nrl-tracker 0.21.1__py3-none-any.whl → 0.22.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {nrl_tracker-0.21.1.dist-info → nrl_tracker-0.22.5.dist-info}/METADATA +4 -4
- {nrl_tracker-0.21.1.dist-info → nrl_tracker-0.22.5.dist-info}/RECORD +35 -33
- pytcl/__init__.py +1 -1
- pytcl/assignment_algorithms/data_association.py +2 -7
- pytcl/assignment_algorithms/jpda.py +43 -29
- pytcl/assignment_algorithms/two_dimensional/assignment.py +14 -7
- pytcl/astronomical/__init__.py +60 -7
- pytcl/astronomical/ephemerides.py +530 -0
- pytcl/astronomical/relativity.py +472 -0
- pytcl/atmosphere/__init__.py +2 -2
- pytcl/clustering/dbscan.py +23 -5
- pytcl/clustering/hierarchical.py +23 -10
- pytcl/clustering/kmeans.py +5 -10
- pytcl/containers/__init__.py +4 -21
- pytcl/containers/cluster_set.py +1 -10
- pytcl/containers/measurement_set.py +1 -9
- pytcl/coordinate_systems/projections/__init__.py +4 -2
- pytcl/dynamic_estimation/imm.py +42 -36
- pytcl/dynamic_estimation/kalman/extended.py +1 -4
- pytcl/dynamic_estimation/kalman/linear.py +17 -13
- pytcl/dynamic_estimation/kalman/unscented.py +27 -27
- pytcl/dynamic_estimation/particle_filters/bootstrap.py +57 -19
- pytcl/dynamic_estimation/smoothers.py +1 -5
- pytcl/dynamic_models/discrete_time/__init__.py +1 -5
- pytcl/dynamic_models/process_noise/__init__.py +1 -5
- pytcl/magnetism/__init__.py +3 -14
- pytcl/mathematical_functions/interpolation/__init__.py +2 -2
- pytcl/mathematical_functions/special_functions/__init__.py +2 -2
- pytcl/navigation/__init__.py +14 -10
- pytcl/navigation/ins.py +1 -5
- pytcl/trackers/__init__.py +3 -14
- pytcl/trackers/multi_target.py +1 -4
- {nrl_tracker-0.21.1.dist-info → nrl_tracker-0.22.5.dist-info}/LICENSE +0 -0
- {nrl_tracker-0.21.1.dist-info → nrl_tracker-0.22.5.dist-info}/WHEEL +0 -0
- {nrl_tracker-0.21.1.dist-info → nrl_tracker-0.22.5.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: nrl-tracker
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.22.5
|
|
4
4
|
Summary: Python port of the U.S. Naval Research Laboratory's Tracker Component Library for target tracking algorithms
|
|
5
5
|
Author: Original: David F. Crouse, Naval Research Laboratory
|
|
6
6
|
Maintainer: Python Port Contributors
|
|
@@ -60,15 +60,15 @@ Requires-Dist: plotly>=5.15.0; extra == "visualization"
|
|
|
60
60
|
|
|
61
61
|
# Tracker Component Library (Python)
|
|
62
62
|
|
|
63
|
-
[](https://pypi.org/project/nrl-tracker/)
|
|
64
64
|
[](https://www.python.org/downloads/)
|
|
65
65
|
[](https://en.wikipedia.org/wiki/Public_domain)
|
|
66
66
|
[](https://github.com/psf/black)
|
|
67
|
-
[](https://github.com/nedonatelli/TCL)
|
|
68
68
|
|
|
69
69
|
A Python port of the [U.S. Naval Research Laboratory's Tracker Component Library](https://github.com/USNavalResearchLaboratory/TrackerComponentLibrary), a comprehensive collection of algorithms for target tracking, estimation, coordinate systems, and related mathematical functions.
|
|
70
70
|
|
|
71
|
-
**800+ functions** | **144 modules** | **1,
|
|
71
|
+
**800+ functions** | **144 modules** | **1,598 tests** | **15+ algorithm categories**
|
|
72
72
|
|
|
73
73
|
## Overview
|
|
74
74
|
|
|
@@ -1,30 +1,32 @@
|
|
|
1
|
-
pytcl/__init__.py,sha256=
|
|
1
|
+
pytcl/__init__.py,sha256=uQnRoRwqaWqcvE-GHRP1WQoDJ2Eg96DjEkzM7-oteL4,1894
|
|
2
2
|
pytcl/assignment_algorithms/__init__.py,sha256=f9V-TkEVmiKYYyth4PTpDfJvA7yYV_ys6Zix-QwWIYY,2136
