noshot 14.0.0__py3-none-any.whl → 15.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. Yolo Object Detection.ipynb +231 -0
  2. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/5. Auto Encoder.ipynb +190 -0
  3. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex5.ipynb +190 -0
  4. {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/METADATA +1 -1
  5. {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/RECORD +8 -22
  6. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/input.txt +0 -1
  7. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/mapper.py +0 -6
  8. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/reducer.py +0 -22
  9. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/Weatherdataset.csv +0 -200
  10. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/mapper.py +0 -20
  11. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/reducer.py +0 -32
  12. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Map.py +0 -11
  13. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Red.py +0 -30
  14. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter.py +0 -71
  15. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_mapper.py +0 -71
  16. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_reducer.py +0 -71
  17. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/weblog.csv +0 -100
  18. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_mapper.py +0 -14
  19. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_reducer.py +0 -14
  20. noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/Tweets.csv +0 -92
  21. noshot/data/DLE FSD BDA/BDA/BDA Lab/Instructions.txt +0 -56
  22. noshot/data/DLE FSD BDA/BDA/BDA Lab.iso +0 -0
  23. {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/WHEEL +0 -0
  24. {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  25. {noshot-14.0.0.dist-info → noshot-15.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,231 @@
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU"
17
+ },
18
+ "cells": [
19
+ {
20
+ "cell_type": "code",
21
+ "source": [
22
+ "pip install ultralytics"
23
+ ],
24
+ "metadata": {
25
+ "colab": {
26
+ "base_uri": "https://localhost:8080/"
27
+ },
28
+ "id": "okrAbLmdTUrP",
29
+ "outputId": "39ded965-c6cf-4596-99c5-262653e91d78"
30
+ },
31
+ "execution_count": 20,
32
+ "outputs": [
33
+ {
34
+ "output_type": "stream",
35
+ "name": "stdout",
36
+ "text": [
37
+ "Requirement already satisfied: ultralytics in /usr/local/lib/python3.12/dist-packages (8.3.197)\n",
38
+ "Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.0.2)\n",
39
+ "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (3.10.0)\n",
40
+ "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (4.12.0.88)\n",
41
+ "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (11.3.0)\n",
42
+ "Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (6.0.2)\n",
43
+ "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.32.4)\n",
44
+ "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (1.16.1)\n",
45
+ "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.8.0+cu126)\n",
46
+ "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (0.23.0+cu126)\n",
47
+ "Requirement already satisfied: psutil in /usr/local/lib/python3.12/dist-packages (from ultralytics) (5.9.5)\n",
48
+ "Requirement already satisfied: polars in /usr/local/lib/python3.12/dist-packages (from ultralytics) (1.25.2)\n",
49
+ "Requirement already satisfied: ultralytics-thop>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.0.17)\n",
50
+ "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.3)\n",
51
+ "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n",
52
+ "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.59.2)\n",
53
+ "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.9)\n",
54
+ "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (25.0)\n",
55
+ "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.2.3)\n",
56
+ "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n",
57
+ "Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.4.3)\n",
58
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.10)\n",
59
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2.5.0)\n",
60
