not-again-ai 0.14.0__py3-none-any.whl → 0.15.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. not_again_ai/llm/chat_completion/__init__.py +4 -0
  2. not_again_ai/llm/chat_completion/interface.py +32 -0
  3. not_again_ai/llm/chat_completion/providers/ollama_api.py +227 -0
  4. not_again_ai/llm/chat_completion/providers/openai_api.py +290 -0
  5. not_again_ai/llm/chat_completion/types.py +145 -0
  6. not_again_ai/llm/prompting/__init__.py +3 -0
  7. not_again_ai/llm/prompting/compile_messages.py +98 -0
  8. not_again_ai/llm/prompting/interface.py +46 -0
  9. not_again_ai/llm/prompting/providers/openai_tiktoken.py +122 -0
  10. not_again_ai/llm/prompting/types.py +43 -0
  11. {not_again_ai-0.14.0.dist-info → not_again_ai-0.15.0.dist-info}/METADATA +24 -40
  12. not_again_ai-0.15.0.dist-info/RECORD +32 -0
  13. {not_again_ai-0.14.0.dist-info → not_again_ai-0.15.0.dist-info}/WHEEL +1 -1
  14. not_again_ai/llm/gh_models/azure_ai_client.py +0 -20
  15. not_again_ai/llm/gh_models/chat_completion.py +0 -81
  16. not_again_ai/llm/openai_api/chat_completion.py +0 -339
  17. not_again_ai/llm/openai_api/context_management.py +0 -70
  18. not_again_ai/llm/openai_api/embeddings.py +0 -62
  19. not_again_ai/llm/openai_api/openai_client.py +0 -78
  20. not_again_ai/llm/openai_api/prompts.py +0 -191
  21. not_again_ai/llm/openai_api/tokens.py +0 -184
  22. not_again_ai/local_llm/__init__.py +0 -27
  23. not_again_ai/local_llm/chat_completion.py +0 -105
  24. not_again_ai/local_llm/huggingface/__init__.py +0 -0
  25. not_again_ai/local_llm/huggingface/chat_completion.py +0 -59
  26. not_again_ai/local_llm/huggingface/helpers.py +0 -23
  27. not_again_ai/local_llm/ollama/__init__.py +0 -0
  28. not_again_ai/local_llm/ollama/chat_completion.py +0 -111
  29. not_again_ai/local_llm/ollama/model_mapping.py +0 -17
  30. not_again_ai/local_llm/ollama/ollama_client.py +0 -24
  31. not_again_ai/local_llm/ollama/service.py +0 -81
  32. not_again_ai/local_llm/ollama/tokens.py +0 -104
  33. not_again_ai/local_llm/prompts.py +0 -38
  34. not_again_ai/local_llm/tokens.py +0 -90
  35. not_again_ai-0.14.0.dist-info/RECORD +0 -44
  36. not_again_ai-0.14.0.dist-info/entry_points.txt +0 -3
  37. /not_again_ai/llm/{gh_models → chat_completion/providers}/__init__.py +0 -0
  38. /not_again_ai/llm/{openai_api → prompting/providers}/__init__.py +0 -0
  39. {not_again_ai-0.14.0.dist-info → not_again_ai-0.15.0.dist-info}/LICENSE +0 -0
@@ -0,0 +1,145 @@
1
+ from enum import Enum
2
+ from typing import Any, Generic, Literal, TypeVar
3
+
4
+ from pydantic import BaseModel, Field
5
+
6
+
7
+ class Role(str, Enum):
8
+ ASSISTANT = "assistant"
9
+ DEVELOPER = "developer"
10
+ SYSTEM = "system"
11
+ TOOL = "tool"
12
+ USER = "user"
13
+
14
+
15
+ class ContentPartType(str, Enum):
16
+ TEXT = "text"
17
+ IMAGE = "image_url"
18
+
19
+
20
+ class TextContent(BaseModel):
21
+ type: Literal[ContentPartType.TEXT] = ContentPartType.TEXT
22
+ text: str
23
+
24
+
25
+ class ImageDetail(str, Enum):
26
+ AUTO = "auto"
27
+ LOW = "low"
28
+ HIGH = "high"
29
+
30
+
31
+ class ImageUrl(BaseModel):
32
+ url: str
33
+ detail: ImageDetail = ImageDetail.AUTO
34
+
35
+
36
+ class ImageContent(BaseModel):
37
+ type: Literal[ContentPartType.IMAGE] = ContentPartType.IMAGE
38
+ image_url: ImageUrl
39
+
40
+
41
+ ContentT = TypeVar("ContentT", bound=str | list[TextContent | ImageContent])
42
+
43
+
44
+ class BaseMessage(BaseModel, Generic[ContentT]):
45
+ content: ContentT
46
+ role: Role
47
+ name: str | None = None
48
+
49
+
50
+ class Function(BaseModel):
51
+ name: str
52
+ arguments: dict[str, Any]
53
+
54
+
55
+ class ToolCall(BaseModel):
56
+ id: str
57
+ function: Function
58
+ type: Literal["function"] = "function"
59
+
60
+
61
+ class DeveloperMessage(BaseMessage[str]):
62
