nrl-tracker 1.7.0__py3-none-any.whl → 1.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. {nrl_tracker-1.7.0.dist-info → nrl_tracker-1.7.3.dist-info}/METADATA +43 -3
  2. {nrl_tracker-1.7.0.dist-info → nrl_tracker-1.7.3.dist-info}/RECORD +76 -76
  3. pytcl/__init__.py +2 -2
  4. pytcl/assignment_algorithms/__init__.py +15 -15
  5. pytcl/assignment_algorithms/gating.py +10 -10
  6. pytcl/assignment_algorithms/jpda.py +40 -40
  7. pytcl/assignment_algorithms/nd_assignment.py +5 -4
  8. pytcl/assignment_algorithms/network_flow.py +18 -8
  9. pytcl/assignment_algorithms/three_dimensional/assignment.py +3 -3
  10. pytcl/astronomical/__init__.py +9 -9
  11. pytcl/astronomical/ephemerides.py +14 -11
  12. pytcl/astronomical/reference_frames.py +8 -4
  13. pytcl/astronomical/relativity.py +6 -5
  14. pytcl/astronomical/special_orbits.py +9 -13
  15. pytcl/atmosphere/__init__.py +6 -6
  16. pytcl/atmosphere/nrlmsise00.py +153 -152
  17. pytcl/clustering/dbscan.py +2 -2
  18. pytcl/clustering/gaussian_mixture.py +3 -3
  19. pytcl/clustering/hierarchical.py +15 -15
  20. pytcl/clustering/kmeans.py +4 -4
  21. pytcl/containers/base.py +3 -3
  22. pytcl/containers/cluster_set.py +12 -2
  23. pytcl/containers/covertree.py +5 -3
  24. pytcl/containers/rtree.py +1 -1
  25. pytcl/containers/vptree.py +4 -2
  26. pytcl/coordinate_systems/conversions/geodetic.py +31 -7
  27. pytcl/coordinate_systems/jacobians/jacobians.py +2 -2
  28. pytcl/coordinate_systems/projections/__init__.py +1 -1
  29. pytcl/coordinate_systems/projections/projections.py +2 -2
  30. pytcl/coordinate_systems/rotations/rotations.py +10 -6
  31. pytcl/core/validation.py +3 -3
  32. pytcl/dynamic_estimation/__init__.py +16 -16
  33. pytcl/dynamic_estimation/gaussian_sum_filter.py +20 -38
  34. pytcl/dynamic_estimation/imm.py +14 -14
  35. pytcl/dynamic_estimation/kalman/__init__.py +1 -1
  36. pytcl/dynamic_estimation/kalman/constrained.py +35 -23
  37. pytcl/dynamic_estimation/kalman/extended.py +8 -8
  38. pytcl/dynamic_estimation/kalman/h_infinity.py +2 -2
  39. pytcl/dynamic_estimation/kalman/square_root.py +8 -2
  40. pytcl/dynamic_estimation/kalman/sr_ukf.py +3 -3
  41. pytcl/dynamic_estimation/kalman/ud_filter.py +11 -5
  42. pytcl/dynamic_estimation/kalman/unscented.py +8 -6
  43. pytcl/dynamic_estimation/particle_filters/bootstrap.py +15 -15
  44. pytcl/dynamic_estimation/rbpf.py +36 -40
  45. pytcl/gravity/spherical_harmonics.py +3 -3
  46. pytcl/gravity/tides.py +6 -6
  47. pytcl/logging_config.py +3 -3
  48. pytcl/magnetism/emm.py +10 -3
  49. pytcl/magnetism/wmm.py +4 -4
  50. pytcl/mathematical_functions/combinatorics/combinatorics.py +5 -5
  51. pytcl/mathematical_functions/geometry/geometry.py +5 -5
  52. pytcl/mathematical_functions/numerical_integration/quadrature.py +6 -6
  53. pytcl/mathematical_functions/signal_processing/detection.py +24 -24
  54. pytcl/mathematical_functions/signal_processing/filters.py +14 -14
  55. pytcl/mathematical_functions/signal_processing/matched_filter.py +12 -12
  56. pytcl/mathematical_functions/special_functions/bessel.py +15 -3
  57. pytcl/mathematical_functions/special_functions/debye.py +5 -1
  58. pytcl/mathematical_functions/special_functions/error_functions.py +3 -1
  59. pytcl/mathematical_functions/special_functions/gamma_functions.py +4 -4
  60. pytcl/mathematical_functions/special_functions/hypergeometric.py +6 -4
  61. pytcl/mathematical_functions/transforms/fourier.py +8 -8
  62. pytcl/mathematical_functions/transforms/stft.py +12 -12
  63. pytcl/mathematical_functions/transforms/wavelets.py +9 -9
  64. pytcl/navigation/geodesy.py +3 -3
  65. pytcl/navigation/great_circle.py +5 -5
  66. pytcl/plotting/coordinates.py +7 -7
  67. pytcl/plotting/tracks.py +2 -2
  68. pytcl/static_estimation/maximum_likelihood.py +16 -14
  69. pytcl/static_estimation/robust.py +5 -5
  70. pytcl/terrain/loaders.py +5 -5
  71. pytcl/trackers/hypothesis.py +1 -1
  72. pytcl/trackers/mht.py +9 -9
  73. pytcl/trackers/multi_target.py +1 -1
  74. {nrl_tracker-1.7.0.dist-info → nrl_tracker-1.7.3.dist-info}/LICENSE +0 -0
  75. {nrl_tracker-1.7.0.dist-info → nrl_tracker-1.7.3.dist-info}/WHEEL +0 -0
  76. {nrl_tracker-1.7.0.dist-info → nrl_tracker-1.7.3.dist-info}/top_level.txt +0 -0
@@ -9,7 +9,7 @@ This is more sophisticated than GNN which makes hard assignment decisions,
9
9
  as JPDA can handle measurement origin uncertainty in cluttered environments.
10
10
  """
11
11
 