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2025.8.3)\n",
61
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.19.1)\n",
62
+ "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (4.15.0)\n",
63
+ "Requirement already satisfied: setuptools in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (75.2.0)\n",
64
+ "Requirement already satisfied: sympy>=1.13.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (1.13.3)\n",
65
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.5)\n",
66
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.1.6)\n",
67
+ "Requirement already satisfied: fsspec in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (2025.3.0)\n",
68
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
69
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
70
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.6.80 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.80)\n",
71
+ "Requirement already satisfied: nvidia-cudnn-cu12==9.10.2.21 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (9.10.2.21)\n",
72
+ "Requirement already satisfied: nvidia-cublas-cu12==12.6.4.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.4.1)\n",
73
+ "Requirement already satisfied: nvidia-cufft-cu12==11.3.0.4 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (11.3.0.4)\n",
74
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.7.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (10.3.7.77)\n",
75
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.7.1.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (11.7.1.2)\n",
76
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.5.4.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.5.4.2)\n",
77
+ "Requirement already satisfied: nvidia-cusparselt-cu12==0.7.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (0.7.1)\n",
78
+ "Requirement already satisfied: nvidia-nccl-cu12==2.27.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (2.27.3)\n",
79
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
80
+ "Requirement already satisfied: nvidia-nvjitlink-cu12==12.6.85 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.85)\n",
81
+ "Requirement already satisfied: nvidia-cufile-cu12==1.11.1.6 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (1.11.1.6)\n",
82
+ "Requirement already satisfied: triton==3.4.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.4.0)\n",
83
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n",
84
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.12/dist-packages (from sympy>=1.13.3->torch>=1.8.0->ultralytics) (1.3.0)\n",
85
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (3.0.2)\n"
86
+ ]
87
+ }
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "source": [
93
+ "!unzip \"Object detection dataset (1).zip\""
94
+ ],
95
+ "metadata": {
96
+ "colab": {
97
+ "base_uri": "https://localhost:8080/"
98
+ },
99
+ "id": "RpCw7yD1k6zC",
100
+ "outputId": "7caf76a3-92cf-48a2-c5ca-da11bcafcc5d"
101
+ },
102
+ "execution_count": 21,
103
+ "outputs": [
104
+ {
105
+ "output_type": "stream",
106
+ "name": "stdout",
107
+ "text": [
108
+ "unzip: cannot find or open Object detection dataset (1).zip, Object detection dataset (1).zip.zip or Object detection dataset (1).zip.ZIP.\n"
109
+ ]
110
+ }
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "source": [
116
+ "from ultralytics import YOLO\n",
117
+ "import os\n",
118
+ "import glob"
119
+ ],
120
+ "metadata": {
121
+ "id": "PVdbYKuaTM7a"
122
+ },
123
+ "execution_count": 22,
124
+ "outputs": []
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "source": [
129
+ "model=YOLO('yolov8n.pt')"
130
+ ],
131
+ "metadata": {
132
+ "id": "3XIDWbufTi4U"
133
+ },
134
+ "execution_count": 23,
135
+ "outputs": []
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "source": [
140
+ "image_folder = 'Object detection dataset/train/train'\n",
141
+ "output_folder = 'output1'\n",
142
+ "os.makedirs(output_folder, exist_ok=True)"
143
+ ],
144
+ "metadata": {
145
+ "id": "rShfURYelBg1"
146
+ },
147
+ "execution_count": 24,
148
+ "outputs": []
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "source": [
153
+ "image_paths = glob.glob(os.path.join(image_folder, '*.png')) + glob.glob(os.path.join(image_folder, '*.jpg'))\n"