+ role: Literal[Role.DEVELOPER] = Role.DEVELOPER
63
+
64
+
65
+ class SystemMessage(BaseMessage[str]):
66
+ role: Literal[Role.SYSTEM] = Role.SYSTEM
67
+
68
+
69
+ class UserMessage(BaseMessage[str | list[TextContent | ImageContent]]):
70
+ role: Literal[Role.USER] = Role.USER
71
+
72
+
73
+ class AssistantMessage(BaseMessage[str]):
74
+ role: Literal[Role.ASSISTANT] = Role.ASSISTANT
75
+ refusal: str | None = None
76
+ tool_calls: list[ToolCall] | None = None
77
+
78
+
79
+ class ToolMessage(BaseMessage[str]):
80
+ # A tool message's name field will be interpreted as "tool_call_id"
81
+ role: Literal[Role.TOOL] = Role.TOOL
82
+
83
+
84
+ MessageT = AssistantMessage | DeveloperMessage | SystemMessage | ToolMessage | UserMessage
85
+
86
+
87
+ class ChatCompletionRequest(BaseModel):
88
+ messages: list[MessageT]
89
+ model: str
90
+
91
+ max_completion_tokens: int | None = Field(default=None)
92
+ context_window: int | None = Field(default=None)
93
+ logprobs: bool | None = Field(default=None)
94
+ n: int | None = Field(default=None)
95
+
96
+ tools: list[dict[str, Any]] | None = Field(default=None)
97
+ tool_choice: str | None = Field(default=None)
98
+ parallel_tool_calls: bool | None = Field(default=None)
99
+ json_mode: bool | None = Field(default=None)
100
+ structured_outputs: dict[str, Any] | None = Field(default=None)
101
+
102
+ temperature: float | None = Field(default=None)
103
+ reasoning_effort: Literal["low", "medium", "high"] | None = Field(default=None)
104
+ top_p: float | None = Field(default=None)
105
+ logit_bias: dict[str, float] | None = Field(default=None)
106
+ top_logprobs: int | None = Field(default=None)
107
+ frequency_penalty: float | None = Field(default=None)
108
+ presence_penalty: float | None = Field(default=None)
109
+ stop: str | list[str] | None = Field(default=None)
110
+
111
+ seed: int | None = Field(default=None)
112
+
113
+ mirostat: int | None = Field(default=None)
114
+ mirostat_eta: float | None = Field(default=None)
115
+ mirostat_tau: float | None = Field(default=None)
116
+ repeat_last_n: int | None = Field(default=None)
117
+ tfs_z: float | None = Field(default=None)
118
+ top_k: int | None = Field(default=None)
119
+ min_p: float | None = Field(default=None)
120
+
121
+
122
+ class ChatCompletionChoice(BaseModel):
123
+ message: AssistantMessage
124
+ finish_reason: Literal["stop", "length", "tool_calls", "content_filter"]
125
+
126
+ json_message: dict[str, Any] | None = Field(default=None)
127
+ logprobs: list[dict[str, Any] | list[dict[str, Any]]] | None = Field(default=None)
128
+
129
+ extras: Any | None = Field(default=None)
130
+
131
+
132
+ class ChatCompletionResponse(BaseModel):
133
+ choices: list[ChatCompletionChoice]
134
+
135
+ errors: str = Field(default="")
136
+
137
+ completion_tokens: int
138
+ prompt_tokens: int
139
+ completion_detailed_tokens: dict[str, int] | None = Field(default=None)
140
+ prompt_detailed_tokens: dict[str, int] | None = Field(default=None)
141
+ response_duration: float
142
+
143
+ system_fingerprint: str | None = Field(default=None)
144
+
145
+ extras: Any | None = Field(default=None)
@@ -0,0 +1,3 @@
1
+ from not_again_ai.llm.prompting.interface import Tokenizer
2
+
3
+ __all__ = ["Tokenizer"]
@@ -0,0 +1,98 @@
1
+ import base64
2
+ from copy import deepcopy
3
+ import mimetypes
4
+ from pathlib import Path
5
+ from typing import Any
6
+
7
+ from liquid import Template
8
+ from openai.lib._pydantic import to_strict_json_schema
9
+ from pydantic import BaseModel
10
+
11
+ from not_again_ai.llm.chat_completion.types import MessageT, TextContent
12
+
13
+
14
+ def compile_messages(messages: list[MessageT], variables: dict[str, str]) -> list[MessageT]:
15
+ """Compiles messages using Liquid templating and the provided variables.