|
|
3
|
-
pytcl/assignment_algorithms/data_association.py,sha256=
|
|
3
|
+
pytcl/assignment_algorithms/data_association.py,sha256=tsRxWJZk9aAPmE99BKXGouEpFfZrjPjb4HXvgxFUHhU,11405
|
|
4
4
|
pytcl/assignment_algorithms/gating.py,sha256=fN_oAOkv7nYYOWE1oPOLrcCn3xEpKdMVlFSbRMAURxY,10815
|
|
5
|
-
pytcl/assignment_algorithms/jpda.py,sha256=
|
|
5
|
+
pytcl/assignment_algorithms/jpda.py,sha256=Hv55j3J9qVwzlUfWdXdSasodTyB1ZKdgEpo5dBh95O8,19582
|
|
6
6
|
pytcl/assignment_algorithms/three_dimensional/__init__.py,sha256=1Q40OUlUQoo7YKEucwdrSNo3D4A0Zibvkr8z4TpueBg,526
|
|
7
7
|
pytcl/assignment_algorithms/three_dimensional/assignment.py,sha256=9BJhwlYu3JJ0kZ9sRyKKfpdvQdL4WYYHCtLbvaWycBw,19212
|
|
8
8
|
pytcl/assignment_algorithms/two_dimensional/__init__.py,sha256=4Evsn__9hTfI2i8m8Ngl-Zy0Fa2OydKmDKlZlH6jaao,778
|
|
9
|
-
pytcl/assignment_algorithms/two_dimensional/assignment.py,sha256=
|
|
9
|
+
pytcl/assignment_algorithms/two_dimensional/assignment.py,sha256=eh87MBb-uiUSI1MXj4HrreRKB6Z8rxAyDkNQ8-u4SbM,11848
|
|
10
10
|
pytcl/assignment_algorithms/two_dimensional/kbest.py,sha256=yiTToLuP7xWxQlQ8E-fpgXg-5iu0nnXcJXStjUB0nOE,17284
|
|
11
|
-
pytcl/astronomical/__init__.py,sha256=
|
|
11
|
+
pytcl/astronomical/__init__.py,sha256=Dtf6hqXyKyFL5VP-sqI7m2QGK6l-rqRGxVIhgDuYHOg,7182
|
|
12
|
+
pytcl/astronomical/ephemerides.py,sha256=x2500S0rF1D2h0dMR_2BnZaChbBZTooHLdrevttxlAc,16471
|
|
12
13
|
pytcl/astronomical/lambert.py,sha256=Lc8FT1JmpI9WSXsG2s5vIRkSoBSV7r5hd3o2bGh2Ojo,15607
|
|
13
14
|
pytcl/astronomical/orbital_mechanics.py,sha256=8GssRanwTowCl6PJYqmB_SDnNznLUq5gkPa3j6iEo3U,19965
|
|
14
15
|
pytcl/astronomical/reference_frames.py,sha256=GDak7af6BqOwGnCUxkvFoeqd_H2TMubdjG9lGPCoUB4,15799
|
|
16
|
+
pytcl/astronomical/relativity.py,sha256=YPsXLD-VRh-nqs1laC-wKpRO00fflm4GkyLhojPydbo,15441
|
|
15
17
|
pytcl/astronomical/time_systems.py,sha256=Jg0Zaq60hc4Ts1aQtb5bK4KSZhz-uQse8gYC89Y0-TA,15243
|
|
16
|
-
pytcl/atmosphere/__init__.py,sha256=
|
|
18
|
+
pytcl/atmosphere/__init__.py,sha256=TTVz4hAM48Xd3jr6GKrR2GAABpx2z0aWvtzb9uIQiHk,737
|
|
17
19
|
pytcl/atmosphere/models.py,sha256=pMLv8D7qoFqLZrlbTHLJJULOdDdhPskJ1m7KVKLV63E,9584
|
|
18
20
|
pytcl/clustering/__init__.py,sha256=bYdhC_XJEt6KUUni9bIPxaddXNEGmIJQvGkA14rK4J8,1697
|
|
19
|
-
pytcl/clustering/dbscan.py,sha256=
|
|
21
|
+
pytcl/clustering/dbscan.py,sha256=PS6QlOwHFerbZNEb3zcNhN4oNQpgOOw5y0WskQzyKIo,7364
|
|
20
22
|
pytcl/clustering/gaussian_mixture.py,sha256=U5U0Z46tZWdTLNdNNNJenoeviwZRAOvexVFYVLt4QMc,22865
|
|
21
|
-
pytcl/clustering/hierarchical.py,sha256=
|
|
22
|
-
pytcl/clustering/kmeans.py,sha256=
|
|
23
|
-
pytcl/containers/__init__.py,sha256
|
|
24
|
-
pytcl/containers/cluster_set.py,sha256=
|
|
23
|
+
pytcl/clustering/hierarchical.py,sha256=Hw9BFCn5df_ATpJX63R3B31MHz27ztCw9ihMDIlI688,14202
|
|
24
|
+
pytcl/clustering/kmeans.py,sha256=250FQyDol5S_Y4TznNn9cEuE96UDp7wvEkPZJ1DLul8,10697
|
|
25
|
+
pytcl/containers/__init__.py,sha256=-hnqSMKlMugj2RRssx3p_48HWnfqLSrF6BCChsinCOg,1627
|
|
26
|
+
pytcl/containers/cluster_set.py,sha256=y36D5TNzvCN6xjg6taP2SD_MC-O5iLq9ncBlHsQ5IBs,22723
|
|
25
27
|
pytcl/containers/covertree.py,sha256=1JWqXxoUFLxuMnjwj2qf0iz2uPzdujQYdwJW3l5qsOs,13282
|
|
26
28
|
pytcl/containers/kd_tree.py,sha256=pxRC62RYkqz9zXPz6c1fubmtPPBDLYA5I9AXMAoGanw,16348
|
|
27
|
-
pytcl/containers/measurement_set.py,sha256=
|
|
29
|
+
