nrl-tracker 1.6.0__py3-none-any.whl → 1.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {nrl_tracker-1.6.0.dist-info → nrl_tracker-1.7.0.dist-info}/METADATA +13 -10
- {nrl_tracker-1.6.0.dist-info → nrl_tracker-1.7.0.dist-info}/RECORD +20 -13
- pytcl/assignment_algorithms/__init__.py +28 -0
- pytcl/assignment_algorithms/nd_assignment.py +378 -0
- pytcl/assignment_algorithms/network_flow.py +361 -0
- pytcl/astronomical/__init__.py +35 -0
- pytcl/astronomical/reference_frames.py +102 -0
- pytcl/astronomical/special_orbits.py +536 -0
- pytcl/atmosphere/__init__.py +11 -0
- pytcl/atmosphere/nrlmsise00.py +808 -0
- pytcl/coordinate_systems/conversions/geodetic.py +248 -5
- pytcl/dynamic_estimation/__init__.py +26 -0
- pytcl/dynamic_estimation/gaussian_sum_filter.py +452 -0
- pytcl/dynamic_estimation/kalman/__init__.py +12 -0
- pytcl/dynamic_estimation/kalman/constrained.py +370 -0
- pytcl/dynamic_estimation/kalman/h_infinity.py +2 -2
- pytcl/dynamic_estimation/rbpf.py +593 -0
- {nrl_tracker-1.6.0.dist-info → nrl_tracker-1.7.0.dist-info}/LICENSE +0 -0
- {nrl_tracker-1.6.0.dist-info → nrl_tracker-1.7.0.dist-info}/WHEEL +0 -0
- {nrl_tracker-1.6.0.dist-info → nrl_tracker-1.7.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,361 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Network flow solutions for assignment problems.
|
|
3
|
+
|
|
4
|
+
This module provides min-cost flow formulations for assignment problems,
|
|
5
|
+
offering an alternative to Hungarian algorithm and relaxation methods.
|
|
6
|
+
|
|
7
|
+
A min-cost flow approach:
|
|
8
|
+
1. Models assignment as flow network
|
|
9
|
+
2. Uses cost edges for penalties
|
|
10
|
+
3. Enforces supply/demand constraints
|
|
11
|
+
4. Finds minimum-cost flow solution
|
|
12
|
+
5. Extracts assignment from flow
|
|
13
|
+
|
|
14
|
+
References
|
|
15
|
+
----------
|
|
16
|
+
.. [1] Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network Flows:
|
|
17
|
+
Theory, Algorithms, and Applications. Prentice-Hall.
|
|
18
|
+
.. [2] Costain, G., & Liang, H. (2012). An Auction Algorithm for the
|
|
19
|
+
Minimum Cost Flow Problem. CoRR, abs/1208.4859.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
from enum import Enum
|
|
23
|
+
from typing import NamedTuple, Tuple
|
|
24
|
+
|
|
25
|
+
import numpy as np
|
|
26
|
+
from numpy.typing import NDArray
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class FlowStatus(Enum):
|
|
30
|
+
"""Status of min-cost flow computation."""
|
|
31
|
+
|
|
32
|
+
OPTIMAL = 0
|
|
33
|
+
UNBOUNDED = 1
|
|
34
|
+
INFEASIBLE = 2
|
|
35
|
+
TIMEOUT = 3
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class MinCostFlowResult(NamedTuple):
|
|
39
|
+
"""Result of min-cost flow computation.
|
|
40
|
+
|
|
41
|
+
Attributes
|
|
42
|
+
----------
|
|
43
|
+
flow : ndarray
|
|
44
|
+
Flow values on each edge, shape (n_edges,).
|
|
45
|
+
cost : float
|
|
46
|
+
Total flow cost.
|
|
47
|
+
status : FlowStatus
|
|
48
|
+
Optimization status.
|
|
49
|
+
iterations : int
|
|
50
|
+
Number of iterations used.
|
|
51
|
+
"""
|
|
52
|
+
|
|
53
|
+
flow: NDArray[np.float64]
|
|
54
|
+
cost: float
|
|
55
|
+
status: FlowStatus
|
|
56
|
+
iterations: int
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
class FlowEdge(NamedTuple):
|
|
60
|
+
"""Edge in a flow network.
