nshtrainer 1.0.0b48__py3-none-any.whl → 1.0.0b50__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nshtrainer/lr_scheduler/reduce_lr_on_plateau.py +11 -4
- nshtrainer/model/mixins/logger.py +120 -32
- {nshtrainer-1.0.0b48.dist-info → nshtrainer-1.0.0b50.dist-info}/METADATA +1 -1
- {nshtrainer-1.0.0b48.dist-info → nshtrainer-1.0.0b50.dist-info}/RECORD +5 -5
- {nshtrainer-1.0.0b48.dist-info → nshtrainer-1.0.0b50.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@ from torch.optim.lr_scheduler import ReduceLROnPlateau
|
|
7
7
|
from typing_extensions import final, override
|
8
8
|
|
9
9
|
from ..metrics._config import MetricConfig
|
10
|
+
from ..util.config import EpochsConfig
|
10
11
|
from .base import LRSchedulerConfigBase, LRSchedulerMetadata, lr_scheduler_registry
|
11
12
|
|
12
13
|
|
@@ -21,13 +22,13 @@ class ReduceLROnPlateauConfig(LRSchedulerConfigBase):
|
|
21
22
|
"""Metric to monitor.
|
22
23
|
If not provided, the primary metric of the runner will be used."""
|
23
24
|
|
24
|
-
patience: int
|
25
|
+
patience: int | EpochsConfig
|
25
26
|
r"""Number of epochs with no improvement after which learning rate will be reduced."""
|
26
27
|
|
27
28
|
factor: float
|
28
29
|
r"""Factor by which the learning rate will be reduced. new_lr = lr * factor."""
|
29
30
|
|
30
|
-
cooldown: int = 0
|
31
|
+
cooldown: int | EpochsConfig = 0
|
31
32
|
r"""Number of epochs to wait before resuming normal operation after lr has been reduced."""
|
32
33
|
|
33
34
|
min_lr: float | list[float] = 0.0
|
@@ -57,14 +58,20 @@ class ReduceLROnPlateauConfig(LRSchedulerConfigBase):
|
|
57
58
|
"Primary metric must be provided if metric is not specified."
|
58
59
|
)
|
59
60
|
|
61
|
+
if isinstance(patience := self.patience, EpochsConfig):
|
62
|
+
patience = int(patience.value)
|
63
|
+
|
64
|
+
if isinstance(cooldown := self.cooldown, EpochsConfig):
|
65
|
+
cooldown = int(cooldown.value)
|
66
|
+
|
60
67
|
lr_scheduler = ReduceLROnPlateau(
|
61
68
|
optimizer,
|
62
69
|
mode=metric.mode,
|
63
70
|
factor=self.factor,
|
64
|
-
patience=
|
71
|
+
patience=patience,
|
65
72
|
threshold=self.threshold,
|
66
73
|
threshold_mode=self.threshold_mode,
|
67
|
-
cooldown=
|
74
|
+
cooldown=cooldown,
|
68
75
|
min_lr=self.min_lr,
|
69
76
|
eps=self.eps,
|
70
77
|
)
|
@@ -1,16 +1,16 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
import copy
|
4
3
|
import dataclasses
|
5
4
|
from collections import deque
|
6
|
-
from collections.abc import Callable, Generator
|
5
|
+
from collections.abc import Callable, Generator, Mapping
|
7
6
|
from contextlib import contextmanager
|
8
7
|
from typing import Any, ClassVar
|
9
8
|
|
9
|
+
import torchmetrics
|
10
10
|
from lightning.pytorch import LightningModule
|
11
11
|
from lightning.pytorch.utilities.types import _METRIC
|
12
12
|
from lightning_utilities.core.rank_zero import rank_zero_warn
|
13
|
-
from typing_extensions import
|
13
|
+
from typing_extensions import override
|
14
14
|
|
15
15
|
from ...util.typing_utils import mixin_base_type
|
16
16
|
|
@@ -33,23 +33,6 @@ class _LogContextKwargs:
|
|
33
33
|
batch_size: int | None = None
|
34
34
|
rank_zero_only: bool | None = None
|
35
35
|
|
36
|
-
def copy_from(self, other: Self):
|
37
|
-
kwargs = copy.deepcopy(self)
|
38
|
-
|
39
|
-
# Copy over all the not-None values from the other object
|
40
|
-
updates = {}
|
41
|
-
for field in dataclasses.fields(self):
|
42
|
-
# Ignore disabled fields
|
43
|
-
if field.name in self.__ignore_fields__:
|
44
|
-
continue
|
45
|
-
|
46
|
-
if (value := getattr(other, field.name, None)) is None:
|
47
|
-
continue
|
48
|
-
# setattr(kwargs, field.name, value)
|
49
|
-
updates[field.name] = value
|
50
|
-
|
51
|
-
return dataclasses.replace(kwargs, **updates)
|
52
|
-
|
53
36
|
def to_dict(self):
|
54
37
|
d = dataclasses.asdict(self)
|
55
38
|
for field in self.__ignore_fields__:
|
@@ -135,6 +118,16 @@ class LoggerLightningModuleMixin(mixin_base_type(LightningModule)):
|
|
135
118
|
finally:
|
136
119
|
_ = self._logger_prefix_stack.pop()
|
137
120
|
|
121
|
+
def _make_prefix_and_kwargs_dict(self, kwargs: _LogContextKwargs):
|
122
|
+
prefix = "".join(c.prefix for c in self._logger_prefix_stack if c.prefix)
|
123
|
+
|
124
|
+
fn_kwargs: dict[str, Any] = {}
|
125
|
+
for c in self._logger_prefix_stack:
|
126
|
+
fn_kwargs.update(c.to_dict())
|
127
|
+
|
128
|
+
fn_kwargs.update(kwargs.to_dict())
|
129
|
+
return prefix, fn_kwargs
|
130
|
+
|
138
131
|
@override
|
139
132
|
def log(
|
140
133
|
self,
|
@@ -153,18 +146,117 @@ class LoggerLightningModuleMixin(mixin_base_type(LightningModule)):
|
|
153
146
|
metric_attribute: str | None = None,
|
154
147
|
rank_zero_only: bool | None = None,
|
155
148
|
) -> None:
|
149
|
+
"""Log a key, value pair.
|
150
|
+
|
151
|
+
Example::
|
152
|
+
|
153
|
+
self.log('train_loss', loss)
|
154
|
+
|
155
|
+
The default behavior per hook is documented here: :ref:`extensions/logging:Automatic Logging`.
|
156
|
+
|
157
|
+
Args:
|
158
|
+
name: key to log. Must be identical across all processes if using DDP or any other distributed strategy.
|
159
|
+
value: value to log. Can be a ``float``, ``Tensor``, or a ``Metric``.
|
160
|
+
prog_bar: if ``True`` logs to the progress bar.
|
161
|
+
logger: if ``True`` logs to the logger.
|
162
|
+
on_step: if ``True`` logs at this step. The default value is determined by the hook.
|
163
|
+
See :ref:`extensions/logging:Automatic Logging` for details.
|
164
|
+
on_epoch: if ``True`` logs epoch accumulated metrics. The default value is determined by the hook.
|
165
|
+
See :ref:`extensions/logging:Automatic Logging` for details.
|
166
|
+
reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
|
167
|
+
enable_graph: if ``True``, will not auto detach the graph.
|
168
|
+
sync_dist: if ``True``, reduces the metric across devices. Use with care as this may lead to a significant
|
169
|
+
communication overhead.
|
170
|
+
sync_dist_group: the DDP group to sync across.
|
171
|
+
add_dataloader_idx: if ``True``, appends the index of the current dataloader to
|
172
|
+
the name (when using multiple dataloaders). If False, user needs to give unique names for
|
173
|
+
each dataloader to not mix the values.
|
174
|
+
batch_size: Current batch_size. This will be directly inferred from the loaded batch,
|
175
|
+
but for some data structures you might need to explicitly provide it.
|
176
|
+
metric_attribute: To restore the metric state, Lightning requires the reference of the
|
177
|
+
:class:`torchmetrics.Metric` in your model. This is found automatically if it is a model attribute.
|
178
|
+
rank_zero_only: Tells Lightning if you are calling ``self.log`` from every process (default) or only from
|
179
|
+
rank 0. If ``True``, you won't be able to use this metric as a monitor in callbacks
|
180
|
+
(e.g., early stopping). Warning: Improper use can lead to deadlocks! See
|
181
|
+
:ref:`Advanced Logging <visualize/logging_advanced:rank_zero_only>` for more details.