pytcl/containers/measurement_set.py,sha256=87AbdoZIUspn1yJsiMpyQ5LoEVcerUnXefXGGPtFTJg,12654
|
|
28
30
|
pytcl/containers/rtree.py,sha256=gv2EztvPnaAXEa6OoFnOYBY1MfTwjNMYh_BCiIomHJk,15450
|
|
29
31
|
pytcl/containers/track_list.py,sha256=6q9Qgcwm-8H_JqtOCsMssF27av4XaSkhfDl-MWb1ABc,12520
|
|
30
32
|
pytcl/containers/vptree.py,sha256=6fBNHrezkmj7L2nH0-2bONRN92f5cZAhS-5vaI1JZnA,8814
|
|
@@ -34,7 +36,7 @@ pytcl/coordinate_systems/conversions/geodetic.py,sha256=qQSnJRt3jg5KiostvzyslPIb
|
|
|
34
36
|
pytcl/coordinate_systems/conversions/spherical.py,sha256=q7k9l5mJbVzVdNj9Gcq4ibFxax8z_mVpJfITRBzx630,10812
|
|
35
37
|
pytcl/coordinate_systems/jacobians/__init__.py,sha256=CRGB8GzvGT_sr4Ynm51S7gSX8grqt1pO1Pq1MWmHPTs,890
|
|
36
38
|
pytcl/coordinate_systems/jacobians/jacobians.py,sha256=1KufIoktm9mXLO34X9KjysdMpu7itGwfssRyAdkTTN8,11703
|
|
37
|
-
pytcl/coordinate_systems/projections/__init__.py,sha256
|
|
39
|
+
pytcl/coordinate_systems/projections/__init__.py,sha256=eWNtezPO62IUWxv7jymenIXsWS1MC66Q12u5KRUnqNE,2503
|
|
38
40
|
pytcl/coordinate_systems/projections/projections.py,sha256=yODS7n1gA4jsCJcU8EaeclHrbUBsZI9O2M_XJs2HOXs,33169
|
|
39
41
|
pytcl/coordinate_systems/rotations/__init__.py,sha256=nqAz4iJd2hEOX_r7Tz4cE524sShyxdbtcQ5m56RrDLg,1047
|
|
40
42
|
pytcl/coordinate_systems/rotations/rotations.py,sha256=FAYHkShQcpOlWJjtvLfNvtCx-a56pr-cbpo0QjC5W9U,18227
|
|
@@ -43,26 +45,26 @@ pytcl/core/array_utils.py,sha256=SsgEiAoRCWxAVKq1aa5-nPdOi-2AB6XNObu0IaGClUk,139
|
|
|
43
45
|
pytcl/core/constants.py,sha256=lZVDK5zsSR02_4b2Nqx9KDtZT9QaYhkZ9wuoODbifd4,8693
|
|
44
46
|
pytcl/core/validation.py,sha256=WRlzMlUihtqc3XZoWOTFK0sBAZVDIwTMGCiWcX5OZVY,13093
|
|
45
47
|
pytcl/dynamic_estimation/__init__.py,sha256=jA5FF6kHYklY5LMOfZaKcCeiPTpVe8vHIMp3ECDOmsc,4582
|
|
46
|
-
pytcl/dynamic_estimation/imm.py,sha256=
|
|
48
|
+
pytcl/dynamic_estimation/imm.py,sha256=IbKmouUiyzaYJbhWty63r3n_xV8thD-wd0qgZP1SxOI,22067
|
|
47
49
|
pytcl/dynamic_estimation/information_filter.py,sha256=x7iQwO_iJT1dCSvDws5LqD3yAtjw9QVGUfMPcXn1IA4,17349
|
|
48
|
-
pytcl/dynamic_estimation/smoothers.py,sha256=
|
|
50
|
+
pytcl/dynamic_estimation/smoothers.py,sha256=x2j-nR--EI5JNZvMywPeDHcrfW8b5PYK0DCU4Rmig_g,18914
|
|
49
51
|
pytcl/dynamic_estimation/batch_estimation/__init__.py,sha256=JQ0s76Enov5a7plA4EnUua4t-7etikQrwr5z4WIjUeo,46
|
|
50
52
|
pytcl/dynamic_estimation/kalman/__init__.py,sha256=yoFLj0n-NRkdZnRVL-BkHBlATk8pfZEVlsY3BhSYgKc,2387
|
|
51
|
-
pytcl/dynamic_estimation/kalman/extended.py,sha256=
|
|
52
|
-
pytcl/dynamic_estimation/kalman/linear.py,sha256=
|
|
53
|
+
pytcl/dynamic_estimation/kalman/extended.py,sha256=51uhCqkZmErCx6MBfMq8eIQW8bD7n34zCe4v4dxNiMQ,10384
|
|
54
|
+
pytcl/dynamic_estimation/kalman/linear.py,sha256=1Zgg9gZya0Vxs9im7sPUqLj0Luo463vS-RSa6GCReFI,12248
|
|
53
55
|
pytcl/dynamic_estimation/kalman/square_root.py,sha256=Hw1F4_Zc7IA6Mt1WCkjx1UuLAUmNhM5vPLvueb7oRSA,26931
|
|
54
|
-
pytcl/dynamic_estimation/kalman/unscented.py,sha256=
|
|
56
|
+
pytcl/dynamic_estimation/kalman/unscented.py,sha256=RDK6USkko9lj1K4-WYydh3_8GMZNng_PJVjfc-c_OwM,15427
|
|
55
57
|
pytcl/dynamic_estimation/measurement_update/__init__.py,sha256=8rlyJwVpxf0fZj-AFo1hlewvryZRhUzcy3F8uMe6I8c,48
|
|
56
58
|
pytcl/dynamic_estimation/particle_filters/__init__.py,sha256=-DRF5rVF2749suLlArmkTvVkqeMcV_mIx0eLeTj6wNU,906
|
|
57
|
-
pytcl/dynamic_estimation/particle_filters/bootstrap.py,sha256=
|
|
59
|
+