|
|
61
|
+
|
|
62
|
+
Attributes
|
|
63
|
+
----------
|
|
64
|
+
from_node : int
|
|
65
|
+
Source node index.
|
|
66
|
+
to_node : int
|
|
67
|
+
Destination node index.
|
|
68
|
+
capacity : float
|
|
69
|
+
Maximum flow on edge (default 1.0 for assignment).
|
|
70
|
+
cost : float
|
|
71
|
+
Cost per unit flow.
|
|
72
|
+
"""
|
|
73
|
+
|
|
74
|
+
from_node: int
|
|
75
|
+
to_node: int
|
|
76
|
+
capacity: float
|
|
77
|
+
cost: float
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def assignment_to_flow_network(
|
|
81
|
+
cost_matrix: NDArray[np.float64],
|
|
82
|
+
) -> Tuple[list, NDArray, NDArray]:
|
|
83
|
+
"""
|
|
84
|
+
Convert 2D assignment problem to min-cost flow network.
|
|
85
|
+
|
|
86
|
+
Network structure:
|
|
87
|
+
- Source node (0) supplies all workers
|
|
88
|
+
- Worker nodes (1 to m) demand 1 unit each
|
|
89
|
+
- Task nodes (m+1 to m+n) supply 1 unit each
|
|
90
|
+
- Sink node (m+n+1) collects all completed tasks
|
|
91
|
+
|
|
92
|
+
Parameters
|
|
93
|
+
----------
|
|
94
|
+
cost_matrix : ndarray
|
|
95
|
+
Cost matrix of shape (m, n) where cost[i,j] is cost of
|
|
96
|
+
assigning worker i to task j.
|
|
97
|
+
|
|
98
|
+
Returns
|
|
99
|
+
-------
|
|
100
|
+
edges : list[FlowEdge]
|
|
101
|
+
List of edges in the flow network.
|
|
102
|
+
supplies : ndarray
|
|
103
|
+
Supply/demand at each node (shape n_nodes,).
|
|
104
|
+
Positive = supply, negative = demand.
|
|
105
|
+
node_names : ndarray
|
|
106
|
+
Names of nodes for reference.
|
|
107
|
+
"""
|
|
108
|
+
m, n = cost_matrix.shape
|
|
109
|
+
|
|
110
|
+
# Node numbering:
|
|
111
|
+
# 0: source
|
|
112
|
+
# 1 to m: workers
|
|
113
|
+
# m+1 to m+n: tasks
|
|
114
|
+
# m+n+1: sink
|
|
115
|
+
|
|
116
|
+
n_nodes = m + n + 2
|
|
117
|
+
source = 0
|
|
118
|
+
sink = m + n + 1
|
|
119
|
+
|
|
120
|
+
edges = []
|
|
121
|
+
|
|
122
|
+
# Source to workers: capacity 1, cost 0
|
|
123
|
+
for i in range(1, m + 1):
|
|
124
|
+
edges.append(FlowEdge(from_node=source, to_node=i, capacity=1.0, cost=0.0))
|
|
125
|
+
|
|
126
|
+
# Workers to tasks: capacity 1, cost = assignment cost
|
|
127
|
+
for i in range(m):
|
|
128
|
+
for j in range(n):
|
|
129
|
+
worker_node = i + 1
|
|
130
|
+
task_node = m + 1 + j
|
|
131
|
+
edges.append(
|
|
132
|
+
FlowEdge(
|
|
133
|
+
from_node=worker_node,
|
|
134
|
+
to_node=task_node,
|
|
135
|
+
capacity=1.0,
|
|
136
|
+
cost=cost_matrix[i, j],
|
|
137
|
+
)
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
# Tasks to sink: capacity 1, cost 0
|
|
141
|
+
for j in range(1, n + 1):
|
|
142
|
+
task_node = m + j
|
|
143
|
+
edges.append(FlowEdge(from_node=task_node, to_node=sink, capacity=1.0, cost=0.0))
|
|
144
|
+
|
|
145
|
+
# Supply/demand: source supplies m units, sink demands m units
|
|
146
|
+
supplies = np.zeros(n_nodes)
|
|
147
|
+
supplies[source] = float(m)
|
|
148
|
+
supplies[sink] = float(-m)
|
|
149
|
+
|
|
150
|
+
node_names = np.array(
|
|
151
|
+
["source"]
|
|
152
|
+
+ [f"worker_{i}" for i in range(m)]
|
|
153
|
+
+ [f"task_{j}" for j in range(n)]
|
|
154
|
+
+ ["sink"]
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
return edges, supplies, node_names
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def min_cost_flow_successive_shortest_paths(
|
|
161
|
+
edges: list,
|
|
162
|
+
supplies: NDArray[np.float64],
|
|
163
|
+
max_iterations: int = 1000,
|
|
164
|
+
) -> MinCostFlowResult:
|
|
165
|
+
"""
|
|
166
|
+
Solve min-cost flow using successive shortest paths.
