noshot 14.0.0__py3-none-any.whl → 15.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. Yolo Object Detection.ipynb +231 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/5. Auto Encoder.ipynb +190 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex5.ipynb +190 -0
- {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/METADATA +1 -1
- {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/RECORD +8 -22
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/input.txt +0 -1
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/mapper.py +0 -6
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/reducer.py +0 -22
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/Weatherdataset.csv +0 -200
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/mapper.py +0 -20
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/reducer.py +0 -32
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Map.py +0 -11
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Red.py +0 -30
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter.py +0 -71
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_mapper.py +0 -71
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_reducer.py +0 -71
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/weblog.csv +0 -100
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_mapper.py +0 -14
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_reducer.py +0 -14
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/Tweets.csv +0 -92
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Instructions.txt +0 -56
- noshot/data/DLE FSD BDA/BDA/BDA Lab.iso +0 -0
- {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/WHEEL +0 -0
- {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,231 @@
|
|
1
|
+
{
|
2
|
+
"nbformat": 4,
|
3
|
+
"nbformat_minor": 0,
|
4
|
+
"metadata": {
|
5
|
+
"colab": {
|
6
|
+
"provenance": [],
|
7
|
+
"gpuType": "T4"
|
8
|
+
},
|
9
|
+
"kernelspec": {
|
10
|
+
"name": "python3",
|
11
|
+
"display_name": "Python 3"
|
12
|
+
},
|
13
|
+
"language_info": {
|
14
|
+
"name": "python"
|
15
|
+
},
|
16
|
+
"accelerator": "GPU"
|
17
|
+
},
|
18
|
+
"cells": [
|
19
|
+
{
|
20
|
+
"cell_type": "code",
|
21
|
+
"source": [
|
22
|
+
"pip install ultralytics"
|
23
|
+
],
|
24
|
+
"metadata": {
|
25
|
+
"colab": {
|
26
|
+
"base_uri": "https://localhost:8080/"
|
27
|
+
},
|
28
|
+
"id": "okrAbLmdTUrP",
|
29
|
+
"outputId": "39ded965-c6cf-4596-99c5-262653e91d78"
|
30
|
+
},
|
31
|
+
"execution_count": 20,
|
32
|
+
"outputs": [
|
33
|
+
{
|
34
|
+
"output_type": "stream",
|
35
|
+
"name": "stdout",
|
36
|
+
"text": [
|
37
|
+
"Requirement already satisfied: ultralytics in /usr/local/lib/python3.12/dist-packages (8.3.197)\n",
|
38
|
+
"Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.0.2)\n",
|
39
|
+
"Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (3.10.0)\n",
|
40
|
+
"Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (4.12.0.88)\n",
|
41
|
+
"Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (11.3.0)\n",
|
42
|
+
"Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (6.0.2)\n",
|
43
|
+
"Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.32.4)\n",
|
44
|
+
"Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (1.16.1)\n",
|
45
|
+
"Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.8.0+cu126)\n",
|
46
|
+
"Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (0.23.0+cu126)\n",
|
47
|
+
