npcsh 0.3.31__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- npcsh/_state.py +942 -0
- npcsh/alicanto.py +1074 -0
- npcsh/guac.py +785 -0
- npcsh/mcp_helpers.py +357 -0
- npcsh/mcp_npcsh.py +822 -0
- npcsh/mcp_server.py +184 -0
- npcsh/npc.py +218 -0
- npcsh/npcsh.py +1161 -0
- npcsh/plonk.py +387 -269
- npcsh/pti.py +234 -0
- npcsh/routes.py +958 -0
- npcsh/spool.py +315 -0
- npcsh/wander.py +550 -0
- npcsh/yap.py +573 -0
- npcsh-1.0.0.dist-info/METADATA +596 -0
- npcsh-1.0.0.dist-info/RECORD +21 -0
- {npcsh-0.3.31.dist-info → npcsh-1.0.0.dist-info}/WHEEL +1 -1
- npcsh-1.0.0.dist-info/entry_points.txt +9 -0
- {npcsh-0.3.31.dist-info → npcsh-1.0.0.dist-info}/licenses/LICENSE +1 -1
- npcsh/audio.py +0 -210
- npcsh/cli.py +0 -545
- npcsh/command_history.py +0 -566
- npcsh/conversation.py +0 -291
- npcsh/data_models.py +0 -46
- npcsh/dataframes.py +0 -163
- npcsh/embeddings.py +0 -168
- npcsh/helpers.py +0 -641
- npcsh/image.py +0 -298
- npcsh/image_gen.py +0 -79
- npcsh/knowledge_graph.py +0 -1006
- npcsh/llm_funcs.py +0 -2027
- npcsh/load_data.py +0 -83
- npcsh/main.py +0 -5
- npcsh/model_runner.py +0 -189
- npcsh/npc_compiler.py +0 -2870
- npcsh/npc_sysenv.py +0 -383
- npcsh/npc_team/assembly_lines/test_pipeline.py +0 -181
- npcsh/npc_team/corca.npc +0 -13
- npcsh/npc_team/foreman.npc +0 -7
- npcsh/npc_team/npcsh.ctx +0 -11
- npcsh/npc_team/sibiji.npc +0 -4
- npcsh/npc_team/templates/analytics/celona.npc +0 -0
- npcsh/npc_team/templates/hr_support/raone.npc +0 -0
- npcsh/npc_team/templates/humanities/eriane.npc +0 -4
- npcsh/npc_team/templates/it_support/lineru.npc +0 -0
- npcsh/npc_team/templates/marketing/slean.npc +0 -4
- npcsh/npc_team/templates/philosophy/maurawa.npc +0 -0
- npcsh/npc_team/templates/sales/turnic.npc +0 -4
- npcsh/npc_team/templates/software/welxor.npc +0 -0
- npcsh/npc_team/tools/bash_executer.tool +0 -32
- npcsh/npc_team/tools/calculator.tool +0 -8
- npcsh/npc_team/tools/code_executor.tool +0 -16
- npcsh/npc_team/tools/generic_search.tool +0 -27
- npcsh/npc_team/tools/image_generation.tool +0 -25
- npcsh/npc_team/tools/local_search.tool +0 -149
- npcsh/npc_team/tools/npcsh_executor.tool +0 -9
- npcsh/npc_team/tools/screen_cap.tool +0 -27
- npcsh/npc_team/tools/sql_executor.tool +0 -26
- npcsh/response.py +0 -623
- npcsh/search.py +0 -248
- npcsh/serve.py +0 -1460
- npcsh/shell.py +0 -538
- npcsh/shell_helpers.py +0 -3529
- npcsh/stream.py +0 -700
- npcsh/video.py +0 -49
- npcsh-0.3.31.data/data/npcsh/npc_team/bash_executer.tool +0 -32
- npcsh-0.3.31.data/data/npcsh/npc_team/calculator.tool +0 -8
- npcsh-0.3.31.data/data/npcsh/npc_team/celona.npc +0 -0
- npcsh-0.3.31.data/data/npcsh/npc_team/code_executor.tool +0 -16
