noshot 2.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +200 -0
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
- noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
- noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
- noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
- noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
- noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
- noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
- noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
- noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
- noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
- noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
- noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
- noshot-3.0.0.dist-info/RECORD +38 -0
- {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/TS/bill-charge.ipynb +0 -239
- noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb +0 -239
- noshot/data/ML TS XAI/TS/data/bill-data.csv +0 -21
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv +0 -2821
- noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb +0 -241
- noshot-2.0.0.dist-info/RECORD +0 -15
- {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-2.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,38 @@
|
|
1
|
+
noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
|
2
|
+
noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
|
3
|
+
noshot/data/ML TS XAI/ML/Other Codes.ipynb,sha256=e2a_1CTXt7HuXRFUGRkeJyE9ZsdmHiVT5RzqI1AyTDI,4876
|
4
|
+
noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb,sha256=dQ3HgLix6HLqPltFiPrElmEdYAsvR6flDpHEIjcngp4,24774
|
5
|
+
noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb,sha256=QlOFmpbc2IJxWUJNd5Mo4p0X-x38l_wTrHxKeRPO3v0,3303
|
6
|
+
noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb,sha256=1rp60fJyQl0bxzFWeJb6XR8VRtlQeonv9Yw5_9pvIH8,4133
|
7
|
+
noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb,sha256=E7fgiDWSvKH_1Wgp5ScGVvbykN4FP4IWFuld8qBJcHs,7266
|
8
|
+
noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb,sha256=tbkkRm6xHnmM-K8cRpnK8LH1pUmQl30bdyo0dFSNFcw,2988
|
9
|
+
noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb,sha256=8s0CpQ_VifCzQEgh2KAbh1hB-49j1QvnVBTfBJSkKvQ,4549
|
10
|
+
noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb,sha256=OLwRb6dcAzH0om3O3GCo7_ebBRcQs4IwIh9fN2Qf378,6488
|
11
|
+
noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb,sha256=Z3zwZQKJmvCEgzTWN1OqgiOAF9Lw5oLIY1A63SRJ5tg,2101
|
12
|
+
noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb,sha256=N_IFGBAckF8vJI0lPPbZ1soG50B1_IVyACCyU7jvo3U,2651
|
13
|
+
noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb,sha256=PxFEgyFi6n5nURhtjeT__OP5T-UsggOI9RfBKfpDNBo,3081
|
14
|
+
noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb,sha256=QR18b8OAO4GAAHT4Cn8ng1rKZlQNhz8P_qfhopIj8m8,3963
|
15
|
+
noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb,sha256=iPGBdHFobZvpuVVsfB_DcxNZvWg_BMiciz5Ro1I5Y48,4266
|
16
|
+
noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb,sha256=YphX35eCBBWu5sCSLS6bw__Em4gbwAzOW49z_Zv-tRs,2668
|
17
|
+
noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb,sha256=Ewwn2gWNd8C48y8sAk_fG5JHUKBx5pOJMq9aNF-8Cpw,3476
|
18
|
+
noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb,sha256=Ile_WuRAt8Is1HbKdDXu-ogHvQRNBGyxpd8OWauEEek,2058
|
19
|
+
noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb,sha256=FQo3m4S57Js_n395Fj3VN7nwgMRiA9n8tWqd9i6xYsg,5263
|
20
|
+
noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb,sha256=s0T9Fj9-9h8nO6JYmGXKge-y-4ajve1rgt_mlqUgGG0,7258
|
21
|
+
noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb,sha256=cn-He6Ly_x4pNU_yqFhRs5pv2LqcEoJgHRyYHLttDUs,6424
|
22
|
+
noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data,sha256=5l0IIDBQGj68vNfJ98caqdKP3_9GO_TPRxaj_hOsNg4,373704
|
23
|
+
noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt,sha256=GPtYUxxyeHEcVqK6AYAZnxzGkIsmEI4lg3cdV-YCoBI,6873
|
24
|
+
noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv,sha256=J9eKD_hIHWw13-jSi2n03ATkIHd_n_YZVIMbBoGF_rI,21769
|
25
|
+
noshot/data/ML TS XAI/ML/Main/data/iris.csv,sha256=vYxzzs8E2Gra0TwylbMa4cU6WzeIQsVgGXq9YiplnKU,2927
|
26
|
+
noshot/data/ML TS XAI/ML/Main/data/machine-data.csv,sha256=ibOegRM_3qX7IDexXCE5cxvck-1Kz-iQ-A6KKZ9fExA,8956
|
27
|
+
noshot/data/ML TS XAI/ML/Main/data/magic04.data,sha256=6TFLfr1LS1mjs9ZfcxZmOWN3exakZ4aHdlHbuqZAs2o,1477391
|
28
|
+
noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx,sha256=1WNNdj5P4TvawWTyl2zAQGTQTRornjUr3BrtV1rhiZQ,30552
|
29
|
+
noshot/data/ML TS XAI/ML/Main/data/rice.arff,sha256=Gvl4gxAMid4uopcveijUKPTxwUcRph3vwLBWnp62VmU,427635
|
30
|
+
noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv,sha256=RTTPBVbPcvXDFXnzRXWKkkjGX6RliTDjaJviB2648dc,4102
|
31
|
+
noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv,sha256=LM6dldfZUWWlkbhHQdFdMwD2hioTWijjYBJJ1C8wMFY,12440
|
32
|
+
noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
|
33
|
+
noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
|
34
|
+
noshot-3.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
|
35
|
+
noshot-3.0.0.dist-info/METADATA,sha256=rc40sflYs_XKHcGiYIFfQrqnsHr_KWAQK9qOcFZuQ0E,2573
|
36
|
+
noshot-3.0.0.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
37
|
+
noshot-3.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
|
38
|
+
noshot-3.0.0.dist-info/RECORD,,
|
@@ -1,239 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "3d63e9c0",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
15
|
-
"from statsmodels.tsa.stattools import adfuller\n",
|
16
|
-
"from statsmodels.tsa.arima.model import ARIMA\n",
|
17
|
-
"from statsmodels.tsa.statespace import sarimax\n",
|
18
|
-
"from sklearn.metrics import r2_score,mean_squared_error"
|
19
|
-
]
|
20
|
-
},
|
21
|
-
{
|
22
|
-
"cell_type": "code",
|
23
|
-
"execution_count": null,
|
24
|
-
"id": "411787bc",
|
25
|
-
"metadata": {},
|
26
|
-
"outputs": [],
|
27
|
-
"source": [
|
28
|
-
"df=pd.read_csv('data/bill-data.csv')\n",
|
29
|
-
"display(df.head())"
|
30
|
-
]
|
31
|
-
},
|
32
|
-
{
|
33
|
-
"cell_type": "code",
|
34
|
-
"execution_count": null,
|
35
|
-
"id": "af7abd2d",
|
36
|
-
"metadata": {},
|
37
|
-
"outputs": [],
|
38
|
-
"source": [
|
39
|
-