12
- from typing import List, NamedTuple, Optional, Tuple
12
+ from typing import Any, List, NamedTuple, Optional
13
13
 
14
14
  import numpy as np
15
15
  from numba import njit
@@ -24,7 +24,7 @@ class JPDAResult(NamedTuple):
24
24
 
25
25
  Attributes
26
26
  ----------
27
- association_probs : ndarray
27
+ association_probs : ndarray[Any]
28
28
  Association probability matrix of shape (n_tracks, n_measurements + 1).
29
29
  association_probs[i, j] is the probability that track i is associated
30
30
  with measurement j. The last column (j = n_measurements) represents
@@ -32,9 +32,9 @@ class JPDAResult(NamedTuple):
32
32
  marginal_probs : list of ndarray
33
33
  List of marginal association probabilities for each track.
34
34
  marginal_probs[i][j] = P(measurement j originated from track i).
35
- likelihood_matrix : ndarray
35
+ likelihood_matrix : ndarray[Any]
36
36
  Measurement likelihood matrix of shape (n_tracks, n_measurements).
37
- gated : ndarray
37
+ gated : ndarray[Any]
38
38
  Boolean matrix indicating which track-measurement pairs passed gating.
39
39
  """
40
40
 
@@ -53,7 +53,7 @@ class JPDAUpdate(NamedTuple):
53
53
  Updated state estimates for each track.
54
54
  covariances : list of ndarray
55
55
  Updated covariances for each track (includes spread of means).
56
- association_probs : ndarray
56
+ association_probs : ndarray[Any]
57
57
  Association probability matrix.
58
58
  innovations : list of ndarray
59
59
  Combined weighted innovations for each track.
@@ -66,8 +66,8 @@ class JPDAUpdate(NamedTuple):
66
66
 
67
67
 
68
68
  def compute_measurement_likelihood(
69
- innovation: NDArray,
70
- innovation_cov: NDArray,
69
+ innovation: NDArray[Any],
70
+ innovation_cov: NDArray[Any],
71
71
  detection_prob: float = 1.0,
72
72
  ) -> float:
73
73
  """
@@ -75,9 +75,9 @@ def compute_measurement_likelihood(
75
75
 
76
76
  Parameters
77
77
  ----------
78
- innovation : ndarray
78
+ innovation : ndarray[Any]
79
79
  Measurement innovation (residual), shape (m,).
80
- innovation_cov : ndarray
80
+ innovation_cov : ndarray[Any]
81
81
  Innovation covariance, shape (m, m).
82
82
  detection_prob : float
83
83
  Probability of detection (Pd).
@@ -102,14 +102,14 @@ def compute_measurement_likelihood(
102
102
 