"Requirement already satisfied: psutil in /usr/local/lib/python3.12/dist-packages (from ultralytics) (5.9.5)\n",
|
48
|
+
"Requirement already satisfied: polars in /usr/local/lib/python3.12/dist-packages (from ultralytics) (1.25.2)\n",
|
49
|
+
"Requirement already satisfied: ultralytics-thop>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.0.17)\n",
|
50
|
+
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.3)\n",
|
51
|
+
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n",
|
52
|
+
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.59.2)\n",
|
53
|
+
"Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.9)\n",
|
54
|
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (25.0)\n",
|
55
|
+
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.2.3)\n",
|
56
|
+
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n",
|
57
|
+
"Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.4.3)\n",
|
58
|
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.10)\n",
|
59
|
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2.5.0)\n",
|
60
|
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2025.8.3)\n",
|
61
|
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.19.1)\n",
|
62
|
+
"Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (4.15.0)\n",
|
63
|
+
"Requirement already satisfied: setuptools in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (75.2.0)\n",
|
64
|
+
"Requirement already satisfied: sympy>=1.13.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (1.13.3)\n",
|
65
|
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.5)\n",
|
66
|
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.1.6)\n",
|
67
|
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (2025.3.0)\n",
|
68
|
+
"Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
|
69
|
+
"Requirement already satisfied: nvidia-cuda-runtime-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
|
70
|
+
"Requirement already satisfied: nvidia-cuda-cupti-cu12==12.6.80 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.80)\n",
|
71
|
+
"Requirement already satisfied: nvidia-cudnn-cu12==9.10.2.21 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (9.10.2.21)\n",
|
72
|
+
"Requirement already satisfied: nvidia-cublas-cu12==12.6.4.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.4.1)\n",
|
73
|
+
"Requirement already satisfied: nvidia-cufft-cu12==11.3.0.4 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (11.3.0.4)\n",
|
74
|
+
"Requirement already satisfied: nvidia-curand-cu12==10.3.7.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (10.3.7.77)\n",
|
75
|
+
"Requirement already satisfied: nvidia-cusolver-cu12==11.7.1.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (11.7.1.2)\n",
|
76
|
+
"Requirement already satisfied: nvidia-cusparse-cu12==12.5.4.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.5.4.2)\n",
|
77
|
+
"Requirement already satisfied: nvidia-cusparselt-cu12==0.7.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (0.7.1)\n",
|
78
|
+
"Requirement already satisfied: nvidia-nccl-cu12==2.27.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (2.27.3)\n",
|
79
|
+
"Requirement already satisfied: nvidia-nvtx-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
|
80
|
+
"Requirement already satisfied: nvidia-nvjitlink-cu12==12.6.85 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.85)\n",
|
81
|
+
"Requirement already satisfied: nvidia-cufile-cu12==1.11.1.6 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (1.11.1.6)\n",
