nshtrainer 1.0.0b47__py3-none-any.whl → 1.0.0b50__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -51,7 +51,7 @@ class BestCheckpointCallbackConfig(BaseCheckpointCallbackConfig):
51
51
  class BestCheckpointCallback(CheckpointBase[BestCheckpointCallbackConfig]):
52
52
  @property
53
53
  def _metric_name_normalized(self):
54
- return self.metric.name.replace("/", "_").replace(" ", "_").replace(".", "_")
54
+ return self.metric.monitor.replace("/", "_").replace(" ", "_").replace(".", "_")
55
55
 
56
56
  @override
57
57
  def __init__(
@@ -69,12 +69,12 @@ class BestCheckpointCallback(CheckpointBase[BestCheckpointCallbackConfig]):
69
69
 
70
70
  @override
71
71
  def default_filename(self):
72
- return f"epoch{{epoch}}-step{{step}}-{self._metric_name_normalized}{{{self.metric.validation_monitor}}}"
72
+ return f"epoch{{epoch}}-step{{step}}-{self._metric_name_normalized}{{{self.metric.monitor}}}"
73
73
 
74
74
  @override
75
75
  def topk_sort_key(self, metadata: CheckpointMetadata):
76
76
  return metadata.metrics.get(
77
- self.metric.validation_monitor,
77
+ self.metric.monitor,
78
78
  float("-inf" if self.metric.mode == "max" else "inf"),
79
79
  )
80
80
 
@@ -68,7 +68,7 @@ class EarlyStoppingCallback(_EarlyStopping):
68
68
  del config, metric
69
69
 
70
70
  super().__init__(
71
- monitor=self.metric.validation_monitor,
71
+ monitor=self.metric.monitor,
72
72
  mode=self.metric.mode,
73
73
  patience=self.config.patience,
74
74
  min_delta=self.config.min_delta,
@@ -55,14 +55,14 @@ class MetricValidationCallback(Callback):
55
55
  self.metrics = metrics
56
56
 
57
57
  def _check_metrics(self, trainer: Trainer):
58
- metric_names = ", ".join(metric.validation_monitor for metric in self.metrics)
58
+ metric_names = ", ".join(metric.monitor for metric in self.metrics)
59
59
  log.info(f"Validating metrics: {metric_names}...")
60
60
  logged_metrics = set(trainer.logged_metrics.keys())
61
61
 
62
62
  invalid_metrics: list[str] = []
63
63
  for metric in self.metrics:
64
- if metric.validation_monitor not in logged_metrics:
65
- invalid_metrics.append(metric.validation_monitor)
64
+ if metric.monitor not in logged_metrics:
65
+ invalid_metrics.append(metric.monitor)
66
66
 
67
67
  if invalid_metrics:
68
68
  msg = (
@@ -171,7 +171,7 @@ class CustomRLPImplementation(Protocol):
171
171
  __reduce_lr_on_plateau__: bool
172
172
 
173
173
 
174
- class _RLPSanityCheckModuleMixin(LightningModule):
174
+ class RLPSanityCheckModuleMixin(LightningModule):
175
175
  def reduce_lr_on_plateau_config(
176
176
  self,
177
177
  lr_scheduler: LRSchedulerTypeUnion | LRSchedulerConfigType,
@@ -11,13 +11,13 @@ from lightning.pytorch import LightningDataModule
11
11
  from typing_extensions import Never, TypeVar, deprecated, override
12
12
 
13
13
  from ..model.mixins.callback import CallbackRegistrarModuleMixin
14
- from ..model.mixins.debug import _DebugModuleMixin
14
+ from ..model.mixins.debug import DebugModuleMixin
15
15
 
16
16
  THparams = TypeVar("THparams", bound=C.Config, infer_variance=True)
17
17
 
18
18
 
19
19
  class LightningDataModuleBase(
20
- _DebugModuleMixin,
20
+ DebugModuleMixin,
21
21
  CallbackRegistrarModuleMixin,
22
22
  LightningDataModule,
23
23
  ABC,
@@ -2,7 +2,6 @@ from __future__ import annotations
2
2
 
