nosj 0.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nosj-0.1.1.dist-info/METADATA +41 -0
- nosj-0.1.1.dist-info/RECORD +6 -0
- nosj-0.1.1.dist-info/WHEEL +5 -0
- nosj-0.1.1.dist-info/licenses/LICENSE.txt +21 -0
- nosj-0.1.1.dist-info/top_level.txt +1 -0
- nosj.py +275 -0
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: nosj
|
|
3
|
+
Version: 0.1.1
|
|
4
|
+
Summary: JSON encoding/decoding for Numpy arrays and scalars
|
|
5
|
+
Author-email: mpgriff <mpg@geo.au.dk>
|
|
6
|
+
Maintainer-email: mpgriff <mpg@geo.au.dk>
|
|
7
|
+
License: MIT License
|
|
8
|
+
|
|
9
|
+
Copyright (c) 2026 Matthew Griffiths <mpg@geo.au.dk>
|
|
10
|
+
|
|
11
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
12
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
13
|
+
in the Software without restriction, including without limitation the rights
|
|
14
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
15
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
16
|
+
furnished to do so, subject to the following conditions:
|
|
17
|
+
|
|
18
|
+
The above copyright notice and this permission notice shall be included in all
|
|
19
|
+
copies or substantial portions of the Software.
|
|
20
|
+
|
|
21
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
22
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
23
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
24
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
25
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
26
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
27
|
+
SOFTWARE.
|
|
28
|
+
|
|
29
|
+
Project-URL: Homepage, https://github.com/mpgriff/nosj
|
|
30
|
+
Project-URL: Repository, https://github.com/mpgriff/nosj.git
|
|
31
|
+
Project-URL: Issues, https://github.com/mpgriff/nosj/issues
|
|
32
|
+
Requires-Python: >=3.8
|
|
33
|
+
Description-Content-Type: text/markdown
|
|
34
|
+
License-File: LICENSE.txt
|
|
35
|
+
Requires-Dist: json-numpy
|
|
36
|
+
Requires-Dist: numpy
|
|
37
|
+
Provides-Extra: torch
|
|
38
|
+
Requires-Dist: torch; extra == "torch"
|
|
39
|
+
Dynamic: license-file
|
|
40
|
+
|
|
41
|
+
Nosj allows you to create and save dataclasses to json and reload them easily.
|
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
nosj.py,sha256=SJVhsZ-ReMn4BHpQ2uNWCqkGzrr4PGPFGkzBYHc4Erg,10914
|
|
2
|
+
nosj-0.1.1.dist-info/licenses/LICENSE.txt,sha256=sz5oSAlvcLttj9UKMz1Fjwz-Uoym71aW7mT3wx1l3yg,1111
|
|
3
|
+
nosj-0.1.1.dist-info/METADATA,sha256=BKUpgoxKRgTyXIg9Gm38uebVDp3EpjZdMaalkC51hfc,1973
|
|
4
|
+
nosj-0.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
5
|
+
nosj-0.1.1.dist-info/top_level.txt,sha256=jvQH-oXM9XBZ0XMCOhFD4wOsHoSU7f5EHN032dauIKQ,5
|
|
6
|
+
nosj-0.1.1.dist-info/RECORD,,
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Matthew Griffiths <mpg@geo.au.dk>
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
nosj
|
nosj.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
1
|
+
__version__ = "0.1.1"
|
|
2
|
+
|
|
3
|
+
__all__ = ['nosj']
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
from dataclasses import dataclass, replace, asdict as dataclass2dict
|
|
7
|
+
from typing import List, _GenericAlias
|
|
8
|
+
import json
|
|
9
|
+
import json_numpy
|
|
10
|
+
json_numpy.patch()
|
|
11
|
+
|
|
12
|
+
from numpy import ndarray, allclose, array
|
|
13
|
+
from numpy.lib.format import descr_to_dtype, dtype_to_descr
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def update(self, **kwargs):
|
|
17
|
+
return replace(self, **kwargs)
|
|
18
|
+
|
|
19
|
+
def _to_nosj(self, binary_threshold=100):
|
|
20
|
+
if self.extension is not None and '.' not in fname:
|
|
21
|
+
fname = fname + '.' + self.extension
|
|
22
|
+
if self.extension is not None:
|
|
23
|
+
assert fname.endswith('.' + self.extension), 'File extension does not match class extension'
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
other = self.copy()
|
|
27
|
+
|
|
28
|
+
for key,val in other.__dict__.items():
|
|
29
|
+
if (hasattr(val, '_description') and val._description is not None) and (hasattr(val, 'extension') and val.extension is not None):
|
|
30
|
+
if val._description.endswith(val.extension):
|
|
31
|
+
exec(f'other.{key} = val._description')
|
|
32
|
+
elif hasattr(val, '_to_nosj'):
|
|
33
|
+
exec(f'other.{key} = val._to_nosj(binary_threshold=binary_threshold)')
|
|
34
|
+
elif isinstance(val, List) and len(val)>0:
|
|
35
|
+
new_list = [x if not hasattr(x, '_to_nosj') else x._to_nosj(binary_threshold=binary_threshold) for x in val]
|
|
36
|
+
exec(f'other.{key} = new_list')
|
|
37
|
+
elif isinstance(val, ndarray) and val.size<=binary_threshold:
|
|
38
|
+
descr = dtype_to_descr(val.dtype)
|
|
39
|
+
array_dict = {
|
|
40
|
+
'__numpy_str__': ' '.join(val.__repr__().replace('\n', '').split()),
|
|
41
|
+
'dtype': descr,
|
|
42
|
+
'shape': val.shape,
|
|
43
|
+
}
|
|
44
|
+
exec(f'other.{key} = array_dict')
|
|
45
|
+
|
|
46
|
+
if not hasattr(other, '_description'):
|
|
47
|
+
other._description = fname
|
|
48
|
+
|
|
49
|
+
return dataclass2dict(other)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def save(self, fname, binary_threshold=100):
|
|
53
|
+
res = json.dumps(self._to_nosj(binary_threshold=binary_threshold), indent=4)
|
|
54
|
+
with open(fname, 'wt') as f:
|
|
55
|
+
f.write(res)
|
|
56
|
+
|
|
57
|
+
@classmethod
|
|
58
|
+
def load(cls, fname, load_subclasses=False):
|
|
59
|
+
with open(fname, 'rb') as f:
|
|
60
|
+
res = json.loads(f.read())
|
|
61
|
+
res = cls._reinstantiate_subclasses(cls, res, load_subclasses=load_subclasses)
|
|
62
|
+
return res
|
|
63
|
+
|
|
64
|
+
def __hash__(self):
|
|
65
|
+
descript = self._description
|
|
66
|
+
self._description = 'hash'
|
|
67
|
+
res = hash(self.__repr__())
|
|
68
|
+
self._description = descript
|
|
69
|
+
return res
|
|
70
|
+
|
|
71
|
+
def __eq__(self, other):
|
|
72
|
+
is_equal = hash(self) == hash(other)
|
|
73
|
+
if is_equal:
|
|
74
|
+
for x in self.__class__.__annotations__.keys():
|
|
75
|
+
cvar = vars(self)[x]
|
|
76
|
+
ovar = vars(other)[x]
|
|
77
|
+
|
|
78
|
+
if x == '_description':
|
|
79
|
+
continue
|
|
80
|
+
elif isinstance(cvar, ndarray):
|
|
81
|
+
var_equal = allclose(cvar, ovar)
|
|
82
|
+
else:
|
|
83
|
+
var_equal = (cvar == ovar)
|
|
84
|
+
is_equal = is_equal and var_equal
|
|
85
|
+
return is_equal
|
|
86
|
+
|
|
87
|
+
def reinstantiate_subclasses(cls, d, load_subclasses=False):
|
|
88
|
+
"""recursive function to get attributes back into their right classes"""
|
|
89
|
+
if not hasattr(cls, '__annotations__') and '__numpy_str__' in d:
|
|
90
|
+
return eval(d['__numpy_str__']).astype(d.pop('dtype')).reshape(d.pop('shape'))
|
|
91
|
+
|
|
92
|
+
if cls.__base__ != (object, str) and hasattr(cls.__base__, '__annotations__'):
|
|
93
|
+
class_dict = cls.__annotations__ | cls.__base__.__annotations__
|
|
94
|
+
else:
|
|
95
|
+
class_dict = cls.__annotations__
|
|
96
|
+
|
|
97
|
+
if hasattr(d, 'keys'):
|
|
98
|
+
for key in d.keys():
|
|
99
|
+
|
|
100
|
+
if class_dict[key] != type(d[key]) and type(d[key]) == dict:
|
|
101
|
+
d[key] = reinstantiate_subclasses(class_dict[key], d[key])
|
|
102
|
+
elif isinstance(class_dict[key], _GenericAlias):
|
|
103
|
+
subclass = [x for x in class_dict[key].__args__]