16
+ Calls Template(content_part).render(**variables) on each text content part.
17
+
18
+ Args:
19
+ messages: List of MessageT where content can contain Liquid templates.
20
+ variables: The variables to inject into the templates.
21
+
22
+ Returns:
23
+ The same list of messages with the content parts injected with the variables.
24
+ """
25
+ messages_formatted = deepcopy(messages)
26
+ for message in messages_formatted:
27
+ if isinstance(message.content, str):
28
+ # For simple string content, apply template directly
29
+ message.content = Template(message.content).render(**variables)
30
+ elif isinstance(message.content, list):
31
+ # For UserMessage with content parts
32
+ for content_part in message.content:
33
+ if isinstance(content_part, TextContent):
34
+ content_part.text = Template(content_part.text).render(**variables)
35
+ # ImageContent parts are left unchanged
36
+ return messages_formatted
37
+
38
+
39
+ def encode_image(image_path: Path) -> str:
40
+ """Encodes an image file at the given Path to base64.
41
+
42
+ Args:
43
+ image_path: The path to the image file to encode.
44
+
45
+ Returns:
46
+ The base64 encoded image as a string.
47
+ """
48
+ with Path.open(image_path, "rb") as image_file:
49
+ return base64.b64encode(image_file.read()).decode("utf-8")
50
+
51
+
52
+ def create_image_url(image_path: Path) -> str:
53
+ """Creates a data URL for an image file at the given Path.
54
+
55
+ Args:
56
+ image_path: The path to the image file to encode.
57
+
58
+ Returns:
59
+ The data URL for the image.
60
+ """
61
+ image_data = encode_image(image_path)
62
+
63
+ valid_mime_types = ["image/jpeg", "image/png", "image/webp", "image/gif"]
64
+
65
+ # Get the MIME type from the image file extension
66
+ mime_type = mimetypes.guess_type(image_path)[0]
67
+
68
+ # Check if the MIME type is valid
69
+ # List of valid types is here: https://platform.openai.com/docs/guides/vision/what-type-of-files-can-i-upload
70
+ if mime_type not in valid_mime_types:
71
+ raise ValueError(f"Invalid MIME type for image: {mime_type}")
72
+
73
+ return f"data:{mime_type};base64,{image_data}"
74
+
75
+
76
+ def pydantic_to_json_schema(
77
+ pydantic_model: type[BaseModel], schema_name: str, description: str | None = None
78
+ ) -> dict[str, Any]:
79
+ """Converts a Pydantic model to a JSON schema expected by Structured Outputs.
80
+ Must adhere to the supported schemas: https://platform.openai.com/docs/guides/structured-outputs/supported-schemas
81
+
82
+ Args:
83
+ pydantic_model: The Pydantic model to convert.
84
+ schema_name: The name of the schema.
85
+ description: An optional description of the schema.
86
+
87
+ Returns:
88
+ A JSON schema dictionary representing the Pydantic model.
