)
|
|
704
|
+
# data = _d.read("IQ", ch=ch)
|
|
705
|
+
# print(f"angle= {np.angle(data.mean(axis=0), deg=True)}")
|
|
706
|
+
# print(f"abs= {np.abs(data.mean(axis=0))}")
|
|
707
|
+
|
|
708
|
+
# 测试原始数据
|
|
709
|
+
# 将采集间隔改大
|
|
710
|
+
_d.set('CaptureMode', 1)
|
|
711
|
+
_d.write("GenWave", _wave, ch=ch)
|
|
712
|
+
_d.write("Coefficient", co, ch=ch) # 获取原始数据也要下发,用于配置indelay
|
|
713
|
+
_d.write("INDelay", 136e-9, ch=ch) # INDelay 要在 Coefficient前面
|
|
714
|
+
|
|
715
|
+
_d.write('StartCapture', 1)
|
|
716
|
+
_q.set('GenerateTrig', 500e-6)
|
|
717
|
+
data = _d.read("TraceIQ", ch=ch)
|
|
718
|
+
data = data.reshape((shots, -1))
|
|
719
|
+
plt.figure()
|
|
720
|
+
plt.plot(data.mean(axis=0))
|
|
721
|
+
plt.show()
|
|
722
|
+
|
|
723
|
+
# 测试波形连续播放
|
|
724
|
+
# 修改波形频率,在示波器可见
|
|
725
|
+
|
|
726
|
+
# _q.set("Shot", 0xFFFFFFFF)
|
|
727
|
+
# _q.set("GenerateTrig", 500e-6)
|
|
728
|
+
# time.sleep(10)
|
|
729
|
+
# _q.set("ResetTrig")
|
|
730
|
+
|
|
731
|
+
# 带包络扫描S21
|
|
732
|
+
# freq_range = np.linspace(4.01e9, 6.01e9, 51)
|
|
733
|
+
# s21_res = []
|
|
734
|
+
# _d.write("INDelay", 136e-9, ch=ch) # INDelay 要在 Coefficient前面
|
|
735
|
+
# for f in freq_range:
|
|
736
|
+
# co = {'start': 0.0, 'stop': 70.605e-06, 'wList': [
|
|
737
|
+
# {'Delta': f, 'phase': -0.0, 'weight': 'square(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
738
|
+
# 't0': 1.618e-6, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
739
|
+
# {'Delta': 6.176652254478073e9, 'phase': -0.0, 'weight': 'gaussian(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
740
|
+
# 't0': 1.618e-6, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
741
|
+
# {'Delta': f, 'phase': -0.0, 'weight': 'square(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
742
|
+
# 't0': 1.618e-6 * 20, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
743
|
+
# {'Delta': 6.176652254478073e9, 'phase': -0.0, 'weight': 'gaussian(0.8e-06) >> 4e-07', 'window': (0, 1024), 'w': None,
|
|
744
|
+
# 't0': 1.618e-6 * 20, 'phi': 2.4311851282940524, 'threshold': 9.645718574523926},
|
|
745
|
+
# ]}
|
|
746
|
+
# _wave = wf.zero()
|
|
747
|
+
# for _w in co['wList']:
|
|
748
|
+
# t0 = _w['t0']
|
|
749
|
+
# min_t0 = min(min_t0, t0)
|
|
750
|
+
# _wave += (wf.wave_eval(_w['weight']) * wf.cos(2 * np.pi * _w['Delta'])) >> t0
|
|
751
|
+
# _wave /= 8
|
|
752
|
+
# # _wave = _wave << 50e-9
|
|
753
|
+
# _wave.start = 0
|
|
754
|
+
# _wave.stop = co['stop']
|
|
755
|
+
# # plt.figure()
|
|
756
|
+
# # plt.plot(_wave.sample(8e9))
|
|
757
|
+
# # plt.show()
|
|
758
|
+
# _d.write("Coefficient", co, ch=ch)
|
|
759
|
+
# _d.write("GenWave", _wave, ch=ch)
|
|
760
|
+
|
|
761
|
+
# _d.set('StartCapture')
|
|
762
|
+
# _q.set('GenerateTrig', 90e-6)
|
|
763
|
+
# data = _d.read("IQ", ch=ch)
|
|
764
|
+
# s21_res.append(data)
|
|
765
|
+
# # 取第一次采集的第一个频点画图
|
|
766
|
+
# cap1 = np.array(s21_res)
|
|
767
|
+
# cap1 = cap1[:, :, 0].mean(axis=1)
|
|
768
|
+
# cap1 = 20 * np.log10(np.abs(cap1))
|
|
769
|
+
# plt.figure()
|
|
770
|
+
# plt.plot(freq_range, cap1)
|
|
771
|
+
# plt.show()
|
|
772
|
+
# # 取第二次采集的第一个频点画图
|
|
773
|
+
# cap2 = np.array(s21_res)
|
|
774
|
+
# cap2 = cap2[:, :, 2].mean(axis=1)
|
|
775
|
+
# cap2 = 20 * np.log10(np.abs(cap2))
|
|
776
|
+
# plt.figure()
|
|
777
|
+
# plt.plot(freq_range, cap2)
|
|
778
|
+
# plt.show()
|