npcpy 1.2.19__py3-none-any.whl → 1.2.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,162 +3,169 @@ try:
3
3
  import torch
4
4
  import torch.nn as nn
5
5
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
6
- except:
7
- pass
8
- import json
9
- from typing import List, Dict, Tuple
10
- import random
11
6
 
12
- class MemoryDataset(Dataset):
13
- def __init__(self, examples: List[Dict], tokenizer, max_length=512):
14
- self.examples = examples
15
- self.tokenizer = tokenizer
16
- self.max_length = max_length
17
-
18
- def __len__(self):
19
- return len(self.examples)
20
-
21
- def __getitem__(self, idx):
22
- example = self.examples[idx]
23
-
24
-
25
- text = f"Memory: {example['memory']}\nContext: {example.get('context', '')}"
26
-
27
- encoding = self.tokenizer(
28
- text,
29
- truncation=True,
30
- padding='max_length',
31
- max_length=self.max_length,
32
- return_tensors='pt'
33
- )
34
-
35
- return {
36
- 'input_ids': encoding['input_ids'].flatten(),
37
- 'attention_mask': encoding['attention_mask'].flatten(),
38
- 'labels': torch.tensor(example['label'], dtype=torch.long)
39
- }
7
+ import json
8
+ from typing import List, Dict, Tuple
9
+ import random
40
10
 
41
- class MemoryTrainer:
42
- def __init__(self, model_name="google/gemma-2b", device="cpu"):
43
- self.device = device
44
- self.tokenizer = AutoTokenizer.from_pretrained(model_name)
45
- if self.tokenizer.pad_token is None:
46
- self.tokenizer.pad_token = self.tokenizer.eos_token
47
-
48
-
49
- self.model = AutoModelForSequenceClassification.from_pretrained(
50
- model_name,
51
- num_labels=3
52
- ).to(device)
53
-
54
- def prepare_training_data(self, approved_memories: List[Dict],
55
- rejected_memories: List[Dict]) -> List[Dict]:
56
- """Prepare training data from memory examples"""
57
- examples = []
58
-
59
-
60
- for memory in approved_memories:
61
- examples.append({
62
- "memory": memory.get("final_memory") or memory.get("initial_memory"),
63
- "context": memory.get("context", ""),
64
- "label": 1
65
- })
66
-
67
-
68
- for memory in rejected_memories:
69
- examples.append({
70
- "memory": memory.get("initial_memory"),
71
- "context": memory.get("context", ""),
72
- "label": 0
73
- })
74
-
75
-
76
- edited_examples = []
77
- for memory in approved_memories[:len(rejected_memories)//2]:
78
- if memory.get("final_memory") and memory.get("initial_memory"):
79
-
80
- edited_examples.append({
11
+ class MemoryDataset(Dataset):
12
+ def __init__(self, examples: List[Dict], tokenizer, max_length=512):
13
+ self.examples = examples
14
+ self.tokenizer = tokenizer
15
+ self.max_length = max_length
16
+
17
+ def __len__(self):
18
+ return len(self.examples)
19
+
20
+ def __getitem__(self, idx):
21
+ example = self.examples[idx]
22
+
23
+
24
+ text = f"Memory: {example['memory']}\nContext: {example.get('context', '')}"
25
+
26
+ encoding = self.tokenizer(
27
+ text,
28
+ truncation=True,
29
+ padding='max_length',
30
+ max_length=self.max_length,
31
+ return_tensors='pt'
32
+ )
33
+
34
+ return {
35
+ 'input_ids': encoding['input_ids'].flatten(),
36
+ 'attention_mask': encoding['attention_mask'].flatten(),
37
+ 'labels': torch.tensor(example['label'], dtype=torch.long)
38
+ }
39
+
40
+ class MemoryTrainer:
41
+ def __init__(self, model_name="google/gemma-2b", device="cpu"):
42
+ self.device = device
43
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
44
+ if self.tokenizer.pad_token is None:
45
+ self.tokenizer.pad_token = self.tokenizer.eos_token
46
+
47
+
48
+ self.model = AutoModelForSequenceClassification.from_pretrained(
49
+ model_name,
50
+ num_labels=3
51
+ ).to(device)
52
+
53
+ def prepare_training_data(self, approved_memories: List[Dict],
54
+ rejected_memories: List[Dict]) -> List[Dict]:
55
+ """Prepare training data from memory examples"""
56
+ examples = []
57
+
58
+
59
+ for memory in approved_memories:
60
+ examples.append({
61
+ "memory": memory.get("final_memory") or memory.get("initial_memory"),
62
+ "context": memory.get("context", ""),
63
+ "label": 1
64
+ })
65
+
66
+
67
+ for memory in rejected_memories:
68
+ examples.append({
81
69
  "memory": memory.get("initial_memory"),
82
70
  "context": memory.get("context", ""),
83
- "label": 2
71
+ "label": 0
84
72
  })
85
-
86
- examples.extend(edited_examples)
87
- random.shuffle(examples)
88
- return examples
73
+
74
+
75
+ edited_examples = []
76
+ for memory in approved_memories[:len(rejected_memories)//2]:
77
+ if memory.get("final_memory") and memory.get("initial_memory"):
78
+
79
+ edited_examples.append({
80
+ "memory": memory.get("initial_memory"),
81
+ "context": memory.get("context", ""),
82
+ "label": 2
83
+ })
84
+
85
+ examples.extend(edited_examples)
86
+ random.shuffle(examples)
87
+ return examples
89
88
 
