nrtk-albumentations 2.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nrtk-albumentations might be problematic. Click here for more details.
- albumentations/__init__.py +21 -0
- albumentations/augmentations/__init__.py +23 -0
- albumentations/augmentations/blur/__init__.py +0 -0
- albumentations/augmentations/blur/functional.py +438 -0
- albumentations/augmentations/blur/transforms.py +1633 -0
- albumentations/augmentations/crops/__init__.py +0 -0
- albumentations/augmentations/crops/functional.py +494 -0
- albumentations/augmentations/crops/transforms.py +3647 -0
- albumentations/augmentations/dropout/__init__.py +0 -0
- albumentations/augmentations/dropout/channel_dropout.py +134 -0
- albumentations/augmentations/dropout/coarse_dropout.py +567 -0
- albumentations/augmentations/dropout/functional.py +1017 -0
- albumentations/augmentations/dropout/grid_dropout.py +166 -0
- albumentations/augmentations/dropout/mask_dropout.py +274 -0
- albumentations/augmentations/dropout/transforms.py +461 -0
- albumentations/augmentations/dropout/xy_masking.py +186 -0
- albumentations/augmentations/geometric/__init__.py +0 -0
- albumentations/augmentations/geometric/distortion.py +1238 -0
- albumentations/augmentations/geometric/flip.py +752 -0
- albumentations/augmentations/geometric/functional.py +4151 -0
- albumentations/augmentations/geometric/pad.py +676 -0
- albumentations/augmentations/geometric/resize.py +956 -0
- albumentations/augmentations/geometric/rotate.py +864 -0
- albumentations/augmentations/geometric/transforms.py +1962 -0
- albumentations/augmentations/mixing/__init__.py +0 -0
- albumentations/augmentations/mixing/domain_adaptation.py +787 -0
- albumentations/augmentations/mixing/domain_adaptation_functional.py +453 -0
- albumentations/augmentations/mixing/functional.py +878 -0
- albumentations/augmentations/mixing/transforms.py +832 -0
- albumentations/augmentations/other/__init__.py +0 -0
- albumentations/augmentations/other/lambda_transform.py +180 -0
- albumentations/augmentations/other/type_transform.py +261 -0
- albumentations/augmentations/pixel/__init__.py +0 -0
- albumentations/augmentations/pixel/functional.py +4226 -0
- albumentations/augmentations/pixel/transforms.py +7556 -0
- albumentations/augmentations/spectrogram/__init__.py +0 -0
- albumentations/augmentations/spectrogram/transform.py +220 -0
- albumentations/augmentations/text/__init__.py +0 -0
- albumentations/augmentations/text/functional.py +272 -0
- albumentations/augmentations/text/transforms.py +299 -0
- albumentations/augmentations/transforms3d/__init__.py +0 -0
- albumentations/augmentations/transforms3d/functional.py +393 -0
- albumentations/augmentations/transforms3d/transforms.py +1422 -0
- albumentations/augmentations/utils.py +249 -0
- albumentations/core/__init__.py +0 -0
- albumentations/core/bbox_utils.py +920 -0
- albumentations/core/composition.py +1885 -0
- albumentations/core/hub_mixin.py +299 -0
- albumentations/core/keypoints_utils.py +521 -0
- albumentations/core/label_manager.py +339 -0
- albumentations/core/pydantic.py +239 -0
- albumentations/core/serialization.py +352 -0
- albumentations/core/transforms_interface.py +976 -0
- albumentations/core/type_definitions.py +127 -0
- albumentations/core/utils.py +605 -0
- albumentations/core/validation.py +129 -0
- albumentations/pytorch/__init__.py +1 -0
- albumentations/pytorch/transforms.py +189 -0
- nrtk_albumentations-2.1.0.dist-info/METADATA +196 -0
- nrtk_albumentations-2.1.0.dist-info/RECORD +62 -0
- nrtk_albumentations-2.1.0.dist-info/WHEEL +4 -0
- nrtk_albumentations-2.1.0.dist-info/licenses/LICENSE +21 -0
|
@@ -0,0 +1,787 @@
|
|
|
1
|
+
"""Domain adaptation transforms for image augmentation.
|
|
2
|
+
|
|
3
|
+
This module provides transformations designed to bridge the domain gap between
|
|
4
|
+
datasets by adapting the style of an input image to match that of reference images
|
|
5
|
+
from a target domain. Adaptations are based on matching statistical properties
|
|
6
|
+
like histograms, frequency spectra, or overall pixel distributions.
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
from __future__ import annotations
|
|
10
|
+
|
|
11
|
+
import warnings
|
|
12
|
+
from collections.abc import Sequence
|
|
13
|
+
from typing import Annotated, Any, Callable, Literal, cast
|
|
14
|
+
|
|
15
|
+
import cv2
|
|
16
|
+
import numpy as np
|
|
17
|
+
from pydantic import AfterValidator, field_validator, model_validator
|
|
18
|
+
from typing_extensions import Self
|
|
19
|
+
|
|
20
|
+
from albumentations.augmentations.mixing.domain_adaptation_functional import (
|
|
21
|
+
adapt_pixel_distribution,
|
|
22
|
+
apply_histogram,
|
|
23
|
+
fourier_domain_adaptation,
|
|
24
|
+
)
|
|
25
|
+
from albumentations.augmentations.utils import read_rgb_image
|
|
26
|
+
from albumentations.core.pydantic import ZeroOneRangeType, check_range_bounds, nondecreasing
|
|
27
|
+
from albumentations.core.transforms_interface import BaseTransformInitSchema, ImageOnlyTransform
|
|
28
|
+
|
|
29
|
+
__all__ = [
|
|
30
|
+
"FDA",
|
|
31
|
+
"HistogramMatching",
|
|
32
|
+
"PixelDistributionAdaptation",
|
|
33
|
+
]
|
|
34
|
+
|
|
35
|
+
MAX_BETA_LIMIT = 0.5
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
# Base class for Domain Adaptation Init Schema
|
|
39
|
+
class BaseDomainAdaptationInitSchema(BaseTransformInitSchema):
|
|
40
|
+
reference_images: Sequence[Any] | None
|
|
41
|
+
read_fn: Callable[[Any], np.ndarray] | None
|
|
42
|
+
metadata_key: str
|
|
43
|
+
|
|
44
|
+
@model_validator(mode="after")
|
|
45
|
+
def _check_deprecated_args(self) -> Self:
|
|
46
|
+
if self.reference_images is not None:
|
|
47
|
+
warnings.warn(
|
|
48
|
+
"'reference_images' and 'read_fn' arguments are deprecated. "
|
|
49
|
+
"Please pass pre-loaded reference images "
|
|
50
|
+
f"using the '{self.metadata_key}' key in the input data dictionary.",
|
|
51
|
+
DeprecationWarning,
|
|
52
|
+
stacklevel=3, # Adjust stacklevel as needed
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
if self.read_fn is None:
|
|
56
|
+
msg = "read_fn cannot be None when using the deprecated 'reference_images' argument."