3
3
  from typing import Annotated
4
4
 
5
- import nshconfig as C
6
5
  from typing_extensions import TypeAliasType
7
6
 
8
7
  from .actsave import ActSaveLoggerConfig as ActSaveLoggerConfig
@@ -7,6 +7,7 @@ from torch.optim.lr_scheduler import ReduceLROnPlateau
7
7
  from typing_extensions import final, override
8
8
 
9
9
  from ..metrics._config import MetricConfig
10
+ from ..util.config import EpochsConfig
10
11
  from .base import LRSchedulerConfigBase, LRSchedulerMetadata, lr_scheduler_registry
11
12
 
12
13
 
@@ -21,13 +22,13 @@ class ReduceLROnPlateauConfig(LRSchedulerConfigBase):
21
22
  """Metric to monitor.
22
23
  If not provided, the primary metric of the runner will be used."""
23
24
 
24
- patience: int
25
+ patience: int | EpochsConfig
25
26
  r"""Number of epochs with no improvement after which learning rate will be reduced."""
26
27
 
27
28
  factor: float
28
29
  r"""Factor by which the learning rate will be reduced. new_lr = lr * factor."""
29
30
 
30
- cooldown: int = 0
31
+ cooldown: int | EpochsConfig = 0
31
32
  r"""Number of epochs to wait before resuming normal operation after lr has been reduced."""
32
33
 
33
34
  min_lr: float | list[float] = 0.0
@@ -49,28 +50,34 @@ class ReduceLROnPlateauConfig(LRSchedulerConfigBase):
49
50
  if (metric := self.metric) is None:
50
51
  from ..trainer import Trainer
51
52
 
52
- assert isinstance(
53
- trainer := lightning_module.trainer, Trainer
54
- ), "The trainer must be a `nshtrainer.Trainer` instance."
53
+ assert isinstance(trainer := lightning_module.trainer, Trainer), (
54
+ "The trainer must be a `nshtrainer.Trainer` instance."
55
+ )
55
56
 
56
- assert (
57
- metric := trainer.hparams.primary_metric
58
- ) is not None, "Primary metric must be provided if metric is not specified."
57
+ assert (metric := trainer.hparams.primary_metric) is not None, (
58
+ "Primary metric must be provided if metric is not specified."
59
+ )
60
+
61
+ if isinstance(patience := self.patience, EpochsConfig):
62
+ patience = int(patience.value)
63
+
64
+ if isinstance(cooldown := self.cooldown, EpochsConfig):
65
+ cooldown = int(cooldown.value)
59
66
 
60
67
  lr_scheduler = ReduceLROnPlateau(
61
68
  optimizer,
62
69
  mode=metric.mode,
63
70
  factor=self.factor,
64
- patience=self.patience,
71
+ patience=patience,
65
72
  threshold=self.threshold,
66
73
  threshold_mode=self.threshold_mode,
67
- cooldown=self.cooldown,
74
+ cooldown=cooldown,
68
75
  min_lr=self.min_lr,
69
76
  eps=self.eps,
70
77
  )
71
78
  return {
72
79
  "scheduler": lr_scheduler,
73
- "monitor": metric.validation_monitor,
80
+ "monitor": metric.monitor,
74
81
  }
75
82
 
76
83
  @override
@@ -7,8 +7,8 @@ import nshconfig as C
7
7
 
8
8
 
9
9
  class MetricConfig(C.Config):
10
- name: str
11
- """The name of the primary metric."""
10
+ monitor: str
11
+ """The name of the metric to monitor."""
12
12
 
13
13
  mode: Literal["min", "max"]
14
14
  """
@@ -17,23 +17,6 @@ class MetricConfig(C.Config):
17
17
  - "max" for metrics that should be maximized (e.g., accuracy)
18
18
  """
19
19
 