103
103
 
104
104
  def compute_likelihood_matrix(
105
- track_states: List[NDArray],
106
- track_covariances: List[NDArray],
107
- measurements: NDArray,
108
- H: NDArray,
109
- R: NDArray,
105
+ track_states: list[NDArray[Any]],
106
+ track_covariances: list[NDArray[Any]],
107
+ measurements: NDArray[Any],
108
+ H: NDArray[Any],
109
+ R: NDArray[Any],
110
110
  detection_prob: float = 1.0,
111
111
  gate_threshold: Optional[float] = None,
112
- ) -> Tuple[NDArray, NDArray]:
112
+ ) -> tuple[NDArray[Any], NDArray[Any]]:
113
113
  """
114
114
  Compute likelihood matrix for all track-measurement pairs.
115
115
 
@@ -119,11 +119,11 @@ def compute_likelihood_matrix(
119
119
  State estimates for each track.
120
120
  track_covariances : list of ndarray
121
121
  Covariances for each track.
122
- measurements : ndarray
122
+ measurements : ndarray[Any]
123
123
  Measurements, shape (n_meas, m).
124
- H : ndarray
124
+ H : ndarray[Any]
125
125
  Measurement matrix, shape (m, n).
126
- R : ndarray
126
+ R : ndarray[Any]
127
127
  Measurement noise covariance, shape (m, m).
128
128
  detection_prob : float
129
129
  Probability of detection.
@@ -132,9 +132,9 @@ def compute_likelihood_matrix(
132
132
 
133
133
  Returns
134
134
  -------
135
- likelihood_matrix : ndarray
135
+ likelihood_matrix : ndarray[Any]
136
136
  Likelihood values, shape (n_tracks, n_meas).
137
- gated : ndarray
137
+ gated : ndarray[Any]
138
138
  Boolean gating matrix, shape (n_tracks, n_meas).
139
139
  """
140
140
  n_tracks = len(track_states)
@@ -163,11 +163,11 @@ def compute_likelihood_matrix(
163
163
 
164
164
 
165
165
  def jpda_probabilities(
166
- likelihood_matrix: NDArray,
167
- gated: NDArray,
166
+ likelihood_matrix: NDArray[Any],
167
+ gated: NDArray[Any],
168
168
  detection_prob: float = 1.0,
169
169
  clutter_density: float = 1e-6,
170
- ) -> NDArray:
170
+ ) -> NDArray[Any]:
171
171
  """
172
172
  Compute JPDA association probabilities.
173
173
 
@@ -176,9 +176,9 @@ def jpda_probabilities(
176
176
 
177
177
  Parameters
178
178
  ----------
179
- likelihood_matrix : ndarray
179
+ likelihood_matrix : ndarray[Any]
180
180
  Likelihood values, shape (n_tracks, n_meas).
181
- gated : ndarray
181
+ gated : ndarray[Any]
182
182
  Boolean gating matrix, shape (n_tracks, n_meas).
183
183
  detection_prob : float
184
184
  Probability of detection (Pd).
@@ -187,7 +187,7 @@ def jpda_probabilities(
187
187
 
188
188
  Returns
189
189
  -------
190
- beta : ndarray
190
+ beta : ndarray[Any]
191
191
  Association probability matrix, shape (n_tracks, n_meas + 1).
192
192
  beta[i, j] = P(measurement j is from track i) for j < n_meas.
193
193
  beta[i, n_meas] = P(track i has no measurement).
@@ -218,11 +218,11 @@ def jpda_probabilities(
218
218
 
219
219
 
220
220
  def _jpda_exact(
221
- likelihood_matrix: NDArray,
222
- gated: NDArray,
221
+ likelihood_matrix: NDArray[Any],
222
+ gated: NDArray[Any],
223
223
  detection_prob: float,
224
224
  clutter_density: float,
225
- ) -> NDArray:
225
+ ) -> NDArray[Any]:
226
226
  """
227
227
  Exact JPDA computation via hypothesis enumeration.
228
228
 
@@ -241,8 +241,8 @@ def _jpda_exact(
241
241
  def generate_hypotheses(
242
242
  meas_idx: int,
243
243
  current_assignment: List[int],
244
- used_tracks: set,
245
- ):
244
+ used_tracks: set[Any],
245
+ ) -> Any:
246
246
  """Recursively generate valid hypotheses."""
247
247
  if meas_idx == n_meas:
248
248
  yield current_assignment.copy()
@@ -268,11 +268,11 @@ def _jpda_exact(
268
268
  hypothesis_probs = []
269
269
  hypothesis_assignments = []
270
270
 
271
- for assignment in generate_hypotheses(0, [], set()):
271
+ for assignment in generate_hypotheses(0, [], set[Any]()):
272
272
  # Compute probability of this hypothesis
273
273
  prob = 1.0
274
274
 