"df['Date']=pd.to_datetime(df['Date'])\n",
|
40
|
-
"df"
|
41
|
-
]
|
42
|
-
},
|
43
|
-
{
|
44
|
-
"cell_type": "code",
|
45
|
-
"execution_count": null,
|
46
|
-
"id": "10b20a75",
|
47
|
-
"metadata": {},
|
48
|
-
"outputs": [],
|
49
|
-
"source": [
|
50
|
-
"print(df.isnull().sum())"
|
51
|
-
]
|
52
|
-
},
|
53
|
-
{
|
54
|
-
"cell_type": "code",
|
55
|
-
"execution_count": null,
|
56
|
-
"id": "d8a439ba",
|
57
|
-
"metadata": {},
|
58
|
-
"outputs": [],
|
59
|
-
"source": [
|
60
|
-
"display(df.describe())"
|
61
|
-
]
|
62
|
-
},
|
63
|
-
{
|
64
|
-
"cell_type": "code",
|
65
|
-
"execution_count": null,
|
66
|
-
"id": "d7ef84ea",
|
67
|
-
"metadata": {},
|
68
|
-
"outputs": [],
|
69
|
-
"source": [
|
70
|
-
"df.info()"
|
71
|
-
]
|
72
|
-
},
|
73
|
-
{
|
74
|
-
"cell_type": "code",
|
75
|
-
"execution_count": null,
|
76
|
-
"id": "f79409e8",
|
77
|
-
"metadata": {},
|
78
|
-
"outputs": [],
|
79
|
-
"source": [
|
80
|
-
"plt.plot(df['Bill Charge'],label='Bill Charge')\n",
|
81
|
-
"plt.xlabel('Date')\n",
|
82
|
-
"plt.ylabel(\"Bill Charge\")\n",
|
83
|
-
"plt.legend()\n",
|
84
|
-
"plt.title('Bill Charge By Date')\n",
|
85
|
-
"plt.show()"
|
86
|
-
]
|
87
|
-
},
|
88
|
-
{
|
89
|
-
"cell_type": "code",
|
90
|
-
"execution_count": null,
|
91
|
-
"id": "fbf0d907",
|
92
|
-
"metadata": {},
|
93
|
-
"outputs": [],
|
94
|
-
"source": [
|
95
|
-
"def stationarity_test(data):\n",
|
96
|
-
" data=adfuller(data)\n",
|
97
|
-
" print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
|
98
|
-
"\n",
|
99
|
-
"stationarity_test(df['Bill Charge'])"
|
100
|
-
]
|
101
|
-
},
|
102
|
-
{
|
103
|
-
"cell_type": "code",
|
104
|
-
"execution_count": null,
|
105
|
-
"id": "7965415d",
|
106
|
-
"metadata": {},
|
107
|
-
"outputs": [],
|
108
|
-
"source": [
|
109
|
-
"plot_acf(df['Bill Charge'],lags=7)\n",
|
110
|
-
"plot_pacf(df['Bill Charge'],lags=7)\n",
|
111
|
-
"plt.show()"
|
112
|
-
]
|
113
|
-
},
|
114
|
-
{
|
115
|
-
"cell_type": "code",
|
116
|
-
"execution_count": null,
|
117
|
-
"id": "7c5c5023",
|
118
|
-
"metadata": {},
|
119
|
-
"outputs": [],
|
120
|
-
"source": [
|
121
|
-
"arma_model=ARIMA(df['Bill Charge'],order=(2,0,0))\n",
|
122
|
-
"arma_fit=arma_model.fit()\n",
|
123
|
-
"display(arma_fit.summary())"
|
124
|
-
]
|
125
|
-
},
|
126
|
-
{
|
127
|
-
"cell_type": "code",
|
128
|
-
"execution_count": null,
|
129
|
-
"id": "46da16b9",
|
130
|
-
"metadata": {},
|
131
|
-
"outputs": [],
|
132
|
-
"source": [
|
133
|
-
"arima_model=ARIMA(df['Bill Charge'],order=(2,1,0))\n",
|
134
|
-
"arima_fit=arima_model.fit()\n",
|
135
|
-
"display(arima_fit.summary())"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"id": "1e629e66",
|
142
|
-
"metadata": {},
|
143
|
-
"outputs": [],
|
144
|
-
"source": [
|
145
|
-
"sarima_model=sarimax.SARIMAX(df['Bill Charge'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
|
146
|
-
"sarima_fit=sarima_model.fit()\n",
|
147
|
-
"display(sarima_fit.summary())"
|
148
|
-
]
|
149
|
-
},
|
150
|
-
{
|
151
|
-
"cell_type": "code",
|
152
|
-
"execution_count": null,
|
153
|
-
"id": "e3ae7519",
|
154
|
-
"metadata": {},
|
155
|
-
"outputs": [],
|
156
|
-
"source": [
|
157
|
-