20
- @property
21
- def validation_monitor(self) -> str:
22
- return f"val/{self.name}"
23
-
24
- def __post_init__(self):
25
- for split in ("train", "val", "test", "predict"):
26
- if self.name.startswith(f"{split}/"):
27
- raise ValueError(
28
- f"Primary metric name should not start with '{split}/'. "
29
- f"Just use '{self.name[len(split) + 1:]}' instead. "
30
- "The split name is automatically added depending on the context."
31
- )
32
-
33
- @classmethod
34
- def loss(cls, mode: Literal["min", "max"] = "min"):
35
- return cls(name="loss", mode=mode)
36
-
37
20
  @property
38
21
  def best(self):
39
22
  return builtins.min if self.mode == "min" else builtins.max
nshtrainer/model/base.py CHANGED
@@ -15,9 +15,9 @@ from lightning.pytorch.utilities.model_helpers import is_overridden
15
15
  from lightning.pytorch.utilities.rank_zero import rank_zero_warn
16
16
  from typing_extensions import Never, TypeVar, deprecated, override
17
17
 
18
- from ..callbacks.rlp_sanity_checks import _RLPSanityCheckModuleMixin
18
+ from ..callbacks.rlp_sanity_checks import RLPSanityCheckModuleMixin
19
19
  from .mixins.callback import CallbackModuleMixin
20
- from .mixins.debug import _DebugModuleMixin
20
+ from .mixins.debug import DebugModuleMixin
21
21
  from .mixins.logger import LoggerLightningModuleMixin
22
22
 
23
23
  log = logging.getLogger(__name__)
@@ -54,8 +54,8 @@ VALID_REDUCE_OPS = (
54
54
 
55
55
 
56
56
  class LightningModuleBase(
57
- _DebugModuleMixin,
58
- _RLPSanityCheckModuleMixin,
57
+ DebugModuleMixin,
58
+ RLPSanityCheckModuleMixin,
59
59
  LoggerLightningModuleMixin,
60
60
  CallbackModuleMixin,
61
61
  LightningModule,
@@ -28,7 +28,7 @@ def _trainer(module: Any):
28
28
  return trainer
29
29
 
30
30
 
31
- class _DebugModuleMixin:
31
+ class DebugModuleMixin:
32
32
  @property
33
33
  def nshtrainer_or_none(self):
34
34
  return _trainer(self)
@@ -1,16 +1,16 @@
1
1
  from __future__ import annotations
2
2
 
3
- import copy
4
3
  import dataclasses
5
4
  from collections import deque
6
- from collections.abc import Callable, Generator
5
+ from collections.abc import Callable, Generator, Mapping
7
6
  from contextlib import contextmanager
8
7
  from typing import Any, ClassVar
9
8
 
9
+ import torchmetrics
10
10
  from lightning.pytorch import LightningModule
11
11
  from lightning.pytorch.utilities.types import _METRIC
12
12
  from lightning_utilities.core.rank_zero import rank_zero_warn
13
- from typing_extensions import Self, override
13
+ from typing_extensions import override
14
14
 
15
15
  from ...util.typing_utils import mixin_base_type
16
16
 
@@ -33,27 +33,16 @@ class _LogContextKwargs:
33
33
  batch_size: int | None = None
34
34
  rank_zero_only: bool | None = None
35
35
 
36
- def copy_from(self, other: Self):
37
- kwargs = copy.deepcopy(self)
38
-
39
- # Copy over all the not-None values from the other object
40
- updates = {}
41
- for field in dataclasses.fields(self):
42
- # Ignore disabled fields
43
- if field.name in self.__ignore_fields__:
44
- continue
45
-
46
- if (value := getattr(other, field.name, None)) is None:
47
- continue
48
- # setattr(kwargs, field.name, value)
49
- updates[field.name] = value
50
-
51
- return dataclasses.replace(kwargs, **updates)
52
-
53
36
  def to_dict(self):
54
37
  d = dataclasses.asdict(self)
55
38
  for field in self.__ignore_fields__:
56
39
  d.pop(field, None)
40
+
41
+ # Pop all None values
42
+ for k in list(d.keys()):
43
+ if d[k] is None:
44
+ d.pop(k)
45
+
57
46
  return d
58
47
 
59
48
 
@@ -129,36 +118,145 @@ class LoggerLightningModuleMixin(mixin_base_type(LightningModule)):
129
118
  finally:
130
119
  _ = self._logger_prefix_stack.pop()
131
120
 
