npcsh 1.1.3__py3-none-any.whl → 1.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (106) hide show
  1. npcsh/_state.py +48 -64
  2. npcsh/npc_team/corca_example.png +0 -0
  3. npcsh/npc_team/jinxs/{python_executor.jinx → code/python.jinx} +1 -1
  4. npcsh/npc_team/jinxs/{bash_executer.jinx → code/sh.jinx} +1 -1
  5. npcsh/npc_team/jinxs/code/sql.jinx +18 -0
  6. npcsh/npc_team/jinxs/modes/alicanto.jinx +88 -0
  7. npcsh/npc_team/jinxs/modes/corca.jinx +28 -0
  8. npcsh/npc_team/jinxs/modes/guac.jinx +46 -0
  9. npcsh/npc_team/jinxs/modes/plonk.jinx +57 -0
  10. npcsh/npc_team/jinxs/modes/pti.jinx +28 -0
  11. npcsh/npc_team/jinxs/modes/spool.jinx +40 -0
  12. npcsh/npc_team/jinxs/modes/wander.jinx +81 -0
  13. npcsh/npc_team/jinxs/modes/yap.jinx +25 -0
  14. npcsh/npc_team/jinxs/utils/breathe.jinx +20 -0
  15. npcsh/npc_team/jinxs/utils/core/build.jinx +65 -0
  16. npcsh/npc_team/jinxs/utils/core/compile.jinx +50 -0
  17. npcsh/npc_team/jinxs/utils/core/help.jinx +52 -0
  18. npcsh/npc_team/jinxs/utils/core/init.jinx +41 -0
  19. npcsh/npc_team/jinxs/utils/core/jinxs.jinx +32 -0
  20. npcsh/npc_team/jinxs/utils/core/set.jinx +40 -0
  21. npcsh/npc_team/jinxs/{edit_file.jinx → utils/edit_file.jinx} +1 -1
  22. npcsh/npc_team/jinxs/utils/flush.jinx +39 -0
  23. npcsh/npc_team/jinxs/utils/npc-studio.jinx +82 -0
  24. npcsh/npc_team/jinxs/utils/ots.jinx +92 -0
  25. npcsh/npc_team/jinxs/utils/plan.jinx +33 -0
  26. npcsh/npc_team/jinxs/utils/roll.jinx +66 -0
  27. npcsh/npc_team/jinxs/utils/sample.jinx +56 -0
  28. npcsh/npc_team/jinxs/utils/search/brainblast.jinx +51 -0
  29. npcsh/npc_team/jinxs/utils/search/rag.jinx +70 -0
  30. npcsh/npc_team/jinxs/utils/search/search.jinx +192 -0
  31. npcsh/npc_team/jinxs/utils/serve.jinx +29 -0
  32. npcsh/npc_team/jinxs/utils/sleep.jinx +116 -0
  33. npcsh/npc_team/jinxs/utils/trigger.jinx +36 -0
  34. npcsh/npc_team/jinxs/utils/vixynt.jinx +129 -0
  35. npcsh/npcsh.py +14 -12
  36. npcsh/routes.py +80 -1420
  37. npcsh-1.1.5.data/data/npcsh/npc_team/alicanto.jinx +88 -0
  38. npcsh-1.1.5.data/data/npcsh/npc_team/brainblast.jinx +51 -0
  39. npcsh-1.1.5.data/data/npcsh/npc_team/breathe.jinx +20 -0
  40. npcsh-1.1.5.data/data/npcsh/npc_team/build.jinx +65 -0
  41. npcsh-1.1.5.data/data/npcsh/npc_team/compile.jinx +50 -0
  42. npcsh-1.1.5.data/data/npcsh/npc_team/corca.jinx +28 -0
  43. npcsh-1.1.5.data/data/npcsh/npc_team/corca_example.png +0 -0
  44. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/edit_file.jinx +1 -1
  45. npcsh-1.1.5.data/data/npcsh/npc_team/flush.jinx +39 -0
  46. npcsh-1.1.5.data/data/npcsh/npc_team/guac.jinx +46 -0
  47. npcsh-1.1.5.data/data/npcsh/npc_team/help.jinx +52 -0
  48. npcsh-1.1.5.data/data/npcsh/npc_team/init.jinx +41 -0
  49. npcsh-1.1.5.data/data/npcsh/npc_team/jinxs.jinx +32 -0
  50. npcsh-1.1.5.data/data/npcsh/npc_team/npc-studio.jinx +82 -0
  51. npcsh-1.1.5.data/data/npcsh/npc_team/ots.jinx +92 -0
  52. npcsh-1.1.5.data/data/npcsh/npc_team/plan.jinx +33 -0
  53. npcsh-1.1.5.data/data/npcsh/npc_team/plonk.jinx +57 -0
  54. npcsh-1.1.5.data/data/npcsh/npc_team/pti.jinx +28 -0
  55. npcsh-1.1.3.data/data/npcsh/npc_team/python_executor.jinx → npcsh-1.1.5.data/data/npcsh/npc_team/python.jinx +1 -1
  56. npcsh-1.1.5.data/data/npcsh/npc_team/rag.jinx +70 -0
  57. npcsh-1.1.5.data/data/npcsh/npc_team/roll.jinx +66 -0
  58. npcsh-1.1.5.data/data/npcsh/npc_team/sample.jinx +56 -0
  59. npcsh-1.1.5.data/data/npcsh/npc_team/search.jinx +192 -0
  60. npcsh-1.1.5.data/data/npcsh/npc_team/serve.jinx +29 -0