|
|
167
|
+
|
|
168
|
+
Algorithm:
|
|
169
|
+
1. While there is excess supply:
|
|
170
|
+
- Find shortest path from a supply node to a demand node
|
|
171
|
+
- Push maximum feasible flow along path
|
|
172
|
+
- Update supplies and residual capacities
|
|
173
|
+
|
|
174
|
+
Parameters
|
|
175
|
+
----------
|
|
176
|
+
edges : list[FlowEdge]
|
|
177
|
+
List of edges with capacities and costs.
|
|
178
|
+
supplies : ndarray
|
|
179
|
+
Supply/demand at each node.
|
|
180
|
+
max_iterations : int, optional
|
|
181
|
+
Maximum iterations (default 1000).
|
|
182
|
+
|
|
183
|
+
Returns
|
|
184
|
+
-------
|
|
185
|
+
MinCostFlowResult
|
|
186
|
+
Solution with flow values, cost, status, and iterations.
|
|
187
|
+
|
|
188
|
+
Notes
|
|
189
|
+
-----
|
|
190
|
+
This is a simplified implementation using Bellman-Ford for shortest
|
|
191
|
+
paths. Production code would use more efficient implementations.
|
|
192
|
+
"""
|
|
193
|
+
n_nodes = len(supplies)
|
|
194
|
+
n_edges = len(edges)
|
|
195
|
+
|
|
196
|
+
# Build adjacency lists for residual graph
|
|
197
|
+
graph: list[list[tuple[int, int, float]]] = [[] for _ in range(n_nodes)]
|
|
198
|
+
flow = np.zeros(n_edges)
|
|
199
|
+
residual_capacity = np.array([e.capacity for e in edges])
|
|
200
|
+
|
|
201
|
+
for edge_idx, edge in enumerate(edges):
|
|
202
|
+
graph[edge.from_node].append((edge.to_node, edge_idx, edge.cost))
|
|
203
|
+
# Add reverse edge with negative cost
|
|
204
|
+
graph[edge.to_node].append((edge.from_node, edge_idx, -edge.cost))
|
|
205
|
+
|
|
206
|
+
current_supplies = supplies.copy()
|
|
207
|
+
iteration = 0
|
|
208
|
+
|
|
209
|
+
while iteration < max_iterations:
|
|
210
|
+
# Find a node with excess supply
|
|
211
|
+
excess_node = None
|
|
212
|
+
for node in range(n_nodes):
|
|
213
|
+
if current_supplies[node] > 1e-10:
|
|
214
|
+
excess_node = node
|
|
215
|
+
break
|
|
216
|
+
|
|
217
|
+
if excess_node is None:
|
|
218
|
+
break
|
|
219
|
+
|
|
220
|
+
# Find a node with deficit
|
|
221
|
+
deficit_node = None
|
|
222
|
+
for node in range(n_nodes):
|
|
223
|
+
if current_supplies[node] < -1e-10:
|
|
224
|
+
deficit_node = node
|
|
225
|
+
break
|
|
226
|
+
|
|
227
|
+
if deficit_node is None:
|
|
228
|
+
break
|
|
229
|
+
|
|
230
|
+
# Find shortest path using Bellman-Ford relaxation
|
|
231
|
+
dist = np.full(n_nodes, np.inf)
|
|
232
|
+
dist[excess_node] = 0.0
|
|
233
|
+
parent = np.full(n_nodes, -1, dtype=int)
|
|
234
|
+
parent_edge = np.full(n_nodes, -1, dtype=int)