121
+ def _make_prefix_and_kwargs_dict(self, kwargs: _LogContextKwargs):
122
+ prefix = "".join(c.prefix for c in self._logger_prefix_stack if c.prefix)
123
+
124
+ fn_kwargs: dict[str, Any] = {}
125
+ for c in self._logger_prefix_stack:
126
+ fn_kwargs.update(c.to_dict())
127
+
128
+ fn_kwargs.update(kwargs.to_dict())
129
+ return prefix, fn_kwargs
130
+
132
131
  @override
133
132
  def log(
134
133
  self,
135
134
  name: str,
136
135
  value: _METRIC,
137
- prog_bar: bool = False,
136
+ prog_bar: bool | None = None,
138
137
  logger: bool | None = None,
139
138
  on_step: bool | None = None,
140
139
  on_epoch: bool | None = None,
141
- reduce_fx: str | Callable = "mean",
142
- enable_graph: bool = False,
143
- sync_dist: bool = False,
140
+ reduce_fx: str | Callable | None = None,
141
+ enable_graph: bool | None = None,
142
+ sync_dist: bool | None = None,
144
143
  sync_dist_group: Any | None = None,
145
- add_dataloader_idx: bool = True,
144
+ add_dataloader_idx: bool | None = None,
146
145
  batch_size: int | None = None,
147
146
  metric_attribute: str | None = None,
148
- rank_zero_only: bool = False,
147
+ rank_zero_only: bool | None = None,
149
148
  ) -> None:
149
+ """Log a key, value pair.
150
+
151
+ Example::
152
+
153
+ self.log('train_loss', loss)
154
+
155
+ The default behavior per hook is documented here: :ref:`extensions/logging:Automatic Logging`.
156
+
157
+ Args:
158
+ name: key to log. Must be identical across all processes if using DDP or any other distributed strategy.
159
+ value: value to log. Can be a ``float``, ``Tensor``, or a ``Metric``.
160
+ prog_bar: if ``True`` logs to the progress bar.
161
+ logger: if ``True`` logs to the logger.
162
+ on_step: if ``True`` logs at this step. The default value is determined by the hook.
163
+ See :ref:`extensions/logging:Automatic Logging` for details.
164
+ on_epoch: if ``True`` logs epoch accumulated metrics. The default value is determined by the hook.
165
+ See :ref:`extensions/logging:Automatic Logging` for details.
166
+ reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
167
+ enable_graph: if ``True``, will not auto detach the graph.
168
+ sync_dist: if ``True``, reduces the metric across devices. Use with care as this may lead to a significant
169
+ communication overhead.
170
+ sync_dist_group: the DDP group to sync across.
171
+ add_dataloader_idx: if ``True``, appends the index of the current dataloader to
172
+ the name (when using multiple dataloaders). If False, user needs to give unique names for
173
+ each dataloader to not mix the values.
174
+ batch_size: Current batch_size. This will be directly inferred from the loaded batch,
175
+ but for some data structures you might need to explicitly provide it.
176
+ metric_attribute: To restore the metric state, Lightning requires the reference of the
177
+ :class:`torchmetrics.Metric` in your model. This is found automatically if it is a model attribute.
178
+ rank_zero_only: Tells Lightning if you are calling ``self.log`` from every process (default) or only from
179
+ rank 0. If ``True``, you won't be able to use this metric as a monitor in callbacks
180
+ (e.g., early stopping). Warning: Improper use can lead to deadlocks! See
181
+ :ref:`Advanced Logging <visualize/logging_advanced:rank_zero_only>` for more details.
182
+
183
+ """
150
184
  # If logging is disabled, then do nothing.
151
185
  if not self.logging_enabled:
152
186
  return
153
187
 