275
- detected_tracks = set()
275
+ detected_tracks = set[Any]()
276
276
  for j, track_idx in enumerate(assignment):
277
277
  if track_idx == -1:
278
278
  # Measurement j is clutter
@@ -301,7 +301,7 @@ def _jpda_exact(
301
301
  for h_idx, (assignment, prob) in enumerate(
302
302
  zip(hypothesis_assignments, hypothesis_probs)
303
303
  ):
304
- detected_tracks = set()
304
+ detected_tracks = set[Any]()
305
305
  for j, track_idx in enumerate(assignment):
306
306
  if track_idx >= 0:
307
307
  beta[track_idx, j] += prob
@@ -317,11 +317,11 @@ def _jpda_exact(
317
317
 
318
318
  @njit(cache=True)
319
319
  def _jpda_approximate_core(
320
- likelihood_matrix: np.ndarray,
321
- gated: np.ndarray,
320
+ likelihood_matrix: np.ndarray[Any, Any],
321
+ gated: np.ndarray[Any, Any],
322
322
  detection_prob: float,
323
323
  clutter_density: float,
324
- ) -> np.ndarray:
324
+ ) -> np.ndarray[Any, Any]:
325
325
  """JIT-compiled core of approximate JPDA computation."""
326
326
  n_tracks = likelihood_matrix.shape[0]
327
327
  n_meas = likelihood_matrix.shape[1]
@@ -369,11 +369,11 @@ def _jpda_approximate_core(
369
369
 
370
370
 
371
371
  def _jpda_approximate(
372
- likelihood_matrix: NDArray,
373
- gated: NDArray,
372
+ likelihood_matrix: NDArray[Any],
373
+ gated: NDArray[Any],
374
374
  detection_prob: float,
375
375
  clutter_density: float,
376
- ) -> NDArray:
376
+ ) -> NDArray[Any]:
377
377
  """
378
378
  Approximate JPDA using parametric approach.
379
379
 
@@ -212,14 +212,15 @@ def relaxation_assignment_nd(
212
212
  result_relaxed = greedy_assignment_nd(relaxed_cost)
213
213
 
214
214
  # Compute lower bound from relaxed solution
215
- lower_bound = (
216
- result_relaxed.cost
217
- + sum(np.sum(lambdas[d]) for d in range(n_dims))
215
+ lower_bound = result_relaxed.cost + sum(
216
+ np.sum(lambdas[d]) for d in range(n_dims)
218
217
  )
219
218
 
220
219
  # Extract solution from relaxed problem
221
220
  if len(result_relaxed.assignments) > 0:
222
- actual_cost = float(np.sum(cost_tensor[tuple(result_relaxed.assignments.T)]))
221
+ actual_cost = float(
222
+ np.sum(cost_tensor[tuple(result_relaxed.assignments.T)])
223
+ )
223
224
 
224
225
  if actual_cost < best_cost:
225
226
  best_cost = actual_cost
@@ -20,7 +20,7 @@ References
20
20
  """
21
21
 
22
22
  from enum import Enum
23
- from typing import NamedTuple, Tuple
23
+ from typing import Any, NamedTuple, Tuple
24
24
 
25
25
  import numpy as np
26
26
  from numpy.typing import NDArray
@@ -79,7 +79,7 @@ class FlowEdge(NamedTuple):
79
79
 
80
80
  def assignment_to_flow_network(
81
81
  cost_matrix: NDArray[np.float64],
82
- ) -> Tuple[list, NDArray, NDArray]:
82
+ ) -> Tuple[list[FlowEdge], NDArray[np.floating], NDArray[Any]]:
83
83
  """
84
84
  Convert 2D assignment problem to min-cost flow network.
85
85
 
@@ -140,7 +140,9 @@ def assignment_to_flow_network(
140
140
  # Tasks to sink: capacity 1, cost 0
141
141
  for j in range(1, n + 1):
142
142
  task_node = m + j
143
- edges.append(FlowEdge(from_node=task_node, to_node=sink, capacity=1.0, cost=0.0))
143
+ edges.append(
144
+ FlowEdge(from_node=task_node, to_node=sink, capacity=1.0, cost=0.0)
145
+ )
144
146
 
145
147
  # Supply/demand: source supplies m units, sink demands m units
146
148
  supplies = np.zeros(n_nodes)
@@ -158,7 +160,7 @@ def assignment_to_flow_network(
158
160
 