  61. npcsh-1.1.5.data/data/npcsh/npc_team/set.jinx +40 -0
  62. npcsh-1.1.3.data/data/npcsh/npc_team/bash_executer.jinx → npcsh-1.1.5.data/data/npcsh/npc_team/sh.jinx +1 -1
  63. npcsh-1.1.5.data/data/npcsh/npc_team/sleep.jinx +116 -0
  64. npcsh-1.1.5.data/data/npcsh/npc_team/spool.jinx +40 -0
  65. npcsh-1.1.5.data/data/npcsh/npc_team/sql.jinx +18 -0
  66. npcsh-1.1.5.data/data/npcsh/npc_team/trigger.jinx +36 -0
  67. npcsh-1.1.5.data/data/npcsh/npc_team/vixynt.jinx +129 -0
  68. npcsh-1.1.5.data/data/npcsh/npc_team/wander.jinx +81 -0
  69. npcsh-1.1.5.data/data/npcsh/npc_team/yap.jinx +25 -0
  70. {npcsh-1.1.3.dist-info → npcsh-1.1.5.dist-info}/METADATA +1 -1
  71. npcsh-1.1.5.dist-info/RECORD +132 -0
  72. npcsh/npc_team/jinxs/image_generation.jinx +0 -29
  73. npcsh/npc_team/jinxs/internet_search.jinx +0 -31
  74. npcsh/npc_team/jinxs/screen_cap.jinx +0 -25
  75. npcsh-1.1.3.data/data/npcsh/npc_team/image_generation.jinx +0 -29
  76. npcsh-1.1.3.data/data/npcsh/npc_team/internet_search.jinx +0 -31
  77. npcsh-1.1.3.data/data/npcsh/npc_team/screen_cap.jinx +0 -25
  78. npcsh-1.1.3.dist-info/RECORD +0 -78
  79. /npcsh/npc_team/jinxs/{kg_search.jinx → utils/search/kg_search.jinx} +0 -0
  80. /npcsh/npc_team/jinxs/{memory_search.jinx → utils/search/memory_search.jinx} +0 -0
  81. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/alicanto.npc +0 -0
  82. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/alicanto.png +0 -0
  83. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/corca.npc +0 -0
  84. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/corca.png +0 -0
  85. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/foreman.npc +0 -0
  86. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/frederic.npc +0 -0
  87. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/frederic4.png +0 -0
  88. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/guac.png +0 -0
  89. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/kadiefa.npc +0 -0
  90. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/kadiefa.png +0 -0
  91. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/kg_search.jinx +0 -0
  92. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/memory_search.jinx +0 -0
  93. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/npcsh.ctx +0 -0
  94. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/npcsh_sibiji.png +0 -0
  95. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/plonk.npc +0 -0
  96. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/plonk.png +0 -0
  97. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/plonkjr.npc +0 -0
  98. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/plonkjr.png +0 -0
  99. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/sibiji.npc +0 -0
  100. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/sibiji.png +0 -0
  101. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/spool.png +0 -0
  102. {npcsh-1.1.3.data → npcsh-1.1.5.data}/data/npcsh/npc_team/yap.png +0 -0
  103. {npcsh-1.1.3.dist-info → npcsh-1.1.5.dist-info}/WHEEL +0 -0
  104. {npcsh-1.1.3.dist-info → npcsh-1.1.5.dist-info}/entry_points.txt +0 -0
  105. {npcsh-1.1.3.dist-info → npcsh-1.1.5.dist-info}/licenses/LICENSE +0 -0
  106. {npcsh-1.1.3.dist-info → npcsh-1.1.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,92 @@
1
+ jinx_name: "ots"
2
+ description: "Take screenshot and analyze with vision model"
3
+ inputs:
4
+ - image_paths_args: "" # Optional comma-separated paths to image files for analysis.