pytcl/dynamic_estimation/particle_filters/bootstrap.py,sha256=FcF4W_NM5ZqJnw5fq4rq6fLY9X1r4uFJOiAX9a-NGG8,13371
|
|
58
60
|
pytcl/dynamic_models/__init__.py,sha256=Cd8MyyYuB8gMnepkPA-HSwTaKFPThnqoKOhdjVOsXWg,2783
|
|
59
61
|
pytcl/dynamic_models/continuous_time/__init__.py,sha256=dAkfEddLkfMvDalK9v2GRBvaZV1KgqYpFBLOnoiFClw,1023
|
|
60
62
|
pytcl/dynamic_models/continuous_time/dynamics.py,sha256=CDwqn-66eUwXA5xfIjaG6A4EDBqtOyQ3aWarJr9QH4g,12858
|
|
61
|
-
pytcl/dynamic_models/discrete_time/__init__.py,sha256=
|
|
63
|
+
pytcl/dynamic_models/discrete_time/__init__.py,sha256=1cdYeVIe-kgogiHzeCv1eYMctSimh8t1nIE6Z1N4im4,949
|
|
62
64
|
pytcl/dynamic_models/discrete_time/coordinated_turn.py,sha256=jrSGCKiAdXaFIJBLzRyAv0xxxpOHOBnAtDHyu7VYsm8,7206
|
|
63
65
|
pytcl/dynamic_models/discrete_time/polynomial.py,sha256=zv5V-AbuaXlIj36n-YkOEyC74jV2vczxpCW09P0kmi0,5529
|
|
64
66
|
pytcl/dynamic_models/discrete_time/singer.py,sha256=wZS3Nad-YyPZp8Mle8Sf5GgW0-t4TxMRcnbc42HtQnA,3861
|
|
65
|
-
pytcl/dynamic_models/process_noise/__init__.py,sha256=
|
|
67
|
+
pytcl/dynamic_models/process_noise/__init__.py,sha256=ZRYgV40qmBkPwU3yTbIMvxorr4nVz0_FEP2oCeVjXoM,933
|
|
66
68
|
pytcl/dynamic_models/process_noise/coordinated_turn.py,sha256=w7bHUImLPL5m3KYenfNgAnHPCRtAyYESbsFc6lQKXRg,4768
|
|
67
69
|
pytcl/dynamic_models/process_noise/polynomial.py,sha256=natfpsdN3qM9VzPeXF_nBpsbRI74S1WkkRCaaem6EQo,7620
|
|
68
70
|
pytcl/dynamic_models/process_noise/singer.py,sha256=lsJDT6xOvcS_qQKFtgHX0L7Ukpy4D7HgvPT8Q3I0ibU,3901
|
|
@@ -72,7 +74,7 @@ pytcl/gravity/egm.py,sha256=QTRuvCiMjuNQdZF163OGwjxuivpGu2dB6E0zQLbKPP8,18083
|
|
|
72
74
|
pytcl/gravity/models.py,sha256=rdY3Do4M1eRFO74gu3xy-bBn7tox3zM49wYbfnsIQWw,11159
|
|
73
75
|
pytcl/gravity/spherical_harmonics.py,sha256=uZasz-w2K16sWT6xrNIPyTEP6MSlMQSe_BCWpXhRkWY,14722
|
|
74
76
|
pytcl/gravity/tides.py,sha256=hef_BGewFGD7dJwg0t09Z6tfWLco_avATLuu66rnTpI,27733
|
|
75
|
-
pytcl/magnetism/__init__.py,sha256=
|
|
77
|
+
pytcl/magnetism/__init__.py,sha256=hE2BvberFSmimYuuwCYJ0g7ByxJAdj844vZJNkEotws,2502
|
|
76
78
|
pytcl/magnetism/emm.py,sha256=5Jwl99wvdKYtx1-3LBB7x-w5KT-fqLiRg7uBW0Ai_Gw,22292
|
|
77
79
|
pytcl/magnetism/igrf.py,sha256=3g0PsH8IdbwQQS28OR5XWD-g-QxvfUva7jOkKToxndQ,13384
|
|
78
80
|
pytcl/magnetism/wmm.py,sha256=p0H7Eo02iB6nEMvGyvjsrAWOSKrIye6PGwQtNKfHaNw,15999
|
|
@@ -85,7 +87,7 @@ pytcl/mathematical_functions/combinatorics/combinatorics.py,sha256=3EgkWdBqQ9e6J
|
|
|
85
87
|
pytcl/mathematical_functions/continuous_optimization/__init__.py,sha256=lck60eeCUOsRpEzPHBY3kiLKwNz_fhmYoUGP3lTmTwk,55
|
|
86
88
|
pytcl/mathematical_functions/geometry/__init__.py,sha256=DhCmux9-6zxYRzlhQ9du18kvUL-leiiZwdd3Cmb5WX0,1092
|
|
87
89
|
pytcl/mathematical_functions/geometry/geometry.py,sha256=l63wQnhCtJwVHZOJeONX1qyJ5Sedji8etgxwJCFtH8Y,16403
|
|
88
|
-
pytcl/mathematical_functions/interpolation/__init__.py,sha256=
|
|
90
|
+
pytcl/mathematical_functions/interpolation/__init__.py,sha256=lK4Rs0Ds_fzf9q0n6id5epdN0U8V7yD87dS-w1hvN8I,741
|
|
89
91
|
pytcl/mathematical_functions/interpolation/interpolation.py,sha256=2cXMDgWBjWDGHnK1K_lawFlJL8oPl5AQGf9MNgsESfo,12610
|
|
90
92
|
pytcl/mathematical_functions/numerical_integration/__init__.py,sha256=iXiHzyV_KIhCv7tXErXlN1_fUEACN6yN3CYDHRA7esw,974
|
|
91
93
|
pytcl/mathematical_functions/numerical_integration/quadrature.py,sha256=ZRMKs0vbcgFDe1Sr8sjyEOkALLmJU4zKRJjoPEcXrUc,15670
|
|