154
- # join all prefixes
155
- prefix = "".join(c.prefix for c in self._logger_prefix_stack if c.prefix)
188
+ prefix, fn_kwargs = self._make_prefix_and_kwargs_dict(
189
+ _LogContextKwargs(
190
+ prog_bar=prog_bar,
191
+ logger=logger,
192
+ on_step=on_step,
193
+ on_epoch=on_epoch,
194
+ reduce_fx=reduce_fx,
195
+ enable_graph=enable_graph,
196
+ sync_dist=sync_dist,
197
+ sync_dist_group=sync_dist_group,
198
+ add_dataloader_idx=add_dataloader_idx,
199
+ batch_size=batch_size,
200
+ rank_zero_only=rank_zero_only,
201
+ )
202
+ )
156
203
  name = f"{prefix}{name}"
204
+ return super().log(name, value, metric_attribute=metric_attribute, **fn_kwargs)
157
205
 
158
- fn_kwargs = _LogContextKwargs()
159
- for c in self._logger_prefix_stack:
160
- fn_kwargs = fn_kwargs.copy_from(c)
161
- fn_kwargs = fn_kwargs.copy_from(
206
+ def log_dict(
207
+ self,
208
+ dictionary: Mapping[str, _METRIC] | torchmetrics.MetricCollection,
209
+ prog_bar: bool | None = None,
210
+ logger: bool | None = None,
211
+ on_step: bool | None = None,
212
+ on_epoch: bool | None = None,
213
+ reduce_fx: str | Callable | None = None,
214
+ enable_graph: bool | None = None,
215
+ sync_dist: bool | None = None,
216
+ sync_dist_group: Any | None = None,
217
+ add_dataloader_idx: bool | None = None,
218
+ batch_size: int | None = None,
219
+ rank_zero_only: bool | None = None,
220
+ ) -> None:
221
+ """Log a dictionary of values at once.
222
+
223
+ Example::
224
+
225
+ values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n}
226
+ self.log_dict(values)
227
+
228
+ Args:
229
+ dictionary: key value pairs.
230
+ Keys must be identical across all processes if using DDP or any other distributed strategy.
231
+ The values can be a ``float``, ``Tensor``, ``Metric``, or ``MetricCollection``.
232
+ prog_bar: if ``True`` logs to the progress base.
233
+ logger: if ``True`` logs to the logger.
234
+ on_step: if ``True`` logs at this step.
235
+ ``None`` auto-logs for training_step but not validation/test_step.
236
+ The default value is determined by the hook.
237
+ See :ref:`extensions/logging:Automatic Logging` for details.
238
+ on_epoch: if ``True`` logs epoch accumulated metrics.
239
+ ``None`` auto-logs for val/test step but not ``training_step``.
240
+ The default value is determined by the hook.
241
+ See :ref:`extensions/logging:Automatic Logging` for details.
242
+ reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
243
+ enable_graph: if ``True``, will not auto-detach the graph
244
+ sync_dist: if ``True``, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant
245
+ communication overhead.
246
+ sync_dist_group: the ddp group to sync across.
247
+ add_dataloader_idx: if ``True``, appends the index of the current dataloader to