89
+ """
90
+ converted_pydantic = to_strict_json_schema(pydantic_model)
91
+ schema = {
92
+ "name": schema_name,
93
+ "strict": True,
94
+ "schema": converted_pydantic,
95
+ }
96
+ if description:
97
+ schema["description"] = description
98
+ return schema
@@ -0,0 +1,46 @@
1
+ from collections.abc import Collection, Set
2
+ from typing import Literal
3
+
4
+ from loguru import logger
5
+
6
+ from not_again_ai.llm.chat_completion.types import MessageT
7
+ from not_again_ai.llm.prompting.providers.openai_tiktoken import TokenizerOpenAI
8
+ from not_again_ai.llm.prompting.types import BaseTokenizer
9
+
10
+
11
+ class Tokenizer(BaseTokenizer):
12
+ def __init__(
13
+ self,
14
+ model: str,
15
+ provider: str,
16
+ allowed_special: Literal["all"] | Set[str] | None = None,
17
+ disallowed_special: Literal["all"] | Collection[str] | None = None,
18
+ ):
19
+ self.model = model
20
+ self.provider = provider
21
+ self.allowed_special = allowed_special
22
+ self.disallowed_special = disallowed_special
23
+
24
+ self.init_tokenizer(model, provider, allowed_special, disallowed_special)
25
+
26
+ def init_tokenizer(
27
+ self,
28
+ model: str,
29
+ provider: str,
30
+ allowed_special: Literal["all"] | Set[str] | None = None,
31
+ disallowed_special: Literal["all"] | Collection[str] | None = None,
32
+ ) -> None:
33
+ if provider == "openai" or provider == "azure_openai":
34
+ self.tokenizer = TokenizerOpenAI(model, provider, allowed_special, disallowed_special)
35
+ else:
36
+ logger.warning(f"Provider {provider} not supported. Initializing using tiktoken and gpt-4o.")
37
+ self.tokenizer = TokenizerOpenAI("gpt-4o", "openai", allowed_special, disallowed_special)
38
+
39
+ def truncate_str(self, text: str, max_len: int) -> str:
40
+ return self.tokenizer.truncate_str(text, max_len)
41
+
42
+ def num_tokens_in_str(self, text: str) -> int:
43
+ return self.tokenizer.num_tokens_in_str(text)
44
+
45
+ def num_tokens_in_messages(self, messages: list[MessageT]) -> int:
46
+ return self.tokenizer.num_tokens_in_messages(messages)
@@ -0,0 +1,122 @@
1
+ from collections.abc import Collection, Set
2
+ from typing import Literal
3
+
4
+ from loguru import logger
5
+ import tiktoken
6
+
7
+ from not_again_ai.llm.chat_completion.types import MessageT
8
+ from not_again_ai.llm.prompting.types import BaseTokenizer
9
+
10
+
11
+ class TokenizerOpenAI(BaseTokenizer):
12
+ def __init__(
13
+ self,
14
+ model: str,
15
+ provider: str = "openai",
16
+ allowed_special: Literal["all"] | Set[str] | None = None,
17
+ disallowed_special: Literal["all"] | Collection[str] | None = None,
18
+ ):
19
+ self.model = model
20
+ self.provider = provider
21
+ self.allowed_special = allowed_special
22
+ self.disallowed_special = disallowed_special
23
+
24
+ self.init_tokenizer(model, provider, allowed_special, disallowed_special)
25
+
26
+ def init_tokenizer(
27
+ self,
28
+ model: str,
29
+ provider: str = "openai",
30
+ allowed_special: Literal["all"] | Set[str] | None = None,
31
+ disallowed_special: Literal["all"] | Collection[str] | None = None,
32
+ ) -> None:
33
+ try:
34
+ self.encoding = tiktoken.encoding_for_model(model)
35
+ except KeyError:
36
+ default_encoding = "o200k_base"
37
+ logger.warning(f"Model {model} not found. Using {default_encoding} encoding.")
38
+ self.encoding = tiktoken.get_encoding(default_encoding)
39
+
40
+ # Set defaults if not provided
41
+ if not allowed_special:
42
+ self.allowed_special = set()
43
+ if not disallowed_special:
44
+ self.disallowed_special = ()
45
+
46
+ def truncate_str(self, text: str, max_len: int) -> str:
47
+ tokens = self.encoding.encode(
48
+ text,
49
+ allowed_special=self.allowed_special if self.allowed_special is not None else set(),
50
+ disallowed_special=self.disallowed_special if self.disallowed_special is not None else (),