159
161
 
160
162
  def min_cost_flow_successive_shortest_paths(
161
- edges: list,
163
+ edges: list[FlowEdge],
162
164
  supplies: NDArray[np.float64],
163
165
  max_iterations: int = 1000,
164
166
  ) -> MinCostFlowResult:
@@ -260,7 +262,9 @@ def min_cost_flow_successive_shortest_paths(
260
262
 
261
263
  # Find minimum capacity along path
262
264
  min_flow = min(residual_capacity[e] for e in path_edges)
263
- min_flow = min(min_flow, current_supplies[excess_node], -current_supplies[deficit_node])
265
+ min_flow = min(
266
+ min_flow, current_supplies[excess_node], -current_supplies[deficit_node]
267
+ )
264
268
 
265
269
  # Push flow along path
266
270
  total_cost = 0.0
@@ -295,7 +299,7 @@ def min_cost_flow_successive_shortest_paths(
295
299
 
296
300
  def assignment_from_flow_solution(
297
301
  flow: NDArray[np.float64],
298
- edges: list,
302
+ edges: list[FlowEdge],
299
303
  cost_matrix_shape: Tuple[int, int],
300
304
  ) -> Tuple[NDArray[np.intp], float]:
301
305
  """
@@ -331,7 +335,11 @@ def assignment_from_flow_solution(
331
335
  assignment = np.array(assignment, dtype=np.intp)
332
336
  cost = 0.0
333
337
  if len(assignment) > 0:
334
- cost = float(np.sum(flow[edge_idx] * edges[edge_idx].cost for edge_idx in range(len(edges))))
338
+ cost = float(
339
+ np.sum(
340
+ flow[edge_idx] * edges[edge_idx].cost for edge_idx in range(len(edges))
341
+ )
342
+ )
335
343
 
336
344
  return assignment, cost
337
345
 
@@ -356,6 +364,8 @@ def min_cost_assignment_via_flow(
356
364
  """
357
365
  edges, supplies, _ = assignment_to_flow_network(cost_matrix)
358
366
  result = min_cost_flow_successive_shortest_paths(edges, supplies)
359
- assignment, cost = assignment_from_flow_solution(result.flow, edges, cost_matrix.shape)
367
+ assignment, cost = assignment_from_flow_solution(
368
+ result.flow, edges, cost_matrix.shape
369
+ )
360
370
 
361
371
  return assignment, cost
@@ -11,7 +11,7 @@ cost subject to the constraint that each index appears in at most one
11
11
  selected tuple.
12
12
  """
13
13
 
14
- from typing import List, NamedTuple, Optional, Tuple
14
+ from typing import Any, List, NamedTuple, Optional, Tuple
15
15
 
16
16
  import numpy as np
17
17
  from numpy.typing import ArrayLike, NDArray
@@ -511,7 +511,7 @@ def assign3d_auction(
511
511
  assign_i: List[Optional[Tuple[int, int]]] = [None] * n1
512
512
 
513
513
  # Reverse: which i is assigned to (j, k)
514
- reverse: dict = {}
514
+ reverse: dict[tuple[int, int], int] = {}
515
515
 