- npcsh-0.3.31.data/data/npcsh/npc_team/corca.npc +0 -13
- npcsh-0.3.31.data/data/npcsh/npc_team/eriane.npc +0 -4
- npcsh-0.3.31.data/data/npcsh/npc_team/foreman.npc +0 -7
- npcsh-0.3.31.data/data/npcsh/npc_team/generic_search.tool +0 -27
- npcsh-0.3.31.data/data/npcsh/npc_team/image_generation.tool +0 -25
- npcsh-0.3.31.data/data/npcsh/npc_team/lineru.npc +0 -0
- npcsh-0.3.31.data/data/npcsh/npc_team/local_search.tool +0 -149
- npcsh-0.3.31.data/data/npcsh/npc_team/maurawa.npc +0 -0
- npcsh-0.3.31.data/data/npcsh/npc_team/npcsh.ctx +0 -11
- npcsh-0.3.31.data/data/npcsh/npc_team/npcsh_executor.tool +0 -9
- npcsh-0.3.31.data/data/npcsh/npc_team/raone.npc +0 -0
- npcsh-0.3.31.data/data/npcsh/npc_team/screen_cap.tool +0 -27
- npcsh-0.3.31.data/data/npcsh/npc_team/sibiji.npc +0 -4
- npcsh-0.3.31.data/data/npcsh/npc_team/slean.npc +0 -4
- npcsh-0.3.31.data/data/npcsh/npc_team/sql_executor.tool +0 -26
- npcsh-0.3.31.data/data/npcsh/npc_team/test_pipeline.py +0 -181
- npcsh-0.3.31.data/data/npcsh/npc_team/turnic.npc +0 -4
- npcsh-0.3.31.data/data/npcsh/npc_team/welxor.npc +0 -0
- npcsh-0.3.31.dist-info/METADATA +0 -1853
- npcsh-0.3.31.dist-info/RECORD +0 -76
- npcsh-0.3.31.dist-info/entry_points.txt +0 -3
- {npcsh-0.3.31.dist-info → npcsh-1.0.0.dist-info}/top_level.txt +0 -0
|
@@ -1,27 +0,0 @@
|
|
|
1
|
-
tool_name: "internet_search"
|
|
2
|
-
description: Searches the web for information based on a query in order to verify timiely details (e.g. current events) or to corroborate information in uncertain situations. Should be mainly only used when users specifically request a search, otherwise an LLMs basic knowledge should be sufficient.
|
|
3
|
-
inputs:
|
|
4
|
-
- query
|
|
5
|
-
- provider: ''
|
|
6
|
-
steps:
|
|
7
|
-
- engine: "python"
|
|
8
|
-
code: |
|
|
9
|
-
from npcsh.search import search_web
|
|
10
|
-
from npcsh.npc_sysenv import NPCSH_SEARCH_PROVIDER
|
|
11
|
-
query = "{{ query }}"
|
|
12
|
-
provider = '{{ provider }}'
|
|
13
|
-
if provider.strip() != '':
|
|
14
|
-
results = search_web(query, num_results=5, provider = provider)
|
|
15
|
-
else:
|
|
16
|
-
results = search_web(query, num_results=5, provider = NPCSH_SEARCH_PROVIDER)
|
|
17
|
-
|
|
18
|
-
print('QUERY in tool', query)
|
|
19
|
-
results = search_web(query, num_results=5, provider = NPCSH_SEARCH_PROVIDER)
|
|
20
|
-
print('RESULTS in tool', results)
|
|
21
|
-
- engine: "natural"
|
|
22
|
-
code: |
|
|
23
|
-
Using the following information extracted from the web:
|
|
24
|
-
|
|
25
|
-
{{ results }}
|
|
26
|
-
|
|
27
|
-
Answer the users question: {{ query }}
|
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
tool_name: "image_generation_tool"
|
|
2
|
-
description: |
|
|
3
|
-
Generates images based on a text prompt.