51
+ )
52
+ if len(tokens) > max_len:
53
+ tokens = tokens[:max_len]
54
+ truncated_text = self.encoding.decode(tokens)
55
+ return truncated_text
56
+ else:
57
+ return text
58
+
59
+ def num_tokens_in_str(self, text: str) -> int:
60
+ return len(
61
+ self.encoding.encode(
62
+ text,
63
+ allowed_special=self.allowed_special if self.allowed_special is not None else set(),
64
+ disallowed_special=self.disallowed_special if self.disallowed_special is not None else (),
65
+ )
66
+ )
67
+
68
+ def num_tokens_in_messages(self, messages: list[MessageT]) -> int:
69
+ if self.model in {
70
+ "gpt-3.5-turbo-0613",
71
+ "gpt-3.5-turbo-16k-0613",
72
+ "gpt-3.5-turbo-1106",
73
+ "gpt-3.5-turbo-0125",
74
+ "gpt-4-0314",
75
+ "gpt-4-32k-0314",
76
+ "gpt-4-0613",
77
+ "gpt-4-32k-0613",
78
+ "gpt-4-1106-preview",
79
+ "gpt-4-turbo-preview",
80
+ "gpt-4-0125-preview",
81
+ "gpt-4-turbo",
82
+ "gpt-4-turbo-2024-04-09",
83
+ "gpt-4o",
84
+ "gpt-4o-2024-05-13",
85
+ "gpt-4o-2024-08-06",
86
+ "gpt-4o-2024-11-20",
87
+ "gpt-4o-mini",
88
+ "gpt-4o-mini-2024-07-18",
89
+ "o1",
90
+ "o1-2024-12-17",
91
+ "o1-mini",
92
+ "o1-mini-2024-09-12",
93
+ "o1-preview",
94
+ "o1-preview-2024-09-12",
95
+ }:
96
+ tokens_per_message = 3 # every message follows <|start|>{role/name}\n{content}<|end|>\n
97
+ tokens_per_name = 1 # if there's a name, the role is omitted
98
+ elif self.model == "gpt-3.5-turbo-0301":
99
+ tokens_per_message = 4
100
+ tokens_per_name = -1
101
+ else:
102
+ logger.warning(f"Model {self.model} not supported. Assuming gpt-4o encoding.")
103
+ tokens_per_message = 3
104
+ tokens_per_name = 1
105
+
106
+ num_tokens = 0
107
+ for message in messages:
108
+ num_tokens += tokens_per_message
109
+ message_dict = message.model_dump(exclude_none=True)
110
+ for key, value in message_dict.items():
111
+ if isinstance(value, str):
112
+ num_tokens += len(
113
+ self.encoding.encode(
114
+ value,
115
+ allowed_special=self.allowed_special if self.allowed_special is not None else set(),
116
+ disallowed_special=self.disallowed_special if self.disallowed_special is not None else (),
117
+ )
118
+ )
119
+ if key == "name":
120
+ num_tokens += tokens_per_name
121
+ num_tokens += 3
122
+ return num_tokens
@@ -0,0 +1,43 @@
1
+ from abc import ABC, abstractmethod
2
+ from collections.abc import Collection, Set
3
+ from typing import Literal
4
+
5
+ from not_again_ai.llm.chat_completion.types import MessageT
6
+
7
+
8
+ class BaseTokenizer(ABC):
9
+ def __init__(
10
+ self,
11
+ model: str,
12
+ provider: str,
13
+ allowed_special: Literal["all"] | Set[str] | None = None,
14
+ disallowed_special: Literal["all"] | Collection[str] | None = None,
15
+ ):
16
+ self.model = model
17
+ self.provider = provider
18
+ self.allowed_special = allowed_special
19
+ self.disallowed_special = disallowed_special
20
+
21
+ self.init_tokenizer(model, provider, allowed_special, disallowed_special)
22
+
23
+ @abstractmethod
24
+ def init_tokenizer(
25
+ self,
26
+ model: str,
27
+ provider: str,
28
+ allowed_special: Literal["all"] | Set[str] | None = None,
29
+ disallowed_special: Literal["all"] | Collection[str] | None = None,
30
+ ) -> None:
31
+ pass
32
+
33
+ @abstractmethod
34
+ def truncate_str(self, text: str, max_len: int) -> str:
35
+ pass
36
+
37
+ @abstractmethod
38
+ def num_tokens_in_str(self, text: str) -> int:
39
+ pass
40
+
41
+ @abstractmethod
42
+ def num_tokens_in_messages(self, messages: list[MessageT]) -> int:
43
+ pass
@@ -1,12 +1,11 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.3
2
2
  Name: not-again-ai
3
- Version: 0.14.0
3
+ Version: 0.15.0
4
4
  Summary: Designed to once and for all collect all the little things that come up over and over again in AI projects and put them in one place.
