noshot 2.0.0__py3-none-any.whl → 4.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/Copy_of_Pistachio_csv.ipynb +269 -0
- noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/weatherAUS.ipynb +155 -0
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +200 -0
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
- noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
- noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
- noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
- noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
- noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
- noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
- noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
- noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
- noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
- noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
- noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/METADATA +1 -1
- noshot-4.0.0.dist-info/RECORD +40 -0
- {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/TS/bill-charge.ipynb +0 -239
- noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb +0 -239
- noshot/data/ML TS XAI/TS/data/bill-data.csv +0 -21
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv +0 -2821
- noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb +0 -241
- noshot-2.0.0.dist-info/RECORD +0 -15
- {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-2.0.0.dist-info → noshot-4.0.0.dist-info}/top_level.txt +0 -0
@@ -1,241 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "3d63e9c0",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
15
|
-
"from statsmodels.tsa.stattools import adfuller\n",
|
16
|
-
"from statsmodels.tsa.arima.model import ARIMA\n",
|
17
|
-
"from statsmodels.tsa.statespace import sarimax\n",
|
18
|
-
"from sklearn.metrics import r2_score,mean_squared_error"
|
19
|
-
]
|
20
|
-
},
|
21
|
-
{
|
22
|
-
"cell_type": "code",
|
23
|
-
"execution_count": null,
|
24
|
-
"id": "411787bc",
|
25
|
-
"metadata": {},
|
26
|
-
"outputs": [],
|
27
|
-
"source": [
|
28
|
-
"df=pd.read_csv('data/monthly-sunspots.csv')\n",
|
29
|
-
"df['Date']=df['Month']\n",
|
30
|
-
"del df['Month']\n",
|
31
|
-
"display(df.head())"
|
32
|
-
]
|
33
|
-
},
|
34
|
-
{
|
35
|
-
"cell_type": "code",
|
36
|
-
"execution_count": null,
|
37
|
-
"id": "af7abd2d",
|
38
|
-
"metadata": {},
|
39
|
-
"outputs": [],
|
40
|
-
"source": [
|
41
|
-
"df['Date']=pd.to_datetime(df['Date'])\n",
|
42
|
-
"df"
|
43
|
-
]
|
44
|
-
},
|
45
|
-
{
|
46
|
-
"cell_type": "code",
|
47
|
-
"execution_count": null,
|
48
|
-
"id": "10b20a75",
|
49
|
-
"metadata": {},
|
50
|
-
"outputs": [],
|
51
|
-
"source": [
|
52
|
-
"print(df.isnull().sum())"
|
53
|
-
]
|
54
|
-
},
|
55
|
-
{
|
56
|
-
"cell_type": "code",
|
57
|
-
"execution_count": null,
|
58
|
-
"id": "d8a439ba",
|
59
|
-
"metadata": {},
|
60
|
-
"outputs": [],
|
61
|
-
"source": [
|
62
|
-
"display(df.describe())"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": null,
|
68
|
-
"id": "d7ef84ea",
|
69
|
-
"metadata": {},
|
70
|
-
"outputs": [],
|
71
|
-
"source": [
|
72
|
-
"df.info()"
