noshot 2.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
  2. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  3. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
  4. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
  5. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
  6. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
  7. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
  8. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  9. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
  10. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
  11. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +200 -0
  12. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  13. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
  14. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  15. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
  16. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
  17. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
  18. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
  19. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
  20. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
  21. noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
  22. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
  23. noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
  24. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  25. noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
  26. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
  27. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
  28. noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
  29. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  30. {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
  31. noshot-3.0.0.dist-info/RECORD +38 -0
  32. {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
  33. noshot/data/ML TS XAI/TS/bill-charge.ipynb +0 -239
  34. noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb +0 -239
  35. noshot/data/ML TS XAI/TS/data/bill-data.csv +0 -21
  36. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  37. noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv +0 -2821
  38. noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb +0 -241
  39. noshot-2.0.0.dist-info/RECORD +0 -15
  40. {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  41. {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 2.0.0
3
+ Version: 3.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,38 @@
1
+ noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
+ noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
+ noshot/data/ML TS XAI/ML/Other Codes.ipynb,sha256=e2a_1CTXt7HuXRFUGRkeJyE9ZsdmHiVT5RzqI1AyTDI,4876
4
+ noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb,sha256=dQ3HgLix6HLqPltFiPrElmEdYAsvR6flDpHEIjcngp4,24774
5
+ noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb,sha256=QlOFmpbc2IJxWUJNd5Mo4p0X-x38l_wTrHxKeRPO3v0,3303
6
+ noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb,sha256=1rp60fJyQl0bxzFWeJb6XR8VRtlQeonv9Yw5_9pvIH8,4133
7
+ noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb,sha256=E7fgiDWSvKH_1Wgp5ScGVvbykN4FP4IWFuld8qBJcHs,7266
8
+ noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb,sha256=tbkkRm6xHnmM-K8cRpnK8LH1pUmQl30bdyo0dFSNFcw,2988
9
+ noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb,sha256=8s0CpQ_VifCzQEgh2KAbh1hB-49j1QvnVBTfBJSkKvQ,4549
10
+ noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb,sha256=OLwRb6dcAzH0om3O3GCo7_ebBRcQs4IwIh9fN2Qf378,6488
11
+ noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb,sha256=Z3zwZQKJmvCEgzTWN1OqgiOAF9Lw5oLIY1A63SRJ5tg,2101
12
+ noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb,sha256=N_IFGBAckF8vJI0lPPbZ1soG50B1_IVyACCyU7jvo3U,2651
13
+ noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb,sha256=PxFEgyFi6n5nURhtjeT__OP5T-UsggOI9RfBKfpDNBo,3081
14
+ noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb,sha256=QR18b8OAO4GAAHT4Cn8ng1rKZlQNhz8P_qfhopIj8m8,3963
15
+ noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb,sha256=iPGBdHFobZvpuVVsfB_DcxNZvWg_BMiciz5Ro1I5Y48,4266
16
+ noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb,sha256=YphX35eCBBWu5sCSLS6bw__Em4gbwAzOW49z_Zv-tRs,2668
17
+ noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb,sha256=Ewwn2gWNd8C48y8sAk_fG5JHUKBx5pOJMq9aNF-8Cpw,3476
18
+ noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb,sha256=Ile_WuRAt8Is1HbKdDXu-ogHvQRNBGyxpd8OWauEEek,2058
19
+ noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb,sha256=FQo3m4S57Js_n395Fj3VN7nwgMRiA9n8tWqd9i6xYsg,5263
20
+ noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb,sha256=s0T9Fj9-9h8nO6JYmGXKge-y-4ajve1rgt_mlqUgGG0,7258
21
+ noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb,sha256=cn-He6Ly_x4pNU_yqFhRs5pv2LqcEoJgHRyYHLttDUs,6424
22
+ noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data,sha256=5l0IIDBQGj68vNfJ98caqdKP3_9GO_TPRxaj_hOsNg4,373704
23
+ noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt,sha256=GPtYUxxyeHEcVqK6AYAZnxzGkIsmEI4lg3cdV-YCoBI,6873
24
+ noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv,sha256=J9eKD_hIHWw13-jSi2n03ATkIHd_n_YZVIMbBoGF_rI,21769
25
+ noshot/data/ML TS XAI/ML/Main/data/iris.csv,sha256=vYxzzs8E2Gra0TwylbMa4cU6WzeIQsVgGXq9YiplnKU,2927
26
+ noshot/data/ML TS XAI/ML/Main/data/machine-data.csv,sha256=ibOegRM_3qX7IDexXCE5cxvck-1Kz-iQ-A6KKZ9fExA,8956
27
+ noshot/data/ML TS XAI/ML/Main/data/magic04.data,sha256=6TFLfr1LS1mjs9ZfcxZmOWN3exakZ4aHdlHbuqZAs2o,1477391
28
+ noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx,sha256=1WNNdj5P4TvawWTyl2zAQGTQTRornjUr3BrtV1rhiZQ,30552
29
+ noshot/data/ML TS XAI/ML/Main/data/rice.arff,sha256=Gvl4gxAMid4uopcveijUKPTxwUcRph3vwLBWnp62VmU,427635
30
+ noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv,sha256=RTTPBVbPcvXDFXnzRXWKkkjGX6RliTDjaJviB2648dc,4102
31
+ noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv,sha256=LM6dldfZUWWlkbhHQdFdMwD2hioTWijjYBJJ1C8wMFY,12440
32
+ noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
33
+ noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
34
+ noshot-3.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
35
+ noshot-3.0.0.dist-info/METADATA,sha256=rc40sflYs_XKHcGiYIFfQrqnsHr_KWAQK9qOcFZuQ0E,2573
36
+ noshot-3.0.0.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
37
+ noshot-3.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
38
+ noshot-3.0.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (79.0.0)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,239 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "3d63e9c0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
15
- "from statsmodels.tsa.stattools import adfuller\n",
16
- "from statsmodels.tsa.arima.model import ARIMA\n",
17
- "from statsmodels.tsa.statespace import sarimax\n",
18
- "from sklearn.metrics import r2_score,mean_squared_error"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "id": "411787bc",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "df=pd.read_csv('data/bill-data.csv')\n",
29
- "display(df.head())"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "af7abd2d",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "df['Date']=pd.to_datetime(df['Date'])\n",
40
- "df"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": null,
46
- "id": "10b20a75",
47
- "metadata": {},
48
- "outputs": [],
49
- "source": [
50
- "print(df.isnull().sum())"
51
- ]
52
- },
53
- {
54
- "cell_type": "code",
55
- "execution_count": null,
56
- "id": "d8a439ba",
57
- "metadata": {},
58
- "outputs": [],
59
- "source": [
60
- "display(df.describe())"
61
- ]
62
- },
63
- {
64
- "cell_type": "code",
65
- "execution_count": null,
66
- "id": "d7ef84ea",
67
- "metadata": {},
68
- "outputs": [],
69
- "source": [
70
- "df.info()"
71
- ]
72
- },
73
- {
74
- "cell_type": "code",
75
- "execution_count": null,
76
- "id": "f79409e8",
77
- "metadata": {},
78
- "outputs": [],
79
- "source": [
80
- "plt.plot(df['Bill Charge'],label='Bill Charge')\n",
81
- "plt.xlabel('Date')\n",
82
- "plt.ylabel(\"Bill Charge\")\n",
83
- "plt.legend()\n",
84
- "plt.title('Bill Charge By Date')\n",
85
- "plt.show()"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": null,
91
- "id": "fbf0d907",
92
- "metadata": {},
93
- "outputs": [],
94
- "source": [
95
- "def stationarity_test(data):\n",
96
- " data=adfuller(data)\n",
97
- " print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
98
- "\n",
99
- "stationarity_test(df['Bill Charge'])"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "7965415d",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "plot_acf(df['Bill Charge'],lags=7)\n",
110
- "plot_pacf(df['Bill Charge'],lags=7)\n",
111
- "plt.show()"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "7c5c5023",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "arma_model=ARIMA(df['Bill Charge'],order=(2,0,0))\n",