248
+ the name (when using multiple). If ``False``, user needs to give unique names for
249
+ each dataloader to not mix values.
250
+ batch_size: Current batch size. This will be directly inferred from the loaded batch,
251
+ but some data structures might need to explicitly provide it.
252
+ rank_zero_only: Tells Lightning if you are calling ``self.log`` from every process (default) or only from
253
+ rank 0. If ``True``, you won't be able to use this metric as a monitor in callbacks
254
+ (e.g., early stopping). Warning: Improper use can lead to deadlocks! See
255
+ :ref:`Advanced Logging <visualize/logging_advanced:rank_zero_only>` for more details.
256
+
257
+ """
258
+
259
+ _, fn_kwargs = self._make_prefix_and_kwargs_dict(
162
260
  _LogContextKwargs(
163
261
  prog_bar=prog_bar,
164
262
  logger=logger,
@@ -173,9 +271,5 @@ class LoggerLightningModuleMixin(mixin_base_type(LightningModule)):
173
271
  rank_zero_only=rank_zero_only,
174
272
  )
175
273
  )
176
- return super().log(
177
- name,
178
- value,
179
- metric_attribute=metric_attribute,
180
- **fn_kwargs.to_dict(),
181
- )
274
+ # NOTE: Prefix will be handled by the individual log calls.
275
+ return super().log_dict(dictionary, **fn_kwargs)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: nshtrainer
3
- Version: 1.0.0b47
3
+ Version: 1.0.0b50
4
4
  Summary:
5
5
  Author: Nima Shoghi
6
6
  Author-email: nimashoghi@gmail.com
@@ -11,22 +11,22 @@ nshtrainer/callbacks/actsave.py,sha256=NSXIIu62MNYe5gz479SMW33bdoKYoYtWtd_iTWFpK
11
11
  nshtrainer/callbacks/base.py,sha256=Alaou1IHAIlMEM7g58d_02ozY2xWlshBN7fsw5Ee21s,3683
12
12
  nshtrainer/callbacks/checkpoint/__init__.py,sha256=l8tkHc83_mLiU0-wT09SWdRzwpm2ulbkLzcuCmuTwzE,620
13
13
  nshtrainer/callbacks/checkpoint/_base.py,sha256=f7lpk8W4xqxk3PolBEU3AWt9VTIpoLW7wMUhC5DNm3c,6345
14
- nshtrainer/callbacks/checkpoint/best_checkpoint.py,sha256=2CQuhPJ3Fi7lDw7z-J8kXXXuDU8-4HcU48oZxR49apk,2667
14
+ nshtrainer/callbacks/checkpoint/best_checkpoint.py,sha256=aCs3E1eucfDlUeW2Iq_Ke7hb96BxHanmvn7PCCbqq0E,2648
15
15
  nshtrainer/callbacks/checkpoint/last_checkpoint.py,sha256=vn-as3ex7kaTRcKsIurVtM6kUSHYNwHJeYG82j2dMcc,3554
16
16
  nshtrainer/callbacks/checkpoint/on_exception_checkpoint.py,sha256=nljzETqkHwA-4g8mxaeFK5HxA8My0dlIPzIUscSMWyk,3525
17
17
  nshtrainer/callbacks/debug_flag.py,sha256=96fuP0C7C6dSs1GiMeUYzzs0X3Q4Pjt9JVWg3b75fU4,1748
18
18
  nshtrainer/callbacks/directory_setup.py,sha256=wPas_Ren8ANejogmIdKhqqgj4ulxz9AS_8xVIAfRXa0,2565
19
- nshtrainer/callbacks/early_stopping.py,sha256=EjzN-gD_Xd4YHZLkXsbi00g_4ti3RTMJEdHJ8GMeaFM,4776
19
+ nshtrainer/callbacks/early_stopping.py,sha256=rC_qYKCQWjRQJFo0ky46uG0aDJdYP8vsSlKunk0bUVI,4765