|
|
4
|
-
inputs:
|
|
5
|
-
- prompt
|
|
6
|
-
- model: 'runwayml/stable-diffusion-v1-5'
|
|
7
|
-
- provider: 'diffusers'
|
|
8
|
-
|
|
9
|
-
steps:
|
|
10
|
-
- engine: "python"
|
|
11
|
-
code: |
|
|
12
|
-
image_prompt = '{{prompt}}'.strip()
|
|
13
|
-
|
|
14
|
-
# Generate the image
|
|
15
|
-
filename = generate_image(
|
|
16
|
-
image_prompt,
|
|
17
|
-
npc=npc,
|
|
18
|
-
model='{{model}}', # You can adjust the model as needed
|
|
19
|
-
provider='{{provider}}'
|
|
20
|
-
)
|
|
21
|
-
if filename:
|
|
22
|
-
image_generated = True
|
|
23
|
-
else:
|
|
24
|
-
image_generated = False
|
|
25
|
-
|
|
@@ -1,149 +0,0 @@
|
|
|
1
|
-
tool_name: local_search
|
|
2
|
-
description: |
|
|
3
|
-
Searches files in current and downstream directories to find items related to the user's query using fuzzy matching.
|
|
4
|
-
Returns only relevant snippets (10 lines around matches) to avoid including too much irrelevant content.
|
|
5
|
-
Intended for fuzzy searches, not for understanding file sizes.
|
|
6
|
-
inputs:
|
|
7
|
-
- query
|
|
8
|
-
- summarize: false # Optional - set to true to summarize the results
|
|
9
|
-
- file_filter: 'none' # Optional - can be filename patterns or folder names
|
|
10
|
-
- depth: 2 # Optional - search depth for nested directories
|
|
11
|
-
- fuzzy_threshold: 70 # Optional - minimum fuzzy match score (0-100)
|
|
12
|
-
steps:
|
|
13
|
-
- engine: python
|
|
14
|
-
code: |
|
|
15
|
-
# Search parameters are directly available
|
|
16
|
-
query = "{{ query }}"
|
|
17
|
-
file_filter = "{{ file_filter | default('None') }}"
|
|
18
|
-
if isinstance(file_filter, str) and file_filter.lower() == 'none':
|
|
19
|
-
file_filter = None
|
|
20
|
-
max_depth = {{ depth | default(2) }}
|
|
21
|
-
fuzzy_threshold = {{ fuzzy_threshold | default(70) }}
|
|
22
|
-
|
|
23
|
-
import os
|
|
24
|
-
import fnmatch
|
|
25
|
-
from pathlib import Path
|
|
26
|
-
from thefuzz import fuzz # Fuzzy string matching library
|
|
27
|
-
|
|
28
|
-
def find_files(file_filter=None, max_depth=2):
|
|
29
|
-
default_extensions = ['.py', '.txt', '.md',
|
|
30
|
-
'.json', '.yml', '.yaml',
|
|
31
|
-
'.log', '.csv', '.html',
|
|
32
|
-
'.js', '.css']
|
|
33
|
-
matches = []
|
|
34
|
-
root_path = Path('.').resolve() # Resolve to absolute path
|
|
35
|
-
|
|
36
|
-
# First, check files in the current directory
|
|
37
|
-
for path in root_path.iterdir():
|
|
38
|
-
if path.is_file():
|
|
39
|
-
# Skip hidden files
|
|
40
|
-
if path.name.startswith('.'):
|
|
41
|
-
continue
|
|
42
|
-
|
|
43
|
-
# If no filter specified, include files with default extensions
|
|
44
|
-
if file_filter is None:
|
|
45
|
-
if path.suffix in default_extensions:
|
|
46
|
-
matches.append(str(path))
|
|
47
|
-
else:
|
|
48
|
-
# If filter specified, check if file matches the filter
|
|
49
|
-
filters = [file_filter] if isinstance(file_filter, str) else file_filter
|
|
50
|
-
for f in filters:
|
|
51
|
-
if (fnmatch.fnmatch(path.name, f) or
|
|
52
|
-
fnmatch.fnmatch(str(path), f'*{f}*')):
|
|
53
|
-
matches.append(str(path))
|
|
54
|
-
break
|
|
55
|
-
|
|
56
|
-
# Then, check subdirectories with depth control
|
|
57
|
-
for path in root_path.rglob('*'):
|
|
58
|
-
# Skip hidden folders and common directories to ignore
|
|
59
|
-