5
- Home-page: https://github.com/DaveCoDev/not-again-ai
6
5
  License: MIT
7
6
  Author: DaveCoDev
8
7
  Author-email: dave.co.dev@gmail.com
9
- Requires-Python: >=3.11,<4.0
8
+ Requires-Python: >=3.11, <3.13
10
9
  Classifier: Development Status :: 3 - Alpha
11
10
  Classifier: Intended Audience :: Developers
12
11
  Classifier: Intended Audience :: Science/Research
@@ -19,26 +18,25 @@ Classifier: Programming Language :: Python :: 3.12
19
18
  Classifier: Typing :: Typed
20
19
  Provides-Extra: data
21
20
  Provides-Extra: llm
22
- Provides-Extra: local-llm
23
21
  Provides-Extra: statistics
24
22
  Provides-Extra: viz
25
- Requires-Dist: azure-ai-inference (==1.0.0b5) ; extra == "llm"
26
- Requires-Dist: azure-identity (>=1.19,<2.0) ; extra == "llm"
27
- Requires-Dist: jinja2 (>=3.1,<4.0) ; extra == "local-llm"
28
- Requires-Dist: loguru (>=0.7,<0.8)
29
- Requires-Dist: numpy (>=2.1,<3.0) ; extra == "statistics" or extra == "viz"
30
- Requires-Dist: ollama (>=0.3,<0.4) ; extra == "local-llm"
31
- Requires-Dist: openai (>=1.52,<2.0) ; extra == "llm"
32
- Requires-Dist: pandas (>=2.2,<3.0) ; extra == "viz"
33
- Requires-Dist: pydantic (>=2.9,<3.0)
34
- Requires-Dist: pytest-playwright (>=0.5,<0.6) ; extra == "data"
35
- Requires-Dist: python-liquid (>=1.12,<2.0) ; extra == "llm"
36
- Requires-Dist: scikit-learn (>=1.5,<2.0) ; extra == "statistics"
37
- Requires-Dist: scipy (>=1.14,<2.0) ; extra == "statistics"
38
- Requires-Dist: seaborn (>=0.13,<0.14) ; extra == "viz"
39
- Requires-Dist: tiktoken (>=0.8,<0.9) ; extra == "llm"
40
- Requires-Dist: transformers (>=4.45,<5.0) ; extra == "local-llm"
41
- Project-URL: Documentation, https://github.com/DaveCoDev/not-again-ai
23
+ Requires-Dist: azure-identity (>=1.19) ; extra == "llm"
24
+ Requires-Dist: loguru (>=0.7)
25
+ Requires-Dist: numpy (>=2.2) ; extra == "statistics"
26
+ Requires-Dist: numpy (>=2.2) ; extra == "viz"
27
+ Requires-Dist: ollama (>=0.4) ; extra == "llm"
28
+ Requires-Dist: openai (>=1.60) ; extra == "llm"
29
+ Requires-Dist: pandas (>=2.2) ; extra == "viz"
30
+ Requires-Dist: playwright (>=1.49) ; extra == "data"
31
+ Requires-Dist: pydantic (>=2.10)
32
+ Requires-Dist: pytest-playwright (>=0.6) ; extra == "data"
33
+ Requires-Dist: python-liquid (>=1.12) ; extra == "llm"
34
+ Requires-Dist: scikit-learn (>=1.6) ; extra == "statistics"
35
+ Requires-Dist: scipy (>=1.15) ; extra == "statistics"
36
+ Requires-Dist: seaborn (>=0.13) ; extra == "viz"
37
+ Requires-Dist: tiktoken (>=0.8) ; extra == "llm"
38
+ Project-URL: Documentation, https://davecodev.github.io/not-again-ai/
39
+ Project-URL: Homepage, https://github.com/DaveCoDev/not-again-ai
42
40
  Project-URL: Repository, https://github.com/DaveCoDev/not-again-ai
43
41
  Description-Content-Type: text/markdown
44
42
 
@@ -68,11 +66,9 @@ Requires: Python 3.11, or 3.12
68
66
  Install the entire package from [PyPI](https://pypi.org/project/not-again-ai/) with:
69
67
 
70
68
  ```bash
71
- $ pip install not_again_ai[llm,local_llm,statistics,viz]
69
+ $ pip install not_again_ai[data,llm,statistics,viz]
72
70
  ```
73
71
 
74
- Note that local LLM requires separate installations and will not work out of the box due to how hardware dependent it is. Be sure to check the [notebooks](notebooks/local_llm/) for more details.
75
-
76
72
  The package is split into subpackages, so you can install only the parts you need.
77
73
 
78
74
  ### Base
@@ -93,16 +89,7 @@ The package is split into subpackages, so you can install only the parts you nee
93
89
  1. Using AOAI requires using Entra ID authentication. See https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/managed-identity for how to set this up for your AOAI deployment.
94
90
  * Requires the correct role assigned to your user account and being signed into the Azure CLI.
95
91
  1. (Optional) Set the `AZURE_OPENAI_ENDPOINT` environment variable.