|
|
57
|
+
raise ValueError(msg)
|
|
58
|
+
|
|
59
|
+
return self
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class BaseDomainAdaptation(ImageOnlyTransform):
|
|
63
|
+
"""Base class for domain adaptation transforms.
|
|
64
|
+
|
|
65
|
+
Domain adaptation transforms modify source images to match the characteristics of a target domain.
|
|
66
|
+
These transforms typically require an additional reference image or dataset from the target domain
|
|
67
|
+
to extract style information or domain-specific features.
|
|
68
|
+
|
|
69
|
+
This base class provides the framework for implementing various domain adaptation techniques such as
|
|
70
|
+
color transfer, style transfer, frequency domain adaptation, or histogram matching.
|
|
71
|
+
|
|
72
|
+
Args:
|
|
73
|
+
reference_images (Sequence[Any] | None): Deprecated. Sequence of references to images from the target
|
|
74
|
+
domain. Should be used with read_fn to load actual images. Prefer passing pre-loaded images via
|
|
75
|
+
metadata_key.
|
|
76
|
+
read_fn (Callable[[Any], np.ndarray] | None): Deprecated. Function to read an image from a reference.
|
|
77
|
+
Should be used with reference_images.
|
|
78
|
+
metadata_key (str): Key in the input data dictionary that contains pre-loaded target domain images.
|
|
79
|
+
p (float): Probability of applying the transform. Default: 0.5.
|
|
80
|
+
|
|
81
|
+
Targets:
|
|
82
|
+
image
|
|
83
|
+
|
|
84
|
+
Image types:
|
|
85
|
+
uint8, float32
|
|
86
|
+
|
|
87
|
+
Notes:
|
|
88
|
+
- Subclasses should implement the `apply` method to perform the actual adaptation.
|
|
89
|
+
- Use `targets_as_params` property to define what additional data your transform needs.
|
|
90
|
+
- Override `get_params_dependent_on_data` to extract the target domain data.
|
|
91
|
+
- Domain adaptation often requires per-sample auxiliary data, which should be passed
|
|
92
|
+
through the main data dictionary rather than at initialization time.
|
|
93
|
+
|
|
94
|
+
Examples:
|
|
95
|
+
>>> import numpy as np
|
|
96
|
+
>>> import albumentations as A
|
|
97
|
+
>>> import cv2
|
|
98
|
+
>>>
|
|
99
|
+
>>> # Implement a simple color transfer domain adaptation transform
|
|
100
|
+
>>> class SimpleColorTransfer(A.BaseDomainAdaptation):
|
|
101
|
+
... class InitSchema(A.BaseTransformInitSchema):
|
|
102
|
+
... intensity: float = Field(gt=0, le=1)
|
|
103
|
+
... reference_key: str
|
|
104
|
+
...
|
|
105
|
+
... def __init__(
|
|
106
|
+
... self,
|
|
107
|
+
... intensity: float = 0.5,
|
|
108
|
+
... reference_key: str = "target_image",
|
|
109
|
+
... p: float = 1.0
|
|
110
|
+
... ):
|
|
111
|
+
... super().__init__(p=p)
|
|
112
|
+
... self.intensity = intensity
|
|
113
|
+
... self.reference_key = reference_key
|
|
114
|
+
...
|
|
115
|
+
... @property
|
|
116
|
+
... def targets_as_params(self) -> list[str]:
|
|
117
|
+
... return [self.reference_key] # We need target domain image
|
|
118
|
+
...
|
|
119
|
+
... def get_params_dependent_on_data(
|
|
120
|
+
... self,
|
|
121
|
+
... params: dict[str, Any],
|
|
122
|
+
... data: dict[str, Any]
|
|
123
|
+
... ) -> dict[str, Any]:
|
|
124
|
+
... target_image = data.get(self.reference_key)
|
|
125
|
+
... if target_image is None:
|
|
126
|
+
... # Fallback if target image is not provided
|
|
127
|
+
... return {"target_image": None}
|
|
128
|
+
... return {"target_image": target_image}
|
|
129
|
+
...
|
|
130
|
+
... def apply(
|
|
131
|
+
... self,
|
|
132
|
+
... img: np.ndarray,
|
|
133
|
+
... target_image: np.ndarray = None,
|
|
134
|
+
... **params
|
|
135
|
+
... ) -> np.ndarray:
|
|
136
|
+
... if target_image is None:
|
|
137
|
+
... return img
|
|
138
|
+
...
|
|
139
|
+
... # Simple color transfer implementation
|
|
140
|
+
... # Calculate mean and std of source and target images
|
|
141
|
+
... src_mean = np.mean(img, axis=(0, 1))
|
|
142
|
+
... src_std = np.std(img, axis=(0, 1))
|
|
143
|
+
... tgt_mean = np.mean(target_image, axis=(0, 1))
|
|
144
|
+
... tgt_std = np.std(target_image, axis=(0, 1))
|
|
145
|
+
...
|
|
146
|
+
... # Normalize source image
|
|
147
|
+
... normalized = (img - src_mean) / (src_std + 1e-7)
|
|
148
|
+
...
|
|
149
|
+
... # Scale by target statistics and blend with original
|
|
150
|
+
... transformed = normalized * tgt_std + tgt_mean
|
|
151
|
+
... transformed = np.clip(transformed, 0, 255).astype(np.uint8)
|
|
152
|
+
...