if '/.' in str(path) or '__pycache__' in str(path) or '.git' in str(path) or 'node_modules' in str(path) or 'venv' in str(path):
|
|
60
|
-
continue
|
|
61
|
-
|
|
62
|
-
# Skip if we've gone too deep
|
|
63
|
-
relative_depth = len(path.relative_to(root_path).parts)
|
|
64
|
-
if relative_depth > max_depth:
|
|
65
|
-
continue
|
|
66
|
-
|
|
67
|
-
if path.is_file():
|
|
68
|
-
# If no filter specified, include files with default extensions
|
|
69
|
-
if file_filter is None:
|
|
70
|
-
if path.suffix in default_extensions:
|
|
71
|
-
matches.append(str(path))
|
|
72
|
-
else:
|
|
73
|
-
# If filter specified, check if file matches the filter
|
|
74
|
-
filters = [file_filter] if isinstance(file_filter, str) else file_filter
|
|
75
|
-
for f in filters:
|
|
76
|
-
if (fnmatch.fnmatch(path.name, f) or
|
|
77
|
-
fnmatch.fnmatch(str(path), f'*{f}*')):
|
|
78
|
-
matches.append(str(path))
|
|
79
|
-
break
|
|
80
|
-
|
|
81
|
-
return matches
|
|
82
|
-
|
|
83
|
-
# Find and load files
|
|
84
|
-
files = find_files(file_filter, max_depth)
|
|
85
|
-
|
|
86
|
-
# Process documents
|
|
87
|
-
relevant_chunks = []
|
|
88
|
-
for file_path in files:
|
|
89
|
-
with open(file_path, 'r', encoding='utf-8') as f:
|
|
90
|
-
lines = f.readlines() # Read file as lines
|
|
91
|
-
if lines:
|
|
92
|
-
# Join lines into a single string for fuzzy matching
|
|
93
|
-
content = ''.join(lines)
|
|
94
|
-
match_score = fuzz.partial_ratio(query.lower(), content.lower())
|
|
95
|
-
if match_score >= fuzzy_threshold:
|
|
96
|
-
# Find the best matching line
|
|
97
|
-
best_line_index = -1
|
|
98
|
-
best_line_score = 0
|
|
99
|
-
for i, line in enumerate(lines):
|
|
100
|
-
line_score = fuzz.partial_ratio(query.lower(), line.lower())
|
|
101
|
-
if line_score > best_line_score:
|
|
102
|
-
best_line_score = line_score
|
|
103
|
-
best_line_index = i
|
|
104
|
-
|
|
105
|
-
# Extract 10 lines around the best matching line
|
|
106
|
-
if best_line_index != -1:
|
|
107
|
-
start = max(0, best_line_index - 5) # 5 lines before
|
|
108
|
-
end = min(len(lines), best_line_index + 6) # 5 lines after
|
|
109
|
-
snippet = ''.join(lines[start:end])
|
|
110
|
-
relevant_chunks.append({
|
|
111
|
-
'path': file_path,
|
|
112
|
-
'snippet': snippet,
|
|
113
|
-
'ext': Path(file_path).suffix.lower(),
|
|
114
|
-
'score': match_score
|
|
115
|
-
})
|
|
116
|
-
|
|
117
|
-
# Sort results by match score (highest first)
|
|
118
|
-
relevant_chunks.sort(key=lambda x: x['score'], reverse=True)
|
|
119
|
-
|
|
120
|
-
# Format results
|
|
121
|
-
if relevant_chunks:
|
|
122
|
-
context_text = "Here are the most relevant code sections:\n\n"
|
|
123
|
-
for chunk in relevant_chunks:
|
|
124
|
-
file_path = chunk['path'].replace('./', '')
|
|
125
|
-
context_text += f"File: {file_path} (match score: {chunk['score']})\n"
|
|
126
|
-
context_text += f"```{chunk['ext'][1:] if chunk['ext'] else ''}\n"
|
|
127
|
-
context_text += f"{chunk['snippet'].strip()}\n"
|
|
128
|
-
context_text += "```\n\n"
|
|
129
|
-
else:
|
|
130
|
-
context_text = "No relevant code sections found.\n"
|
|
131
|
-
|
|
132
|
-
output = context_text
|
|
133
|
-
|
|
134
|
-
- engine: natural
|
|
135
|
-
code: |
|
|
136
|
-
{% if summarize %}
|
|
137
|
-
You are a helpful coding assistant.