90
- def train(self, approved_memories: List[Dict], rejected_memories: List[Dict],
91
- output_dir: str = "./memory_model", epochs: int = 3):
92
- """Train the memory classification model"""
93
-
94
- if len(approved_memories) < 10 or len(rejected_memories) < 10:
95
- print("Not enough training data. Need at least 10 approved and 10 rejected memories.")
96
- return False
97
-
98
- training_data = self.prepare_training_data(approved_memories, rejected_memories)
99
-
100
-
101
- split_idx = int(0.8 * len(training_data))
102
- train_data = training_data[:split_idx]
103
- val_data = training_data[split_idx:]
104
-
105
- train_dataset = MemoryDataset(train_data, self.tokenizer)
106
- val_dataset = MemoryDataset(val_data, self.tokenizer)
107
-
108
- training_args = TrainingArguments(
109
- output_dir=output_dir,
110
- num_train_epochs=epochs,
111
- per_device_train_batch_size=4,
112
- per_device_eval_batch_size=4,
113
- warmup_steps=100,
114
- weight_decay=0.01,
115
- logging_dir='./logs',
116
- evaluation_strategy="epoch",
117
- save_strategy="epoch",
118
- load_best_model_at_end=True,
119
- )
120
-
121
- trainer = Trainer(
122
- model=self.model,
123
- args=training_args,
124
- train_dataset=train_dataset,
125
- eval_dataset=val_dataset,
126
- )
127
-
128
- trainer.train()
129
- trainer.save_model()
130
- self.tokenizer.save_pretrained(output_dir)
131
-
132
- print(f"Model trained and saved to {output_dir}")
133
- return True
89
+ def train(self, approved_memories: List[Dict], rejected_memories: List[Dict],
90
+ output_dir: str = "./memory_model", epochs: int = 3):
91
+ """Train the memory classification model"""
92
+
93
+ if len(approved_memories) < 10 or len(rejected_memories) < 10:
94
+ print("Not enough training data. Need at least 10 approved and 10 rejected memories.")
95
+ return False
96
+
97
+ training_data = self.prepare_training_data(approved_memories, rejected_memories)
98
+
99
+
100
+ split_idx = int(0.8 * len(training_data))
101
+ train_data = training_data[:split_idx]
102
+ val_data = training_data[split_idx:]
103
+
104
+ train_dataset = MemoryDataset(train_data, self.tokenizer)
105
+ val_dataset = MemoryDataset(val_data, self.tokenizer)
106
+
107
+ training_args = TrainingArguments(
108
+ output_dir=output_dir,
109
+ num_train_epochs=epochs,
110
+ per_device_train_batch_size=4,
111
+ per_device_eval_batch_size=4,
112
+ warmup_steps=100,
113
+ weight_decay=0.01,
114
+ logging_dir='./logs',
115
+ evaluation_strategy="epoch",
116
+ save_strategy="epoch",
117
+ load_best_model_at_end=True,
118
+ )
119
+
120
+ trainer = Trainer(
121
+ model=self.model,
122
+ args=training_args,
123
+ train_dataset=train_dataset,
124
+ eval_dataset=val_dataset,
125
+ )
126
+
127
+ trainer.train()
128
+ trainer.save_model()
129
+ self.tokenizer.save_pretrained(output_dir)
130
+
131
+ print(f"Model trained and saved to {output_dir}")
132
+ return True
134
133
 
135
- def predict_memory_action(self, memory_content: str, context: str = "") -> Tuple[str, float]:
136
- """Predict what action to take on a memory"""
137
- text = f"Memory: {memory_content}\nContext: {context}"
138
-
139
- encoding = self.tokenizer(
140
- text,
141
- truncation=True,
142
- padding=True,
143
- max_length=512,
144
- return_tensors='pt'
145
- ).to(self.device)
146
-
147
- with torch.no_grad():
148
- outputs = self.model(**encoding)
149
- probabilities = torch.softmax(outputs.logits, dim=-1)
150
- predicted_class = torch.argmax(probabilities, dim=-1).item()
151
- confidence = probabilities[0][predicted_class].item()
152
-
153
- actions = {0: "model-rejected", 1: "model-approved", 2: "needs-editing"}
154
- return actions[predicted_class], confidence
134
+ def predict_memory_action(self, memory_content: str, context: str = "") -> Tuple[str, float]:
135
+ """Predict what action to take on a memory"""
136
+ text = f"Memory: {memory_content}\nContext: {context}"
137
+
138
+ encoding = self.tokenizer(
139
+ text,
140
+ truncation=True,
141
+ padding=True,
142
+ max_length=512,
143
+ return_tensors='pt'
144
+ ).to(self.device)
145
+
146
+ with torch.no_grad():
147
+ outputs = self.model(**encoding)
148
+ probabilities = torch.softmax(outputs.logits, dim=-1)
149
+ predicted_class = torch.argmax(probabilities, dim=-1).item()
150
+ confidence = probabilities[0][predicted_class].item()
151
+
152
+ actions = {0: "model-rejected", 1: "model-approved", 2: "needs-editing"}
153
+ return actions[predicted_class], confidence
155
154
 