5
+ - prompt: "" # The prompt for the LLM about the image(s).
6
+ - vmodel: "" # Vision model to use. Defaults to NPCSH_VISION_MODEL or NPC's model.
7
+ - vprovider: "" # Vision model provider. Defaults to NPCSH_VISION_PROVIDER or NPC's provider.
8
+ - stream: False # Whether to stream the output from the LLM.
9
+ - api_url: "" # API URL for the LLM.
10
+ - api_key: "" # API key for the LLM.
11
+ steps:
12
+ - name: "analyze_screenshot_or_image"
13
+ engine: "python"
14
+ code: |
15
+ import os
16
+ import traceback
17
+ from npcpy.llm_funcs import get_llm_response
18
+ from npcpy.data.image import capture_screenshot
19
+ # Assuming NPCSH_VISION_MODEL and NPCSH_VISION_PROVIDER are accessible through _state or defaults
20
+ # For simplicity in Jinx, we'll use fallbacks or assume context will provide
21
+
22
+ image_paths_args_str = context.get('image_paths_args')
23
+ user_prompt = context.get('prompt')
24
+ vision_model = context.get('vmodel')
25
+ vision_provider = context.get('vprovider')
26
+ stream_output = context.get('stream')
27
+ api_url = context.get('api_url')
28
+ api_key = context.get('api_key')
29
+ output_messages = context.get('messages', [])
30
+ current_npc = context.get('npc')
31
+
32
+ image_paths = []
33
+ if image_paths_args_str and image_paths_args_str.strip():
34
+ for img_path_arg in image_paths_args_str.split(','):
35
+ full_path = os.path.abspath(os.path.expanduser(img_path_arg.strip()))
36
+ if os.path.exists(full_path):
37
+ image_paths.append(full_path)
38
+ else:
39
+ context['output'] = f"Error: Image file not found at {full_path}"
40
+ context['messages'] = output_messages
41
+ exit()
42
+
43
+ if not image_paths:
44
+ screenshot_info = capture_screenshot(full=False)
45
+ if screenshot_info and "file_path" in screenshot_info:
46
+ image_paths.append(screenshot_info["file_path"])
47
+ print(f"Screenshot captured: {screenshot_info.get('filename', os.path.basename(screenshot_info['file_path']))}")
48
+ else:
49
+ context['output'] = "Error: Failed to capture screenshot."
50
+ context['messages'] = output_messages
51
+ exit()
52
+
53
+ if not image_paths:
54
+ context['output'] = "No valid images found or captured."
55
+ context['messages'] = output_messages
56
+ exit()
57
+
58
+ if not user_prompt or not user_prompt.strip():
59
+ # In a non-interactive Jinx, a default prompt is better than waiting for input
60
+ user_prompt = "Describe the image(s)."
61
+
62
+ # Fallback for model/provider if not explicitly set in Jinx inputs
63
+ if not vision_model and current_npc and current_npc.model:
64
+ vision_model = current_npc.model
65
+ if not vision_provider and current_npc and current_npc.provider:
66
+ vision_provider = current_npc.provider
67
+
68
+ # Final fallbacks (these would ideally come from npcsh._state config)
69
+ if not vision_model: vision_model = "gemini-1.5-pro-vision" # Example default
70
+ if not vision_provider: vision_provider = "gemini" # Example default
71
+
72
+ try:
73
+ response_data = get_llm_response(
74
+ prompt=user_prompt,
75
+ model=vision_model,
76
+ provider=vision_provider,
77
+ messages=output_messages, # Pass current messages to LLM
78
+ images=image_paths,
79
+ stream=stream_output,
80
+ npc=current_npc,
81
+ api_url=api_url,
82
+ api_key=api_key
83
+ )
84
+ context['output'] = response_data.get('response')
85
+ context['messages'] = response_data.get('messages', output_messages)
86
+ context['model'] = vision_model
87
+ context['provider'] = vision_provider
88
+
89
+ except Exception as e:
90
+ traceback.print_exc()
91
+ context['output'] = f"Error during /ots command: {e}"
92
+ context['messages'] = output_messages
@@ -0,0 +1,33 @@
1
+ jinx_name: "plan"
2
+ description: "Execute a plan command"
3
+ inputs:
4
+ - plan_description: "" # Description of the plan to execute.