|
|
138
|
-
Please help with this query:
|
|
139
|
-
|
|
140
|
-
`{{ query }}`
|
|
141
|
-
|
|
142
|
-
The user is attempting to carry out a local search. This search returned the following results:
|
|
143
|
-
|
|
144
|
-
`{{ results }}`
|
|
145
|
-
|
|
146
|
-
Please analyze the code sections above and provide a clear, helpful response that directly addresses the query.
|
|
147
|
-
If you reference specific files or code sections in your response, indicate which file they came from.
|
|
148
|
-
Make sure to explain your reasoning and how the provided code relates to the query.
|
|
149
|
-
{% endif %}
|
|
@@ -1,27 +0,0 @@
|
|
|
1
|
-
tool_name: "screen_capture_analysis_tool"
|
|
2
|
-
description: Captures the whole screen and sends the image for analysis
|
|
3
|
-
inputs:
|
|
4
|
-
- "prompt"
|
|
5
|
-
steps:
|
|
6
|
-
- engine: "python"
|
|
7
|
-
code: |
|
|
8
|
-
# Capture the screen
|
|
9
|
-
import pyautogui
|
|
10
|
-
import datetime
|
|
11
|
-
import os
|
|
12
|
-
from PIL import Image
|
|
13
|
-
import time
|
|
14
|
-
from npcsh.image import analyze_image_base, capture_screenshot
|
|
15
|
-
|
|
16
|
-
out = capture_screenshot(npc = npc, full = True)
|
|
17
|
-
|
|
18
|
-
llm_response = analyze_image_base( '{{prompt}}' + "\n\nAttached is a screenshot of my screen currently. Please use this to evaluate the situation. If the user asked for you to explain what's on their screen or something similar, they are referring to the details contained within the attached image. You do not need to actually view their screen. You do not need to mention that you cannot view or interpret images directly. You only need to answer the user's request based on the attached screenshot!",
|
|
19
|
-
out['file_path'],
|
|
20
|
-
out['filename'],
|
|
21
|
-
npc=npc,
|
|
22
|
-
**out['model_kwargs'])
|
|
23
|
-
# To this:
|
|
24
|
-
if isinstance(llm_response, dict):
|
|
25
|
-
llm_response = llm_response.get('response', 'No response from image analysis')
|
|
26
|
-
else:
|
|
27
|
-
llm_response = 'No response from image analysis'
|
|
@@ -1,26 +0,0 @@
|
|
|
1
|
-
tool_name: data_pull
|
|
2
|
-
description: Execute queries on the ~/npcsh_history.db to pull data. The database contains only information about conversations and other user-provided data. It does not store any information about individual files.
|
|
3
|
-
inputs:
|
|
4
|
-
- sql_query
|
|
5
|
-
- interpret: false # Note that this is not a boolean, but a string
|
|
6
|
-
|
|
7
|
-
steps:
|
|
8
|
-
- engine: python
|
|
9
|
-
code: |
|
|
10
|
-
import pandas as pd
|
|
11
|
-
try:
|
|
12
|
-
df = pd.read_sql_query('{{sql_query}}', npc.db_conn)
|
|
13
|
-
except pandas.errors.DatabaseError as e:
|
|
14
|
-
df = pd.DataFrame({'Error': [str(e)]})
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
output = df.to_string()
|
|
18
|
-
|
|
19
|
-
- engine: natural
|
|
20
|
-
code: |
|
|
21
|
-
{% if interpret %}
|
|
22
|
-
Here is the result of the SQL query:
|
|
23
|
-
```
|
|
24
|
-
{{ df.to_string() }} # Convert DataFrame to string for a nicer display
|
|
25
|
-
```
|
|
26
|
-
{% endif %}
|