"display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
|
158
|
-
]
|
159
|
-
},
|
160
|
-
{
|
161
|
-
"cell_type": "code",
|
162
|
-
"execution_count": null,
|
163
|
-
"id": "e9e40bbd",
|
164
|
-
"metadata": {},
|
165
|
-
"outputs": [],
|
166
|
-
"source": [
|
167
|
-
"display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
|
168
|
-
]
|
169
|
-
},
|
170
|
-
{
|
171
|
-
"cell_type": "code",
|
172
|
-
"execution_count": null,
|
173
|
-
"id": "8773dcb6",
|
174
|
-
"metadata": {},
|
175
|
-
"outputs": [],
|
176
|
-
"source": [
|
177
|
-
"display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
|
178
|
-
]
|
179
|
-
},
|
180
|
-
{
|
181
|
-
"cell_type": "code",
|
182
|
-
"execution_count": null,
|
183
|
-
"id": "50ca8a19",
|
184
|
-
"metadata": {},
|
185
|
-
"outputs": [],
|
186
|
-
"source": [
|
187
|
-
"sarima_fit.resid.plot(color='teal')\n",
|
188
|
-
"plt.title('Residual Plot')\n",
|
189
|
-
"plt.show()"
|
190
|
-
]
|
191
|
-
},
|
192
|
-
{
|
193
|
-
"cell_type": "code",
|
194
|
-
"execution_count": null,
|
195
|
-
"id": "6b6ddce5",
|
196
|
-
"metadata": {},
|
197
|
-
"outputs": [],
|
198
|
-
"source": [
|
199
|
-
"plt.plot(df['Bill Charge'],label='Original',color='blue')\n",
|
200
|
-
"plt.plot(sarima_fit.predict(),label='Forecast',color='red')\n",
|
201
|
-
"plt.title(\"Forecast\")\n",
|
202
|
-
"plt.legend()\n",
|
203
|
-
"plt.show()"
|
204
|
-
]
|
205
|
-
},
|
206
|
-
{
|
207
|
-
"cell_type": "code",
|
208
|
-
"execution_count": null,
|
209
|
-
"id": "d3839c19",
|
210
|
-
"metadata": {},
|
211
|
-
"outputs": [],
|
212
|
-
"source": [
|
213
|
-
"print(f\"r2_Score : {r2_score(df['Bill Charge'],sarima_fit.predict())}\")\n",
|
214
|
-
"print(f\"Mean Squared Error : {mean_squared_error(df['Bill Charge'],sarima_fit.predict())}\")"
|
215
|
-
]
|
216
|
-
}
|
217
|
-
],
|
218
|
-
"metadata": {
|
219
|
-
"kernelspec": {
|
220
|
-
"display_name": "Python 3 (ipykernel)",
|
221
|
-
"language": "python",
|
222
|
-
"name": "python3"
|
223
|
-
},
|
224
|
-
"language_info": {
|
225
|
-
"codemirror_mode": {
|
226
|
-
"name": "ipython",
|
227
|
-
"version": 3
|
228
|
-
},
|
229
|
-
"file_extension": ".py",
|
230
|
-
"mimetype": "text/x-python",
|
231
|
-
"name": "python",
|
232
|
-
"nbconvert_exporter": "python",
|
233
|
-
"pygments_lexer": "ipython3",
|
234
|
-
"version": "3.12.4"
|
235
|
-
}
|
236
|
-
},
|
237
|
-
"nbformat": 4,
|
238
|
-
"nbformat_minor": 5
|
239
|
-
}
|
@@ -1,239 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "3d63e9c0",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
15
|
-
"from statsmodels.tsa.stattools import adfuller\n",
|
16
|
-
"from statsmodels.tsa.arima.model import ARIMA\n",
|
17
|
-
"from statsmodels.tsa.statespace import sarimax\n",
|
18
|
-
"from sklearn.metrics import r2_score,mean_squared_error"
|
19
|
-
]
|
20
|
-
},
|
21
|
-
{
|
22
|
-
"cell_type": "code",
|
23
|
-
"execution_count": null,
|
24
|
-
"id": "411787bc",
|
25
|
-
"metadata": {},
|
26
|
-
"outputs": [],
|
27
|
-
"source": [
|
28
|
-
"df=pd.read_csv('data/daily-min-temperatures.csv')\n",
|
29
|
-
"display(df.head())"
|
30
|
-
]
|
31
|
-
},
|
32
|
-
{
|
33
|
-
"cell_type": "code",
|