@@ -94,7 +96,7 @@ pytcl/mathematical_functions/signal_processing/__init__.py,sha256=_SzzBVtxmSvP8F
|
|
|
94
96
|
pytcl/mathematical_functions/signal_processing/detection.py,sha256=9F0xdy3hMat1czSWAQYMExn0kY5DBRpyBneAfjjHUVI,30377
|
|
95
97
|
pytcl/mathematical_functions/signal_processing/filters.py,sha256=8Ojf4h4rfiucBXqUmB1odvHH41Gf3rPwmWCMKb-qzWk,23435
|
|
96
98
|
pytcl/mathematical_functions/signal_processing/matched_filter.py,sha256=AahJZRZk2IIXzRL7www0n8bc0XoKabaLOe8yYNSjuDY,22893
|
|
97
|
-
pytcl/mathematical_functions/special_functions/__init__.py,sha256=
|
|
99
|
+
pytcl/mathematical_functions/special_functions/__init__.py,sha256=AJBCKj32daQxdahUQckW0bWowzOoapxni2eZnVXERdg,3859
|
|
98
100
|
pytcl/mathematical_functions/special_functions/bessel.py,sha256=M0mwLQBaUXEHA8wyKReJ2D66I1v1XR7y-txAipd-WDs,14377
|
|
99
101
|
pytcl/mathematical_functions/special_functions/debye.py,sha256=Nchjwkl1vzSL1L7nQpslb-lvT49LgTfdTIQMeSNn4vQ,6689
|
|
100
102
|
pytcl/mathematical_functions/special_functions/elliptic.py,sha256=WyzBkrfZufIR5dUmCKGcxp6KNpVDrU89NGLDyRrZOqQ,7418
|
|
@@ -111,10 +113,10 @@ pytcl/mathematical_functions/transforms/fourier.py,sha256=QH6OaTzw4kN6M-DuSmwB_5
|
|
|
111
113
|
pytcl/mathematical_functions/transforms/stft.py,sha256=zQapXl-v69_RDPwMqci83jah17GyAfnr3gx0budv2Cg,18619
|
|
112
114
|
pytcl/mathematical_functions/transforms/wavelets.py,sha256=dm273Z_t13BlEVSlHTaGE7jR1ocugL7lEkcO499U7bY,21656
|
|
113
115
|
pytcl/misc/__init__.py,sha256=SCHf_lQVfdl2gwUluHBiIloTF8HRH8EkgYfbNr7zOug,33
|
|
114
|
-
pytcl/navigation/__init__.py,sha256=
|
|
116
|
+
pytcl/navigation/__init__.py,sha256=k1_x_FnnPrIzGeNu7zejPtPubIhweBgCfwqlZJEMw0I,6042
|
|
115
117
|
pytcl/navigation/geodesy.py,sha256=M9XXfBTMCRdaWMV2-ViDSTEt94WZnMtxMeJQ1FAgQHY,17227
|
|
116
118
|
pytcl/navigation/great_circle.py,sha256=TtlkWZbzr-HzSt4ultG_h137ZnX0pJZx_87kr3uvpjI,20923
|
|
117
|
-
pytcl/navigation/ins.py,sha256=
|
|
119
|
+
pytcl/navigation/ins.py,sha256=OIi8_RjrgEYl0MFpJEFMjIlpgX8DYGTEhdLEvqG-ABU,31151
|
|
118
120
|
pytcl/navigation/ins_gnss.py,sha256=euKF5JGgwmVBsw3jBf7_wa2z1BpZeVbSNmBuwzhGS6c,30157
|
|
119
121
|
pytcl/navigation/rhumb.py,sha256=lr1c3iEXfoOSfIyyXSRWv6He5TlaxEHbJy-dhqM1gRw,18224
|
|
120
122
|
pytcl/performance_evaluation/__init__.py,sha256=tM2pnBfDb2XbnLt4Y5MQ6w6XBwFy_5bf_y0toZmxx88,1859
|
|
@@ -135,14 +137,14 @@ pytcl/terrain/__init__.py,sha256=e7plNQI5Y_jpZ24r82AgqdX0ChmmyYoeT7HReclnGXc,322
|
|
|
135
137
|
pytcl/terrain/dem.py,sha256=rg2o0h0ZDrfxvtYhnE2A5tdzRnCmqcihu4w1uNJdH3Y,20814
|
|
136
138
|
pytcl/terrain/loaders.py,sha256=KBs1vdYUYW-0ETIujRv4-WxO-bExZk-FvPLY5l6gyTc,27028
|
|
137
139
|
pytcl/terrain/visibility.py,sha256=nIJr9AVk7C8GCpJV4UDvUjhmAieycWD8BLepAMUBMIQ,22739
|
|
138
|
-
pytcl/trackers/__init__.py,sha256=
|
|
140
|
+
pytcl/trackers/__init__.py,sha256=Gw79xlSIUzdPV8bN1slNWUlGxE3d-NsVmbMygkYVV20,1151
|
|
139
141
|
pytcl/trackers/hypothesis.py,sha256=RApWfji-f0-a68KnAJela0BvPdIlOY_FV_cYJFmVUoE,17353
|
|
140
142
|
pytcl/trackers/mht.py,sha256=7mwhMmja3ri2wnx7W1wueDGn2r3ArwAxJDPUJ7IZAkQ,20617
|
|
141
|
-
pytcl/trackers/multi_target.py,sha256=
|
|
143
|
+
pytcl/trackers/multi_target.py,sha256=hvt89ERhMwpcHcIJeKHnkQSKdE3_LoRiX-gbaGoo300,10516
|
|
142
144
|
pytcl/trackers/single_target.py,sha256=Yy3FwaNTArMWcaod-0HVeiioNV4xLWxNDn_7ZPVqQYs,6562
|
|
143
145
|
pytcl/transponders/__init__.py,sha256=5fL4u3lKCYgPLo5uFeuZbtRZkJPABntuKYGUvVgMMEI,41
|
|
144
|
-
nrl_tracker-0.