154
+ ],
155
+ "metadata": {
156
+ "id": "Pd-i76a1lI1R"
157
+ },
158
+ "execution_count": 25,
159
+ "outputs": []
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "source": [
164
+ "for img_path in image_paths:\n",
165
+ " r = model(img_path)\n",
166
+ "\n",
167
+ " # Save output image\n",
168
+ " out_path = os.path.join(output_folder, os.path.basename(img_path))\n",
169
+ " r[0].save(out_path)"
170
+ ],
171
+ "metadata": {
172
+ "id": "LkmIUkotlOui"
173
+ },
174
+ "execution_count": 26,
175
+ "outputs": []
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "source": [
180
+ "import os\n",
181
+ "from IPython.display import Image, display"
182
+ ],
183
+ "metadata": {
184
+ "id": "B4ibhsIilZGX"
185
+ },
186
+ "execution_count": 27,
187
+ "outputs": []
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "source": [
192
+ "output_files = os.listdir(output_folder)\n",
193
+ "\n",
194
+ "image_files = [f for f in output_files if f.endswith('.jpg') or f.endswith('.png')]\n",
195
+ "\n",
196
+ "if image_files:\n",
197
+ " first_image_path = os.path.join(output_folder, image_files[0])\n",
198
+ " print(f\"Displaying: {first_image_path}\")\n",
199
+ " display(Image(filename=first_image_path))\n",
200
+ "else:\n",
201
+ " print(\"No image files found in the output folder.\")"
202
+ ],
203
+ "metadata": {
204
+ "colab": {
205
+ "base_uri": "https://localhost:8080/"
206
+ },
207
+ "id": "jo1XjaASlaNN",
208
+ "outputId": "c2a50c9e-8ce7-462a-e4d5-c29405dc691d"
209
+ },
210
+ "execution_count": 28,
211
+ "outputs": [
212
+ {
213
+ "output_type": "stream",
214
+ "name": "stdout",
215
+ "text": [
216
+ "No image files found in the output folder.\n"
217
+ ]
218
+ }
219
+ ]
220
+ },
221
+ {
222
+ "cell_type": "code",
223
+ "source": [],
224
+ "metadata": {
225
+ "id": "BYLCoI5Olcoo"
226
+ },
227
+ "execution_count": 28,
228
+ "outputs": []
229
+ }
230
+ ]
231
+ }
@@ -0,0 +1,190 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "id": "IQb02ekPErC1"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "import numpy as np\n",
12
+ "import pandas as pd\n",
13
+ "import tensorflow as tf\n",
14
+ "from tensorflow.keras.datasets import mnist\n",
15
+ "from tensorflow.keras.models import Model\n",
16
+ "from tensorflow.keras.layers import Input,Dense"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {
23
+ "id": "JKrxqZpvFW4X"
24
+ },
25
+ "outputs": [],
26
+ "source": [
27
+ "(X_train, _),(X_test, _)=mnist.load_data()"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {
34
+ "colab": {
35
+ "base_uri": "https://localhost:8080/"
36
+ },
37
+ "id": "FmNHIehxFgna",
38
+ "outputId": "d5a6d856-094b-436d-c63b-a4b318e2dddc"
39
+ },
40
+ "outputs": [],
41
+ "source": [
42
+ "print(X_train)"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {
49
+ "colab": {
50
+ "base_uri": "https://localhost:8080/"
51
+ },
52
+ "id": "ue7nZ4rVHRm8",
53
+ "outputId": "132813b9-4c0f-42ee-ceb2-e1108b87ba1a"
54
+ },
55
+ "outputs": [],
56
+ "source": [
57
+ "X_train=X_train.astype('float32')/255.0\n",
58
+ "X_test=X_test.astype('float32')/255.0\n",
59
+ "print(X_train)"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {
66
+ "id": "fje2VkFHHrPw"
67
+ },
68
+ "outputs": [],
69
+ "source": [
70
+ "X_train=X_train.reshape((len(X_train),np.prod((X_train.shape[1:]))))\n",
71
+ "X_test=X_test.reshape((len(X_test),np.prod((X_test.shape[1:]))))"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {
78
+ "id": "HfKxKikFIaSR"
79
+ },
80
+ "outputs": [],
81
+ "source": [
82
+ "input_dims=X_train.shape[1]\n",
83
+ "encoded_dims=32\n",
84
+ "input_layer=Input(shape=(input_dims,))\n",
85
+ "\n",
86
+ "encoded=Dense(encoded_dims,activation='relu')(input_layer)\n",
87
+ "\n",
88
+ "decoded=Dense(input_dims,activation='sigmoid')(encoded)"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "metadata": {
95
+ "id": "7rTRxX8kKsif"
96
+ },
97
+ "outputs": [],
98
+ "source": [
99
+ "encoder=Model(input_layer,encoded)\n",
100
+ "autoencoder=Model(input_layer,decoded)"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {
107
+ "colab": {
108
+ "base_uri": "https://localhost:8080/"
109
+ },
110
+ "id": "V4bP4-RDK7LH",
111
+ "outputId": "769c12fc-49e4-4376-d501-4d4159138d17"