|
82
|
+
"Requirement already satisfied: triton==3.4.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.4.0)\n",
|
83
|
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n",
|
84
|
+
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.12/dist-packages (from sympy>=1.13.3->torch>=1.8.0->ultralytics) (1.3.0)\n",
|
85
|
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (3.0.2)\n"
|
86
|
+
]
|
87
|
+
}
|
88
|
+
]
|
89
|
+
},
|
90
|
+
{
|
91
|
+
"cell_type": "code",
|
92
|
+
"source": [
|
93
|
+
"!unzip \"Object detection dataset (1).zip\""
|
94
|
+
],
|
95
|
+
"metadata": {
|
96
|
+
"colab": {
|
97
|
+
"base_uri": "https://localhost:8080/"
|
98
|
+
},
|
99
|
+
"id": "RpCw7yD1k6zC",
|
100
|
+
"outputId": "7caf76a3-92cf-48a2-c5ca-da11bcafcc5d"
|
101
|
+
},
|
102
|
+
"execution_count": 21,
|
103
|
+
"outputs": [
|
104
|
+
{
|
105
|
+
"output_type": "stream",
|
106
|
+
"name": "stdout",
|
107
|
+
"text": [
|
108
|
+
"unzip: cannot find or open Object detection dataset (1).zip, Object detection dataset (1).zip.zip or Object detection dataset (1).zip.ZIP.\n"
|
109
|
+
]
|
110
|
+
}
|
111
|
+
]
|
112
|
+
},
|
113
|
+
{
|
114
|
+
"cell_type": "code",
|
115
|
+
"source": [
|
116
|
+
"from ultralytics import YOLO\n",
|
117
|
+
"import os\n",
|
118
|
+
"import glob"
|
119
|
+
],
|
120
|
+
"metadata": {
|
121
|
+
"id": "PVdbYKuaTM7a"
|
122
|
+
},
|
123
|
+
"execution_count": 22,
|
124
|
+
"outputs": []
|
125
|
+
},
|
126
|
+
{
|
127
|
+
"cell_type": "code",
|
128
|
+
"source": [
|
129
|
+
"model=YOLO('yolov8n.pt')"
|
130
|
+
],
|
131
|
+
"metadata": {
|
132
|
+
"id": "3XIDWbufTi4U"
|
133
|
+
},
|
134
|
+
"execution_count": 23,
|
135
|
+
"outputs": []
|
136
|
+
},
|
137
|
+
{
|
138
|
+
"cell_type": "code",
|
139
|
+
"source": [
|
140
|
+
"image_folder = 'Object detection dataset/train/train'\n",
|
141
|
+
"output_folder = 'output1'\n",
|
142
|
+
"os.makedirs(output_folder, exist_ok=True)"
|
143
|
+
],
|
144
|
+
"metadata": {
|
145
|
+
"id": "rShfURYelBg1"
|
146
|
+
},
|
147
|
+
"execution_count": 24,
|
148
|
+
"outputs": []
|
149
|
+
},
|
150
|
+
{
|
151
|
+
"cell_type": "code",
|
152
|
+
"source": [
|
153
|
+
"image_paths = glob.glob(os.path.join(image_folder, '*.png')) + glob.glob(os.path.join(image_folder, '*.jpg'))\n"
|
154
|
+
],
|
155
|
+
"metadata": {
|
156
|
+
"id": "Pd-i76a1lI1R"
|
157
|
+
},
|
158
|
+
"execution_count": 25,
|
159
|
+
"outputs": []
|
160
|
+
},
|
161
|
+
{
|
162
|
+
"cell_type": "code",
|
163
|
+
"source": [
|
164
|
+
"for img_path in image_paths:\n",
|
165
|
+
" r = model(img_path)\n",
|
166
|
+
"\n",
|
167
|
+
" # Save output image\n",
|
168
|
+
" out_path = os.path.join(output_folder, os.path.basename(img_path))\n",
|
169
|
+
" r[0].save(out_path)"
|
170
|
+
],
|
171
|
+
"metadata": {
|
172
|
+
"id": "LkmIUkotlOui"
|
173
|
+
},
|
174
|
+
"execution_count": 26,
|
175
|
+
"outputs": []
|
176
|
+
},
|
177
|
+
{
|
178
|
+
"cell_type": "code",
|
179
|
+
"source": [
|
180
|
+
"import os\n",
|
181
|
+
"from IPython.display import Image, display"
|
182
|
+
],
|
183
|
+
"metadata": {
|
184
|
+
"id": "B4ibhsIilZGX"
|
185
|
+
},
|
186
|
+
"execution_count": 27,
|
187
|
+
"outputs": []
|
188
|
+
},
|
189
|
+
{
|
190
|
+
"cell_type": "code",
|
191
|
+
"source": [
|
192
|
+
"output_files = os.listdir(output_folder)\n",
|
193
|
+
"\n",
|
194
|
+
"image_files = [f for f in output_files if f.endswith('.jpg') or f.endswith('.png')]\n",