|
|
145
|
-
nrl_tracker-0.
|
|
146
|
-
nrl_tracker-0.
|
|
147
|
-
nrl_tracker-0.
|
|
148
|
-
nrl_tracker-0.
|
|
146
|
+
nrl_tracker-0.22.5.dist-info/LICENSE,sha256=rB5G4WppIIUzMOYr2N6uyYlNJ00hRJqE5tie6BMvYuE,1612
|
|
147
|
+
nrl_tracker-0.22.5.dist-info/METADATA,sha256=-UF7pUd0_uGM8wPE1ge5WFz1Ojnv4C5MJJ6PEOoDJD0,10005
|
|
148
|
+
nrl_tracker-0.22.5.dist-info/WHEEL,sha256=pL8R0wFFS65tNSRnaOVrsw9EOkOqxLrlUPenUYnJKNo,91
|
|
149
|
+
nrl_tracker-0.22.5.dist-info/top_level.txt,sha256=17megxcrTPBWwPZTh6jTkwTKxX7No-ZqRpyvElnnO-s,6
|
|
150
|
+
nrl_tracker-0.22.5.dist-info/RECORD,,
|
pytcl/__init__.py
CHANGED
|
@@ -10,13 +10,8 @@ from typing import List, NamedTuple, Optional
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
from numpy.typing import ArrayLike, NDArray
|
|
12
12
|
|
|
13
|
-
from pytcl.assignment_algorithms.gating import
|
|
14
|
-
|
|
15
|
-
mahalanobis_distance,
|
|
16
|
-
)
|
|
17
|
-
from pytcl.assignment_algorithms.two_dimensional import (
|
|
18
|
-
assign2d,
|
|
19
|
-
)
|
|
13
|
+
from pytcl.assignment_algorithms.gating import mahalanobis_batch, mahalanobis_distance
|
|
14
|
+
from pytcl.assignment_algorithms.two_dimensional import assign2d
|
|
20
15
|
|
|
21
16
|
|
|
22
17
|
class AssociationResult(NamedTuple):
|
|
@@ -12,6 +12,7 @@ as JPDA can handle measurement origin uncertainty in cluttered environments.
|
|
|
12
12
|
from typing import List, NamedTuple, Optional, Tuple
|
|
13
13
|
|
|
14
14
|
import numpy as np
|
|
15
|
+
from numba import njit
|
|
15
16
|
from numpy.typing import ArrayLike, NDArray
|
|
16
17
|
from scipy.stats import chi2
|
|
17
18
|
|
|
@@ -314,45 +315,34 @@ def _jpda_exact(
|
|
|
314
315
|
return beta
|
|
315
316
|
|
|
316
317
|
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
318
|
+
@njit(cache=True)
|
|
319
|
+
def _jpda_approximate_core(
|
|
320
|
+
likelihood_matrix: np.ndarray,
|
|
321
|
+
gated: np.ndarray,
|
|
320
322
|
detection_prob: float,
|
|
321
323
|
clutter_density: float,
|
|
322
|
-
) ->
|
|
323
|
-
"""
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
References
|
|
329
|
-
----------
|
|
330
|
-
.. [1] Fitzgerald, R.J., "Development of Practical PDA Logic for
|
|
331
|
-
Multitarget Tracking by Microprocessor", American Control
|
|
332
|
-
Conference, 1986.
|
|
333
|
-
"""
|
|
334
|
-
n_tracks, n_meas = likelihood_matrix.shape
|
|
335
|
-
beta = np.zeros((n_tracks, n_meas + 1))
|
|
336
|
-
|
|
337
|
-
# For each track, compute association probabilities independently
|
|
338
|
-
# then apply correction for shared measurements
|
|
324
|
+
) -> np.ndarray:
|
|
325
|
+
"""JIT-compiled core of approximate JPDA computation."""