|
|
235
|
+
|
|
236
|
+
for _ in range(n_nodes - 1):
|
|
237
|
+
for u in range(n_nodes):
|
|
238
|
+
if dist[u] == np.inf:
|
|
239
|
+
continue
|
|
240
|
+
for v, edge_idx, cost in graph[u]:
|
|
241
|
+
if residual_capacity[edge_idx] > 1e-10:
|
|
242
|
+
new_dist = dist[u] + cost
|
|
243
|
+
if new_dist < dist[v]:
|
|
244
|
+
dist[v] = new_dist
|
|
245
|
+
parent[v] = u
|
|
246
|
+
parent_edge[v] = edge_idx
|
|
247
|
+
|
|
248
|
+
if dist[deficit_node] == np.inf:
|
|
249
|
+
# No path found
|
|
250
|
+
break
|
|
251
|
+
|
|
252
|
+
# Extract path and find bottleneck capacity
|
|
253
|
+
path_edges = []
|
|
254
|
+
node = deficit_node
|
|
255
|
+
while parent[node] != -1:
|
|
256
|
+
path_edges.append(parent_edge[node])
|
|
257
|
+
node = parent[node]
|
|
258
|
+
|
|
259
|
+
path_edges.reverse()
|
|
260
|
+
|
|
261
|
+
# Find minimum capacity along path
|
|
262
|
+
min_flow = min(residual_capacity[e] for e in path_edges)
|
|
263
|
+
min_flow = min(min_flow, current_supplies[excess_node], -current_supplies[deficit_node])
|
|
264
|
+
|
|
265
|
+
# Push flow along path
|
|
266
|
+
total_cost = 0.0
|
|
267
|
+
for edge_idx in path_edges:
|
|
268
|
+
flow[edge_idx] += min_flow
|
|
269
|
+
residual_capacity[edge_idx] -= min_flow
|
|
270
|
+
total_cost += min_flow * edges[edge_idx].cost
|
|
271
|
+
|
|
272
|
+
current_supplies[excess_node] -= min_flow
|
|
273
|
+
current_supplies[deficit_node] += min_flow
|
|
274
|
+
|
|
275
|
+
iteration += 1
|
|
276
|
+
|
|
277
|
+
# Compute total cost
|
|
278
|
+
total_cost = float(np.sum(flow[i] * edges[i].cost for i in range(n_edges)))
|
|
279
|
+
|
|
280
|
+
# Determine status
|
|
281
|
+
if np.allclose(current_supplies, 0):
|
|
282
|
+
status = FlowStatus.OPTIMAL
|
|
283
|
+
elif iteration >= max_iterations:
|
|
284
|
+
status = FlowStatus.TIMEOUT
|
|
285
|
+
else:
|
|
286
|
+
status = FlowStatus.INFEASIBLE
|
|
287
|
+
|
|
288
|
+
return MinCostFlowResult(
|
|
289
|
+
flow=flow,
|
|
290
|
+
cost=total_cost,
|
|
291
|
+
status=status,
|
|
292
|
+
iterations=iteration,
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def assignment_from_flow_solution(
|
|
297
|
+
flow: NDArray[np.float64],
|
|
298
|
+
edges: list,
|
|
299
|
+
cost_matrix_shape: Tuple[int, int],
|
|
300
|
+
) -> Tuple[NDArray[np.intp], float]:
|
|
301
|
+
"""
|
|
302
|
+
Extract assignment from flow network solution.
|
|
303
|
+
|
|
304
|
+
Parameters
|
|
305
|
+
----------
|
|
306
|
+
flow : ndarray
|
|
307
|
+
Flow values on each edge.