|
195
|
+
"\n",
|
196
|
+
"if image_files:\n",
|
197
|
+
" first_image_path = os.path.join(output_folder, image_files[0])\n",
|
198
|
+
" print(f\"Displaying: {first_image_path}\")\n",
|
199
|
+
" display(Image(filename=first_image_path))\n",
|
200
|
+
"else:\n",
|
201
|
+
" print(\"No image files found in the output folder.\")"
|
202
|
+
],
|
203
|
+
"metadata": {
|
204
|
+
"colab": {
|
205
|
+
"base_uri": "https://localhost:8080/"
|
206
|
+
},
|
207
|
+
"id": "jo1XjaASlaNN",
|
208
|
+
"outputId": "c2a50c9e-8ce7-462a-e4d5-c29405dc691d"
|
209
|
+
},
|
210
|
+
"execution_count": 28,
|
211
|
+
"outputs": [
|
212
|
+
{
|
213
|
+
"output_type": "stream",
|
214
|
+
"name": "stdout",
|
215
|
+
"text": [
|
216
|
+
"No image files found in the output folder.\n"
|
217
|
+
]
|
218
|
+
}
|
219
|
+
]
|
220
|
+
},
|
221
|
+
{
|
222
|
+
"cell_type": "code",
|
223
|
+
"source": [],
|
224
|
+
"metadata": {
|
225
|
+
"id": "BYLCoI5Olcoo"
|
226
|
+
},
|
227
|
+
"execution_count": 28,
|
228
|
+
"outputs": []
|
229
|
+
}
|
230
|
+
]
|
231
|
+
}
|
@@ -0,0 +1,190 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"metadata": {
|
7
|
+
"id": "IQb02ekPErC1"
|
8
|
+
},
|
9
|
+
"outputs": [],
|
10
|
+
"source": [
|
11
|
+
"import numpy as np\n",
|
12
|
+
"import pandas as pd\n",
|
13
|
+
"import tensorflow as tf\n",
|
14
|
+
"from tensorflow.keras.datasets import mnist\n",
|
15
|
+
"from tensorflow.keras.models import Model\n",
|
16
|
+
"from tensorflow.keras.layers import Input,Dense"
|
17
|
+
]
|
18
|
+
},
|
19
|
+
{
|
20
|
+
"cell_type": "code",
|
21
|
+
"execution_count": null,
|
22
|
+
"metadata": {
|
23
|
+
"id": "JKrxqZpvFW4X"
|
24
|
+
},
|
25
|
+
"outputs": [],
|
26
|
+
"source": [
|
27
|
+
"(X_train, _),(X_test, _)=mnist.load_data()"
|
28
|
+
]
|
29
|
+
},
|
30
|
+
{
|
31
|
+
"cell_type": "code",
|
32
|
+
"execution_count": null,
|
33
|
+
"metadata": {
|
34
|
+
"colab": {
|
35
|
+
"base_uri": "https://localhost:8080/"
|
36
|
+
},
|
37
|
+
"id": "FmNHIehxFgna",
|
38
|
+
"outputId": "d5a6d856-094b-436d-c63b-a4b318e2dddc"
|
39
|
+
},
|
40
|
+
"outputs": [],
|
41
|
+
"source": [
|
42
|
+
"print(X_train)"
|
43
|
+
]
|
44
|
+
},
|
45
|
+
{
|
46
|
+
"cell_type": "code",
|
47
|
+
"execution_count": null,
|
48
|
+
"metadata": {
|
49
|
+
"colab": {
|
50
|
+
"base_uri": "https://localhost:8080/"
|
51
|
+
},
|
52
|
+
"id": "ue7nZ4rVHRm8",
|
53
|
+
"outputId": "132813b9-4c0f-42ee-ceb2-e1108b87ba1a"
|
54
|
+
},
|
55
|
+
"outputs": [],
|
56
|
+
"source": [
|
57
|
+
"X_train=X_train.astype('float32')/255.0\n",
|
58
|
+
"X_test=X_test.astype('float32')/255.0\n",
|
59
|
+
"print(X_train)"
|
60
|
+
]
|
61
|
+
},
|
62
|
+
{
|
63
|
+
"cell_type": "code",
|
64
|
+
"execution_count": null,
|
65
|
+
"metadata": {
|
66
|
+
"id": "fje2VkFHHrPw"
|
67
|
+
},
|
68
|
+
"outputs": [],
|
69
|
+
"source": [
|
70
|
+
"X_train=X_train.reshape((len(X_train),np.prod((X_train.shape[1:]))))\n",
|
71
|
+
"X_test=X_test.reshape((len(X_test),np.prod((X_test.shape[1:]))))"
|
72
|
+
]
|
73
|
+
},
|
74
|
+
{
|
75
|
+
"cell_type": "code",
|
76
|
+
"execution_count": null,
|
77
|
+
"metadata": {
|
78
|
+
"id": "HfKxKikFIaSR"
|
79
|
+
},
|
80
|
+
"outputs": [],
|
81
|
+
"source": [
|
82
|
+
"input_dims=X_train.shape[1]\n",
|
83
|
+
"encoded_dims=32\n",
|
84
|
+
"input_layer=Input(shape=(input_dims,))\n",
|
85
|
+
"\n",
|
86
|
+
"encoded=Dense(encoded_dims,activation='relu')(input_layer)\n",
|
87
|
+