|
|
153
|
+
... # Blend the result based on intensity
|
|
154
|
+
... result = cv2.addWeighted(img, 1 - self.intensity, transformed, self.intensity, 0)
|
|
155
|
+
... return result
|
|
156
|
+
>>>
|
|
157
|
+
>>> # Usage example with a target image from a different domain
|
|
158
|
+
>>> source_image = np.random.randint(0, 256, (100, 100, 3), dtype=np.uint8)
|
|
159
|
+
>>> target_image = np.random.randint(100, 200, (200, 200, 3), dtype=np.uint8) # Different domain image
|
|
160
|
+
>>>
|
|
161
|
+
>>> # Create the transform with the pipeline
|
|
162
|
+
>>> transform = A.Compose([
|
|
163
|
+
... SimpleColorTransfer(intensity=0.7, reference_key="target_img", p=1.0),
|
|
164
|
+
... ])
|
|
165
|
+
>>>
|
|
166
|
+
>>> # Apply the transform with the target image passed in the data dictionary
|
|
167
|
+
>>> result = transform(image=source_image, target_img=target_image)
|
|
168
|
+
>>> adapted_image = result["image"] # Image with characteristics transferred from target domain
|
|
169
|
+
|
|
170
|
+
"""
|
|
171
|
+
|
|
172
|
+
class InitSchema(BaseDomainAdaptationInitSchema):
|
|
173
|
+
pass
|
|
174
|
+
|
|
175
|
+
def __init__(
|
|
176
|
+
self,
|
|
177
|
+
reference_images: Sequence[Any] | None,
|
|
178
|
+
read_fn: Callable[[Any], np.ndarray] | None,
|
|
179
|
+
metadata_key: str,
|
|
180
|
+
p: float = 0.5,
|
|
181
|
+
):
|
|
182
|
+
super().__init__(p=p)
|
|
183
|
+
self.reference_images = reference_images
|
|
184
|
+
self.read_fn = read_fn
|
|
185
|
+
self.metadata_key = metadata_key
|
|
186
|
+
|
|
187
|
+
@property
|
|
188
|
+
def targets_as_params(self) -> list[str]:
|
|
189
|
+
return [self.metadata_key]
|
|
190
|
+
|
|
191
|
+
def _get_reference_image(self, data: dict[str, Any]) -> np.ndarray:
|
|
192
|
+
"""Retrieves the reference image from metadata or deprecated arguments."""
|
|
193
|
+
reference_image = None
|
|
194
|
+
|
|
195
|
+
if metadata_images := data.get(self.metadata_key):
|
|
196
|
+
if not isinstance(metadata_images, Sequence) or not metadata_images:
|
|
197
|
+
raise ValueError(
|
|
198
|
+
f"Metadata key '{self.metadata_key}' should contain a non-empty sequence of numpy arrays.",
|
|
199
|
+
)
|
|
200
|
+
if not isinstance(metadata_images[0], np.ndarray):
|
|
201
|
+
raise ValueError(
|
|
202
|
+
f"Images in metadata key '{self.metadata_key}' should be numpy arrays.",
|
|
203
|
+
)
|
|
204
|
+
reference_image = self.py_random.choice(metadata_images)
|
|
205
|
+
|
|
206
|
+
if self.reference_images is not None:
|
|
207
|
+
warnings.warn(
|
|
208
|
+
f"Both 'reference_images' (deprecated constructor argument) and metadata via "
|
|
209
|
+
f"'{self.metadata_key}' were provided. Prioritizing metadata.",
|
|
210
|
+
UserWarning,
|
|
211
|
+
stacklevel=3, # Adjust stacklevel as needed
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
elif self.reference_images is not None:
|
|
215
|
+
# Deprecation warning is handled by the InitSchema validator
|
|
216
|
+
if self.read_fn is None:
|
|
217
|
+
# This case should ideally be caught by InitSchema, but safety check
|
|
218
|
+
msg = "read_fn cannot be None when using the deprecated 'reference_images' argument."
|
|
219
|
+
raise ValueError(msg)
|
|
220
|
+
ref_source = self.py_random.choice(self.reference_images)
|
|
221
|
+
reference_image = self.read_fn(ref_source)
|
|
222
|
+
else:
|
|
223
|
+
raise ValueError(
|
|
224
|
+
f"{self.__class__.__name__} requires reference images. Provide them via the `metadata_key` "
|
|
225
|
+
f"'{self.metadata_key}' in the input data, or use the deprecated 'reference_images' argument.",
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
if reference_image is None:
|
|
229
|
+
# Should not happen if logic above is correct, but safety check
|
|
230
|
+
msg = "Could not obtain a reference image."
|
|
231
|
+
raise RuntimeError(msg)
|
|
232
|
+
|
|
233
|
+
return reference_image
|
|
234
|
+
|
|
235
|
+
def to_dict_private(self) -> dict[str, Any]:
|
|
236
|
+
"""Convert the transform to a dictionary for serialization.
|
|
237
|
+
|
|
238
|
+
Raises:
|
|
239
|
+
NotImplementedError: Domain adaptation transforms cannot be reliably serialized
|
|
240
|
+
when using metadata key or deprecated arguments.
|
|
241
|
+
|
|
242
|
+
"""
|
|
243
|
+
if self.reference_images is not None:
|
|
244
|
+
msg = (
|
|
245
|
+
f"{self.__class__.__name__} cannot be reliably serialized when using the deprecated 'reference_images'."
|
|
246
|
+
)
|
|
247
|
+
raise NotImplementedError(msg)
|
|
248
|
+
|
|
249
|
+
msg = (
|
|
250
|
+
f"{self.__class__.__name__} cannot be reliably serialized due to its dependency "
|
|
251
|
+
"on external data via metadata."
|
|
252
|
+
)
|
|
253
|
+
raise NotImplementedError(msg)
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
class HistogramMatching(BaseDomainAdaptation):
|
|
257
|
+
"""Adjust the pixel value distribution of an input image to match a reference image.
|
|
258
|
+
|
|
259
|
+
This transform modifies the pixel intensities of the input image so that its histogram
|
|
260
|
+
matches the histogram of a provided reference image. This process is applied independently
|
|
261
|
+
to each channel of the image if it is multi-channel.
|
|
262
|
+
|
|
263
|
+
Why use Histogram Matching?
|
|
264
|
+
|
|
265
|
+
**Domain Adaptation:** Helps bridge the gap between images from different sources
|
|
266
|
+
(e.g., different cameras, lighting conditions, synthetic vs. real data) by aligning
|
|
267
|
+
their overall intensity and contrast characteristics.