112
+ },
113
+ "outputs": [],
114
+ "source": [
115
+ "autoencoder.compile(optimizer='adam',loss='binary_crossentropy')\n",
116
+ "\n",
117
+ "autoencoder.fit(X_train,X_train,epochs=5,batch_size=32,validation_data=(X_test,X_test))\n"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "metadata": {
124
+ "colab": {
125
+ "base_uri": "https://localhost:8080/"
126
+ },
127
+ "id": "CrqJare2KONO",
128
+ "outputId": "67104eb8-4143-4700-85d7-30c05490a74f"
129
+ },
130
+ "outputs": [],
131
+ "source": [
132
+ "encoded_img=encoder.predict(X_test)\n",
133
+ "\n",
134
+ "decoded_imgs=autoencoder.predict(X_test)"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {
141
+ "colab": {
142
+ "base_uri": "https://localhost:8080/",
143
+ "height": 1000
144
+ },
145
+ "id": "HScdtV42LYBH",
146
+ "outputId": "81059a8f-f806-4f10-cfd3-666e87282085"
147
+ },
148
+ "outputs": [],
149
+ "source": [
150
+ "import matplotlib.pyplot as plt\n",
151
+ "for i in range(10):\n",
152
+ " plt.imshow(X_test[i].reshape(28,28))\n",
153
+ " plt.title('Original Image')\n",
154
+ " plt.show()\n",
155
+ " plt.imshow(decoded_imgs[i].reshape(28,28))\n",
156
+ " plt.title('Reconstructed Image')\n",
157
+ " plt.show()\n",
158
+ " plt.imshow(encoded_img[i].reshape(4,8))\n",
159
+ " plt.title('Encoded Image')\n",
160
+ " plt.show()"
161
+ ]
162
+ }
163
+ ],
164
+ "metadata": {
165
+ "accelerator": "GPU",
166
+ "colab": {
167
+ "gpuType": "T4",
168
+ "provenance": []
169
+ },
170
+ "kernelspec": {
171
+ "display_name": "Python 3 (ipykernel)",
172
+ "language": "python",
173
+ "name": "python3"
174
+ },
175
+ "language_info": {
176
+ "codemirror_mode": {
177
+ "name": "ipython",
178
+ "version": 3
179
+ },
180
+ "file_extension": ".py",
181
+ "mimetype": "text/x-python",
182
+ "name": "python",
183
+ "nbconvert_exporter": "python",
184
+ "pygments_lexer": "ipython3",
185
+ "version": "3.12.4"
186
+ }
187
+ },
188
+ "nbformat": 4,
189
+ "nbformat_minor": 4
190
+ }
@@ -0,0 +1,190 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "id": "IQb02ekPErC1"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "import numpy as np\n",
12
+ "import pandas as pd\n",
13
+ "import tensorflow as tf\n",
14
+ "from tensorflow.keras.datasets import mnist\n",
15
+ "from tensorflow.keras.models import Model\n",
16
+ "from tensorflow.keras.layers import Input,Dense"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {
23
+ "id": "JKrxqZpvFW4X"
24
+ },
25
+ "outputs": [],
26
+ "source": [
27
+ "(X_train, _),(X_test, _)=mnist.load_data()"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {
34
+ "colab": {
35
+ "base_uri": "https://localhost:8080/"
36
+ },
37
+ "id": "FmNHIehxFgna",
38
+ "outputId": "d5a6d856-094b-436d-c63b-a4b318e2dddc"
39
+ },
40
+ "outputs": [],
41
+ "source": [
42
+ "print(X_train)"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {
49
+ "colab": {
50
+ "base_uri": "https://localhost:8080/"
51
+ },
52
+ "id": "ue7nZ4rVHRm8",
53
+ "outputId": "132813b9-4c0f-42ee-ceb2-e1108b87ba1a"
54
+ },
55
+ "outputs": [],
56
+ "source": [
57
+ "X_train=X_train.astype('float32')/255.0\n",
58
+ "X_test=X_test.astype('float32')/255.0\n",
59
+ "print(X_train)"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {
66
+ "id": "fje2VkFHHrPw"
67
+ },
68
+ "outputs": [],
69
+ "source": [
70
+ "X_train=X_train.reshape((len(X_train),np.prod((X_train.shape[1:]))))\n",
71
+ "X_test=X_test.reshape((len(X_test),np.prod((X_test.shape[1:]))))"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {
78
+ "id": "HfKxKikFIaSR"
79
+ },
80
+ "outputs": [],
81
+ "source": [
82
+ "input_dims=X_train.shape[1]\n",
83
+ "encoded_dims=32\n",
84
+ "input_layer=Input(shape=(input_dims,))\n",
85
+ "\n",
86
+ "encoded=Dense(encoded_dims,activation='relu')(input_layer)\n",
87
+ "\n",
88
+ "decoded=Dense(input_dims,activation='sigmoid')(encoded)"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "metadata": {
95
+ "id": "7rTRxX8kKsif"
96
+ },
97
+ "outputs": [],
98
+ "source": [
99
+ "encoder=Model(input_layer,encoded)\n",
100
+ "autoencoder=Model(input_layer,decoded)"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {
107
+ "colab": {
108
+ "base_uri": "https://localhost:8080/"
109
+ },
110
+ "id": "V4bP4-RDK7LH",