"\n",
|
88
|
+
"decoded=Dense(input_dims,activation='sigmoid')(encoded)"
|
89
|
+
]
|
90
|
+
},
|
91
|
+
{
|
92
|
+
"cell_type": "code",
|
93
|
+
"execution_count": null,
|
94
|
+
"metadata": {
|
95
|
+
"id": "7rTRxX8kKsif"
|
96
|
+
},
|
97
|
+
"outputs": [],
|
98
|
+
"source": [
|
99
|
+
"encoder=Model(input_layer,encoded)\n",
|
100
|
+
"autoencoder=Model(input_layer,decoded)"
|
101
|
+
]
|
102
|
+
},
|
103
|
+
{
|
104
|
+
"cell_type": "code",
|
105
|
+
"execution_count": null,
|
106
|
+
"metadata": {
|
107
|
+
"colab": {
|
108
|
+
"base_uri": "https://localhost:8080/"
|
109
|
+
},
|
110
|
+
"id": "V4bP4-RDK7LH",
|
111
|
+
"outputId": "769c12fc-49e4-4376-d501-4d4159138d17"
|
112
|
+
},
|
113
|
+
"outputs": [],
|
114
|
+
"source": [
|
115
|
+
"autoencoder.compile(optimizer='adam',loss='binary_crossentropy')\n",
|
116
|
+
"\n",
|
117
|
+
"autoencoder.fit(X_train,X_train,epochs=5,batch_size=32,validation_data=(X_test,X_test))\n"
|
118
|
+
]
|
119
|
+
},
|
120
|
+
{
|
121
|
+
"cell_type": "code",
|
122
|
+
"execution_count": null,
|
123
|
+
"metadata": {
|
124
|
+
"colab": {
|
125
|
+
"base_uri": "https://localhost:8080/"
|
126
|
+
},
|
127
|
+
"id": "CrqJare2KONO",
|
128
|
+
"outputId": "67104eb8-4143-4700-85d7-30c05490a74f"
|
129
|
+
},
|
130
|
+
"outputs": [],
|
131
|
+
"source": [
|
132
|
+
"encoded_img=encoder.predict(X_test)\n",
|
133
|
+
"\n",
|
134
|
+
"decoded_imgs=autoencoder.predict(X_test)"
|
135
|
+
]
|
136
|
+
},
|
137
|
+
{
|
138
|
+
"cell_type": "code",
|
139
|
+
"execution_count": null,
|
140
|
+
"metadata": {
|
141
|
+
"colab": {
|
142
|
+
"base_uri": "https://localhost:8080/",
|
143
|
+
"height": 1000
|
144
|
+
},
|
145
|
+
"id": "HScdtV42LYBH",
|
146
|
+
"outputId": "81059a8f-f806-4f10-cfd3-666e87282085"
|
147
|
+
},
|
148
|
+
"outputs": [],
|
149
|
+
"source": [
|
150
|
+
"import matplotlib.pyplot as plt\n",
|
151
|
+
"for i in range(10):\n",
|
152
|
+
" plt.imshow(X_test[i].reshape(28,28))\n",
|
153
|
+
" plt.title('Original Image')\n",
|
154
|
+
" plt.show()\n",
|
155
|
+
" plt.imshow(decoded_imgs[i].reshape(28,28))\n",
|
156
|
+
" plt.title('Reconstructed Image')\n",
|
157
|
+
" plt.show()\n",
|
158
|
+
" plt.imshow(encoded_img[i].reshape(4,8))\n",
|
159
|
+
" plt.title('Encoded Image')\n",
|
160
|
+
" plt.show()"
|
161
|
+
]
|
162
|
+
}
|
163
|
+
],
|
164
|
+
"metadata": {
|
165
|
+
"accelerator": "GPU",
|
166
|
+
"colab": {
|
167
|
+
"gpuType": "T4",
|
168
|
+
"provenance": []
|
169
|
+
},
|
170
|
+
"kernelspec": {
|
171
|
+
"display_name": "Python 3 (ipykernel)",
|
172
|
+
"language": "python",
|
173
|
+
"name": "python3"
|
174
|
+
},
|
175
|
+
"language_info": {
|
176
|
+
"codemirror_mode": {
|
177
|
+
"name": "ipython",
|
178
|
+
"version": 3
|
179
|
+
},
|
180
|
+
"file_extension": ".py",
|
181
|
+
"mimetype": "text/x-python",
|
182
|
+
"name": "python",
|
183
|
+
"nbconvert_exporter": "python",
|
184
|
+
"pygments_lexer": "ipython3",
|
185
|
+
"version": "3.12.4"
|
186
|
+
}
|
187
|
+
},
|
188
|
+
"nbformat": 4,
|
189
|
+
"nbformat_minor": 4
|
190
|
+
}
|
@@ -0,0 +1,190 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"metadata": {
|
7
|
+
"id": "IQb02ekPErC1"
|
8
|
+
},
|
9
|
+
"outputs": [],
|
10
|
+
"source": [
|
11
|
+
"import numpy as np\n",
|
12
|
+
"import pandas as pd\n",
|
13
|
+
"import tensorflow as tf\n",
|
14
|
+
"from tensorflow.keras.datasets import mnist\n",
|
15
|
+
"from tensorflow.keras.models import Model\n",
|
16