|
|
268
|
+
|
|
269
|
+
*Use Case Example:* Imagine you have labeled training images from one source (e.g., daytime photos,
|
|
270
|
+
medical scans from Hospital A) but expect your model to work on images from a different
|
|
271
|
+
source at test time (e.g., nighttime photos, scans from Hospital B). You might only have
|
|
272
|
+
unlabeled images from the target (test) domain. HistogramMatching can be used to make your
|
|
273
|
+
labeled training images resemble the *style* (intensity and contrast distribution) of the
|
|
274
|
+
unlabeled target images. By training on these adapted images, your model may generalize
|
|
275
|
+
better to the target domain without needing labels for it.
|
|
276
|
+
|
|
277
|
+
How it works:
|
|
278
|
+
The core idea is to map the pixel values of the input image such that its cumulative
|
|
279
|
+
distribution function (CDF) matches the CDF of the reference image. This effectively
|
|
280
|
+
reshapes the input image's histogram to resemble the reference's histogram.
|
|
281
|
+
|
|
282
|
+
Args:
|
|
283
|
+
metadata_key (str): Key in the input `data` dictionary to retrieve the reference image(s).
|
|
284
|
+
The value should be a sequence (e.g., list) of numpy arrays (pre-loaded images).
|
|
285
|
+
Default: "hm_metadata".
|
|
286
|
+
blend_ratio (tuple[float, float]): Range for the blending factor between the original
|
|
287
|
+
and the histogram-matched image. A value of 0 means the original image is returned,
|
|
288
|
+
1 means the fully matched image is returned. A random value within this range [min, max]
|
|
289
|
+
is sampled for each application. This allows for varying degrees of adaptation.
|
|
290
|
+
Default: (0.5, 1.0).
|
|
291
|
+
p (float): Probability of applying the transform. Default: 0.5.
|
|
292
|
+
|
|
293
|
+
Targets:
|
|
294
|
+
image
|
|
295
|
+
|
|
296
|
+
Image types:
|
|
297
|
+
uint8, float32
|
|
298
|
+
|
|
299
|
+
Note:
|
|
300
|
+
- Requires at least one reference image to be provided via the `metadata_key` argument.
|
|
301
|
+
- The `reference_images` and `read_fn` constructor arguments are deprecated.
|
|
302
|
+
|
|
303
|
+
Examples:
|
|
304
|
+
>>> import numpy as np
|
|
305
|
+
>>> import albumentations as A
|
|
306
|
+
>>> import cv2
|
|
307
|
+
>>>
|
|
308
|
+
>>> # Create sample images for demonstration
|
|
309
|
+
>>> # Source image: dark image with low contrast
|
|
310
|
+
>>> source_image = np.ones((100, 100, 3), dtype=np.uint8) * 50 # Dark gray image
|
|
311
|
+
>>> source_image[30:70, 30:70] = 100 # Add slightly brighter square in center
|
|
312
|
+
>>>
|
|
313
|
+
>>> # Target image: higher brightness and contrast
|
|
314
|
+
>>> target_image = np.ones((100, 100, 3), dtype=np.uint8) * 150 # Bright image
|
|
315
|
+
>>> target_image[20:80, 20:80] = 200 # Add even brighter square
|
|
316
|
+
>>>
|
|
317
|
+
>>> # Initialize the histogram matching transform with custom settings
|
|
318
|
+
>>> transform = A.Compose([
|
|
319
|
+
... A.HistogramMatching(
|
|
320
|
+
... blend_ratio=(0.7, 0.9), # Control the strength of histogram matching
|
|
321
|
+
... metadata_key="reference_imgs", # Custom metadata key
|
|
322
|
+
... p=1.0
|
|
323
|
+
... )
|
|
324
|
+
... ])
|
|
325
|
+
>>>
|
|
326
|
+
>>> # Apply the transform
|
|
327
|
+
>>> result = transform(
|
|
328
|
+
... image=source_image,
|
|
329
|
+
... reference_imgs=[target_image] # Pass reference image via metadata key
|
|
330
|
+
... )
|
|
331
|
+
>>>
|
|
332
|
+
>>> # Get the histogram-matched image
|
|
333
|
+
>>> matched_image = result["image"]
|
|
334
|
+
>>>
|
|
335
|
+
>>> # The matched_image will have brightness and contrast similar to target_image
|
|
336
|
+
>>> # while preserving the content of source_image
|
|
337
|
+
>>>
|
|
338
|
+
>>> # Multiple reference images can be provided:
|
|
339
|
+
>>> ref_imgs = [
|
|
340
|
+
... target_image,
|
|
341
|
+
... np.random.randint(100, 200, (100, 100, 3), dtype=np.uint8) # Another reference image
|
|
342
|
+
... ]
|
|
343
|
+
>>> multiple_refs_result = transform(image=source_image, reference_imgs=ref_imgs)
|
|
344
|
+
>>> # A random reference image from the list will be chosen for each transform application
|
|
345
|
+
|
|
346
|
+
References:
|
|
347
|
+
Histogram Matching in scikit-image:
|
|
348
|
+
https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_histogram_matching.html
|
|
349
|
+
|
|
350
|
+
"""
|
|
351
|
+
|
|
352
|
+
class InitSchema(BaseDomainAdaptationInitSchema):
|
|
353
|
+
blend_ratio: Annotated[
|
|
354
|
+
tuple[float, float],
|
|
355
|
+
AfterValidator(nondecreasing),
|
|
356
|
+
AfterValidator(check_range_bounds(0, 1)),
|
|
357
|
+
]
|
|
358
|
+
|
|
359
|
+
def __init__(
|
|
360
|
+
self,
|
|
361
|
+
reference_images: Sequence[Any] | None = None,
|
|
362
|
+
blend_ratio: tuple[float, float] = (0.5, 1.0),
|
|
363
|
+
read_fn: Callable[[Any], np.ndarray] | None = read_rgb_image,
|
|
364
|
+
metadata_key: str = "hm_metadata",
|
|
365
|
+
p: float = 0.5,
|
|
366
|
+
):
|
|
367
|
+
super().__init__(reference_images=reference_images, read_fn=read_fn, metadata_key=metadata_key, p=p)
|
|
368
|
+
self.blend_ratio = blend_ratio
|
|
369
|
+
|
|
370
|
+
def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
|
|
371
|
+
"""Generate parameters for the transform based on input data.