516
516
  converged = False
517
517
 
@@ -585,7 +585,7 @@ def assign3d(
585
585
  cost_tensor: ArrayLike,
586
586
  method: str = "lagrangian",
587
587
  maximize: bool = False,
588
- **kwargs,
588
+ **kwargs: Any,
589
589
  ) -> Assignment3DResult:
590
590
  """
591
591
  Solve 3D assignment problem.
@@ -77,10 +77,10 @@ from pytcl.astronomical.orbital_mechanics import (
77
77
  vis_viva,
78
78
  )
79
79
  from pytcl.astronomical.reference_frames import (
80
- earth_rotation_angle, # Time utilities; Precession; Nutation; Earth rotation; Polar motion; Full transformations; Ecliptic/equatorial
80
+ earth_rotation_angle, # Time utilities; Precession; Nutation
81
81
  )
82
+ from pytcl.astronomical.reference_frames import ecef_to_eci # Time utilities
82
83
  from pytcl.astronomical.reference_frames import (
83
- ecef_to_eci,
84
84
  eci_to_ecef,
85
85
  ecliptic_to_equatorial,
86
86
  equation_of_equinoxes,
@@ -116,7 +116,7 @@ from pytcl.astronomical.reference_frames import (
116
116
  true_obliquity,
117
117
  )
118
118
  from pytcl.astronomical.relativity import (
119
- C_LIGHT, # Physical constants; Schwarzschild metric; Time dilation; Shapiro delay; Precession; PN effects; Range corrections
119
+ C_LIGHT, # Physical constants; Schwarzschild metric; Time dilation
120
120
  )
121
121
  from pytcl.astronomical.relativity import (
122
122
  G_GRAV,
@@ -130,6 +130,12 @@ from pytcl.astronomical.relativity import (
130
130
  schwarzschild_radius,
131
131
  shapiro_delay,
132
132
  )
133
+ from pytcl.astronomical.sgp4 import (
134
+ SGP4Satellite,
135
+ SGP4State,
136
+ sgp4_propagate,
137
+ sgp4_propagate_batch,
138
+ )
133
139
  from pytcl.astronomical.special_orbits import (
134
140
  OrbitType,
135
141
  classify_orbit,
@@ -148,12 +154,6 @@ from pytcl.astronomical.special_orbits import (
148
154
  true_anomaly_to_parabolic_anomaly,
149
155
  velocity_parabolic,
150
156
  )
151
- from pytcl.astronomical.sgp4 import (
152
- SGP4Satellite,
153
- SGP4State,
154
- sgp4_propagate,
155
- sgp4_propagate_batch,
156
- )
157
157
  from pytcl.astronomical.time_systems import (
158
158
  JD_GPS_EPOCH, # Julian dates; Time scales; Unix time; GPS week; Sidereal time; Leap seconds; Constants
159
159
  )
@@ -49,9 +49,10 @@ References
49
49
 
50
50
  """
51
51
 
52
- from typing import Literal, Optional, Tuple
52
+ from typing import Any, Literal, Optional, Tuple
53
53
 
54
54
  import numpy as np
55
+ from numpy.typing import NDArray
55
56
 
56
57
  # Constants for unit conversion
57
58
  AU_PER_KM = 1.0 / 149597870.7 # 1 AU in km
@@ -152,10 +153,10 @@ class DEEphemeris:
152
153
  self.version = version
153
154
  self._jplephem = jplephem
154
155
  self._kernel: Optional[object] = None
155
- self._cache: dict = {}
156
+ self._cache: dict[str, Any] = {}
156
157
 
157
158
  @property
158
- def kernel(self):
159
+ def kernel(self) -> Optional[object]:
159
160
  """Lazy-load ephemeris kernel on first access.
160
161
 
161
162
  Note: This requires jplephem to be installed and the kernel file
@@ -204,7 +205,7 @@ class DEEphemeris:
204
205
 
205
206
  def sun_position(
206
207
  self, jd: float, frame: Literal["icrf", "ecliptic"] = "icrf"
207
- ) -> Tuple[np.ndarray, np.ndarray]:
208
+ ) -> Tuple[NDArray[np.floating], NDArray[np.floating]]:
208
209
  """Compute Sun position and velocity.
209
210
 
210
211
  Parameters
@@ -253,7 +254,7 @@ class DEEphemeris:
253
254
 
254
255
  def moon_position(
255
256
  self, jd: float, frame: Literal["icrf", "ecliptic", "earth_centered"] = "icrf"
256
- ) -> Tuple[np.ndarray, np.ndarray]:
257
+ ) -> Tuple[NDArray[np.floating], NDArray[np.floating]]:
257
258
  """Compute Moon position and velocity.
258
259
 
259
260
  Parameters
@@ -323,7 +324,7 @@ class DEEphemeris:
323
324
  ],
324
325
  jd: float,
325
326
  frame: Literal["icrf", "ecliptic"] = "icrf",
326
- ) -> Tuple[np.ndarray, np.ndarray]:
327
+ ) -> Tuple[np.ndarray[Any, Any], np.ndarray[Any, Any]]:
327
328
  """Compute planet position and velocity.
328
329
 
329
330
  Parameters
@@ -379,7 +380,7 @@ class DEEphemeris:
379
380
 
380
381
  def barycenter_position(
381
382
  self, body: str, jd: float
382
- ) -> Tuple[np.ndarray, np.ndarray]:
383
+ ) -> Tuple[NDArray[np.floating], NDArray[np.floating]]:
383
384
  """Compute position of any body relative to Solar System Barycenter.
384
385
 
385
386
  Parameters
@@ -424,7 +425,7 @@ def _get_default_ephemeris() -> DEEphemeris:
424
425
 