|
|
326
|
+
n_tracks = likelihood_matrix.shape[0]
|
|
327
|
+
n_meas = likelihood_matrix.shape[1]
|
|
328
|
+
beta = np.zeros((n_tracks, n_meas + 1), dtype=np.float64)
|
|
339
329
|
|
|
340
330
|
# Likelihood ratio for each measurement given each track
|
|
341
|
-
|
|
342
|
-
L = np.zeros((n_tracks, n_meas))
|
|
331
|
+
L = np.zeros((n_tracks, n_meas), dtype=np.float64)
|
|
343
332
|
for i in range(n_tracks):
|
|
344
333
|
for j in range(n_meas):
|
|
345
334
|
if gated[i, j] and clutter_density > 0:
|
|
346
335
|
L[i, j] = likelihood_matrix[i, j] / clutter_density
|
|
347
336
|
elif gated[i, j]:
|
|
348
|
-
L[i, j] = likelihood_matrix[i, j] * 1e10
|
|
337
|
+
L[i, j] = likelihood_matrix[i, j] * 1e10
|
|
349
338
|
|
|
350
339
|
# Compute delta factors (accounts for other tracks)
|
|
351
|
-
delta = np.ones((n_tracks, n_meas))
|
|
340
|
+
delta = np.ones((n_tracks, n_meas), dtype=np.float64)
|
|
352
341
|
|
|
353
342
|
for j in range(n_meas):
|
|
354
|
-
|
|
355
|
-
|
|
343
|
+
sum_L = 0.0
|
|
344
|
+
for i in range(n_tracks):
|
|
345
|
+
sum_L += L[i, j]
|
|
356
346
|
for i in range(n_tracks):
|
|
357
347
|
if sum_L > 0:
|
|
358
348
|
delta[i, j] = 1.0 / (1.0 + sum_L - L[i, j])
|
|
@@ -361,7 +351,6 @@ def _jpda_approximate(
|
|
|
361
351
|
|
|
362
352
|
# Compute association probabilities
|
|
363
353
|
for i in range(n_tracks):
|
|
364
|
-
# Denominator for normalization
|
|
365
354
|
denom = 1.0 - detection_prob
|
|
366
355
|
|
|
367
356
|
for j in range(n_meas):
|
|
@@ -369,9 +358,9 @@ def _jpda_approximate(
|
|
|
369
358
|
beta[i, j] = detection_prob * L[i, j] * delta[i, j]
|
|
370
359
|
denom += beta[i, j]
|
|
371
360
|
|
|
372
|
-
# Normalize
|
|
373
361
|
if denom > 0:
|
|
374
|
-
|
|
362
|
+
for j in range(n_meas):
|
|
363
|
+
beta[i, j] /= denom
|
|
375
364
|
beta[i, n_meas] = (1.0 - detection_prob) / denom
|
|
376
365
|
else:
|
|
377
366
|
beta[i, n_meas] = 1.0
|
|
@@ -379,6 +368,31 @@ def _jpda_approximate(
|
|
|
379
368
|
return beta
|
|
380
369
|
|
|
381
370
|
|
|
371
|
+
def _jpda_approximate(
|
|
372
|
+
likelihood_matrix: NDArray,
|
|
373
|
+
gated: NDArray,
|
|
374
|
+
detection_prob: float,
|
|
375
|
+
clutter_density: float,
|
|
376
|
+
) -> NDArray:
|
|
377
|
+
"""
|
|
378
|
+
Approximate JPDA using parametric approach.
|
|
379
|
+
|
|
380
|
+
Uses the approach from [1] which is O(n_tracks * n_meas^2).
|
|
381
|
+
|
|
382
|
+
References
|
|
383
|
+
----------
|
|
384
|
+
.. [1] Fitzgerald, R.J., "Development of Practical PDA Logic for
|
|
385
|
+
Multitarget Tracking by Microprocessor", American Control
|
|
386
|
+
Conference, 1986.
|
|
387
|
+
"""
|
|
388
|
+
return _jpda_approximate_core(
|
|
389
|
+
likelihood_matrix.astype(np.float64),
|
|
390
|
+
gated.astype(np.bool_),
|
|
391
|
+
detection_prob,
|
|
392
|
+
clutter_density,
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
|
|
382
396
|
def jpda_update(
|
|
383
397
|
track_states: List[ArrayLike],
|
|
384
398
|
track_covariances: List[ArrayLike],
|
|
@@ -211,14 +211,21 @@ def auction(
|
|
|
211
211
|
# Compute values: value[j] = -cost[i,j] - prices[j]
|
|
212
212
|
values = -cost[i, :] - prices
|
|
213
213
|
|
|
214
|
-
# Find best and second best
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
214
|
+
# Find best and second best using argpartition (O(n) vs O(n log n))
|
|
215
|
+
if len(values) >= 2:
|
|
216
|
+
# Get indices of top 2 values
|
|
217
|
+
top2_idx = np.argpartition(values, -2)[-2:]
|
|
218
|
+
# Determine which is best and second best
|
|
219
|
+
if values[top2_idx[0]] > values[top2_idx[1]]:
|
|
220
|
+
best_j = top2_idx[0]
|
|
221
|
+
second_value = values[top2_idx[1]]
|
|
222
|
+
else:
|
|
223
|
+
best_j = top2_idx[1]
|
|
224
|
+
second_value = values[top2_idx[0]]
|
|
225
|
+
best_value = values[best_j]
|
|
221
226
|
else:
|
|
227
|
+
best_j = np.argmax(values)
|
|
228
|
+
best_value = values[best_j]
|
|
222
229
|
second_value = -np.inf
|
|
223
230
|
|
|
224
231
|
# Bid increment
|
pytcl/astronomical/__init__.py
CHANGED
|
@@ -2,7 +2,8 @@
|
|
|
2
2
|
Astronomical calculations for target tracking.
|
|
3
3
|
|
|
4
4
|
This module provides time system conversions, orbital mechanics,
|
|
5
|
-
Lambert problem solvers,
|
|
5
|
+
Lambert problem solvers, reference frame transformations, and high-precision
|
|
6
|
+
ephemerides for celestial bodies.