|
|
372
|
+
|
|
373
|
+
Args:
|
|
374
|
+
params (dict[str, Any]): Parameters from the previous transform in the pipeline
|
|
375
|
+
data (dict[str, Any]): Input data dictionary containing the image and metadata
|
|
376
|
+
|
|
377
|
+
Returns:
|
|
378
|
+
dict[str, Any]: Dictionary containing the reference image and blend ratio
|
|
379
|
+
|
|
380
|
+
"""
|
|
381
|
+
reference_image = self._get_reference_image(data)
|
|
382
|
+
return {
|
|
383
|
+
"reference_image": reference_image,
|
|
384
|
+
"blend_ratio": self.py_random.uniform(*self.blend_ratio),
|
|
385
|
+
}
|
|
386
|
+
|
|
387
|
+
def apply(
|
|
388
|
+
self,
|
|
389
|
+
img: np.ndarray,
|
|
390
|
+
reference_image: np.ndarray,
|
|
391
|
+
blend_ratio: float,
|
|
392
|
+
**params: Any,
|
|
393
|
+
) -> np.ndarray:
|
|
394
|
+
"""Apply histogram matching to the input image.
|
|
395
|
+
|
|
396
|
+
Args:
|
|
397
|
+
img (np.ndarray): Input image to be transformed
|
|
398
|
+
reference_image (np.ndarray): Reference image for histogram matching
|
|
399
|
+
blend_ratio (float): Blending factor between the original and matched image
|
|
400
|
+
**params (Any): Additional parameters
|
|
401
|
+
|
|
402
|
+
Returns:
|
|
403
|
+
np.ndarray: Transformed image with histogram matched to the reference image
|
|
404
|
+
|
|
405
|
+
"""
|
|
406
|
+
return apply_histogram(img, reference_image, blend_ratio)
|
|
407
|
+
|
|
408
|
+
|
|
409
|
+
class FDA(BaseDomainAdaptation):
|
|
410
|
+
"""Fourier Domain Adaptation (FDA).
|
|
411
|
+
|
|
412
|
+
Adapts the style of the input image to match the style of a reference image
|
|
413
|
+
by manipulating their frequency components in the Fourier domain. This is
|
|
414
|
+
particularly useful for unsupervised domain adaptation (UDA).
|
|
415
|
+
|
|
416
|
+
Why use FDA?
|
|
417
|
+
|
|
418
|
+
**Domain Adaptation:** FDA helps bridge the domain gap between source and target
|
|
419
|
+
datasets (e.g., synthetic vs. real, day vs. night) by aligning their low-frequency
|
|
420
|
+
Fourier spectrum components. This can improve model performance on the target domain
|
|
421
|
+
without requiring target labels.
|
|
422
|
+
|
|
423
|
+
*Use Case Example:* Imagine you have labeled training data acquired under certain conditions
|
|
424
|
+
(e.g., images from Hospital A using a specific scanner) but need your model to perform well
|
|
425
|
+
on data from a different distribution (e.g., unlabeled images from Hospital B with a different scanner).
|
|
426
|
+
FDA can adapt the labeled source images to match the *style* (frequency characteristics)
|
|
427
|
+
of the unlabeled target images, potentially improving the model's generalization to the
|
|
428
|
+
target domain at test time.
|
|
429
|
+
|
|
430
|
+
How it works:
|
|
431
|
+
FDA operates in the frequency domain. It replaces the low-frequency components
|
|
432
|
+
of the source image's Fourier transform with the low-frequency components from the
|
|
433
|
+
reference (target domain) image's Fourier transform. The `beta_limit` parameter
|
|
434
|
+
controls the size of the frequency window being swapped.
|
|
435
|
+
|
|
436
|
+
Args:
|
|
437
|
+
metadata_key (str): Key in the input `data` dictionary to retrieve the reference image(s).
|
|
438
|
+
The value should be a sequence (e.g., list) of numpy arrays (pre-loaded images).
|
|
439
|
+
Default: "fda_metadata".
|
|
440
|
+
beta_limit (tuple[float, float] | float): Controls the extent of the low-frequency
|
|
441
|
+
spectrum swap. A larger beta means more components are swapped. Corresponds to the L
|
|
442
|
+
parameter in the original paper. Should be in the range [0, 0.5]. Sampling is uniform
|
|
443
|
+
within the provided range [min, max]. Default: (0, 0.1).
|
|
444
|
+
p (float): Probability of applying the transform. Default: 0.5.
|
|
445
|
+
|
|
446
|
+
Targets:
|
|
447
|
+
image
|
|
448
|
+
|
|
449
|
+
Image types:
|
|
450
|
+
uint8, float32
|
|
451
|
+
|
|
452
|
+
Note:
|
|
453
|
+
- Requires at least one reference image to be provided via the `metadata_key` argument.
|
|
454
|
+
- The `reference_images` and `read_fn` constructor arguments are deprecated.