5
+ steps:
6
+ - name: "execute_plan"
7
+ engine: "python"
8
+ code: |
9
+ import traceback
10
+ from npcpy.work.plan import execute_plan_command
11
+
12
+ plan_description = context.get('plan_description')
13
+ output_messages = context.get('messages', [])
14
+
15
+ if not plan_description or not plan_description.strip():
16
+ context['output'] = "Usage: /plan <description_of_plan>"
17
+ context['messages'] = output_messages
18
+ exit()
19
+
20
+ try:
21
+ # Pass all current context as kwargs to execute_plan_command
22
+ result = execute_plan_command(command=plan_description, **context)
23
+
24
+ if isinstance(result, dict):
25
+ context['output'] = result.get('output', 'Plan executed.')
26
+ context['messages'] = result.get('messages', output_messages)
27
+ else:
28
+ context['output'] = str(result)
29
+ context['messages'] = output_messages
30
+ except Exception as e:
31
+ traceback.print_exc()
32
+ context['output'] = f"Error executing plan: {e}"
33
+ context['messages'] = output_messages
@@ -0,0 +1,57 @@
1
+ jinx_name: "plonk"
2
+ description: "Use vision model to interact with GUI. Usage: /plonk <task description>"
3
+ inputs:
4
+ - task_description: "" # Required task description for GUI interaction.
5
+ - vmodel: "" # Vision model to use. Defaults to NPCSH_VISION_MODEL or NPC's model.
6
+ - vprovider: "" # Vision model provider. Defaults to NPCSH_VISION_PROVIDER or NPC's provider.
7
+ steps:
8
+ - name: "execute_plonk"
9
+ engine: "python"
10
+ code: |
11
+ import traceback
12
+ from npcsh.plonk import execute_plonk_command, format_plonk_summary
13
+ # Assuming NPCSH_VISION_MODEL and NPCSH_VISION_PROVIDER are accessible
14
+
15
+ task_description = context.get('task_description')
16
+ vision_model = context.get('vmodel')
17
+ vision_provider = context.get('vprovider')
18
+ plonk_context = context.get('plonk_context') # Passed from original context
19
+ current_npc = context.get('npc')
20
+ output_messages = context.get('messages', [])
21
+
22
+ if not task_description or not task_description.strip():
23
+ context['output'] = "Usage: /plonk <task_description> [--vmodel model_name] [--vprovider provider_name]"
24
+ context['messages'] = output_messages
25
+ exit()
26
+
27
+ # Fallback for model/provider if not explicitly set in Jinx inputs
28
+ if not vision_model and current_npc and current_npc.model:
29
+ vision_model = current_npc.model
30
+ if not vision_provider and current_npc and current_npc.provider:
31
+ vision_provider = current_npc.provider
32
+
33
+ # Final fallbacks (these would ideally come from npcsh._state config)
34
+ if not vision_model: vision_model = "gemini-1.5-pro-vision" # Example default
35
+ if not vision_provider: vision_provider = "gemini" # Example default
36
+
37
+ try:
38
+ summary_data = execute_plonk_command(
39
+ request=task_description,
40
+ model=vision_model,
41
+ provider=vision_provider,
42
+ npc=current_npc,
43
+ plonk_context=plonk_context,
44
+ debug=True # Assuming debug is often desired for plonk
45
+ )
46
+
47
+ if summary_data and isinstance(summary_data, list):
48
+ output_report = format_plonk_summary(summary_data)
49
+ context['output'] = output_report
50
+ else:
51
+ context['output'] = "Plonk command did not complete within the maximum number of iterations."
52
+
53
+ except Exception as e:
54
+ traceback.print_exc()
55
+ context['output'] = f"Error executing plonk command: {e}"
56
+
57
+ context['messages'] = output_messages
@@ -0,0 +1,28 @@
1
+ jinx_name: "pti"
2
+ description: "Enter Pardon-The-Interruption mode for human-in-the-loop reasoning."
3
+ inputs:
4
+ - command_args: "" # The full command string or specific arguments for PTI mode.
5
+ steps:
6
+ - name: "enter_pti"
7
+ engine: "python"
8
+ code: |
9
+ import traceback
10
+ from npcsh.pti import enter_pti_mode
11
+
12
+ command_args = context.get('command_args', '') # The full command string from router
13
+ output_messages = context.get('messages', [])
14
+
15
+ try:
16
+ # enter_pti_mode likely expects the full command string for its own parsing
17
+ result = enter_pti_mode(command=command_args, **context)
18
+
19
+ if isinstance(result, dict):
20
+ context['output'] = result.get('output', 'Entered PTI mode.')
21
+ context['messages'] = result.get('messages', output_messages)
22
+ else:
23
+ context['output'] = str(result)
24
+ context['messages'] = output_messages
25
+ except Exception as e:
26
+ traceback.print_exc()
27
+ context['output'] = f"Error entering pti mode: {e}"
28
+ context['messages'] = output_messages
@@ -1,4 +1,4 @@
1
- jinx_name: python_executor
1
+ jinx_name: python
2
2
  description: Execute scripts with python. You must set the ultimate result as the "output"
3
3
  variable. It MUST be a string.