96
- 1. Setup GitHub Models
97
- 1. Get a Personal Access Token from https://github.com/settings/tokens and set the `GITHUB_TOKEN` environment variable. The token does not need any permissions.
98
- 1. Check the [Github Marketplace](https://github.com/marketplace/models) to see which models are available.
99
-
100
-
101
- ### Local LLM
102
- 1. `pip install not_again_ai[llm,local_llm]`
103
- 1. Some HuggingFace transformers tokenizers are gated behind access requests. If you wish to use these, you will need to request access from HuggingFace on the model card.
104
- * Then set the `HF_TOKEN` environment variable to your HuggingFace API token which can be found here: https://huggingface.co/settings/tokens
105
- 1. If you wish to use Ollama:
92
+ 1. If you wish to use Ollama:
106
93
  1. Follow the instructions at https://github.com/ollama/ollama to install Ollama for your system.
107
94
  1. (Optional) [Add Ollama as a startup service (recommended)](https://github.com/ollama/ollama/blob/main/docs/linux.md#adding-ollama-as-a-startup-service-recommended)
108
95
  1. (Optional) To make the Ollama service accessible on your local network from a Linux server, add the following to the `/etc/systemd/system/ollama.service` file which will make Ollama available at `http://<local_address>:11434`:
@@ -112,7 +99,6 @@ The package is split into subpackages, so you can install only the parts you nee
112
99
  Environment="OLLAMA_HOST=0.0.0.0"
113
100
  ```
114
101
  1. It is recommended to always have the latest version of Ollama. To update Ollama check the [docs](https://github.com/ollama/ollama/blob/main/docs/). The command for Linux is: `curl -fsSL https://ollama.com/install.sh | sh`
115
- 1. HuggingFace transformers and other requirements are hardware dependent so for providers other than Ollama, this only installs some generic dependencies. Check the [notebooks](notebooks/local_llm/) for more details on what is available and how to install it.
116
102
 
117
103
 
118
104
  ### Statistics
@@ -156,10 +142,8 @@ $ poetry update
156
142
 
157
143
  To install all dependencies (with all extra dependencies) into an isolated virtual environment:
158
144
 
159
- > Append `--sync` to uninstall dependencies that are no longer in use from the virtual environment.
160
-
161
145
  ```bash
162
- $ poetry install --all-extras
146
+ $ poetry sync --all-extras
163
147
  ```
164
148
 
165
149
  To [activate](https://python-poetry.org/docs/basic-usage#activating-the-virtual-environment) the
@@ -215,7 +199,7 @@ Automated code quality checks are performed using
215
199
  environments and run commands based on [`noxfile.py`](./noxfile.py) for unit testing, PEP 8 style
216
200
  guide checking, type checking and documentation generation.
217
201
 
218
- > Note: `nox` is installed into the virtual environment automatically by the `poetry install`
202
+ > Note: `nox` is installed into the virtual environment automatically by the `poetry sync`
219
203
  > command above. Run `poetry shell` to activate the virtual environment.
220
204
 
221
205
  To run all default sessions:
@@ -0,0 +1,32 @@
1
+ not_again_ai/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ not_again_ai/base/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ not_again_ai/base/file_system.py,sha256=KNQmacO4Q__CQuq2oPzWrg3rQO48n3evglc9bNiP7KM,949
4
+ not_again_ai/base/parallel.py,sha256=fcYhKBYBWvob84iKp3O93wvFFdXeidljZsShgBLTNGA,3448