|
|
455
|
+
|
|
456
|
+
Examples:
|
|
457
|
+
>>> import numpy as np
|
|
458
|
+
>>> import albumentations as A
|
|
459
|
+
>>> import cv2
|
|
460
|
+
>>>
|
|
461
|
+
>>> # Create sample images for demonstration
|
|
462
|
+
>>> # Source image: synthetic or simulated image (e.g., from a rendered game environment)
|
|
463
|
+
>>> source_img = np.zeros((100, 100, 3), dtype=np.uint8)
|
|
464
|
+
>>> # Create a pattern in the source image
|
|
465
|
+
>>> source_img[20:80, 20:80, 0] = 200 # Red square
|
|
466
|
+
>>> source_img[40:60, 40:60, 1] = 200 # Green inner square
|
|
467
|
+
>>>
|
|
468
|
+
>>> # Target domain image: real-world image with different texture/frequency characteristics
|
|
469
|
+
>>> # For this example, we'll create an image with different frequency patterns
|
|
470
|
+
>>> target_img = np.zeros((100, 100, 3), dtype=np.uint8)
|
|
471
|
+
>>> for i in range(100):
|
|
472
|
+
... for j in range(100):
|
|
473
|
+
... # Create a high-frequency pattern
|
|
474
|
+
... target_img[i, j, 0] = ((i + j) % 8) * 30
|
|
475
|
+
... target_img[i, j, 1] = ((i - j) % 8) * 30
|
|
476
|
+
... target_img[i, j, 2] = ((i * j) % 8) * 30
|
|
477
|
+
>>>
|
|
478
|
+
>>> # Example 1: FDA with minimal adaptation (small beta value)
|
|
479
|
+
>>> # This will subtly adjust the frequency characteristics
|
|
480
|
+
>>> minimal_fda = A.Compose([
|
|
481
|
+
... A.FDA(
|
|
482
|
+
... beta_limit=(0.01, 0.05), # Small beta range for subtle adaptation
|
|
483
|
+
... metadata_key="target_domain", # Custom metadata key
|
|
484
|
+
... p=1.0
|
|
485
|
+
... )
|
|
486
|
+
... ])
|
|
487
|
+
>>>
|
|
488
|
+
>>> # Apply the transform with minimal adaptation
|
|
489
|
+
>>> minimal_result = minimal_fda(
|
|
490
|
+
... image=source_img,
|
|
491
|
+
... target_domain=[target_img] # Pass reference image via custom metadata key
|
|
492
|
+
... )
|
|
493
|
+
>>> minimal_adapted_img = minimal_result["image"]
|
|
494
|
+
>>>
|
|
495
|
+
>>> # Example 2: FDA with moderate adaptation (medium beta value)
|
|
496
|
+
>>> moderate_fda = A.Compose([
|
|
497
|
+
... A.FDA(
|
|
498
|
+
... beta_limit=(0.1, 0.2), # Medium beta range
|
|
499
|
+
... metadata_key="target_domain",
|
|
500
|
+
... p=1.0
|
|
501
|
+
... )
|
|
502
|
+
... ])
|
|
503
|
+
>>>
|
|
504
|
+
>>> moderate_result = moderate_fda(image=source_img, target_domain=[target_img])
|
|
505
|
+
>>> moderate_adapted_img = moderate_result["image"]
|
|
506
|
+
>>>
|
|
507
|
+
>>> # Example 3: FDA with strong adaptation (larger beta value)
|
|
508
|
+
>>> strong_fda = A.Compose([
|
|
509
|
+
... A.FDA(
|
|
510
|
+
... beta_limit=(0.3, 0.5), # Larger beta range (upper limit is MAX_BETA_LIMIT)
|
|
511
|
+
... metadata_key="target_domain",
|
|
512
|
+
... p=1.0
|
|
513
|
+
... )
|
|
514
|
+
... ])
|
|
515
|
+
>>>
|
|
516
|
+
>>> strong_result = strong_fda(image=source_img, target_domain=[target_img])
|
|
517
|
+
>>> strong_adapted_img = strong_result["image"]
|
|
518
|
+
>>>
|
|
519
|
+
>>> # Example 4: Using multiple target domain images
|
|
520
|
+
>>> # Creating a list of target domain images with different characteristics
|
|
521
|
+
>>> target_imgs = [target_img]
|
|
522
|
+
>>>
|
|
523
|
+
>>> # Add another target image with different pattern
|
|
524
|
+
>>> another_target = np.zeros((100, 100, 3), dtype=np.uint8)
|
|
525
|
+
>>> for i in range(100):
|
|
526
|
+
... for j in range(100):
|
|
527
|
+
... another_target[i, j, 0] = (i // 10) * 25
|
|
528
|
+
... another_target[i, j, 1] = (j // 10) * 25
|
|
529
|
+
... another_target[i, j, 2] = ((i + j) // 10) * 25
|
|
530
|
+
>>> target_imgs.append(another_target)
|
|
531
|
+
>>>
|
|
532
|
+
>>> # Using default FDA settings with multiple target images
|
|
533
|
+
>>> multi_target_fda = A.Compose([
|
|
534
|
+
... A.FDA(p=1.0) # Using default settings with default metadata_key="fda_metadata"
|
|
535
|
+
... ])
|
|
536
|
+
>>>
|
|
537
|
+
>>> # A random target image will be selected from the list for each application
|
|
538
|
+
>>> multi_target_result = multi_target_fda(image=source_img, fda_metadata=target_imgs)
|
|
539
|
+
>>> adapted_image = multi_target_result["image"]
|
|
540
|
+
|
|
541
|
+
References:
|
|
542
|
+
- FDA: https://github.com/YanchaoYang/FDA
|
|
543
|
+
- FDA: https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_FDA_Fourier_Domain_Adaptation_for_Semantic_Segmentation_CVPR_2020_paper.pdf
|
|
544
|
+
|
|
545
|
+
"""
|
|
546
|
+
|
|
547
|
+
class InitSchema(BaseDomainAdaptationInitSchema):
|
|
548
|
+
beta_limit: ZeroOneRangeType
|
|
549
|
+
|
|
550
|
+
@field_validator("beta_limit")
|
|
551
|
+
@classmethod
|
|
552
|
+
def _check_ranges(cls, value: tuple[float, float]) -> tuple[float, float]:
|
|
553
|
+
bounds = 0, MAX_BETA_LIMIT
|
|
554
|
+
if not bounds[0] <= value[0] <= value[1] <= bounds[1]:
|
|
555
|
+
raise ValueError(f"Values should be in the range {bounds} got {value} ")
|
|
556
|
+
return value
|
|
557
|
+
|
|
558
|
+
def __init__(
|
|
559
|
+
self,
|
|
560
|
+
reference_images: Sequence[Any] | None = None,
|
|
561
|
+
beta_limit: tuple[float, float] | float = (0, 0.1),
|
|
562
|
+
read_fn: Callable[[Any], np.ndarray] | None = read_rgb_image,
|
|
563
|
+
metadata_key: str = "fda_metadata",
|
|
564
|
+
p: float = 0.5,
|
|
565
|
+
):
|
|
566
|
+
super().__init__(reference_images=reference_images, read_fn=read_fn, metadata_key=metadata_key, p=p)
|
|
567
|
+
self.beta_limit = cast("tuple[float, float]", beta_limit)
|
|
568
|
+
|
|
569
|
+
def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
|
|
570
|
+
"""Generate parameters for the transform based on input data."""