4
4
  Do not add unnecessary print statements.
@@ -0,0 +1,70 @@
1
+ jinx_name: "rag"
2
+ description: "Execute a RAG command using ChromaDB embeddings with optional file input (-f/--file)"
3
+ inputs:
4
+ - query: "" # Required search query for RAG.
5
+ - file_paths: "" # Optional comma-separated file paths to include in RAG.
6
+ - vector_db_path: "~/npcsh_chroma.db" # Path to the ChromaDB vector database.
7
+ - emodel: "" # Embedding model to use. Defaults to NPCSH_EMBEDDING_MODEL or NPC's model.
8
+ - eprovider: "" # Embedding provider to use. Defaults to NPCSH_EMBEDDING_PROVIDER or NPC's provider.
9
+ steps:
10
+ - name: "execute_rag"
11
+ engine: "python"
12
+ code: |
13
+ import os
14
+ import traceback
15
+ from npcpy.data.load import load_file_contents
16
+ from npcpy.memory.search import execute_rag_command
17
+ # Assuming NPCSH_EMBEDDING_MODEL and NPCSH_EMBEDDING_PROVIDER are accessible
18
+
19
+ query = context.get('query')
20
+ file_paths_str = context.get('file_paths')
21
+ vector_db_path = context.get('vector_db_path')
22
+ embedding_model = context.get('emodel')
23
+ embedding_provider = context.get('eprovider')
24
+ output_messages = context.get('messages', [])
25
+ current_npc = context.get('npc')
26
+
27
+ file_paths = []
28
+ if file_paths_str and file_paths_str.strip():
29
+ file_paths = [os.path.abspath(os.path.expanduser(p.strip())) for p in file_paths_str.split(',')]
30
+
31
+ if not query and not file_paths:
32
+ context['output'] = "Usage: /rag [-f file_path] <query>"
33
+ context['messages'] = output_messages
34
+ exit()
35
+
36
+ # Fallback for model/provider if not explicitly set in Jinx inputs
37
+ if not embedding_model and current_npc and current_npc.model:
38
+ embedding_model = current_npc.model
39
+ if not embedding_provider and current_npc and current_npc.provider:
40
+ embedding_provider = current_npc.provider
41
+
42
+ # Final fallbacks (these would ideally come from npcsh._state config)
43
+ if not embedding_model: embedding_model = "nomic-ai/nomic-embed-text-v1.5" # Example default
44
+ if not embedding_provider: embedding_provider = "ollama" # Example default
45
+
46
+ try:
47
+ file_contents = []
48
+ for file_path in file_paths:
49
+ try:
50
+ chunks = load_file_contents(file_path)
51
+ file_name = os.path.basename(file_path)
52
+ file_contents.extend([f"[{file_name}] {chunk}" for chunk in chunks])
53
+ except Exception as file_err:
54
+ file_contents.append(f"Error processing file {file_path}: {str(file_err)}")
55
+
56
+ result = execute_rag_command(
57
+ command=query,
58
+ vector_db_path=os.path.expanduser(vector_db_path),
59
+ embedding_model=embedding_model,
60
+ embedding_provider=embedding_provider,
61
+ file_contents=file_contents if file_paths else None,
62
+ **{k:v for k,v in context.items() if k not in ['messages', 'query', 'file_paths']} # Pass other context
63
+ )
64
+ context['output'] = result.get('response')
65
+ context['messages'] = result.get('messages', output_messages)
66
+
67
+ except Exception as e:
68
+ traceback.print_exc()
69
+ context['output'] = f"Error executing RAG command: {e}"
70
+ context['messages'] = output_messages
@@ -0,0 +1,66 @@
1
+ jinx_name: "roll"
2
+ description: "Generate a video from a text prompt."
3
+ inputs:
4
+ - prompt: "" # Required text prompt for video generation.
5
+ - num_frames: 125 # Number of frames for the video.
6
+ - width: 256 # Width of the video.
7
+ - height: 256 # Height of the video.
8
+ - output_path: "output.mp4" # Output file path for the video.
9
+ - vgmodel: "" # Video generation model to use. Defaults to NPCSH_VIDEO_GEN_MODEL or NPC's model.
10
+ - vgprovider: "" # Video generation provider to use. Defaults to NPCSH_VIDEO_GEN_PROVIDER or NPC's provider.