5
+ not_again_ai/data/__init__.py,sha256=1jF6mwvtB2PT7IEc3xpbRtZm3g3Lyf8zUqH4AEE4qlQ,244
6
+ not_again_ai/data/web.py,sha256=wjx9cc33jcoJBGonYCIpwygPBFOwz7F-dx_ominmbnI,1838
7
+ not_again_ai/llm/__init__.py,sha256=_wNUL6FDaT369Z8W48FsaC_NkcOZ-ib2MMUvnaLOS-0,451
8
+ not_again_ai/llm/chat_completion/__init__.py,sha256=a2qmmmrXjMKyHGZDjt_xdqYbSrEOBea_VvZArzMboe0,200
9
+ not_again_ai/llm/chat_completion/interface.py,sha256=FCyE-1gLdhwuS0Lv8iTbZvraa4iZjnKB8qb31WF53uk,1204
10
+ not_again_ai/llm/chat_completion/providers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ not_again_ai/llm/chat_completion/providers/ollama_api.py,sha256=iBTMyF8edo8uxxrorNPtShzmCXG7m0RlEBunWLSO4Mo,7999
12
+ not_again_ai/llm/chat_completion/providers/openai_api.py,sha256=S7TZhDIQ_xpp3JakRVcd3Gpw2UjeHCETdA9MfRKUjCU,12294
13
+ not_again_ai/llm/chat_completion/types.py,sha256=q8APUWWzwCKL0Rs_zEFfph9uBcwh5nAT0f0rp4crvk0,4039
14
+ not_again_ai/llm/prompting/__init__.py,sha256=7YnHro1yH01FLGnao27WyqQDFjNYf9npE5UxoR9YrUU,84
15
+ not_again_ai/llm/prompting/compile_messages.py,sha256=HmVCQ-0iVg8vFWZyppxUf9m_ae5c8rK1Zx8ySPD1Bg8,3452
16
+ not_again_ai/llm/prompting/interface.py,sha256=SMKYabmu3zTWbEDukU6aLU_JQ88apeBWWOF_qZ0s3ww,1783
17
+ not_again_ai/llm/prompting/providers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
+ not_again_ai/llm/prompting/providers/openai_tiktoken.py,sha256=8YrEiK3ZHyKVGiVsJ_Rd6eVdISIvcub7ooj-HB7Prsc,4536
19
+ not_again_ai/llm/prompting/types.py,sha256=xz70dnawL9rji7Zr1_mOekY-uUlvKJJf7k9nXJsOXc4,1219
20
+ not_again_ai/py.typed,sha256=UaCuPFa3H8UAakbt-5G8SPacldTOGvJv18pPjUJ5gDY,93
21
+ not_again_ai/statistics/__init__.py,sha256=gA8r9JQFbFSN0ykrHy4G1IQgcky4f2eM5Oo24oVI5Ik,466
22
+ not_again_ai/statistics/dependence.py,sha256=4xaniMkLlTjdXcNVXdwepEAiZ-WaaGYfR9haJC1lU2Q,4434
23
+ not_again_ai/viz/__init__.py,sha256=MeaWae_QRbDEHJ4MWYoY1-Ad6S0FhSDaRhQncS2cpSc,447
24
+ not_again_ai/viz/barplots.py,sha256=rr_2phZgDaqcF5Ve7mBZrVvNXVzEt84RQPIyyeJxsMo,3384
25
+ not_again_ai/viz/distributions.py,sha256=OyWwJaNI6lMRm_iSrhq-CORLNvXfeuLSgDtVo3umnzU,4354
26
+ not_again_ai/viz/scatterplot.py,sha256=5CUOWeknbBOaZPeX9oPin5sBkRKEwk8qeFH45R-9LlY,2292
27
+ not_again_ai/viz/time_series.py,sha256=pOGZqXp_2nd6nKo-PUQNCtmMh__69jxQ6bQibTGLwZA,5212
28
+ not_again_ai/viz/utils.py,sha256=hN7gwxtBt3U6jQni2K8j5m5pCXpaJDoNzGhBBikEU28,238
29
+ not_again_ai-0.15.0.dist-info/LICENSE,sha256=btjOgNGpp-ux5xOo1Gx1MddxeWtT9sof3s3Nui29QfA,1071
30
+ not_again_ai-0.15.0.dist-info/METADATA,sha256=_vGJUluFVmoYQrNwLGMh5NWtH6aiJ5BG8G8hlZ5TRpE,15038
31
+ not_again_ai-0.15.0.dist-info/WHEEL,sha256=IYZQI976HJqqOpQU6PHkJ8fb3tMNBFjg-Cn-pwAbaFM,88
32
+ not_again_ai-0.15.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.0
2
+ Generator: poetry-core 2.0.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,20 +0,0 @@
1
- import os
2
-
3
- from azure.ai.inference import ChatCompletionsClient
4
- from azure.core.credentials import AzureKeyCredential
5
-
6
-
7
- def azure_ai_client(
8
- token: str | None = None,
9
- endpoint: str = "https://models.inference.ai.azure.com",
10
- ) -> ChatCompletionsClient:
11
- if not token:
12
- token = os.getenv("GITHUB_TOKEN")
13
- if not token:
14
- raise ValueError("Token must be provided or GITHUB_TOKEN environment variable must be set")
15
-
16
- client = ChatCompletionsClient(
17
- endpoint=endpoint,
18
- credential=AzureKeyCredential(token),
19
- )
20
- return client