34
|
-
"execution_count": null,
|
35
|
-
"id": "af7abd2d",
|
36
|
-
"metadata": {},
|
37
|
-
"outputs": [],
|
38
|
-
"source": [
|
39
|
-
"df['Date']=pd.to_datetime(df['Date'])\n",
|
40
|
-
"df"
|
41
|
-
]
|
42
|
-
},
|
43
|
-
{
|
44
|
-
"cell_type": "code",
|
45
|
-
"execution_count": null,
|
46
|
-
"id": "10b20a75",
|
47
|
-
"metadata": {},
|
48
|
-
"outputs": [],
|
49
|
-
"source": [
|
50
|
-
"print(df.isnull().sum())"
|
51
|
-
]
|
52
|
-
},
|
53
|
-
{
|
54
|
-
"cell_type": "code",
|
55
|
-
"execution_count": null,
|
56
|
-
"id": "d8a439ba",
|
57
|
-
"metadata": {},
|
58
|
-
"outputs": [],
|
59
|
-
"source": [
|
60
|
-
"display(df.describe())"
|
61
|
-
]
|
62
|
-
},
|
63
|
-
{
|
64
|
-
"cell_type": "code",
|
65
|
-
"execution_count": null,
|
66
|
-
"id": "d7ef84ea",
|
67
|
-
"metadata": {},
|
68
|
-
"outputs": [],
|
69
|
-
"source": [
|
70
|
-
"df.info()"
|
71
|
-
]
|
72
|
-
},
|
73
|
-
{
|
74
|
-
"cell_type": "code",
|
75
|
-
"execution_count": null,
|
76
|
-
"id": "f79409e8",
|
77
|
-
"metadata": {},
|
78
|
-
"outputs": [],
|
79
|
-
"source": [
|
80
|
-
"plt.plot(df['Temp'],label='Temp')\n",
|
81
|
-
"plt.xlabel('Date')\n",
|
82
|
-
"plt.ylabel(\"Temp\")\n",
|
83
|
-
"plt.legend()\n",
|
84
|
-
"plt.title('Temp By Date')\n",
|
85
|
-
"plt.show()"
|
86
|
-
]
|
87
|
-
},
|
88
|
-
{
|
89
|
-
"cell_type": "code",
|
90
|
-
"execution_count": null,
|
91
|
-
"id": "fbf0d907",
|
92
|
-
"metadata": {},
|
93
|
-
"outputs": [],
|
94
|
-
"source": [
|
95
|
-
"def stationarity_test(data):\n",
|
96
|
-
" data=adfuller(data)\n",
|
97
|
-
" print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
|
98
|
-
"\n",
|
99
|
-
"stationarity_test(df['Temp'])"
|
100
|
-
]
|
101
|
-
},
|
102
|
-
{
|
103
|
-
"cell_type": "code",
|
104
|
-
"execution_count": null,
|
105
|
-
"id": "7965415d",
|
106
|
-
"metadata": {},
|
107
|
-
"outputs": [],
|
108
|
-
"source": [
|
109
|
-
"plot_acf(df['Temp'],lags=7)\n",
|
110
|
-
"plot_pacf(df['Temp'],lags=7)\n",
|
111
|
-
"plt.show()"
|
112
|
-
]
|
113
|
-
},
|
114
|
-
{
|
115
|
-
"cell_type": "code",
|
116
|
-
"execution_count": null,
|
117
|
-
"id": "7c5c5023",
|
118
|
-
"metadata": {},
|
119
|
-
"outputs": [],
|
120
|
-
"source": [
|
121
|
-
"arma_model=ARIMA(df['Temp'],order=(2,0,0))\n",
|
122
|
-
"arma_fit=arma_model.fit()\n",
|
123
|
-
"display(arma_fit.summary())"
|
124
|
-
]
|
125
|
-
},
|
126
|
-
{
|
127
|
-
"cell_type": "code",
|
128
|
-
"execution_count": null,
|
129
|
-
"id": "46da16b9",
|
130
|
-
"metadata": {},
|
131
|
-
"outputs": [],
|
132
|
-
"source": [
|
133
|
-
"arima_model=ARIMA(df['Temp'],order=(2,1,0))\n",
|
134
|
-
"arima_fit=arima_model.fit()\n",
|
135
|
-
"display(arima_fit.summary())"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"id": "1e629e66",
|
142
|
-
"metadata": {},
|
143
|
-
"outputs": [],
|
144
|
-
"source": [
|
145
|
-
"sarima_model=sarimax.SARIMAX(df['Temp'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
|
146
|
-
"sarima_fit=sarima_model.fit()\n",
|
147
|
-
"display(sarima_fit.summary())"
|
148
|
-
]
|
149
|
-
},
|
150
|
-
{
|
151
|
-
"cell_type": "code",
|
152
|
-
"execution_count": null,
|
153
|
-
"id": "e3ae7519",
|