122
- "arma_fit=arma_model.fit()\n",
123
- "display(arma_fit.summary())"
124
- ]
125
- },
126
- {
127
- "cell_type": "code",
128
- "execution_count": null,
129
- "id": "46da16b9",
130
- "metadata": {},
131
- "outputs": [],
132
- "source": [
133
- "arima_model=ARIMA(df['Bill Charge'],order=(2,1,0))\n",
134
- "arima_fit=arima_model.fit()\n",
135
- "display(arima_fit.summary())"
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": null,
141
- "id": "1e629e66",
142
- "metadata": {},
143
- "outputs": [],
144
- "source": [
145
- "sarima_model=sarimax.SARIMAX(df['Bill Charge'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
146
- "sarima_fit=sarima_model.fit()\n",
147
- "display(sarima_fit.summary())"
148
- ]
149
- },
150
- {
151
- "cell_type": "code",
152
- "execution_count": null,
153
- "id": "e3ae7519",
154
- "metadata": {},
155
- "outputs": [],
156
- "source": [
157
- "display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
158
- ]
159
- },
160
- {
161
- "cell_type": "code",
162
- "execution_count": null,
163
- "id": "e9e40bbd",
164
- "metadata": {},
165
- "outputs": [],
166
- "source": [
167
- "display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
168
- ]
169
- },
170
- {
171
- "cell_type": "code",
172
- "execution_count": null,
173
- "id": "8773dcb6",
174
- "metadata": {},
175
- "outputs": [],
176
- "source": [
177
- "display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
178
- ]
179
- },
180
- {
181
- "cell_type": "code",
182
- "execution_count": null,
183
- "id": "50ca8a19",
184
- "metadata": {},
185
- "outputs": [],
186
- "source": [
187
- "sarima_fit.resid.plot(color='teal')\n",
188
- "plt.title('Residual Plot')\n",
189
- "plt.show()"
190
- ]
191
- },
192
- {
193
- "cell_type": "code",
194
- "execution_count": null,
195
- "id": "6b6ddce5",
196
- "metadata": {},
197
- "outputs": [],
198
- "source": [
199
- "plt.plot(df['Bill Charge'],label='Original',color='blue')\n",
200
- "plt.plot(sarima_fit.predict(),label='Forecast',color='red')\n",
201
- "plt.title(\"Forecast\")\n",
202
- "plt.legend()\n",
203
- "plt.show()"
204
- ]
205
- },
206
- {
207
- "cell_type": "code",
208
- "execution_count": null,
209
- "id": "d3839c19",
210
- "metadata": {},
211
- "outputs": [],
212
- "source": [
213
- "print(f\"r2_Score : {r2_score(df['Bill Charge'],sarima_fit.predict())}\")\n",
214
- "print(f\"Mean Squared Error : {mean_squared_error(df['Bill Charge'],sarima_fit.predict())}\")"
215
- ]
216
- }
217
- ],
218
- "metadata": {
219
- "kernelspec": {
220
- "display_name": "Python 3 (ipykernel)",
221
- "language": "python",
222
- "name": "python3"
223
- },
224
- "language_info": {
225
- "codemirror_mode": {
226
- "name": "ipython",
227
- "version": 3
228
- },
229
- "file_extension": ".py",
230
- "mimetype": "text/x-python",
231
- "name": "python",
232
- "nbconvert_exporter": "python",
233
- "pygments_lexer": "ipython3",
234
- "version": "3.12.4"
235
- }
236
- },
237
- "nbformat": 4,
238
- "nbformat_minor": 5
239
- }
@@ -1,239 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "3d63e9c0",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
15
- "from statsmodels.tsa.stattools import adfuller\n",
16
- "from statsmodels.tsa.arima.model import ARIMA\n",
17
- "from statsmodels.tsa.statespace import sarimax\n",
18
- "from sklearn.metrics import r2_score,mean_squared_error"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "id": "411787bc",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "df=pd.read_csv('data/daily-min-temperatures.csv')\n",
29
- "display(df.head())"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "af7abd2d",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "df['Date']=pd.to_datetime(df['Date'])\n",
40
- "df"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": null,
46
- "id": "10b20a75",
47
- "metadata": {},
48
- "outputs": [],
49
- "source": [
50
- "print(df.isnull().sum())"
51
- ]
52
- },
53
- {
54
- "cell_type": "code",
55
- "execution_count": null,
56
- "id": "d8a439ba",
57
- "metadata": {},
58
- "outputs": [],
59
- "source": [
60
- "display(df.describe())"
61
- ]
62
- },
63
- {
64
- "cell_type": "code",
65
- "execution_count": null,
66
- "id": "d7ef84ea",
67
- "metadata": {},
68
- "outputs": [],
69
- "source": [
70
- "df.info()"
71
- ]
72
- },
73
- {
74
- "cell_type": "code",
75
- "execution_count": null,
76
- "id": "f79409e8",
77
- "metadata": {},
78