|
|
308
|
+
edges : list[FlowEdge]
|
|
309
|
+
List of edges used in network.
|
|
310
|
+
cost_matrix_shape : tuple
|
|
311
|
+
Shape of original cost matrix (m, n).
|
|
312
|
+
|
|
313
|
+
Returns
|
|
314
|
+
-------
|
|
315
|
+
assignment : ndarray
|
|
316
|
+
Assignment array of shape (n_assignments, 2) with [worker, task].
|
|
317
|
+
cost : float
|
|
318
|
+
Total assignment cost.
|
|
319
|
+
"""
|
|
320
|
+
m, n = cost_matrix_shape
|
|
321
|
+
assignment = []
|
|
322
|
+
|
|
323
|
+
for edge_idx, edge in enumerate(edges):
|
|
324
|
+
# Worker-to-task edges: from_node in [1, m], to_node in [m+1, m+n]
|
|
325
|
+
if 1 <= edge.from_node <= m and m + 1 <= edge.to_node <= m + n:
|
|
326
|
+
if flow[edge_idx] > 0.5: # Flow > 0 (allowing for numerical tolerance)
|
|
327
|
+
worker_idx = edge.from_node - 1
|
|
328
|
+
task_idx = edge.to_node - m - 1
|
|
329
|
+
assignment.append([worker_idx, task_idx])
|
|
330
|
+
|
|
331
|
+
assignment = np.array(assignment, dtype=np.intp)
|
|
332
|
+
cost = 0.0
|
|
333
|
+
if len(assignment) > 0:
|
|
334
|
+
cost = float(np.sum(flow[edge_idx] * edges[edge_idx].cost for edge_idx in range(len(edges))))
|
|
335
|
+
|
|
336
|
+
return assignment, cost
|
|
337
|
+
|
|
338
|
+
|
|
339
|
+
def min_cost_assignment_via_flow(
|
|
340
|
+
cost_matrix: NDArray[np.float64],
|
|
341
|
+
) -> Tuple[NDArray[np.intp], float]:
|
|
342
|
+
"""
|
|
343
|
+
Solve 2D assignment problem via min-cost flow network.
|
|
344
|
+
|
|
345
|
+
Parameters
|
|
346
|
+
----------
|
|
347
|
+
cost_matrix : ndarray
|
|
348
|
+
Cost matrix of shape (m, n).
|
|
349
|
+
|
|
350
|
+
Returns
|
|
351
|
+
-------
|
|
352
|
+
assignment : ndarray
|
|
353
|
+
Assignment array of shape (n_assignments, 2).
|
|
354
|
+
total_cost : float
|
|
355
|
+
Total assignment cost.
|
|
356
|
+
"""
|
|
357
|
+
edges, supplies, _ = assignment_to_flow_network(cost_matrix)
|
|
358
|
+
result = min_cost_flow_successive_shortest_paths(edges, supplies)
|
|
359
|
+
assignment, cost = assignment_from_flow_solution(result.flow, edges, cost_matrix.shape)
|
|
360
|
+
|
|
361
|
+
return assignment, cost
|
pytcl/astronomical/__init__.py
CHANGED
|
@@ -130,6 +130,24 @@ from pytcl.astronomical.relativity import (
|
|
|
130
130
|
schwarzschild_radius,
|
|
131
131
|
shapiro_delay,
|
|
132
132
|
)
|
|
133
|
+
from pytcl.astronomical.special_orbits import (
|
|
134
|
+
OrbitType,
|
|
135
|
+
classify_orbit,
|
|
136
|
+
eccentricity_vector,
|
|
137
|
+
escape_velocity_at_radius,
|
|
138
|
+
hyperbolic_anomaly_to_true_anomaly,
|
|
139
|
+
hyperbolic_asymptote_angle,
|
|
140
|
+
hyperbolic_deflection_angle,
|
|
141
|
+
hyperbolic_excess_velocity,
|
|
142
|
+
mean_to_parabolic_anomaly,
|
|
143
|
+
mean_to_true_anomaly_parabolic,
|
|
144
|
+
parabolic_anomaly_to_true_anomaly,