|
+
"from tensorflow.keras.layers import Input,Dense"
|
17
|
+
]
|
18
|
+
},
|
19
|
+
{
|
20
|
+
"cell_type": "code",
|
21
|
+
"execution_count": null,
|
22
|
+
"metadata": {
|
23
|
+
"id": "JKrxqZpvFW4X"
|
24
|
+
},
|
25
|
+
"outputs": [],
|
26
|
+
"source": [
|
27
|
+
"(X_train, _),(X_test, _)=mnist.load_data()"
|
28
|
+
]
|
29
|
+
},
|
30
|
+
{
|
31
|
+
"cell_type": "code",
|
32
|
+
"execution_count": null,
|
33
|
+
"metadata": {
|
34
|
+
"colab": {
|
35
|
+
"base_uri": "https://localhost:8080/"
|
36
|
+
},
|
37
|
+
"id": "FmNHIehxFgna",
|
38
|
+
"outputId": "d5a6d856-094b-436d-c63b-a4b318e2dddc"
|
39
|
+
},
|
40
|
+
"outputs": [],
|
41
|
+
"source": [
|
42
|
+
"print(X_train)"
|
43
|
+
]
|
44
|
+
},
|
45
|
+
{
|
46
|
+
"cell_type": "code",
|
47
|
+
"execution_count": null,
|
48
|
+
"metadata": {
|
49
|
+
"colab": {
|
50
|
+
"base_uri": "https://localhost:8080/"
|
51
|
+
},
|
52
|
+
"id": "ue7nZ4rVHRm8",
|
53
|
+
"outputId": "132813b9-4c0f-42ee-ceb2-e1108b87ba1a"
|
54
|
+
},
|
55
|
+
"outputs": [],
|
56
|
+
"source": [
|
57
|
+
"X_train=X_train.astype('float32')/255.0\n",
|
58
|
+
"X_test=X_test.astype('float32')/255.0\n",
|
59
|
+
"print(X_train)"
|
60
|
+
]
|
61
|
+
},
|
62
|
+
{
|
63
|
+
"cell_type": "code",
|
64
|
+
"execution_count": null,
|
65
|
+
"metadata": {
|
66
|
+
"id": "fje2VkFHHrPw"
|
67
|
+
},
|
68
|
+
"outputs": [],
|
69
|
+
"source": [
|
70
|
+
"X_train=X_train.reshape((len(X_train),np.prod((X_train.shape[1:]))))\n",
|
71
|
+
"X_test=X_test.reshape((len(X_test),np.prod((X_test.shape[1:]))))"
|
72
|
+
]
|
73
|
+
},
|
74
|
+
{
|
75
|
+
"cell_type": "code",
|
76
|
+
"execution_count": null,
|
77
|
+
"metadata": {
|
78
|
+
"id": "HfKxKikFIaSR"
|
79
|
+
},
|
80
|
+
"outputs": [],
|
81
|
+
"source": [
|
82
|
+
"input_dims=X_train.shape[1]\n",
|
83
|
+
"encoded_dims=32\n",
|
84
|
+
"input_layer=Input(shape=(input_dims,))\n",
|
85
|
+
"\n",
|
86
|
+
"encoded=Dense(encoded_dims,activation='relu')(input_layer)\n",
|
87
|
+
"\n",
|
88
|
+
"decoded=Dense(input_dims,activation='sigmoid')(encoded)"
|
89
|
+
]
|
90
|
+
},
|
91
|
+
{
|
92
|
+
"cell_type": "code",
|
93
|
+
"execution_count": null,
|
94
|
+
"metadata": {
|
95
|
+
"id": "7rTRxX8kKsif"
|
96
|
+
},
|
97
|
+
"outputs": [],
|
98
|
+
"source": [
|
99
|
+
"encoder=Model(input_layer,encoded)\n",
|
100
|
+
"autoencoder=Model(input_layer,decoded)"
|
101
|
+
]
|
102
|
+
},
|
103
|
+
{
|
104
|
+
"cell_type": "code",
|
105
|
+
"execution_count": null,
|
106
|
+
"metadata": {
|
107
|
+
"colab": {
|
108
|
+
"base_uri": "https://localhost:8080/"
|
109
|
+
},
|
110
|
+
"id": "V4bP4-RDK7LH",
|
111
|
+
"outputId": "769c12fc-49e4-4376-d501-4d4159138d17"
|
112
|
+
},
|
113
|
+
"outputs": [],
|
114
|
+
"source": [
|
115
|
+
"autoencoder.compile(optimizer='adam',loss='binary_crossentropy')\n",
|
116
|
+
"\n",
|
117
|
+
"autoencoder.fit(X_train,X_train,epochs=5,batch_size=32,validation_data=(X_test,X_test))\n"
|
118
|
+
]
|
119
|
+
},
|
120
|
+
{
|
121
|
+
"cell_type": "code",
|
122
|
+
"execution_count": null,
|
123
|
+
"metadata": {
|
124
|
+
"colab": {
|
125
|
+
"base_uri": "https://localhost:8080/"
|
126
|
+
},
|
127
|
+
"id": "CrqJare2KONO",
|
128
|
+
"outputId": "67104eb8-4143-4700-85d7-30c05490a74f"
|
129
|
+
},
|
130
|
+
"outputs": [],
|
131
|
+
"source": [
|
132
|
+
"encoded_img=encoder.predict(X_test)\n",
|
133
|
+
"\n",
|
134
|
+
"decoded_imgs=autoencoder.predict(X_test)"
|
135
|
+
]
|
136
|
+
},
|
137
|
+
{
|