- "outputs": [],
79
- "source": [
80
- "plt.plot(df['Temp'],label='Temp')\n",
81
- "plt.xlabel('Date')\n",
82
- "plt.ylabel(\"Temp\")\n",
83
- "plt.legend()\n",
84
- "plt.title('Temp By Date')\n",
85
- "plt.show()"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": null,
91
- "id": "fbf0d907",
92
- "metadata": {},
93
- "outputs": [],
94
- "source": [
95
- "def stationarity_test(data):\n",
96
- " data=adfuller(data)\n",
97
- " print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
98
- "\n",
99
- "stationarity_test(df['Temp'])"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "7965415d",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "plot_acf(df['Temp'],lags=7)\n",
110
- "plot_pacf(df['Temp'],lags=7)\n",
111
- "plt.show()"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "7c5c5023",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "arma_model=ARIMA(df['Temp'],order=(2,0,0))\n",
122
- "arma_fit=arma_model.fit()\n",
123
- "display(arma_fit.summary())"
124
- ]
125
- },
126
- {
127
- "cell_type": "code",
128
- "execution_count": null,
129
- "id": "46da16b9",
130
- "metadata": {},
131
- "outputs": [],
132
- "source": [
133
- "arima_model=ARIMA(df['Temp'],order=(2,1,0))\n",
134
- "arima_fit=arima_model.fit()\n",
135
- "display(arima_fit.summary())"
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": null,
141
- "id": "1e629e66",
142
- "metadata": {},
143
- "outputs": [],
144
- "source": [
145
- "sarima_model=sarimax.SARIMAX(df['Temp'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
146
- "sarima_fit=sarima_model.fit()\n",
147
- "display(sarima_fit.summary())"
148
- ]
149
- },
150
- {
151
- "cell_type": "code",
152
- "execution_count": null,
153
- "id": "e3ae7519",
154
- "metadata": {},
155
- "outputs": [],
156
- "source": [
157
- "display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
158
- ]
159
- },
160
- {
161
- "cell_type": "code",
162
- "execution_count": null,
163
- "id": "e9e40bbd",
164
- "metadata": {},
165
- "outputs": [],
166
- "source": [
167
- "display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
168
- ]
169
- },
170
- {
171
- "cell_type": "code",
172
- "execution_count": null,
173
- "id": "8773dcb6",
174
- "metadata": {},
175
- "outputs": [],
176
- "source": [
177
- "display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
178
- ]
179
- },
180
- {
181
- "cell_type": "code",
182
- "execution_count": null,
183
- "id": "50ca8a19",
184
- "metadata": {},
185
- "outputs": [],
186
- "source": [
187
- "arma_fit.resid.plot(color='teal')\n",
188
- "plt.title('Residual Plot')\n",
189
- "plt.show()"
190
- ]
191
- },
192
- {
193
- "cell_type": "code",
194
- "execution_count": null,
195
- "id": "6b6ddce5",
196
- "metadata": {},
197
- "outputs": [],
198
- "source": [
199
- "plt.plot(df['Temp'],label='Original',color='blue')\n",
200
- "plt.plot(arma_fit.predict(),label='Forecast',color='red')\n",
201
- "plt.title(\"Forecast\")\n",
202
- "plt.legend()\n",
203
- "plt.show()"
204
- ]
205
- },
206
- {
207
- "cell_type": "code",
208
- "execution_count": null,
209
- "id": "d3839c19",
210
- "metadata": {},
211
- "outputs": [],
212
- "source": [
213
- "print(f\"r2_Score : {r2_score(df['Temp'],arma_fit.predict())}\")\n",
214
- "print(f\"Mean Squared Error : {mean_squared_error(df['Temp'],arma_fit.predict())}\")"
215
- ]
216
- }
217
- ],
218
- "metadata": {
219
- "kernelspec": {
220
- "display_name": "Python 3 (ipykernel)",
221
- "language": "python",
222
- "name": "python3"
223
- },
224
- "language_info": {
225
- "codemirror_mode": {
226
- "name": "ipython",
227
- "version": 3
228
- },
229
- "file_extension": ".py",
230
- "mimetype": "text/x-python",
231
- "name": "python",
232
- "nbconvert_exporter": "python",
233
- "pygments_lexer": "ipython3",
234
- "version": "3.12.4"
235
- }
236
- },
237
- "nbformat": 4,
238
- "nbformat_minor": 5
239
- }
@@ -1,21 +0,0 @@
1
- Date,Patient Name,Age,Bill Charge
2
- 1/1/2023,Bob,33,100.5
3
- 1/4/2023,Bob,24,250
4
- 1/7/2023,Bob,56,75
5
- 1/7/2023,Eve,40,300
6
- 1/9/2023,Charlie,40,150.5
7
- 1/10/2023,Charlie,24,200
8
- 1/11/2023,Bob,40,175
9
- 1/11/2023,Eve,40,400
10
- 1/11/2023,Bob,40,120
11
- 1/12/2023,Charlie,42,180
12
- 1/14/2023,Charlie,24,90
13
- 1/17/2023,Alice,33,50
14
- 1/18/2023,Eve,24,25
15
- 1/18/2023,Diana,24,75
16
- 1/20/2023,Eve,40,325
17
- 1/21/2023,Bob,24,60
18
- 1/21/2023,Diana,56,60
19
- 1/26/2023,Bob,42,100
20
- 1/29/2023,Diana,40,250
21
- 1/30/2023,Alice,33,40