|
|
145
|
+
radius_parabolic,
|
|
146
|
+
semi_major_axis_from_energy,
|
|
147
|
+
true_anomaly_to_hyperbolic_anomaly,
|
|
148
|
+
true_anomaly_to_parabolic_anomaly,
|
|
149
|
+
velocity_parabolic,
|
|
150
|
+
)
|
|
133
151
|
from pytcl.astronomical.sgp4 import (
|
|
134
152
|
SGP4Satellite,
|
|
135
153
|
SGP4State,
|
|
@@ -337,4 +355,21 @@ __all__ = [
|
|
|
337
355
|
"geodetic_precession",
|
|
338
356
|
"lense_thirring_precession",
|
|
339
357
|
"relativistic_range_correction",
|
|
358
|
+
# Special orbits - Parabolic and hyperbolic
|
|
359
|
+
"OrbitType",
|
|
360
|
+
"classify_orbit",
|
|
361
|
+
"mean_to_parabolic_anomaly",
|
|
362
|
+
"parabolic_anomaly_to_true_anomaly",
|
|
363
|
+
"true_anomaly_to_parabolic_anomaly",
|
|
364
|
+
"mean_to_true_anomaly_parabolic",
|
|
365
|
+
"radius_parabolic",
|
|
366
|
+
"velocity_parabolic",
|
|
367
|
+
"hyperbolic_anomaly_to_true_anomaly",
|
|
368
|
+
"true_anomaly_to_hyperbolic_anomaly",
|
|
369
|
+
"escape_velocity_at_radius",
|
|
370
|
+
"hyperbolic_excess_velocity",
|
|
371
|
+
"semi_major_axis_from_energy",
|
|
372
|
+
"hyperbolic_asymptote_angle",
|
|
373
|
+
"hyperbolic_deflection_angle",
|
|
374
|
+
"eccentricity_vector",
|
|
340
375
|
]
|
|
@@ -1302,6 +1302,106 @@ def itrf_to_tod(
|
|
|
1302
1302
|
return R.T @ (W.T @ r_itrf)
|
|
1303
1303
|
|
|
1304
1304
|
|
|
1305
|
+
def gcrf_to_pef(
|
|
1306
|
+
r_gcrf: NDArray[np.floating],
|
|
1307
|
+
jd_ut1: float,
|
|
1308
|
+
jd_tt: float,
|
|
1309
|
+
) -> NDArray[np.floating]:
|
|
1310
|
+
"""
|
|
1311
|
+
Transform position from GCRF (inertial) to PEF (Earth-fixed, rotation only).
|
|
1312
|
+
|
|
1313
|
+
PEF (Pseudo-Earth Fixed) is an intermediate reference frame between
|
|
1314
|
+
GCRF and ITRF. It includes precession, nutation, and Earth rotation,
|
|
1315
|
+
but excludes polar motion.
|
|
1316
|
+
|
|
1317
|
+
Parameters
|
|
1318
|
+
----------
|
|
1319
|
+
r_gcrf : ndarray
|
|
1320
|
+
Position in GCRF (km), shape (3,).
|
|
1321
|
+
jd_ut1 : float
|
|
1322
|
+
Julian date in UT1.
|
|
1323
|
+
jd_tt : float
|
|
1324
|
+
Julian date in TT.
|
|
1325
|
+
|
|
1326
|
+
Returns
|
|
1327
|
+
-------
|
|
1328
|
+
r_pef : ndarray
|
|
1329
|
+
Position in PEF (km), shape (3,).
|
|
1330
|
+
|
|
1331
|
+
Notes
|
|
1332
|
+
-----
|
|
1333
|
+
The transformation chain is: GCRF -> MOD -> TOD -> PEF
|
|
1334
|
+
- Precession: GCRF -> MOD
|
|
1335
|
+
- Nutation: MOD -> TOD
|
|
1336
|
+
- Sidereal rotation: TOD -> PEF
|
|
1337
|
+
|
|
1338
|
+
See Also
|
|
1339
|
+
--------
|
|
1340
|
+
pef_to_gcrf : Inverse transformation
|
|
1341
|
+
gcrf_to_itrf : Includes polar motion
|
|
1342
|
+
|
|
1343
|
+
References
|
|
1344
|
+
----------
|
|
1345
|
+
.. [1] Vallado et al., "Fundamentals of Astrodynamics and Applications", 4th ed.