|
73
|
-
]
|
74
|
-
},
|
75
|
-
{
|
76
|
-
"cell_type": "code",
|
77
|
-
"execution_count": null,
|
78
|
-
"id": "f79409e8",
|
79
|
-
"metadata": {},
|
80
|
-
"outputs": [],
|
81
|
-
"source": [
|
82
|
-
"plt.plot(df['Sunspots'],label='Sunspots')\n",
|
83
|
-
"plt.xlabel('Date')\n",
|
84
|
-
"plt.ylabel(\"Sunspots\")\n",
|
85
|
-
"plt.legend()\n",
|
86
|
-
"plt.title('Sunspots By Date')\n",
|
87
|
-
"plt.show()"
|
88
|
-
]
|
89
|
-
},
|
90
|
-
{
|
91
|
-
"cell_type": "code",
|
92
|
-
"execution_count": null,
|
93
|
-
"id": "fbf0d907",
|
94
|
-
"metadata": {},
|
95
|
-
"outputs": [],
|
96
|
-
"source": [
|
97
|
-
"def stationarity_test(data):\n",
|
98
|
-
" data=adfuller(data)\n",
|
99
|
-
" print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
|
100
|
-
"\n",
|
101
|
-
"stationarity_test(df['Sunspots'])"
|
102
|
-
]
|
103
|
-
},
|
104
|
-
{
|
105
|
-
"cell_type": "code",
|
106
|
-
"execution_count": null,
|
107
|
-
"id": "7965415d",
|
108
|
-
"metadata": {},
|
109
|
-
"outputs": [],
|
110
|
-
"source": [
|
111
|
-
"plot_acf(df['Sunspots'],lags=7)\n",
|
112
|
-
"plot_pacf(df['Sunspots'],lags=7)\n",
|
113
|
-
"plt.show()"
|
114
|
-
]
|
115
|
-
},
|
116
|
-
{
|
117
|
-
"cell_type": "code",
|
118
|
-
"execution_count": null,
|
119
|
-
"id": "7c5c5023",
|
120
|
-
"metadata": {},
|
121
|
-
"outputs": [],
|
122
|
-
"source": [
|
123
|
-
"arma_model=ARIMA(df['Sunspots'],order=(2,0,0))\n",
|
124
|
-
"arma_fit=arma_model.fit()\n",
|
125
|
-
"display(arma_fit.summary())"
|
126
|
-
]
|
127
|
-
},
|
128
|
-
{
|
129
|
-
"cell_type": "code",
|
130
|
-
"execution_count": null,
|
131
|
-
"id": "46da16b9",
|
132
|
-
"metadata": {},
|
133
|
-
"outputs": [],
|
134
|
-
"source": [
|
135
|
-
"arima_model=ARIMA(df['Sunspots'],order=(2,1,0))\n",
|
136
|
-
"arima_fit=arima_model.fit()\n",
|
137
|
-
"display(arima_fit.summary())"
|
138
|
-
]
|
139
|
-
},
|
140
|
-
{
|
141
|
-
"cell_type": "code",
|
142
|
-
"execution_count": null,
|
143
|
-
"id": "1e629e66",
|
144
|
-
"metadata": {},
|
145
|
-
"outputs": [],
|
146
|
-
"source": [
|
147
|
-
"sarima_model=sarimax.SARIMAX(df['Sunspots'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
|
148
|
-
"sarima_fit=sarima_model.fit()\n",
|
149
|
-
"display(sarima_fit.summary())"
|
150
|
-
]
|
151
|
-
},
|
152
|
-
{
|
153
|
-
"cell_type": "code",
|
154
|
-
"execution_count": null,
|
155
|
-
"id": "e3ae7519",
|
156
|
-
"metadata": {},
|
157
|
-
"outputs": [],
|
158
|
-
"source": [
|
159
|
-
"display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
|
160
|
-
]
|
161
|
-
},
|
162
|
-
{
|
163
|
-
"cell_type": "code",
|
164
|
-
"execution_count": null,
|
165
|
-
"id": "e9e40bbd",
|
166
|
-
"metadata": {},
|
167
|
-
"outputs": [],
|
168
|
-
"source": [
|
169
|
-
"display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
|
170
|
-
]
|
171
|
-
},
|
172
|
-
{
|
173
|
-
"cell_type": "code",
|
174
|
-
"execution_count": null,
|
175
|
-
"id": "8773dcb6",
|
176
|
-
"metadata": {},
|
177
|
-
"outputs": [],
|
178
|
-
"source": [
|
179
|
-
"display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
|
180
|
-
]
|
181
|
-
},
|
182
|
-
{
|
183
|
-
"cell_type": "code",