154
|
-
"metadata": {},
|
155
|
-
"outputs": [],
|
156
|
-
"source": [
|
157
|
-
"display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
|
158
|
-
]
|
159
|
-
},
|
160
|
-
{
|
161
|
-
"cell_type": "code",
|
162
|
-
"execution_count": null,
|
163
|
-
"id": "e9e40bbd",
|
164
|
-
"metadata": {},
|
165
|
-
"outputs": [],
|
166
|
-
"source": [
|
167
|
-
"display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
|
168
|
-
]
|
169
|
-
},
|
170
|
-
{
|
171
|
-
"cell_type": "code",
|
172
|
-
"execution_count": null,
|
173
|
-
"id": "8773dcb6",
|
174
|
-
"metadata": {},
|
175
|
-
"outputs": [],
|
176
|
-
"source": [
|
177
|
-
"display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
|
178
|
-
]
|
179
|
-
},
|
180
|
-
{
|
181
|
-
"cell_type": "code",
|
182
|
-
"execution_count": null,
|
183
|
-
"id": "50ca8a19",
|
184
|
-
"metadata": {},
|
185
|
-
"outputs": [],
|
186
|
-
"source": [
|
187
|
-
"arma_fit.resid.plot(color='teal')\n",
|
188
|
-
"plt.title('Residual Plot')\n",
|
189
|
-
"plt.show()"
|
190
|
-
]
|
191
|
-
},
|
192
|
-
{
|
193
|
-
"cell_type": "code",
|
194
|
-
"execution_count": null,
|
195
|
-
"id": "6b6ddce5",
|
196
|
-
"metadata": {},
|
197
|
-
"outputs": [],
|
198
|
-
"source": [
|
199
|
-
"plt.plot(df['Temp'],label='Original',color='blue')\n",
|
200
|
-
"plt.plot(arma_fit.predict(),label='Forecast',color='red')\n",
|
201
|
-
"plt.title(\"Forecast\")\n",
|
202
|
-
"plt.legend()\n",
|
203
|
-
"plt.show()"
|
204
|
-
]
|
205
|
-
},
|
206
|
-
{
|
207
|
-
"cell_type": "code",
|
208
|
-
"execution_count": null,
|
209
|
-
"id": "d3839c19",
|
210
|
-
"metadata": {},
|
211
|
-
"outputs": [],
|
212
|
-
"source": [
|
213
|
-
"print(f\"r2_Score : {r2_score(df['Temp'],arma_fit.predict())}\")\n",
|
214
|
-
"print(f\"Mean Squared Error : {mean_squared_error(df['Temp'],arma_fit.predict())}\")"
|
215
|
-
]
|
216
|
-
}
|
217
|
-
],
|
218
|
-
"metadata": {
|
219
|
-
"kernelspec": {
|
220
|
-
"display_name": "Python 3 (ipykernel)",
|
221
|
-
"language": "python",
|
222
|
-
"name": "python3"
|
223
|
-
},
|
224
|
-
"language_info": {
|
225
|
-
"codemirror_mode": {
|
226
|
-
"name": "ipython",
|
227
|
-
"version": 3
|
228
|
-
},
|
229
|
-
"file_extension": ".py",
|
230
|
-
"mimetype": "text/x-python",
|
231
|
-
"name": "python",
|
232
|
-
"nbconvert_exporter": "python",
|
233
|
-
"pygments_lexer": "ipython3",
|
234
|
-
"version": "3.12.4"
|
235
|
-
}
|
236
|
-
},
|
237
|
-
"nbformat": 4,
|
238
|
-
"nbformat_minor": 5
|
239
|
-
}
|
@@ -1,21 +0,0 @@
|
|
1
|
-
Date,Patient Name,Age,Bill Charge
|
2
|
-
1/1/2023,Bob,33,100.5
|
3
|
-
1/4/2023,Bob,24,250
|
4
|
-
1/7/2023,Bob,56,75
|
5
|
-
1/7/2023,Eve,40,300
|
6
|
-
1/9/2023,Charlie,40,150.5
|
7
|
-
1/10/2023,Charlie,24,200
|
8
|
-
1/11/2023,Bob,40,175
|
9
|
-
1/11/2023,Eve,40,400
|
10
|
-
1/11/2023,Bob,40,120
|
11
|
-
1/12/2023,Charlie,42,180
|
12
|
-
1/14/2023,Charlie,24,90
|
13
|
-
1/17/2023,Alice,33,50
|
14
|
-
1/18/2023,Eve,24,25
|
15
|
-
1/18/2023,Diana,24,75
|
16
|
-
1/20/2023,Eve,40,325
|
17
|
-
1/21/2023,Bob,24,60
|
18
|
-
1/21/2023,Diana,56,60
|
19
|
-
1/26/2023,Bob,42,100
|
20
|
-
1/29/2023,Diana,40,250
|
21
|
-
1/30/2023,Alice,33,40
|