|
|
571
|
+
target_image = self._get_reference_image(data)
|
|
572
|
+
height, width = params["shape"][:2]
|
|
573
|
+
|
|
574
|
+
# Resize the target image to match the input image dimensions
|
|
575
|
+
target_image_resized = cv2.resize(target_image, dsize=(width, height))
|
|
576
|
+
|
|
577
|
+
return {"target_image": target_image_resized, "beta": self.py_random.uniform(*self.beta_limit)}
|
|
578
|
+
|
|
579
|
+
def apply(
|
|
580
|
+
self,
|
|
581
|
+
img: np.ndarray,
|
|
582
|
+
target_image: np.ndarray,
|
|
583
|
+
beta: float,
|
|
584
|
+
**params: Any,
|
|
585
|
+
) -> np.ndarray:
|
|
586
|
+
"""Apply Fourier Domain Adaptation to the input image.
|
|
587
|
+
|
|
588
|
+
Args:
|
|
589
|
+
img (np.ndarray): Input image to be transformed
|
|
590
|
+
target_image (np.ndarray): Target domain image for adaptation
|
|
591
|
+
beta (float): Coefficient controlling the extent of frequency component swapping
|
|
592
|
+
**params (Any): Additional parameters
|
|
593
|
+
|
|
594
|
+
Returns:
|
|
595
|
+
np.ndarray: Transformed image with adapted frequency components
|
|
596
|
+
|
|
597
|
+
"""
|
|
598
|
+
return fourier_domain_adaptation(img, target_image, beta)
|
|
599
|
+
|
|
600
|
+
|
|
601
|
+
class PixelDistributionAdaptation(BaseDomainAdaptation):
|
|
602
|
+
"""Adapts the pixel value distribution of an input image to match a reference image
|
|
603
|
+
using statistical transformations (PCA, StandardScaler, or MinMaxScaler).
|
|
604
|
+
|
|
605
|
+
This transform aims to harmonize images from different domains by aligning their pixel-level
|
|
606
|
+
statistical properties.
|
|
607
|
+
|
|
608
|
+
Why use Pixel Distribution Adaptation?
|
|
609
|
+
**Domain Adaptation:** Useful for aligning images across domains with differing pixel statistics
|
|
610
|
+
(e.g., caused by different sensors, lighting, or post-processing).
|
|
611
|
+
|
|
612
|
+
*Use Case Example:* Consider having labeled data from Scanner A and needing the model to perform
|
|
613
|
+
well on unlabeled data from Scanner B, where images might have different overall brightness,
|
|
614
|
+
contrast, or color biases. This transform can adapt the labeled images from Scanner A to
|
|
615
|
+
mimic the pixel distribution *style* of the images from Scanner B, potentially improving
|
|
616
|
+
generalization without needing labels for Scanner B data.
|
|
617
|
+
|
|
618
|
+
How it works:
|
|
619
|
+
1. A chosen statistical transform (`transform_type`) is fitted to both the input (source) image
|
|
620
|
+
and the reference (target) image separately.
|
|
621
|
+
2. The input image is transformed using the transform fitted on it (moving it to a standardized space).
|
|
622
|
+
3. The inverse transform *fitted on the reference image* is applied to the result from step 2
|
|
623
|
+
(moving the standardized input into the reference image's statistical space).
|
|
624
|
+
4. The result is optionally blended with the original input image using `blend_ratio`.
|
|
625
|
+
|
|
626
|
+
Args:
|
|
627
|
+
metadata_key (str): Key in the input `data` dictionary to retrieve the reference image(s).
|
|
628
|
+
The value should be a sequence (e.g., list) of numpy arrays (pre-loaded images).
|
|
629
|
+
Default: "pda_metadata".
|
|
630
|
+
blend_ratio (tuple[float, float]): Specifies the minimum and maximum blend ratio for mixing
|
|
631
|
+
the adapted image with the original. A value of 0 means the original image is returned,
|
|
632
|
+
1 means the fully adapted image is returned. A random value within this range [min, max]
|
|
633
|
+
is sampled for each application. Default: (0.25, 1.0).
|
|
634
|
+
transform_type (Literal["pca", "standard", "minmax"]): Specifies the type of statistical
|
|
635
|
+
transformation to apply:
|
|
636
|
+
- "pca": Principal Component Analysis.
|
|
637
|
+
- "standard": StandardScaler (zero mean, unit variance).
|
|
638
|
+
- "minmax": MinMaxScaler (scales to [0, 1] range).
|
|
639
|
+
Default: "pca".
|
|
640
|
+
p (float): The probability of applying the transform. Default: 0.5.
|
|
641
|
+
|
|
642
|
+
Targets:
|
|
643
|
+
image
|
|
644
|
+
|
|
645
|
+
Image types:
|
|
646
|
+
uint8, float32
|
|
647
|
+
|
|
648
|
+
Note:
|
|
649
|
+
- Requires at least one reference image to be provided via the `metadata_key` argument.
|
|
650
|
+
- The `reference_images` and `read_fn` constructor arguments are deprecated.