425
426
  def sun_position(
426
427
  jd: float, frame: Literal["icrf", "ecliptic"] = "icrf"
427
- ) -> Tuple[np.ndarray, np.ndarray]:
428
+ ) -> Tuple[NDArray[np.floating], NDArray[np.floating]]:
428
429
  """Convenience function: Compute Sun position and velocity.
429
430
 
430
431
  Parameters
@@ -451,7 +452,7 @@ def sun_position(
451
452
 
452
453
  def moon_position(
453
454
  jd: float, frame: Literal["icrf", "ecliptic", "earth_centered"] = "icrf"
454
- ) -> Tuple[np.ndarray, np.ndarray]:
455
+ ) -> Tuple[NDArray[np.floating], NDArray[np.floating]]:
455
456
  """Convenience function: Compute Moon position and velocity.
456
457
 
457
458
  Parameters
@@ -482,7 +483,7 @@ def planet_position(
482
483
  ],
483
484
  jd: float,
484
485
  frame: Literal["icrf", "ecliptic"] = "icrf",
485
- ) -> Tuple[np.ndarray, np.ndarray]:
486
+ ) -> Tuple[np.ndarray[Any, Any], np.ndarray[Any, Any]]:
486
487
  """Convenience function: Compute planet position and velocity.
487
488
 
488
489
  Parameters
@@ -509,7 +510,9 @@ def planet_position(
509
510
  return _get_default_ephemeris().planet_position(planet, jd, frame=frame)
510
511
 
511
512
 
512
- def barycenter_position(body: str, jd: float) -> Tuple[np.ndarray, np.ndarray]:
513
+ def barycenter_position(
514
+ body: str, jd: float
515
+ ) -> Tuple[NDArray[np.floating], NDArray[np.floating]]:
513
516
  """Convenience function: Position relative to Solar System Barycenter.
514
517
 
515
518
  Parameters
@@ -23,7 +23,7 @@ References
23
23
 
24
24
  import logging
25
25
  from functools import lru_cache
26
- from typing import Optional, Tuple
26
+ from typing import Any, Optional, Tuple
27
27
 
28
28
  import numpy as np
29
29
  from numpy.typing import NDArray
@@ -97,7 +97,9 @@ def precession_angles_iau76(T: float) -> Tuple[float, float, float]:
97
97
 
98
98
 
99
99
  @lru_cache(maxsize=_CACHE_MAXSIZE)
100
- def _precession_matrix_cached(jd_quantized: float) -> tuple:
100
+ def _precession_matrix_cached(
101
+ jd_quantized: float,
102
+ ) -> tuple[tuple[np.ndarray[Any, Any], ...], ...]:
101
103
  """Cached precession matrix computation (internal).
102
104
 
103
105
  Returns tuple of tuples for hashability.
@@ -234,7 +236,9 @@ def mean_obliquity_iau80(jd: float) -> float:
234
236
 
235
237
 
236
238
  @lru_cache(maxsize=_CACHE_MAXSIZE)
237
- def _nutation_matrix_cached(jd_quantized: float) -> tuple:
239
+ def _nutation_matrix_cached(
240
+ jd_quantized: float,
241
+ ) -> tuple[tuple[np.ndarray[Any, Any], ...], ...]:
238
242
  """Cached nutation matrix computation (internal).
239
243
 
240
244
  Returns tuple of tuples for hashability.
@@ -1414,7 +1418,7 @@ def clear_transformation_cache() -> None:
1414
1418
  _logger.debug("Transformation matrix cache cleared")
1415
1419
 
1416
1420
 
1417
- def get_cache_info() -> dict:
1421
+ def get_cache_info() -> dict[str, Any]:
1418
1422
  """Get cache statistics for transformation matrices.
1419
1423
 
1420
1424
  Returns
@@ -20,6 +20,7 @@ References:
20
20
  """
21
21
 
22
22
  import numpy as np
23
+ from numpy.typing import NDArray
23
24
 
24
25
  # Physical constants (CODATA 2018 values)
25
26
  C_LIGHT = 299792458.0 # Speed of light (m/s)
@@ -154,9 +155,9 @@ def proper_time_rate(v: float, r: float, gm: float = GM_EARTH) -> float:
154
155
 
155
156
 
156
157
  def shapiro_delay(
157
- observer_pos: np.ndarray,
158
- light_source_pos: np.ndarray,
159
- gravitating_body_pos: np.ndarray,
158
+ observer_pos: NDArray[np.floating],
159
+ light_source_pos: NDArray[np.floating],
160
+ gravitating_body_pos: NDArray[np.floating],
160
161
  gm: float = GM_SUN,
161
162
  ) -> float:
162
163
  """Compute Shapiro time delay for light propagation through gravitational field.
@@ -263,8 +264,8 @@ def schwarzschild_precession_per_orbit(a: float, e: float, gm: float = GM_SUN) -
263
264
 