|
184
|
-
"execution_count": null,
|
185
|
-
"id": "50ca8a19",
|
186
|
-
"metadata": {},
|
187
|
-
"outputs": [],
|
188
|
-
"source": [
|
189
|
-
"arima_fit.resid.plot(color='teal')\n",
|
190
|
-
"plt.title('Residual Plot')\n",
|
191
|
-
"plt.show()"
|
192
|
-
]
|
193
|
-
},
|
194
|
-
{
|
195
|
-
"cell_type": "code",
|
196
|
-
"execution_count": null,
|
197
|
-
"id": "6b6ddce5",
|
198
|
-
"metadata": {},
|
199
|
-
"outputs": [],
|
200
|
-
"source": [
|
201
|
-
"plt.plot(df['Sunspots'],label='Original',color='blue')\n",
|
202
|
-
"plt.plot(arima_fit.predict(),label='Forecast',color='red')\n",
|
203
|
-
"plt.title(\"Forecast\")\n",
|
204
|
-
"plt.legend()\n",
|
205
|
-
"plt.show()"
|
206
|
-
]
|
207
|
-
},
|
208
|
-
{
|
209
|
-
"cell_type": "code",
|
210
|
-
"execution_count": null,
|
211
|
-
"id": "d3839c19",
|
212
|
-
"metadata": {},
|
213
|
-
"outputs": [],
|
214
|
-
"source": [
|
215
|
-
"print(f\"r2_Score : {r2_score(df['Sunspots'],arima_fit.predict())}\")\n",
|
216
|
-
"print(f\"Mean Squared Error : {mean_squared_error(df['Sunspots'],arima_fit.predict())}\")"
|
217
|
-
]
|
218
|
-
}
|
219
|
-
],
|
220
|
-
"metadata": {
|
221
|
-
"kernelspec": {
|
222
|
-
"display_name": "Python 3 (ipykernel)",
|
223
|
-
"language": "python",
|
224
|
-
"name": "python3"
|
225
|
-
},
|
226
|
-
"language_info": {
|
227
|
-
"codemirror_mode": {
|
228
|
-
"name": "ipython",
|
229
|
-
"version": 3
|
230
|
-
},
|
231
|
-
"file_extension": ".py",
|
232
|
-
"mimetype": "text/x-python",
|
233
|
-
"name": "python",
|
234
|
-
"nbconvert_exporter": "python",
|
235
|
-
"pygments_lexer": "ipython3",
|
236
|
-
"version": "3.12.4"
|
237
|
-
}
|
238
|
-
},
|
239
|
-
"nbformat": 4,
|
240
|
-
"nbformat_minor": 5
|
241
|
-
}
|
noshot-2.0.0.dist-info/RECORD
DELETED
@@ -1,15 +0,0 @@
|
|
1
|
-
noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
|
2
|
-
noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
|
3
|
-
noshot/data/ML TS XAI/TS/bill-charge.ipynb,sha256=YL8YClvZGctD1gEMZXf0XNlAGaqdvRJ5-73_8b3ij3Q,5205
|
4
|
-
noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb,sha256=N7q4NBhBXzzlmp97R3gNh4Fh-EarM7J9sdgAWzsQKIw,5119
|
5
|
-
noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb,sha256=mcyjIFL5Zye5j_HqEqFQns4fnu3NzYTUfEXa2jPfnPU,5226
|
6
|
-
noshot/data/ML TS XAI/TS/data/bill-data.csv,sha256=X5CgQyNbpbCpsjdNLatK8__Qg_yiscOVqo9k1rzJRPQ,490
|
7
|
-
noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=neLFZzg9m1CUv3S4fitPJqrqSx3xOMVD08JIJS_Efm4,59637
|
8
|
-
noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv,sha256=xOyMxX2fb7bs2z4fN_Jbb0ut1RJMVZMQUrDNL8O8cfM,45039
|
9
|
-
noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
|
10
|
-
noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
|
11
|
-
noshot-2.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
|
12
|
-
noshot-2.0.0.dist-info/METADATA,sha256=G9BAFS8FqRu2zMFDf_kt3JyOAPIHYU0MabufJ8UEHto,2573
|
13
|
-
noshot-2.0.0.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
|
14
|
-
noshot-2.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
|
15
|
-
noshot-2.0.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|