|
|
104
|
+
if len(subclass) < len(d[key]):
|
|
105
|
+
subclass = subclass * len(d[key])
|
|
106
|
+
if hasattr(subclass[0], '__annotations__'):
|
|
107
|
+
d[key] = [reinstantiate_subclasses(const, x, load_subclasses=load_subclasses) for const, x in zip(subclass,d[key])]
|
|
108
|
+
else:
|
|
109
|
+
d[key] = [x for const, x in zip(subclass,d[key])]
|
|
110
|
+
|
|
111
|
+
elif class_dict[key] == ndarray:
|
|
112
|
+
pass
|
|
113
|
+
elif class_dict[key] != type(d[key]) and type(d[key]) == str and '.' in d[key] and load_subclasses:
|
|
114
|
+
d[key] = class_dict[key].load(d[key])
|
|
115
|
+
elif class_dict[key] != type(d[key]) and load_subclasses:
|
|
116
|
+
if d[key] is not None:
|
|
117
|
+
d[key] = class_dict[key](**d[key])
|
|
118
|
+
|
|
119
|
+
return cls(**d)
|
|
120
|
+
elif isinstance(d, str) and load_subclasses:
|
|
121
|
+
return cls.load(d)
|
|
122
|
+
else:
|
|
123
|
+
return d
|
|
124
|
+
|
|
125
|
+
def copy(self):
|
|
126
|
+
return replace(self)
|
|
127
|
+
|
|
128
|
+
try:
|
|
129
|
+
from torch import allclose as torch_allclose, Tensor, from_numpy
|
|
130
|
+
TORCH_ENABLED = True
|
|
131
|
+
print('torch detected, enabling torch tensor support in nosj')
|
|
132
|
+
except ImportError:
|
|
133
|
+
TORCH_ENABLED = False
|
|
134
|
+
print('torch not detected, skipping torch tensor support in nosj')
|
|
135
|
+
|
|
136
|
+
if TORCH_ENABLED:
|
|
137
|
+
|
|
138
|
+
def _to_nosj(self, binary_threshold=100):
|
|
139
|
+
if self.extension is not None and '.' not in fname:
|
|
140
|
+
fname = fname + '.' + self.extension
|
|
141
|
+
if self.extension is not None:
|
|
142
|
+
assert fname.endswith('.' + self.extension), 'File extension does not match class extension'
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
other = self.copy()
|
|
146
|
+
torch_keys = []
|
|
147
|
+
for key,val in other.__dict__.items():
|
|
148
|
+
if isinstance(val, Tensor):
|
|
149
|
+
exec(f'other.{key} = val.numpy()')
|
|
150
|
+
if key in other.__annotations__:
|
|
151
|
+
torch_keys.append(key)
|
|
152
|
+
|
|
153
|
+
for key,val in other.__dict__.items():
|
|
154
|
+
if (hasattr(val, '_description') and val._description is not None) and (hasattr(val, 'extension') and val.extension is not None):
|
|
155
|
+
if val._description.endswith(val.extension):
|
|
156
|
+
exec(f'other.{key} = val._description')
|
|
157
|
+
elif isinstance(val, ndarray) and val.size<=binary_threshold:
|
|
158
|
+
descr = dtype_to_descr(val.dtype)
|
|
159
|
+
array_dict = {
|
|
160
|
+
'__numpy_str__': ' '.join(val.__repr__().replace('\n', '').split()),
|
|
161
|
+
'dtype': descr,
|
|
162
|
+
'shape': val.shape,
|
|
163
|
+
}
|
|
164
|
+
exec(f'other.{key} = array_dict')
|
|
165
|
+
elif hasattr(val, '_to_nosj'):
|
|
166
|
+
exec(f'other.{key} = val._to_nosj(binary_threshold=binary_threshold)')
|
|
167
|
+
|
|
168
|
+
if not hasattr(other, '_description'):
|
|
169
|
+
other._description = fname
|
|
170
|
+
|
|
171
|
+
dictionary_rep = dataclass2dict(other)
|
|
172
|
+
if len(torch_keys)>0: dictionary_rep['_torch_keys'] = torch_keys
|
|
173
|
+
return dictionary_rep
|
|
174
|
+
|
|
175
|
+
def reinstantiate_subclasses(cls, d, load_subclasses=False):
|
|
176
|
+
"""recursive function to get attributes back into their right classes"""
|
|
177
|
+
if '_torch_keys' in d:
|
|
178
|
+
torch_keys = d.pop('_torch_keys')
|
|
179
|
+
else:
|
|
180
|
+
torch_keys = []
|
|
181
|
+
|
|
182
|
+
if '__numpy_str__' in d:
|
|
183
|
+
cdata = eval(d['__numpy_str__']).astype(d.pop('dtype')).reshape(d.pop('shape'))
|
|
184
|
+
if cls == Tensor: cdata = from_numpy(cdata)
|
|
185