11
+ steps:
12
+ - name: "generate_video"
13
+ engine: "python"
14
+ code: |
15
+ import traceback
16
+ from npcpy.llm_funcs import gen_video
17
+ # Assuming NPCSH_VIDEO_GEN_MODEL and NPCSH_VIDEO_GEN_PROVIDER are accessible
18
+
19
+ prompt = context.get('prompt')
20
+ num_frames = int(context.get('num_frames', 125)) # Ensure int type
21
+ width = int(context.get('width', 256)) # Ensure int type
22
+ height = int(context.get('height', 256)) # Ensure int type
23
+ output_path = context.get('output_path')
24
+ video_gen_model = context.get('vgmodel')
25
+ video_gen_provider = context.get('vgprovider')
26
+ output_messages = context.get('messages', [])
27
+ current_npc = context.get('npc')
28
+
29
+ if not prompt or not prompt.strip():
30
+ context['output'] = "Usage: /roll <your prompt>"
31
+ context['messages'] = output_messages
32
+ exit()
33
+
34
+ # Fallback for model/provider if not explicitly set in Jinx inputs
35
+ if not video_gen_model and current_npc and current_npc.model:
36
+ video_gen_model = current_npc.model
37
+ if not video_gen_provider and current_npc and current_npc.provider:
38
+ video_gen_provider = current_npc.provider
39
+
40
+ # Final fallbacks (these would ideally come from npcsh._state config)
41
+ if not video_gen_model: video_gen_model = "stable-video-diffusion" # Example default
42
+ if not video_gen_provider: video_gen_provider = "diffusers" # Example default
43
+
44
+ try:
45
+ result = gen_video(
46
+ prompt=prompt,
47
+ model=video_gen_model,
48
+ provider=video_gen_provider,
49
+ npc=current_npc,
50
+ num_frames=num_frames,
51
+ width=width,
52
+ height=height,
53
+ output_path=output_path,
54
+ **context.get('api_kwargs', {}) # Assuming api_kwargs might be passed
55
+ )
56
+
57
+ if isinstance(result, dict):
58
+ context['output'] = result.get('output', 'Video generated.')
59
+ context['messages'] = result.get('messages', output_messages)
60
+ else:
61
+ context['output'] = str(result)
62
+ context['messages'] = output_messages
63
+ except Exception as e:
64
+ traceback.print_exc()
65
+ context['output'] = f"Error generating video: {e}"
66
+ context['messages'] = output_messages
@@ -0,0 +1,56 @@
1
+ jinx_name: "sample"
2
+ description: "Send a prompt directly to the LLM."
3
+ inputs:
4
+ - prompt: "" # Required text prompt to send to the LLM.
5
+ - model: "" # LLM model to use. Defaults to NPC's model.
6
+ - provider: "" # LLM provider to use. Defaults to NPC's provider.
7
+ steps:
8
+ - name: "send_prompt_to_llm"
9
+ engine: "python"
10
+ code: |
11
+ import traceback
12
+ from npcpy.llm_funcs import get_llm_response
13
+
14
+ prompt = context.get('prompt')
15
+ llm_model = context.get('model')
16
+ llm_provider = context.get('provider')
17
+ output_messages = context.get('messages', [])
18
+ current_npc = context.get('npc')
19
+
20
+ if not prompt or not prompt.strip():
21
+ context['output'] = "Usage: /sample <your prompt> [-m --model] model [-p --provider] provider"
22
+ context['messages'] = output_messages
23
+ exit()
24
+
25
+ # Fallback for model/provider if not explicitly set in Jinx inputs
26
+ if not llm_model and current_npc and current_npc.model:
27
+ llm_model = current_npc.model
28
+ if not llm_provider and current_npc and current_npc.provider:
29
+ llm_provider = current_npc.provider
30
+
31
+ # Final fallbacks (these would ideally come from npcsh._state config)
32
+ if not llm_model: llm_model = "gemini-1.5-pro" # Example default
33
+ if not llm_provider: llm_provider = "gemini" # Example default
34
+
35
+ try:
36
+ result = get_llm_response(
37
+ prompt=prompt,
38
+ model=llm_model,
39
+ provider=llm_provider,
40
+ npc=current_npc,
41
+ **{k:v for k,v in context.items() if k not in ['messages', 'prompt', 'model', 'provider']} # Pass other context
42
+ )
43
+
44
+ if isinstance(result, dict):
45
+ context['output'] = result.get('response')
46
+ context['messages'] = result.get('messages', output_messages)
47
+ context['model'] = llm_model
48
+ context['provider'] = llm_provider
49
+ else:
50
+ context['output'] = str(result)
51
+ context['messages'] = output_messages
52
+
53
+ except Exception as e:
54
+ traceback.print_exc()
55
+ context['output'] = f"Error sampling LLM: {e}"
56
+ context['messages'] = output_messages
@@ -0,0 +1,192 @@
1
+ jinx_name: "search"
2
+ description: "Execute web search or memory/KG search. Usage: /search [-m/-mem | -kg] <query>"
3
+ inputs:
4
+ - query: "" # Required search query.