20
20
  nshtrainer/callbacks/ema.py,sha256=dBFiUXG0xmyCw8-ayuSzJMKqSbepl6Ii5VIbhFlT5ug,12255
21
21
  nshtrainer/callbacks/finite_checks.py,sha256=3lZ3kEIjmYQfqTF0DcrgZ9_98ZLQhQj8usH7SgWst3o,2185
22
22
  nshtrainer/callbacks/gradient_skipping.py,sha256=8g7oC7PF0LTAEzwiNoaS5tWOnkjk_EB0QG3JdHkQ8ek,3523
23
23
  nshtrainer/callbacks/interval.py,sha256=UCzUzt3XCFVyQyCWL9lOrStkkxesvduNOYk8yMrGTTk,8116
24
24
  nshtrainer/callbacks/log_epoch.py,sha256=B5Dm8XVZwCzKUhUWfT_5PDdDac993191OsbcxxuSVJE,1457
25
25
  nshtrainer/callbacks/lr_monitor.py,sha256=qy_C0R40J0hBAukzBwng5FI2jJUpWuXOi5N6FU6ym3I,1210
26
- nshtrainer/callbacks/metric_validation.py,sha256=tqUVS2n9QRT3v1_8jAGlYBFhLpA6Bm9pxOsfWhD3yZQ,2915
26
+ nshtrainer/callbacks/metric_validation.py,sha256=4RDr1FuNKfro-6QEtmcFqT4iNf2twmJVNk9y-8nq9bg,2882
27
27
  nshtrainer/callbacks/norm_logging.py,sha256=nVIDWe-ASl5zN830-ODR8QMCqI1ma-QPCIwoy0Wb-Nk,6390
28
28
  nshtrainer/callbacks/print_table.py,sha256=VaS4JgI963do79laXK4lUkFQx8v6aRSy22W0zyal_LA,3035
29
- nshtrainer/callbacks/rlp_sanity_checks.py,sha256=74BZvV2HLO__ucQXsLXb8eJLUZgRFUNJZ6TL9efMp74,10051
29
+ nshtrainer/callbacks/rlp_sanity_checks.py,sha256=Df9Prq2QKXnaeMBIvMQBhDhJTDeru5UbiuXJOJR16Gk,10050
30
30
  nshtrainer/callbacks/shared_parameters.py,sha256=s94jJTAIbDGukYJu6l247QonVOCudGClU4t5kLt8XrY,3076
31
31
  nshtrainer/callbacks/timer.py,sha256=gDcw_K_ikf0bkVgxQ0cDhvvNvz6GLZVLcatuKfh0ORU,4731
32
32
  nshtrainer/callbacks/wandb_upload_code.py,sha256=shV7UtnXgY2bUlXdVrXiaDs0PNLlIt7TzNJkJPkzvzI,2414
@@ -100,9 +100,9 @@ nshtrainer/configs/util/config/dtype/__init__.py,sha256=PmGF-O4r6SXqEaagVsQ5YxEq
100
100
  nshtrainer/configs/util/config/duration/__init__.py,sha256=44lS2irOIPVfgshMTfnZM2jC6l0Pjst9w2M_lJoS_MU,353
101
101
  nshtrainer/data/__init__.py,sha256=K4i3Tw4g9EOK2zlMMbidi99y0SyI4w8P7_XUf1n42Ts,260
102
102
  nshtrainer/data/balanced_batch_sampler.py,sha256=r1cBKRXKHD8E1Ax6tj-FUbE-z1qpbO58mQ9VrK9uLnc,5481
103
- nshtrainer/data/datamodule.py,sha256=lSOgH32nysJWa6Y7ba1QyOdUV0DVVdO98qokP8wigjk,4138
103
+ nshtrainer/data/datamodule.py,sha256=0M-HjGZQkLG77HXn4ZgLSypnbSjkjTq6GEJwGWe_gbM,4136
104
104
  nshtrainer/data/transform.py,sha256=qd0lIocO59Fk_m90xyOHgFezbymd1mRwly8nbYIfHGc,2263
105
- nshtrainer/loggers/__init__.py,sha256=Ddd3JJXVzew_ZpwHA9kGnGmvq4OwhItwghDL5PzNhDc,614
105
+ nshtrainer/loggers/__init__.py,sha256=fI0OHEltHP4tZI-KFB3npdzoxm_M2QsEYKxY3um05_s,592
106
106
  nshtrainer/loggers/actsave.py,sha256=wgNrpBB6wQM7qff8iLDb_sQnbiAcYHRmH56pcEJPB3o,1409
107
107
  nshtrainer/loggers/base.py,sha256=ON92XbwTSgadQOSyw5PiRRFzyH6uJ-xLtE0nB3cbgPc,1205
108
108
  nshtrainer/loggers/csv.py,sha256=xJ8mSmw4vJwinIfqhF6t2HWmh_1dXEYyLfGuXwL7WHo,1160