|
+
return cdata
|
|
186
|
+
|
|
187
|
+
if cls.__base__ != (object, str) and hasattr(cls.__base__, '__annotations__'):
|
|
188
|
+
class_dict = cls.__annotations__ | cls.__base__.__annotations__
|
|
189
|
+
else:
|
|
190
|
+
class_dict = cls.__annotations__
|
|
191
|
+
|
|
192
|
+
if hasattr(d, 'keys'):
|
|
193
|
+
for key in d.keys():
|
|
194
|
+
if class_dict[key] != type(d[key]) and type(d[key]) == dict:
|
|
195
|
+
d[key] = reinstantiate_subclasses(class_dict[key], d[key])
|
|
196
|
+
elif isinstance(class_dict[key], _GenericAlias):
|
|
197
|
+
subclass = [x for x in class_dict[key].__args__]
|
|
198
|
+
if len(subclass) < len(d[key]):
|
|
199
|
+
subclass = subclass * len(d[key])
|
|
200
|
+
if hasattr(subclass[0], '__annotations__'):
|
|
201
|
+
d[key] = [reinstantiate_subclasses(const, x, load_subclasses=load_subclasses) for const, x in zip(subclass,d[key])]
|
|
202
|
+
else:
|
|
203
|
+
d[key] = [x for const, x in zip(subclass,d[key])]
|
|
204
|
+
|
|
205
|
+
elif class_dict[key] == ndarray or class_dict[key] == Tensor:
|
|
206
|
+
pass
|
|
207
|
+
|
|
208
|
+
elif class_dict[key] != type(d[key]) and type(d[key]) == str and '.' in d[key] and load_subclasses:
|
|
209
|
+
d[key] = class_dict[key].load(d[key])
|
|
210
|
+
elif class_dict[key] != type(d[key]) and load_subclasses:
|
|
211
|
+
if d[key] is not None:
|
|
212
|
+
d[key] = class_dict[key](**d[key])
|
|
213
|
+
if len(torch_keys)>0:
|
|
214
|
+
for key in torch_keys:
|
|
215
|
+
if isinstance(d[key], ndarray):
|
|
216
|
+
d[key] = from_numpy(array(d[key]))
|
|
217
|
+
return cls(**d)
|
|
218
|
+
|
|
219
|
+
elif isinstance(d, str) and load_subclasses:
|
|
220
|
+
return cls.load(d)
|
|
221
|
+
else:
|
|
222
|
+
return d
|
|
223
|
+
|
|
224
|
+
# @classmethod
|
|
225
|
+
# def load(cls, fname, load_subclasses=False):
|
|
226
|
+
# with open(fname, 'rb') as f:
|
|
227
|
+
# res = json.loads(f.read())
|
|
228
|
+
# if '_torch_keys' in res:
|
|
229
|
+
# torch_keys = res.pop('_torch_keys')
|
|
230
|
+
# for key in torch_keys:
|
|
231
|
+
# if isinstance(res[key], dict) and '__numpy_str__' in res[key]:
|
|
232
|
+
# res[key] = eval(res[key]['__numpy_str__']).astype(res[key]['dtype']).reshape(res[key]['shape'])
|
|
233
|
+
# res[key] = from_numpy(res[key])
|
|
234
|
+
# res = cls._reinstantiate_subclasses(cls, res, load_subclasses=load_subclasses)
|
|
235
|
+
# return res
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
def __eq__(self, other):
|
|
241
|
+
is_equal = hash(self) == hash(other)
|
|
242
|
+
if is_equal:
|
|
243
|
+
for x in self.__class__.__annotations__.keys():
|
|
244
|
+
cvar = vars(self)[x]
|
|
245
|
+
ovar = vars(other)[x]
|
|
246
|
+
|
|
247
|
+
if x == '_description':
|
|
248
|
+
continue
|
|
249
|
+
elif isinstance(cvar, ndarray):
|
|
250
|
+
var_equal = allclose(cvar, ovar)
|
|
251
|
+
elif isinstance(cvar, Tensor):
|
|
252
|
+
var_equal = torch_allclose(cvar, ovar)
|
|
253
|
+
else:
|
|
254
|
+
var_equal = (cvar == ovar)
|
|
255
|
+
is_equal = is_equal and var_equal
|
|
256
|
+
return is_equal
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
def nosj(cls):
|
|
262
|
+
cls._description = cls.__name__.split('.')[-1]
|
|
263
|
+
if 'extension' not in cls.__dict__:
|
|
264
|
+
cls.extension = None
|
|
265
|
+
cls.update = update
|
|
266
|
+
cls._to_nosj = _to_nosj
|
|
267
|
+
cls.__hash__ = __hash__
|
|
268
|
+
cls.__eq__ = __eq__
|
|
269
|
+
cls.save = save
|
|
270
|
+
cls.load = load
|
|
271
|
+
cls._reinstantiate_subclasses = reinstantiate_subclasses
|
|
272
|
+
cls.copy = copy
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
return dataclass(cls)
|