|
|
651
|
+
|
|
652
|
+
Examples:
|
|
653
|
+
>>> import numpy as np
|
|
654
|
+
>>> import albumentations as A
|
|
655
|
+
>>> import cv2
|
|
656
|
+
>>>
|
|
657
|
+
>>> # Create sample images for demonstration
|
|
658
|
+
>>> # Source image: simulated image from domain A (e.g., medical scan from one scanner)
|
|
659
|
+
>>> source_image = np.random.normal(100, 20, (100, 100, 3)).clip(0, 255).astype(np.uint8)
|
|
660
|
+
>>>
|
|
661
|
+
>>> # Reference image: image from domain B with different statistical properties
|
|
662
|
+
>>> # (e.g., scan from a different scanner with different intensity distribution)
|
|
663
|
+
>>> reference_image = np.random.normal(150, 30, (100, 100, 3)).clip(0, 255).astype(np.uint8)
|
|
664
|
+
>>>
|
|
665
|
+
>>> # Example 1: Using PCA transformation (default)
|
|
666
|
+
>>> pca_transform = A.Compose([
|
|
667
|
+
... A.PixelDistributionAdaptation(
|
|
668
|
+
... transform_type="pca",
|
|
669
|
+
... blend_ratio=(0.8, 1.0), # Strong adaptation
|
|
670
|
+
... metadata_key="reference_images",
|
|
671
|
+
... p=1.0
|
|
672
|
+
... )
|
|
673
|
+
... ])
|
|
674
|
+
>>>
|
|
675
|
+
>>> # Apply the transform with the reference image
|
|
676
|
+
>>> pca_result = pca_transform(
|
|
677
|
+
... image=source_image,
|
|
678
|
+
... reference_images=[reference_image]
|
|
679
|
+
... )
|
|
680
|
+
>>>
|
|
681
|
+
>>> # Get the adapted image
|
|
682
|
+
>>> pca_adapted_image = pca_result["image"]
|
|
683
|
+
>>>
|
|
684
|
+
>>> # Example 2: Using StandardScaler transformation
|
|
685
|
+
>>> standard_transform = A.Compose([
|
|
686
|
+
... A.PixelDistributionAdaptation(
|
|
687
|
+
... transform_type="standard",
|
|
688
|
+
... blend_ratio=(0.5, 0.7), # Moderate adaptation
|
|
689
|
+
... metadata_key="reference_images",
|
|
690
|
+
... p=1.0
|
|
691
|
+
... )
|
|
692
|
+
... ])
|
|
693
|
+
>>>
|
|
694
|
+
>>> standard_result = standard_transform(
|
|
695
|
+
... image=source_image,
|
|
696
|
+
... reference_images=[reference_image]
|
|
697
|
+
... )
|
|
698
|
+
>>> standard_adapted_image = standard_result["image"]
|
|
699
|
+
>>>
|
|
700
|
+
>>> # Example 3: Using MinMaxScaler transformation
|
|
701
|
+
>>> minmax_transform = A.Compose([
|
|
702
|
+
... A.PixelDistributionAdaptation(
|
|
703
|
+
... transform_type="minmax",
|
|
704
|
+
... blend_ratio=(0.3, 0.5), # Subtle adaptation
|
|
705
|
+
... metadata_key="reference_images",
|
|
706
|
+
... p=1.0
|
|
707
|
+
... )
|
|
708
|
+
... ])
|
|
709
|
+
>>>
|
|
710
|
+
>>> minmax_result = minmax_transform(
|
|
711
|
+
... image=source_image,
|
|
712
|
+
... reference_images=[reference_image]
|
|
713
|
+
... )
|
|
714
|
+
>>> minmax_adapted_image = minmax_result["image"]
|
|
715
|
+
>>>
|
|
716
|
+
>>> # Example 4: Using multiple reference images
|
|
717
|
+
>>> # When multiple reference images are provided, one is randomly selected for each transformation
|
|
718
|
+
>>> multiple_references = [
|
|
719
|
+
... reference_image,
|
|
720
|
+
... np.random.normal(180, 25, (100, 100, 3)).clip(0, 255).astype(np.uint8),
|
|
721
|
+
... np.random.normal(120, 40, (100, 100, 3)).clip(0, 255).astype(np.uint8)
|
|
722
|
+
... ]
|
|
723
|
+
>>>
|
|
724
|
+
>>> multi_ref_transform = A.Compose([
|
|
725
|
+
... A.PixelDistributionAdaptation(p=1.0) # Using default settings
|
|
726
|
+
... ])
|
|
727
|
+
>>>
|
|
728
|
+
>>> # Each time the transform is applied, it randomly selects one of the reference images
|
|
729
|
+
>>> multi_ref_result = multi_ref_transform(
|
|
730
|
+
... image=source_image,
|
|
731
|
+
... pda_metadata=multiple_references # Using the default metadata key
|
|
732
|
+
... )
|
|
733
|
+
>>> adapted_image = multi_ref_result["image"]
|
|
734
|
+
|
|
735
|
+
References:
|
|
736
|
+
Qudida: https://github.com/arsenyinfo/qudida
|
|
737
|
+
|
|
738
|
+
"""
|
|
739
|
+
|
|
740
|
+
class InitSchema(BaseDomainAdaptationInitSchema):
|
|
741
|
+
blend_ratio: Annotated[
|
|
742
|
+
tuple[float, float],
|
|
743
|
+
AfterValidator(nondecreasing),
|
|
744
|
+
AfterValidator(check_range_bounds(0, 1)),
|
|
745
|
+
]
|
|
746
|
+
transform_type: Literal["pca", "standard", "minmax"]
|
|
747
|
+
|
|
748
|
+
def __init__(
|
|
749
|
+
self,
|
|
750
|
+
reference_images: Sequence[Any] | None = None,
|
|
751
|
+
blend_ratio: tuple[float, float] = (0.25, 1.0),
|
|
752
|
+
read_fn: Callable[[Any], np.ndarray] | None = read_rgb_image,
|
|
753
|
+
transform_type: Literal["pca", "standard", "minmax"] = "pca",
|
|
754
|
+
metadata_key: str = "pda_metadata",
|
|
755
|
+
p: float = 0.5,
|
|
756
|
+
):
|
|
757
|
+
super().__init__(reference_images=reference_images, read_fn=read_fn, metadata_key=metadata_key, p=p)
|
|
758
|
+
self.blend_ratio = blend_ratio
|
|
759
|
+
self.transform_type = transform_type
|
|
760
|
+
|
|
761
|
+
def get_params_dependent_on_data(self, params: dict[str, Any], data: dict[str, Any]) -> dict[str, Any]:
|
|
762
|
+
"""Get parameters for the transform."""
|
|
763
|
+
reference_image = self._get_reference_image(data)
|
|
764
|
+
return {
|
|
765
|
+
"reference_image": reference_image,
|
|
766
|
+
"blend_ratio": self.py_random.uniform(*self.blend_ratio),
|
|
767
|
+
}
|
|
768
|
+
|
|
769
|
+
def apply(self, img: np.ndarray, reference_image: np.ndarray, blend_ratio: float, **params: Any) -> np.ndarray:
|
|
770
|
+
"""Apply pixel distribution adaptation to the input image.
|
|
771
|
+
|
|
772
|
+
Args:
|
|
773
|
+
img (np.ndarray): Input image to be transformed
|
|
774
|
+
reference_image (np.ndarray): Reference image for distribution adaptation
|
|
775
|
+
blend_ratio (float): Blending factor between the original and adapted image
|
|
776
|
+
**params (Any): Additional parameters
|
|
777
|
+
|
|
778
|
+
Returns:
|
|
779
|
+
np.ndarray: Transformed image with pixel distribution adapted to the reference image
|
|
780
|
+
|
|
781
|
+
"""
|
|
782
|
+
return adapt_pixel_distribution(
|
|
783
|
+
img,
|
|
784
|
+
ref=reference_image,
|
|
785
|
+
weight=blend_ratio,
|
|
786
|
+
transform_type=self.transform_type,
|
|
787
|
+
)
|