noshot 2.0.0__py3-none-any.whl → 4.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/Copy_of_Pistachio_csv.ipynb +269 -0
  2. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/weatherAUS.ipynb +155 -0
  3. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
  4. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  5. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
  6. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
  7. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
  8. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
  9. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
  10. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  11. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
  12. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
  13. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +200 -0
  14. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  15. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
  16. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  17. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
  18. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
  19. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
  20. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
  21. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
  22. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
  23. noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
  24. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
  25. noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
  26. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  27. noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
  28. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
  29. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
  30. noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
  31. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  32. {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/METADATA +1 -1
  33. noshot-4.0.0.dist-info/RECORD +40 -0
  34. {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/WHEEL +1 -1
  35. noshot/data/ML TS XAI/TS/bill-charge.ipynb +0 -239
  36. noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb +0 -239
  37. noshot/data/ML TS XAI/TS/data/bill-data.csv +0 -21
  38. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  39. noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv +0 -2821
  40. noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb +0 -241
  41. noshot-2.0.0.dist-info/RECORD +0 -15
  42. {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  43. {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/top_level.txt +0 -0
@@ -1,241 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "3d63e9c0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
15
- "from statsmodels.tsa.stattools import adfuller\n",
16
- "from statsmodels.tsa.arima.model import ARIMA\n",
17
- "from statsmodels.tsa.statespace import sarimax\n",
18
- "from sklearn.metrics import r2_score,mean_squared_error"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "id": "411787bc",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "df=pd.read_csv('data/monthly-sunspots.csv')\n",
29
- "df['Date']=df['Month']\n",
30
- "del df['Month']\n",
31
- "display(df.head())"
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": null,
37
- "id": "af7abd2d",
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "df['Date']=pd.to_datetime(df['Date'])\n",
42
- "df"
43
- ]
44
- },
45
- {
46
- "cell_type": "code",
47
- "execution_count": null,
48
- "id": "10b20a75",
49
- "metadata": {},
50
- "outputs": [],
51
- "source": [
52
- "print(df.isnull().sum())"
53
- ]
54
- },
55
- {
56
- "cell_type": "code",
57
- "execution_count": null,
58
- "id": "d8a439ba",
59
- "metadata": {},
60
- "outputs": [],
61
- "source": [
62
- "display(df.describe())"
63
- ]
64
- },
65
- {
66
- "cell_type": "code",
67
- "execution_count": null,
68
- "id": "d7ef84ea",
69
- "metadata": {},
70
- "outputs": [],
71
- "source": [
72
- "df.info()"
73
- ]
74
- },
75
- {
76
- "cell_type": "code",
77
- "execution_count": null,
78
- "id": "f79409e8",
79
- "metadata": {},
80
- "outputs": [],
81
- "source": [
82
- "plt.plot(df['Sunspots'],label='Sunspots')\n",
83
- "plt.xlabel('Date')\n",
84
- "plt.ylabel(\"Sunspots\")\n",
85
- "plt.legend()\n",
86
- "plt.title('Sunspots By Date')\n",
87
- "plt.show()"
88
- ]
89
- },
90
- {
91
- "cell_type": "code",
92
- "execution_count": null,
93
- "id": "fbf0d907",
94
- "metadata": {},
95
- "outputs": [],
96
- "source": [
97
- "def stationarity_test(data):\n",
98
- " data=adfuller(data)\n",
99
- " print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
100
- "\n",
101