138
|
+
"cell_type": "code",
|
139
|
+
"execution_count": null,
|
140
|
+
"metadata": {
|
141
|
+
"colab": {
|
142
|
+
"base_uri": "https://localhost:8080/",
|
143
|
+
"height": 1000
|
144
|
+
},
|
145
|
+
"id": "HScdtV42LYBH",
|
146
|
+
"outputId": "81059a8f-f806-4f10-cfd3-666e87282085"
|
147
|
+
},
|
148
|
+
"outputs": [],
|
149
|
+
"source": [
|
150
|
+
"import matplotlib.pyplot as plt\n",
|
151
|
+
"for i in range(10):\n",
|
152
|
+
" plt.imshow(X_test[i].reshape(28,28))\n",
|
153
|
+
" plt.title('Original Image')\n",
|
154
|
+
" plt.show()\n",
|
155
|
+
" plt.imshow(decoded_imgs[i].reshape(28,28))\n",
|
156
|
+
" plt.title('Reconstructed Image')\n",
|
157
|
+
" plt.show()\n",
|
158
|
+
" plt.imshow(encoded_img[i].reshape(4,8))\n",
|
159
|
+
" plt.title('Encoded Image')\n",
|
160
|
+
" plt.show()"
|
161
|
+
]
|
162
|
+
}
|
163
|
+
],
|
164
|
+
"metadata": {
|
165
|
+
"accelerator": "GPU",
|
166
|
+
"colab": {
|
167
|
+
"gpuType": "T4",
|
168
|
+
"provenance": []
|
169
|
+
},
|
170
|
+
"kernelspec": {
|
171
|
+
"display_name": "Python 3 (ipykernel)",
|
172
|
+
"language": "python",
|
173
|
+
"name": "python3"
|
174
|
+
},
|
175
|
+
"language_info": {
|
176
|
+
"codemirror_mode": {
|
177
|
+
"name": "ipython",
|
178
|
+
"version": 3
|
179
|
+
},
|
180
|
+
"file_extension": ".py",
|
181
|
+
"mimetype": "text/x-python",
|
182
|
+
"name": "python",
|
183
|
+
"nbconvert_exporter": "python",
|
184
|
+
"pygments_lexer": "ipython3",
|
185
|
+
"version": "3.12.4"
|
186
|
+
}
|
187
|
+
},
|
188
|
+
"nbformat": 4,
|
189
|
+
"nbformat_minor": 4
|
190
|
+
}
|
@@ -1,26 +1,11 @@
|
|
1
1
|
noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
|
2
2
|
noshot/main.py,sha256=Y92i47Aa0XctPccKQ-hoFlkRbxFmb1NWOf-OtPb_oVU,669
|
3
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab.iso,sha256=bIvK1ZMqJdLm2SictFdZEHhGP9oSmYuZhcdmjklNNpM,454656
|
4
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Instructions.txt,sha256=8I9q1jJBShDy5j04CNnnTIBieufZdTb_xTDajOGFxGg,1525
|
5
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/input.txt,sha256=UzyrykytXdokESqejdt7kn5epkwlCki_XGNpGp_eoBc,553
|
6
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/mapper.py,sha256=vuVZ_qgZr1y0zkXwmJO6-ov0I9GRPymW1sNNxBiusPo,121
|
7
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/reducer.py,sha256=CqjhMk76iKAlmHuj50be8z55HWCVLfCbmcuSWLx9To8,451
|
8
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/Weatherdataset.csv,sha256=ta5sOIB5kzhxMjcGb1LzREyTRUShYTGCk0JislqAENc,13244
|
9
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/mapper.py,sha256=gLBiVo5hSBJ0UXadaFPdBMgVjUp7ZaoF8GnwBVpft1o,487
|
10
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/reducer.py,sha256=D3v2bS2cyiU2uJcn0DIKBnRuk_YSdvjQZnrcTV2fBv0,870
|
11
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Map.py,sha256=Ne402I3215_qCPUEYpHrg917OkOBE-oq9UKN7iflmmE,181
|
12
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Red.py,sha256=XSTzcdeKKGt-40tghlLa0hH1KpUsf3methvHF6H1u7A,582
|
13
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter.py,sha256=b75ZeyZH15JXNof_HrA75a7yuxv6ZNSiAswKDi0TTSk,2052
|
14
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_mapper.py,sha256=tZ-46DMvFC1KS7sLyQjYv1l-33g_-HrfyVtGhLIyEdg,2123
|
15
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_reducer.py,sha256=tZ-46DMvFC1KS7sLyQjYv1l-33g_-HrfyVtGhLIyEdg,2123
|
16
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/weblog.csv,sha256=AIgSK1Ck5jjq7BNNwLmSA0A9JLzIPCu_HEuX6n8_K04,7320