|
182
|
+
|
183
|
+
"""
|
156
184
|
# If logging is disabled, then do nothing.
|
157
185
|
if not self.logging_enabled:
|
158
186
|
return
|
159
187
|
|
160
|
-
|
161
|
-
|
188
|
+
prefix, fn_kwargs = self._make_prefix_and_kwargs_dict(
|
189
|
+
_LogContextKwargs(
|
190
|
+
prog_bar=prog_bar,
|
191
|
+
logger=logger,
|
192
|
+
on_step=on_step,
|
193
|
+
on_epoch=on_epoch,
|
194
|
+
reduce_fx=reduce_fx,
|
195
|
+
enable_graph=enable_graph,
|
196
|
+
sync_dist=sync_dist,
|
197
|
+
sync_dist_group=sync_dist_group,
|
198
|
+
add_dataloader_idx=add_dataloader_idx,
|
199
|
+
batch_size=batch_size,
|
200
|
+
rank_zero_only=rank_zero_only,
|
201
|
+
)
|
202
|
+
)
|
162
203
|
name = f"{prefix}{name}"
|
204
|
+
return super().log(name, value, metric_attribute=metric_attribute, **fn_kwargs)
|
163
205
|
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
206
|
+
def log_dict(
|
207
|
+
self,
|
208
|
+
dictionary: Mapping[str, _METRIC] | torchmetrics.MetricCollection,
|
209
|
+
prog_bar: bool | None = None,
|
210
|
+
logger: bool | None = None,
|
211
|
+
on_step: bool | None = None,
|
212
|
+
on_epoch: bool | None = None,
|
213
|
+
reduce_fx: str | Callable | None = None,
|
214
|
+
enable_graph: bool | None = None,
|
215
|
+
sync_dist: bool | None = None,
|
216
|
+
sync_dist_group: Any | None = None,
|
217
|
+
add_dataloader_idx: bool | None = None,
|
218
|
+
batch_size: int | None = None,
|
219
|
+
rank_zero_only: bool | None = None,
|
220
|
+
) -> None:
|
221
|
+
"""Log a dictionary of values at once.
|
222
|
+
|
223
|
+
Example::
|
224
|
+
|
225
|
+
values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n}
|
226
|
+
self.log_dict(values)
|
227
|
+
|
228
|
+
Args:
|
229
|
+
dictionary: key value pairs.
|
230
|
+
Keys must be identical across all processes if using DDP or any other distributed strategy.
|
231
|
+
The values can be a ``float``, ``Tensor``, ``Metric``, or ``MetricCollection``.
|
232
|
+
prog_bar: if ``True`` logs to the progress base.
|
233
|
+
logger: if ``True`` logs to the logger.
|
234
|
+
on_step: if ``True`` logs at this step.
|
235
|
+
``None`` auto-logs for training_step but not validation/test_step.
|
236
|
+
The default value is determined by the hook.
|
237
|
+
See :ref:`extensions/logging:Automatic Logging` for details.
|
238
|
+
on_epoch: if ``True`` logs epoch accumulated metrics.
|
239
|
+
``None`` auto-logs for val/test step but not ``training_step``.
|
240
|
+
The default value is determined by the hook.
|
241
|
+
See :ref:`extensions/logging:Automatic Logging` for details.
|
242
|
+
reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
|
243
|
+
enable_graph: if ``True``, will not auto-detach the graph
|
244
|
+
sync_dist: if ``True``, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant
|
245
|
+
communication overhead.
|
246
|
+
sync_dist_group: the ddp group to sync across.
|
247
|
+
add_dataloader_idx: if ``True``, appends the index of the current dataloader to
|
248
|
+
the name (when using multiple). If ``False``, user needs to give unique names for
|
249
|
+
each dataloader to not mix values.
|
250
|
+
batch_size: Current batch size. This will be directly inferred from the loaded batch,
|
251
|
+
but some data structures might need to explicitly provide it.
|
252
|
+
rank_zero_only: Tells Lightning if you are calling ``self.log`` from every process (default) or only from
|
253
|
+
rank 0. If ``True``, you won't be able to use this metric as a monitor in callbacks
|
254
|
+
(e.g., early stopping). Warning: Improper use can lead to deadlocks! See
|
255
|
+
:ref:`Advanced Logging <visualize/logging_advanced:rank_zero_only>` for more details.