156
- def auto_approve_memory(self, memory_content: str, context: str = "",
157
- confidence_threshold: float = 0.8) -> Dict:
158
- """Auto-approve memory if confidence is high enough"""
159
- action, confidence = self.predict_memory_action(memory_content, context)
160
-
161
- if confidence >= confidence_threshold:
162
- return {"action": action, "confidence": confidence, "auto_processed": True}
163
- else:
164
- return {"action": "pending_approval", "confidence": confidence, "auto_processed": False}
155
+ def auto_approve_memory(self, memory_content: str, context: str = "",
156
+ confidence_threshold: float = 0.8) -> Dict:
157
+ """Auto-approve memory if confidence is high enough"""
158
+ action, confidence = self.predict_memory_action(memory_content, context)
159
+
160
+ if confidence >= confidence_threshold:
161
+ return {"action": action, "confidence": confidence, "auto_processed": True}
162
+ else:
163
+ return {"action": "pending_approval", "confidence": confidence, "auto_processed": False}
164
+ except:
165
+ Dataset = None
166
+ nn = None
167
+ Trainer = None
168
+ TrainingArguments = None
169
+
170
+ MemoryDataset = None
171
+ MemoryTrainer = None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: npcpy
3
- Version: 1.2.19
3
+ Version: 1.2.20
4
4
  Summary: npcpy is the premier open-source library for integrating LLMs and Agents into python systems.
5
5
  Home-page: https://github.com/NPC-Worldwide/npcpy
6
6
  Author: Christopher Agostino
@@ -17,7 +17,7 @@ npcpy/data/web.py,sha256=ARGoVKUlQmaiX0zJbSvvFmRCwOv_Z7Pcan9c5GxYObQ,5117
17
17
  npcpy/ft/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  npcpy/ft/diff.py,sha256=R3Qo6v0-6M1iI0wiXhUzyuYI2ja0q_0i9bE0z3coxzU,28
19
19
  npcpy/ft/ge.py,sha256=my5LtGyVTT40V0i1h9FR-tFFA1FHSga-PeCCgUX1UUI,61
20
- npcpy/ft/memory_trainer.py,sha256=410BtNj308c7V45E809ILbDjCnVRy7n0mdIp2DKOCNY,5904
20
+ npcpy/ft/memory_trainer.py,sha256=QZPznxEEwXbOGroHdMUMa5xpqlNwgV6nqOazI2xgrnQ,6635
21
21
  npcpy/ft/rl.py,sha256=l3RUkEJe4b2yB6pildveu2LJymtNq0F17COwf_CCq3U,34
22
22
  npcpy/ft/sft.py,sha256=i4ENygRPArbLWN4XZZuBnPWaehs8M-J68JB_mewGJHI,62
23
23
  npcpy/gen/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -41,8 +41,8 @@ npcpy/work/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
41
  npcpy/work/desktop.py,sha256=F3I8mUtJp6LAkXodsh8hGZIncoads6c_2Utty-0EdDA,2986
42
42
  npcpy/work/plan.py,sha256=QyUwg8vElWiHuoS-xK4jXTxxHvkMD3VkaCEsCmrEPQk,8300
43
43
  npcpy/work/trigger.py,sha256=P1Y8u1wQRsS2WACims_2IdkBEar-iBQix-2TDWoW0OM,9948
44
- npcpy-1.2.19.dist-info/licenses/LICENSE,sha256=j0YPvce7Ng9e32zYOu0EmXjXeJ0Nwawd0RA3uSGGH4E,1070
45
- npcpy-1.2.19.dist-info/METADATA,sha256=dnJPjMvml-0yrEJXUt9g-Rf-UT9mIXuQR3HJZzYgm18,26084
46
- npcpy-1.2.19.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
47
- npcpy-1.2.19.dist-info/top_level.txt,sha256=g1pbSvrOOncB74Bg5-J0Olg4V0A5VzDw-Xz5YObq8BU,6
48
- npcpy-1.2.19.dist-info/RECORD,,
44
+ npcpy-1.2.20.dist-info/licenses/LICENSE,sha256=j0YPvce7Ng9e32zYOu0EmXjXeJ0Nwawd0RA3uSGGH4E,1070
45
+ npcpy-1.2.20.dist-info/METADATA,sha256=P5knjysgVTcYCKlMkbJT-iiw_t9cy1SlskD2YuyknHE,26084
46
+ npcpy-1.2.20.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
47
+ npcpy-1.2.20.dist-info/top_level.txt,sha256=g1pbSvrOOncB74Bg5-J0Olg4V0A5VzDw-Xz5YObq8BU,6
48
+ npcpy-1.2.20.dist-info/RECORD,,
File without changes