5
+ - search_type: "web" # Type of search: "web", "memory", or "kg".
6
+ - sprovider: "" # Search provider for web search. Defaults to NPCSH_SEARCH_PROVIDER.
7
+ - history_db_path: "~/npcsh_history.db" # Path to the command history database for memory/KG search.
8
+ steps:
9
+ - name: "execute_search"
10
+ engine: "python"
11
+ code: |
12
+ import os
13
+ import traceback
14
+ from npcpy.data.web import search_web
15
+ from npcpy.memory.command_history import CommandHistory, load_kg_from_db, save_kg_to_db # For KG search
16
+ from npcsh._state import get_relevant_memories # For memory search
17
+ # Assuming NPCSH_SEARCH_PROVIDER is accessible
18
+
19
+ query = context.get('query')
20
+ search_type = context.get('search_type')
21
+ search_provider = context.get('sprovider')
22
+ history_db_path = context.get('history_db_path')
23
+ output_messages = context.get('messages', [])
24
+ current_npc = context.get('npc')
25
+ current_team = context.get('team')
26
+
27
+ if not query or not query.strip():
28
+ context['output'] = (
29
+ "Usage:\n"
30
+ " /search <query> - Web search\n"
31
+ " /search -m <query> - Memory search\n"
32
+ " /search -kg <query> - Knowledge graph search"
33
+ )
34
+ context['messages'] = output_messages
35
+ exit()
36
+
37
+ def search_memories(query_str, current_context, output_msgs):
38
+ command_history = current_context.get('command_history')
39
+ if not command_history:
40
+ db_path = os.path.expanduser(current_context.get("history_db_path", "~/npcsh_history.db"))
41
+ try:
42
+ command_history = CommandHistory(db_path)
43
+ current_context['command_history'] = command_history
44
+ except Exception as e:
45
+ return {"output": f"Error connecting to history: {e}", "messages": output_msgs}
46
+
47
+ npc_name = current_context.get('npc_name', '__none__')
48
+ team_name = current_context.get('team_name', '__none__')
49
+ current_path = current_context.get('current_path', os.getcwd())
50
+ state = current_context.get('state')
51
+
52
+ try:
53
+ memories = get_relevant_memories(
54
+ command_history=command_history,
55
+ npc_name=npc_name,
56
+ team_name=team_name,
57
+ path=current_path,
58
+ query=query_str,
59
+ max_memories=10,
60
+ state=state
61
+ )
62
+
63
+ if not memories:
64
+ output = f"No memories found for query: '{query_str}'"
65
+ else:
66
+ output = f"Found {len(memories)} memories:\n\n"
67
+ for i, mem in enumerate(memories, 1):
68
+ final_mem = (
69
+ mem.get('final_memory') or
70
+ mem.get('initial_memory')
71
+ )
72
+ timestamp = mem.get('timestamp', 'unknown')
73
+ output += f"{i}. [{timestamp}] {final_mem}\n"
74
+
75
+ return {"output": output, "messages": output_msgs}
76
+
77
+ except Exception as e:
78
+ traceback.print_exc()
79
+ return {"output": f"Error searching memories: {e}", "messages": output_msgs}
80
+
81
+ def search_knowledge_graph(query_str, current_context, output_msgs):
82
+ command_history = current_context.get('command_history')
83
+ if not command_history:
84
+ db_path = os.path.expanduser(current_context.get("history_db_path", "~/npcsh_history.db"))
85
+ try:
86
+ command_history = CommandHistory(db_path)
87
+ current_context['command_history'] = command_history
88
+ except Exception as e:
89
+ return {"output": f"Error connecting to history: {e}", "messages": output_msgs}
90
+
91
+ npc_name = current_context.get('npc_name', '__none__')
92
+ team_name = current_context.get('team_name', '__none__')
93
+ current_path = current_context.get('current_path', os.getcwd())
94
+
95
+ try:
96
+ engine = command_history.engine
97
+ kg = load_kg_from_db(
98
+ engine,
99
+ team_name,
100
+ npc_name,
101
+ current_path
102
+ )
103
+
104
+ if not kg or not kg.get('facts'):
105
+ return {
106
+ "output": (
107
+ f"No knowledge graph found for current scope.\n"
108
+ f"Scope: Team='{team_name}', "
109
+ f"NPC='{npc_name}', Path='{current_path}'"
110
+ ),
111
+ "messages": output_msgs
112
+ }
113
+
114
+ query_lower = query_str.lower()
115
+ matching_facts = []
116
+ matching_concepts = []
117
+
118
+ for fact in kg.get('facts', []):
119
+ statement = fact.get('statement', '').lower()
120
+ if query_lower in statement:
121
+ matching_facts.append(fact)
122
+
123
+ for concept in kg.get('concepts', []):
124
+ name = concept.get('name', '').lower()
125
+ desc = concept.get('description', '').lower()
126
+ if query_lower in name or query_lower in desc:
127
+ matching_concepts.append(concept)
128
+
129
+ output = f"Knowledge Graph Search Results for '{query_str}':\n\n"
130
+
131
+ if matching_facts:
132
+ output += f"## Facts ({len(matching_facts)}):\n"
133
+ for i, fact in enumerate(matching_facts, 1):
134
+ output += f"{i}. {fact.get('statement')}\n"
135
+ output += "\n"
136
+
137
+ if matching_concepts:
138
+ output += f"## Concepts ({len(matching_concepts)}):\n"
139
+ for i, concept in enumerate(matching_concepts, 1):
140
+ name = concept.get('name')
141
+ desc = concept.get('description', '')
142
+ output += f"{i}. {name}: {desc}\n"
143
+
144
+ if not matching_facts and not matching_concepts:
145
+ output += "No matching facts or concepts found."