|
|
1346
|
+
"""
|
|
1347
|
+
# Precession: GCRF -> MOD
|
|
1348
|
+
P = precession_matrix_iau76(jd_tt)
|
|
1349
|
+
r_mod = P @ r_gcrf
|
|
1350
|
+
|
|
1351
|
+
# Nutation: MOD -> TOD
|
|
1352
|
+
N = nutation_matrix(jd_tt)
|
|
1353
|
+
r_tod = N @ r_mod
|
|
1354
|
+
|
|
1355
|
+
# Sidereal rotation: TOD -> PEF
|
|
1356
|
+
gast = gast_iau82(jd_ut1, jd_tt)
|
|
1357
|
+
R = sidereal_rotation_matrix(gast)
|
|
1358
|
+
r_pef = R @ r_tod
|
|
1359
|
+
|
|
1360
|
+
return r_pef
|
|
1361
|
+
|
|
1362
|
+
|
|
1363
|
+
def pef_to_gcrf(
|
|
1364
|
+
r_pef: NDArray[np.floating],
|
|
1365
|
+
jd_ut1: float,
|
|
1366
|
+
jd_tt: float,
|
|
1367
|
+
) -> NDArray[np.floating]:
|
|
1368
|
+
"""
|
|
1369
|
+
Transform position from PEF (Earth-fixed, rotation only) to GCRF (inertial).
|
|
1370
|
+
|
|
1371
|
+
Inverse of gcrf_to_pef.
|
|
1372
|
+
|
|
1373
|
+
Parameters
|
|
1374
|
+
----------
|
|
1375
|
+
r_pef : ndarray
|
|
1376
|
+
Position in PEF (km), shape (3,).
|
|
1377
|
+
jd_ut1 : float
|
|
1378
|
+
Julian date in UT1.
|
|
1379
|
+
jd_tt : float
|
|
1380
|
+
Julian date in TT.
|
|
1381
|
+
|
|
1382
|
+
Returns
|
|
1383
|
+
-------
|
|
1384
|
+
r_gcrf : ndarray
|
|
1385
|
+
Position in GCRF (km), shape (3,).
|
|
1386
|
+
|
|
1387
|
+
See Also
|
|
1388
|
+
--------
|
|
1389
|
+
gcrf_to_pef : Forward transformation
|
|
1390
|
+
"""
|
|
1391
|
+
# Compute rotation matrices
|
|
1392
|
+
P = precession_matrix_iau76(jd_tt)
|
|
1393
|
+
N = nutation_matrix(jd_tt)
|
|
1394
|
+
gast = gast_iau82(jd_ut1, jd_tt)
|
|
1395
|
+
R = sidereal_rotation_matrix(gast)
|
|
1396
|
+
|
|
1397
|
+
# Inverse transformation: GCRF = P.T * N.T * R.T * PEF
|
|
1398
|
+
r_tod = R.T @ r_pef
|
|
1399
|
+
r_mod = N.T @ r_tod
|
|
1400
|
+
r_gcrf = P.T @ r_mod
|
|
1401
|
+
|
|
1402
|
+
return r_gcrf
|
|
1403
|
+
|
|
1404
|
+
|
|
1305
1405
|
def clear_transformation_cache() -> None:
|
|
1306
1406
|
"""Clear cached transformation matrices.
|
|
1307
1407
|
|
|
@@ -1351,6 +1451,8 @@ __all__ = [
|
|
|
1351
1451
|
# Full transformations
|
|
1352
1452
|
"gcrf_to_itrf",
|
|
1353
1453
|
"itrf_to_gcrf",
|
|
1454
|
+
"gcrf_to_pef",
|
|
1455
|
+
"pef_to_gcrf",
|
|
1354
1456
|
"eci_to_ecef",
|
|
1355
1457
|
"ecef_to_eci",
|
|
1356
1458
|
# Ecliptic/equatorial
|