|
256
|
+
|
257
|
+
"""
|
258
|
+
|
259
|
+
_, fn_kwargs = self._make_prefix_and_kwargs_dict(
|
168
260
|
_LogContextKwargs(
|
169
261
|
prog_bar=prog_bar,
|
170
262
|
logger=logger,
|
@@ -179,9 +271,5 @@ class LoggerLightningModuleMixin(mixin_base_type(LightningModule)):
|
|
179
271
|
rank_zero_only=rank_zero_only,
|
180
272
|
)
|
181
273
|
)
|
182
|
-
|
183
|
-
|
184
|
-
value,
|
185
|
-
metric_attribute=metric_attribute,
|
186
|
-
**fn_kwargs.to_dict(),
|
187
|
-
)
|
274
|
+
# NOTE: Prefix will be handled by the individual log calls.
|
275
|
+
return super().log_dict(dictionary, **fn_kwargs)
|
@@ -111,14 +111,14 @@ nshtrainer/loggers/wandb.py,sha256=KZXAUWrrmdX_L8rqej77oUHaM0JxZRM8y9z6JP9PISw,6
|
|
111
111
|
nshtrainer/lr_scheduler/__init__.py,sha256=daMMK3erUcNXGGd_nZB8AWu3ZTYqfS1RSWeK4FV2udw,851
|
112
112
|
nshtrainer/lr_scheduler/base.py,sha256=LE53JRBTuAlA1fqbMgCZ7m39D1z0rGj2TizhJ62CPvE,3756
|
113
113
|
nshtrainer/lr_scheduler/linear_warmup_cosine.py,sha256=MsoXgCcWTKsrkNZiGnKS6yC-slRuleuwFxeM_lmG_pQ,5560
|
114
|
-
nshtrainer/lr_scheduler/reduce_lr_on_plateau.py,sha256=
|
114
|
+
nshtrainer/lr_scheduler/reduce_lr_on_plateau.py,sha256=irPyDjfUX843ze4bJM9sW8WSeEcU643QJ30JN2hz9Rc,3206
|
115
115
|
nshtrainer/metrics/__init__.py,sha256=Nqkn_jsDf3n5WtfMcnaaEftYjIIT2b-S7rmsB1MOMkU,86
|
116
116
|
nshtrainer/metrics/_config.py,sha256=ox_ScK6V0J9nzIMhEB0qpToNKpt83VVgOVSRFCV-wBc,595
|
117
117
|
nshtrainer/model/__init__.py,sha256=3G-bwPPSRStWdsdwG9-rn0bXcRpEiP1BiQpF_qavtls,97
|
118
118
|
nshtrainer/model/base.py,sha256=bZMNap0rkxRbAbu2BOHV_6YS2iZZnvy6wVSMOXGa_ZM,8680
|
119
119
|
nshtrainer/model/mixins/callback.py,sha256=0LPgve4VszHbLipid4mpI1qnnmdGS2spivs0dXLvqHw,3154
|
120
120
|
nshtrainer/model/mixins/debug.py,sha256=ydLuAAaa7M5bX0gougZ5gWuZnvn4Ra9assal3IZ9hq8,2086
|
121
|
-
nshtrainer/model/mixins/logger.py,sha256=
|
121
|
+
nshtrainer/model/mixins/logger.py,sha256=7u9fQig-SVFA9RFIB4U0gqJAzruh49mgmXXvZ6VkDUk,11694
|
122
122
|
nshtrainer/nn/__init__.py,sha256=5Gg3nieGSC5_dXaI9KUVUUbM13hHexH9831m4hcf6no,1475
|
123
123
|
nshtrainer/nn/mlp.py,sha256=nYUgAISzuhC8sav6PloAdyz0PdEoikwppiXIuToEVdE,7550
|
124
124
|
nshtrainer/nn/module_dict.py,sha256=9plb8aQUx5TUEPhX5jI9u8LrpTeKe7jZAHi8iIqcN8w,2365
|
@@ -154,6 +154,6 @@ nshtrainer/util/seed.py,sha256=diMV8iwBKN7Xxt5pELmui-gyqyT80_CZzomrWhNss0k,316
|
|
154
154
|
nshtrainer/util/slurm.py,sha256=HflkP5iI_r4UHMyPjw9R4dD5AHsJUpcfJw5PLvGYBRM,1603
|
155
155
|
nshtrainer/util/typed.py,sha256=Xt5fUU6zwLKSTLUdenovnKK0N8qUq89Kddz2_XeykVQ,164
|
156
156
|
nshtrainer/util/typing_utils.py,sha256=MjY-CUX9R5Tzat-BlFnQjwl1PQ_W2yZQoXhkYHlJ_VA,442
|
157
|
-
nshtrainer-1.0.
|
158
|
-
nshtrainer-1.0.
|
159
|
-
nshtrainer-1.0.
|
157
|
+
nshtrainer-1.0.0b50.dist-info/METADATA,sha256=KgNg6AHzL9uCAc1tzfM0gbQl5Bu9QhQFFtecE75KIn0,988
|
158
|
+
nshtrainer-1.0.0b50.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
|
159
|
+
nshtrainer-1.0.0b50.dist-info/RECORD,,
|
File without changes
|