|
17
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_mapper.py,sha256=QwxMYMMXpU-LltdkfufB3sdId-GcqKPsu5467uh-8A0,269
|
18
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_reducer.py,sha256=KDUReI6XMDhXdnXpTwI1Sy35XCeogJYngtpMvVp6W7E,271
|
19
|
-
noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/Tweets.csv,sha256=Ane-od292wq2VFN3f3f_rsEua7DpGwpTeJ7_HxRUBvg,2548
|
20
3
|
noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb,sha256=397KrOUOxsmKB5VZIAhG7QTxFdmLi7IV-CzsYyIIJJQ,8651
|
21
4
|
noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb,sha256=yUHoexSUzeD1KbrhOIhPAg_Yd-WWLlMDuqBUmkdq70M,12138
|
22
5
|
noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb,sha256=FjeGzLcrwxfGnER5aNc523_otdU_wlsBYiVYvgBrkVk,6953
|
6
|
+
noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. Yolo Object Detection.ipynb,sha256=O9xelh1BDIlCvGlFVlGrns9mlpFgiEFCuTXXGitYkfk,11735
|
23
7
|
noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb,sha256=6h4eV8A6tuGrB72iqSiI98qv80Eb_H_XoKdyIKM431I,8785
|
8
|
+
noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/5. Auto Encoder.ipynb,sha256=mBctKBt-8WNLFjyg57gPuJ1xlYbTEn2wjAmtig-XySo,4254
|
24
9
|
noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb,sha256=U6q8Uwqs830cZSgWKmk29nClnfGem0qc2Lkf6qT1lU0,6377
|
25
10
|
noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb,sha256=PLYLcsA8tGxMGXb9e2rqQI6zPidC6UNayMx5JqKhOI8,3420
|
26
11
|
noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb,sha256=MknRySzMml400I2J8mrCteFj3A_5SDwzIZwZ-Vv1ksM,4980
|
@@ -34,6 +19,7 @@ noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb,sha256=kheRjG7QuHB2g6IaH
|
|
34
19
|
noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb,sha256=rLSsgBpcspl2ym0m33PRfIknATKTrEde1FgjY27dJNE,5971
|
35
20
|
noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb,sha256=Wvk7hvqd7MSSUY37Z0vMp7nf0xA6FSkw5L9-H-N_nUs,543555
|
36
21
|
noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb,sha256=1t0V9Bq6ywXGl7gtmsNpe15c4p5uoaVC32pUyXUqR1M,5423
|
22
|
+
noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex5.ipynb,sha256=mBctKBt-8WNLFjyg57gPuJ1xlYbTEn2wjAmtig-XySo,4254
|
37
23
|
noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb,sha256=qpZN91XMM-W_Z5ePwjF-xZWMz4v8WK8kQersGCPUs54,11186
|
38
24
|
noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb,sha256=9QfH0tR5HvjHZrSXApzD8qrgsUCCPqpmeDOtiYwRq9Q,3803
|
39
25
|
noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb,sha256=UdqrWLEuJdPOWFGSagxexuCoXHSdGEHbQmDguJgrR-A,11128
|
@@ -43,8 +29,8 @@ noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb,sha256=fk4c-bI
|
|
43
29
|
noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb,sha256=m3ujDj3fLIP1j202GSC5uf8J_qdoKq8oO2M2eYKtCMY,17497
|
44
30
|
noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
|
45
31
|
noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
|
46
|
-
noshot-
|
47
|
-
noshot-
|
48
|
-
noshot-
|
49
|
-
noshot-
|
50
|
-
noshot-
|
32
|
+
noshot-15.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
|
33
|
+
noshot-15.0.0.dist-info/METADATA,sha256=OY6sUs4gKqbMWGCBjiRJubhrZKrC_UUMQbr4C9fychM,2574
|
34
|
+
noshot-15.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
35
|
+
noshot-15.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
|
36
|
+
noshot-15.0.0.dist-info/RECORD,,
|
@@ -1 +0,0 @@
|
|
1
|
-
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.
|