@@ -111,14 +111,14 @@ nshtrainer/loggers/wandb.py,sha256=KZXAUWrrmdX_L8rqej77oUHaM0JxZRM8y9z6JP9PISw,6
111
111
  nshtrainer/lr_scheduler/__init__.py,sha256=daMMK3erUcNXGGd_nZB8AWu3ZTYqfS1RSWeK4FV2udw,851
112
112
  nshtrainer/lr_scheduler/base.py,sha256=LE53JRBTuAlA1fqbMgCZ7m39D1z0rGj2TizhJ62CPvE,3756
113
113
  nshtrainer/lr_scheduler/linear_warmup_cosine.py,sha256=MsoXgCcWTKsrkNZiGnKS6yC-slRuleuwFxeM_lmG_pQ,5560
114
- nshtrainer/lr_scheduler/reduce_lr_on_plateau.py,sha256=v9T0GpvOoHV30atFB0MwExHgHcTpMCYxbMRoPjPBjt8,2938
114
+ nshtrainer/lr_scheduler/reduce_lr_on_plateau.py,sha256=irPyDjfUX843ze4bJM9sW8WSeEcU643QJ30JN2hz9Rc,3206
115
115
  nshtrainer/metrics/__init__.py,sha256=Nqkn_jsDf3n5WtfMcnaaEftYjIIT2b-S7rmsB1MOMkU,86
116
- nshtrainer/metrics/_config.py,sha256=XIRokFM8PHrhBa3w2R6BM6a4es3ncsoBqE_LqXQFsFE,1223
116
+ nshtrainer/metrics/_config.py,sha256=ox_ScK6V0J9nzIMhEB0qpToNKpt83VVgOVSRFCV-wBc,595
117
117
  nshtrainer/model/__init__.py,sha256=3G-bwPPSRStWdsdwG9-rn0bXcRpEiP1BiQpF_qavtls,97
118
- nshtrainer/model/base.py,sha256=q1IMVG3lHvI84x-8hXmiLNJN_NplY_q9W5u6D2rrmVY,8684
118
+ nshtrainer/model/base.py,sha256=bZMNap0rkxRbAbu2BOHV_6YS2iZZnvy6wVSMOXGa_ZM,8680
119
119
  nshtrainer/model/mixins/callback.py,sha256=0LPgve4VszHbLipid4mpI1qnnmdGS2spivs0dXLvqHw,3154
120
- nshtrainer/model/mixins/debug.py,sha256=1LX9KzeFX9JDPs_a6YCdYDZXLhEk_5rBO2aCqlfBy7w,2087
121
- nshtrainer/model/mixins/logger.py,sha256=27H99FuLaxc6_dDLG2pid4E_5E0-eLGnc2Ifpt0HYIM,6066
120
+ nshtrainer/model/mixins/debug.py,sha256=ydLuAAaa7M5bX0gougZ5gWuZnvn4Ra9assal3IZ9hq8,2086
121
+ nshtrainer/model/mixins/logger.py,sha256=7u9fQig-SVFA9RFIB4U0gqJAzruh49mgmXXvZ6VkDUk,11694
122
122
  nshtrainer/nn/__init__.py,sha256=5Gg3nieGSC5_dXaI9KUVUUbM13hHexH9831m4hcf6no,1475
123
123
  nshtrainer/nn/mlp.py,sha256=nYUgAISzuhC8sav6PloAdyz0PdEoikwppiXIuToEVdE,7550
124
124
  nshtrainer/nn/module_dict.py,sha256=9plb8aQUx5TUEPhX5jI9u8LrpTeKe7jZAHi8iIqcN8w,2365
@@ -154,6 +154,6 @@ nshtrainer/util/seed.py,sha256=diMV8iwBKN7Xxt5pELmui-gyqyT80_CZzomrWhNss0k,316
154
154
  nshtrainer/util/slurm.py,sha256=HflkP5iI_r4UHMyPjw9R4dD5AHsJUpcfJw5PLvGYBRM,1603
155
155
  nshtrainer/util/typed.py,sha256=Xt5fUU6zwLKSTLUdenovnKK0N8qUq89Kddz2_XeykVQ,164
156
156
  nshtrainer/util/typing_utils.py,sha256=MjY-CUX9R5Tzat-BlFnQjwl1PQ_W2yZQoXhkYHlJ_VA,442
157
- nshtrainer-1.0.0b47.dist-info/METADATA,sha256=E7d5EfVnqLgmFPuh_D_VWERKQrA5tjePktx1vujkSs8,988
158
- nshtrainer-1.0.0b47.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
159
- nshtrainer-1.0.0b47.dist-info/RECORD,,
157
+ nshtrainer-1.0.0b50.dist-info/METADATA,sha256=KgNg6AHzL9uCAc1tzfM0gbQl5Bu9QhQFFtecE75KIn0,988
158
+ nshtrainer-1.0.0b50.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
159
+ nshtrainer-1.0.0b50.dist-info/RECORD,,