264
265
 
265
266
  def post_newtonian_acceleration(
266
- r_vec: np.ndarray, v_vec: np.ndarray, gm: float = GM_EARTH
267
- ) -> np.ndarray:
267
+ r_vec: NDArray[np.floating], v_vec: NDArray[np.floating], gm: float = GM_EARTH
268
+ ) -> NDArray[np.floating]:
268
269
  """Compute post-Newtonian acceleration corrections (1PN order).
269
270
 
270
271
  Extends Newtonian gravity with first-order post-Newtonian corrections.
@@ -26,10 +26,10 @@ from numpy.typing import NDArray
26
26
  class OrbitType(Enum):
27
27
  """Classification of orbit types based on eccentricity."""
28
28
 
29
- CIRCULAR = 0 # e = 0
30
- ELLIPTICAL = 1 # 0 < e < 1
31
- PARABOLIC = 2 # e = 1 (boundary case)
32
- HYPERBOLIC = 3 # e > 1
29
+ CIRCULAR = 0 # e = 0
30
+ ELLIPTICAL = 1 # 0 < e < 1
31
+ PARABOLIC = 2 # e = 1 (boundary case)
32
+ HYPERBOLIC = 3 # e > 1
33
33
 
34
34
 
35
35
  class ParabolicElements(NamedTuple):
@@ -303,9 +303,7 @@ def hyperbolic_anomaly_to_true_anomaly(H: float, e: float) -> float:
303
303
  if e <= 1:
304
304
  raise ValueError(f"Eccentricity must be > 1 for hyperbolic orbits, got {e}")
305
305
 
306
- nu = 2.0 * np.arctan(
307
- np.sqrt((e + 1.0) / (e - 1.0)) * np.tanh(H / 2.0)
308
- )
306
+ nu = 2.0 * np.arctan(np.sqrt((e + 1.0) / (e - 1.0)) * np.tanh(H / 2.0))
309
307
 
310
308
  return nu
311
309
 
@@ -334,9 +332,7 @@ def true_anomaly_to_hyperbolic_anomaly(nu: float, e: float) -> float:
334
332
  if e <= 1:
335
333
  raise ValueError(f"Eccentricity must be > 1 for hyperbolic orbits, got {e}")
336
334
 
337
- H = 2.0 * np.arctanh(
338
- np.sqrt((e - 1.0) / (e + 1.0)) * np.tan(nu / 2.0)
339
- )
335
+ H = 2.0 * np.arctanh(np.sqrt((e - 1.0) / (e + 1.0)) * np.tan(nu / 2.0))
340
336
 
341
337
  return H
342
338
 
@@ -501,10 +497,10 @@ def semi_major_axis_from_energy(mu: float, specific_energy: float) -> float:
501
497
 
502
498
 
503
499
  def eccentricity_vector(
504
- r: NDArray,
505
- v: NDArray,
500
+ r: NDArray[np.floating],
501
+ v: NDArray[np.floating],
506
502
  mu: float,
507
- ) -> NDArray:
503
+ ) -> NDArray[np.floating]:
508
504
  """
509
505
  Compute eccentricity vector from position and velocity.
510
506
 
@@ -24,12 +24,6 @@ from pytcl.atmosphere.ionosphere import (
24
24
  simple_iri,
25
25
  )
26
26
  from pytcl.atmosphere.models import G0 # Constants
27
- from pytcl.atmosphere.nrlmsise00 import (
28
- F107Index,
29
- NRLMSISE00,
30
- NRLMSISE00Output,
31
- nrlmsise00,
32
- )
33
27
  from pytcl.atmosphere.models import (
34
28
  GAMMA,
35
29
  P0,
@@ -43,6 +37,12 @@ from pytcl.atmosphere.models import (
43
37
  true_airspeed_from_mach,
44
38
  us_standard_atmosphere_1976,
45
39
  )
40
+ from pytcl.atmosphere.nrlmsise00 import (
41
+ NRLMSISE00,
42
+ F107Index,
43
+ NRLMSISE00Output,
44
+ nrlmsise00,
45
+ )
46
46
 
47
47
  __all__ = [
48
48
  # Atmosphere state and models