146
+
147
+ return {"output": output, "messages": output_msgs}
148
+
149
+ except Exception as e:
150
+ traceback.print_exc()
151
+ return {"output": f"Error searching KG: {e}", "messages": output_msgs}
152
+
153
+ def search_web_default(query_str, current_context, output_msgs):
154
+ # Fallback for search_provider if not explicitly set in Jinx inputs
155
+ current_search_provider = current_context.get('sprovider')
156
+ # If NPCSH_SEARCH_PROVIDER is accessible, use it. Otherwise, a default.
157
+ # For Jinx, let's just use a hardcoded default if not provided.
158
+ if not current_search_provider:
159
+ current_search_provider = "google" # Example default
160
+
161
+ # Assuming render_markdown is accessible
162
+ # render_markdown(f'- Searching {current_search_provider} for "{query_str}"') # Not directly supported in Jinx steps
163
+
164
+ try:
165
+ search_results = search_web(query_str, provider=current_search_provider)
166
+ output = (
167
+ "\n".join([f"- {res}" for res in search_results])
168
+ if search_results
169
+ else "No results found."
170
+ )
171
+ except Exception as e:
172
+ traceback.print_exc()
173
+ output = f"Error during web search: {e}"
174
+
175
+ return {"output": output, "messages": output_msgs}
176
+
177
+
178
+ # Populate npc_name, team_name, current_path for search functions
179
+ context['npc_name'] = current_npc.name if isinstance(current_npc, type(None).__class__) else "__none__"
180
+ context['team_name'] = current_team.name if current_team else "__none__"
181
+ context['current_path'] = os.getcwd() # Or get from context if available
182
+
183
+ final_result = None
184
+ if search_type == 'memory':
185
+ final_result = search_memories(query, context, output_messages)
186
+ elif search_type == 'kg':
187
+ final_result = search_knowledge_graph(query, context, output_messages)
188
+ else:
189
+ final_result = search_web_default(query, context, output_messages)
190
+
191
+ context['output'] = final_result.get('output')
192
+ context['messages'] = final_result.get('messages', output_messages)
@@ -0,0 +1,29 @@
1
+ jinx_name: "serve"
2
+ description: "Serve an NPC Team"
3
+ inputs:
4
+ - port: 5337 # The port to run the Flask server on.
5
+ - cors: "" # Comma-separated CORS origins.
6
+ steps:
7
+ - name: "start_flask_server"
8
+ engine: "python"
9
+ code: |
10
+ from npcpy.serve import start_flask_server
11
+
12
+ port = context.get('port')
13
+ cors_str = context.get('cors')
14
+ output_messages = context.get('messages', [])
15
+
16
+ cors_origins = None
17
+ if cors_str and cors_str.strip():
18
+ cors_origins = [origin.strip() for origin in cors_str.split(",")]
19
+
20
+ # start_flask_server blocks, so this will hold the Jinx until the server is stopped.
21
+ # In a real-world scenario, you might want to run this in a separate process
22
+ # or have a non-blocking server start.
23
+ start_flask_server(
24
+ port=int(port), # Ensure port is an integer
25
+ cors_origins=cors_origins,
26
+ )
27
+
28
+ context['output'] = "NPC Team server started. Execution of this jinx will pause until the server is stopped."
29
+ context['messages'] = output_messages