- "stationarity_test(df['Sunspots'])"
102
- ]
103
- },
104
- {
105
- "cell_type": "code",
106
- "execution_count": null,
107
- "id": "7965415d",
108
- "metadata": {},
109
- "outputs": [],
110
- "source": [
111
- "plot_acf(df['Sunspots'],lags=7)\n",
112
- "plot_pacf(df['Sunspots'],lags=7)\n",
113
- "plt.show()"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": null,
119
- "id": "7c5c5023",
120
- "metadata": {},
121
- "outputs": [],
122
- "source": [
123
- "arma_model=ARIMA(df['Sunspots'],order=(2,0,0))\n",
124
- "arma_fit=arma_model.fit()\n",
125
- "display(arma_fit.summary())"
126
- ]
127
- },
128
- {
129
- "cell_type": "code",
130
- "execution_count": null,
131
- "id": "46da16b9",
132
- "metadata": {},
133
- "outputs": [],
134
- "source": [
135
- "arima_model=ARIMA(df['Sunspots'],order=(2,1,0))\n",
136
- "arima_fit=arima_model.fit()\n",
137
- "display(arima_fit.summary())"
138
- ]
139
- },
140
- {
141
- "cell_type": "code",
142
- "execution_count": null,
143
- "id": "1e629e66",
144
- "metadata": {},
145
- "outputs": [],
146
- "source": [
147
- "sarima_model=sarimax.SARIMAX(df['Sunspots'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
148
- "sarima_fit=sarima_model.fit()\n",
149
- "display(sarima_fit.summary())"
150
- ]
151
- },
152
- {
153
- "cell_type": "code",
154
- "execution_count": null,
155
- "id": "e3ae7519",
156
- "metadata": {},
157
- "outputs": [],
158
- "source": [
159
- "display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
160
- ]
161
- },
162
- {
163
- "cell_type": "code",
164
- "execution_count": null,
165
- "id": "e9e40bbd",
166
- "metadata": {},
167
- "outputs": [],
168
- "source": [
169
- "display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
170
- ]
171
- },
172
- {
173
- "cell_type": "code",
174
- "execution_count": null,
175
- "id": "8773dcb6",
176
- "metadata": {},
177
- "outputs": [],
178
- "source": [
179
- "display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
180
- ]
181
- },
182
- {
183
- "cell_type": "code",
184
- "execution_count": null,
185
- "id": "50ca8a19",
186
- "metadata": {},
187
- "outputs": [],
188
- "source": [
189
- "arima_fit.resid.plot(color='teal')\n",
190
- "plt.title('Residual Plot')\n",
191
- "plt.show()"
192
- ]
193
- },
194
- {
195
- "cell_type": "code",
196
- "execution_count": null,
197
- "id": "6b6ddce5",
198
- "metadata": {},
199
- "outputs": [],
200
- "source": [
201
- "plt.plot(df['Sunspots'],label='Original',color='blue')\n",
202
- "plt.plot(arima_fit.predict(),label='Forecast',color='red')\n",
203
- "plt.title(\"Forecast\")\n",
204
- "plt.legend()\n",
205
- "plt.show()"
206
- ]
207
- },
208
- {
209
- "cell_type": "code",
210
- "execution_count": null,
211
- "id": "d3839c19",
212
- "metadata": {},
213
- "outputs": [],
214
- "source": [
215
- "print(f\"r2_Score : {r2_score(df['Sunspots'],arima_fit.predict())}\")\n",
216
- "print(f\"Mean Squared Error : {mean_squared_error(df['Sunspots'],arima_fit.predict())}\")"
217
- ]
218
- }
219
- ],
220
- "metadata": {
221
- "kernelspec": {
222
- "display_name": "Python 3 (ipykernel)",
223
- "language": "python",
224
- "name": "python3"
225
- },
226
- "language_info": {
227
- "codemirror_mode": {
228
- "name": "ipython",
229
- "version": 3
230
- },
231
- "file_extension": ".py",
232
- "mimetype": "text/x-python",
233
- "name": "python",
234
- "nbconvert_exporter": "python",
235
- "pygments_lexer": "ipython3",
236
- "version": "3.12.4"
237
- }
238
- },
239
- "nbformat": 4,
240
- "nbformat_minor": 5
241
- }
@@ -1,15 +0,0 @@
1
- noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
- noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
- noshot/data/ML TS XAI/TS/bill-charge.ipynb,sha256=YL8YClvZGctD1gEMZXf0XNlAGaqdvRJ5-73_8b3ij3Q,5205
4
- noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb,sha256=N7q4NBhBXzzlmp97R3gNh4Fh-EarM7J9sdgAWzsQKIw,5119
5
- noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb,sha256=mcyjIFL5Zye5j_HqEqFQns4fnu3NzYTUfEXa2jPfnPU,5226
6
- noshot/data/ML TS XAI/TS/data/bill-data.csv,sha256=X5CgQyNbpbCpsjdNLatK8__Qg_yiscOVqo9k1rzJRPQ,490
7
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=neLFZzg9m1CUv3S4fitPJqrqSx3xOMVD08JIJS_Efm4,59637
8
- noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv,sha256=xOyMxX2fb7bs2z4fN_Jbb0ut1RJMVZMQUrDNL8O8cfM,45039
9
- noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
10
- noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
11
- noshot-2.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
12
- noshot-2.0.0.dist-info/METADATA,sha256=G9BAFS8FqRu2zMFDf_kt3JyOAPIHYU0MabufJ8UEHto,2573
13
- noshot-2.0.0.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
14
- noshot-2.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
15
- noshot-2.0.0.dist-info/RECORD,,