|
|
6
7
|
|
|
7
8
|
Examples
|
|
8
9
|
--------
|
|
@@ -18,8 +19,19 @@ Examples
|
|
|
18
19
|
>>> r1 = np.array([5000, 10000, 2100])
|
|
19
20
|
>>> r2 = np.array([-14600, 2500, 7000])
|
|
20
21
|
>>> sol = lambert_universal(r1, r2, 3600)
|
|
22
|
+
|
|
23
|
+
>>> # Query Sun position with high precision
|
|
24
|
+
>>> from pytcl.astronomical import sun_position
|
|
25
|
+
>>> r_sun, v_sun = sun_position(2451545.0) # J2000.0
|
|
21
26
|
"""
|
|
22
27
|
|
|
28
|
+
from pytcl.astronomical.ephemerides import (
|
|
29
|
+
DEEphemeris,
|
|
30
|
+
barycenter_position,
|
|
31
|
+
moon_position,
|
|
32
|
+
planet_position,
|
|
33
|
+
sun_position,
|
|
34
|
+
)
|
|
23
35
|
from pytcl.astronomical.lambert import (
|
|
24
36
|
LambertSolution,
|
|
25
37
|
bi_elliptic_transfer,
|
|
@@ -28,8 +40,10 @@ from pytcl.astronomical.lambert import (
|
|
|
28
40
|
lambert_universal,
|
|
29
41
|
minimum_energy_transfer,
|
|
30
42
|
)
|
|
31
|
-
from pytcl.astronomical.orbital_mechanics import (
|
|
32
|
-
GM_EARTH,
|
|
43
|
+
from pytcl.astronomical.orbital_mechanics import (
|
|
44
|
+
GM_EARTH, # Constants; Types; Anomaly conversions; Element conversions; Propagation; Orbital quantities
|
|
45
|
+
)
|
|
46
|
+
from pytcl.astronomical.orbital_mechanics import (
|
|
33
47
|
GM_JUPITER,
|
|
34
48
|
GM_MARS,
|
|
35
49
|
GM_MOON,
|
|
@@ -62,8 +76,10 @@ from pytcl.astronomical.orbital_mechanics import ( # Constants; Types; Anomaly
|
|
|
62
76
|
true_to_mean_anomaly,
|
|
63
77
|
vis_viva,
|
|
64
78
|
)
|
|
65
|
-
from pytcl.astronomical.reference_frames import (
|
|
66
|
-
earth_rotation_angle,
|
|
79
|
+
from pytcl.astronomical.reference_frames import (
|
|
80
|
+
earth_rotation_angle, # Time utilities; Precession; Nutation; Earth rotation; Polar motion; Full transformations; Ecliptic/equatorial
|
|
81
|
+
)
|
|
82
|
+
from pytcl.astronomical.reference_frames import (
|
|
67
83
|
ecef_to_eci,
|
|
68
84
|
eci_to_ecef,
|
|
69
85
|
ecliptic_to_equatorial,
|
|
@@ -83,8 +99,25 @@ from pytcl.astronomical.reference_frames import ( # Time utilities; Precession;
|
|
|
83
99
|
sidereal_rotation_matrix,
|
|
84
100
|
true_obliquity,
|
|
85
101
|
)
|
|
86
|
-
from pytcl.astronomical.
|
|
87
|
-
|
|
102
|
+
from pytcl.astronomical.relativity import (
|
|
103
|
+
C_LIGHT, # Physical constants; Schwarzschild metric; Time dilation; Shapiro delay; Precession; PN effects; Range corrections
|
|
104
|
+
)
|
|
105
|
+
from pytcl.astronomical.relativity import (
|
|
106
|
+
G_GRAV,
|
|
107
|
+
geodetic_precession,
|
|
108
|
+
gravitational_time_dilation,
|
|
109
|
+
lense_thirring_precession,
|
|
110
|
+
post_newtonian_acceleration,
|
|
111
|
+
proper_time_rate,
|
|
112
|
+
relativistic_range_correction,
|
|
113
|
+
schwarzschild_precession_per_orbit,
|
|
114
|
+
schwarzschild_radius,
|
|
115
|
+
shapiro_delay,
|
|
116
|
+
)
|
|
117
|
+
from pytcl.astronomical.time_systems import (
|
|
118
|
+
JD_GPS_EPOCH, # Julian dates; Time scales; Unix time; GPS week; Sidereal time; Leap seconds; Constants
|
|
119
|
+
)
|
|
120
|
+
from pytcl.astronomical.time_systems import (
|
|
88
121
|
JD_J2000,
|
|
89
122
|
JD_UNIX_EPOCH,
|
|
90
123
|
MJD_OFFSET,
|
|
@@ -218,4 +251,24 @@ __all__ = [
|
|
|
218
251
|
# Reference frames - Ecliptic/equatorial
|
|
219
252
|
"ecliptic_to_equatorial",
|
|
220
253
|
"equatorial_to_ecliptic",
|
|
254
|
+
# Ephemerides - Classes
|
|
255
|
+
"DEEphemeris",
|
|
256
|
+
# Ephemerides - Functions
|
|
257
|
+
"sun_position",
|
|
258
|
+
"moon_position",
|
|
259
|
+
"planet_position",
|
|
260
|
+
"barycenter_position",
|
|
261
|
+
# Relativity - Constants
|
|
262
|
+
"C_LIGHT",
|
|
263
|
+
"G_GRAV",
|
|
264
|
+
# Relativity - Functions
|
|
265
|
+
"schwarzschild_radius",
|
|
266
|
+
"gravitational_time_dilation",
|
|
267
|
+
"proper_time_rate",
|
|
268
|
+
"shapiro_delay",
|
|
269
|
+
"schwarzschild_precession_per_orbit",
|
|
270
|
+
"post_newtonian_acceleration",
|
|
271
|
+
"geodetic_precession",
|
|
272
|
+
"lense_thirring_precession",
|
|
273
|
+
"relativistic_range_correction",
|
|
221
274
|
]
|