111
+ "outputId": "769c12fc-49e4-4376-d501-4d4159138d17"
112
+ },
113
+ "outputs": [],
114
+ "source": [
115
+ "autoencoder.compile(optimizer='adam',loss='binary_crossentropy')\n",
116
+ "\n",
117
+ "autoencoder.fit(X_train,X_train,epochs=5,batch_size=32,validation_data=(X_test,X_test))\n"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "metadata": {
124
+ "colab": {
125
+ "base_uri": "https://localhost:8080/"
126
+ },
127
+ "id": "CrqJare2KONO",
128
+ "outputId": "67104eb8-4143-4700-85d7-30c05490a74f"
129
+ },
130
+ "outputs": [],
131
+ "source": [
132
+ "encoded_img=encoder.predict(X_test)\n",
133
+ "\n",
134
+ "decoded_imgs=autoencoder.predict(X_test)"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {
141
+ "colab": {
142
+ "base_uri": "https://localhost:8080/",
143
+ "height": 1000
144
+ },
145
+ "id": "HScdtV42LYBH",
146
+ "outputId": "81059a8f-f806-4f10-cfd3-666e87282085"
147
+ },
148
+ "outputs": [],
149
+ "source": [
150
+ "import matplotlib.pyplot as plt\n",
151
+ "for i in range(10):\n",
152
+ " plt.imshow(X_test[i].reshape(28,28))\n",
153
+ " plt.title('Original Image')\n",
154
+ " plt.show()\n",
155
+ " plt.imshow(decoded_imgs[i].reshape(28,28))\n",
156
+ " plt.title('Reconstructed Image')\n",
157
+ " plt.show()\n",
158
+ " plt.imshow(encoded_img[i].reshape(4,8))\n",
159
+ " plt.title('Encoded Image')\n",
160
+ " plt.show()"
161
+ ]
162
+ }
163
+ ],
164
+ "metadata": {
165
+ "accelerator": "GPU",
166
+ "colab": {
167
+ "gpuType": "T4",
168
+ "provenance": []
169
+ },
170
+ "kernelspec": {
171
+ "display_name": "Python 3 (ipykernel)",
172
+ "language": "python",
173
+ "name": "python3"
174
+ },
175
+ "language_info": {
176
+ "codemirror_mode": {
177
+ "name": "ipython",
178
+ "version": 3
179
+ },
180
+ "file_extension": ".py",
181
+ "mimetype": "text/x-python",
182
+ "name": "python",
183
+ "nbconvert_exporter": "python",
184
+ "pygments_lexer": "ipython3",
185
+ "version": "3.12.4"
186
+ }
187
+ },
188
+ "nbformat": 4,
189
+ "nbformat_minor": 4
190
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 14.0.0
3
+ Version: 15.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,26 +1,11 @@
1
1
  noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
2
  noshot/main.py,sha256=Y92i47Aa0XctPccKQ-hoFlkRbxFmb1NWOf-OtPb_oVU,669
3
- noshot/data/DLE FSD BDA/BDA/BDA Lab.iso,sha256=bIvK1ZMqJdLm2SictFdZEHhGP9oSmYuZhcdmjklNNpM,454656
4
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Instructions.txt,sha256=8I9q1jJBShDy5j04CNnnTIBieufZdTb_xTDajOGFxGg,1525
5
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/input.txt,sha256=UzyrykytXdokESqejdt7kn5epkwlCki_XGNpGp_eoBc,553
6
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/mapper.py,sha256=vuVZ_qgZr1y0zkXwmJO6-ov0I9GRPymW1sNNxBiusPo,121
7
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/reducer.py,sha256=CqjhMk76iKAlmHuj50be8z55HWCVLfCbmcuSWLx9To8,451
8
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/Weatherdataset.csv,sha256=ta5sOIB5kzhxMjcGb1LzREyTRUShYTGCk0JislqAENc,13244
9
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/mapper.py,sha256=gLBiVo5hSBJ0UXadaFPdBMgVjUp7ZaoF8GnwBVpft1o,487
10
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/reducer.py,sha256=D3v2bS2cyiU2uJcn0DIKBnRuk_YSdvjQZnrcTV2fBv0,870
11
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Map.py,sha256=Ne402I3215_qCPUEYpHrg917OkOBE-oq9UKN7iflmmE,181
12
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Red.py,sha256=XSTzcdeKKGt-40tghlLa0hH1KpUsf3methvHF6H1u7A,582
13
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter.py,sha256=b75ZeyZH15JXNof_HrA75a7yuxv6ZNSiAswKDi0TTSk,2052
14
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_mapper.py,sha256=tZ-46DMvFC1KS7sLyQjYv1l-33g_-HrfyVtGhLIyEdg,2123
15
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_reducer.py,sha256=tZ-46DMvFC1KS7sLyQjYv1l-33g_-HrfyVtGhLIyEdg,2123
16
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/weblog.csv,sha256=AIgSK1Ck5jjq7BNNwLmSA0A9JLzIPCu_HEuX6n8_K04,7320
17
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_mapper.py,sha256=QwxMYMMXpU-LltdkfufB3sdId-GcqKPsu5467uh-8A0,269
18
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_reducer.py,sha256=KDUReI6XMDhXdnXpTwI1Sy35XCeogJYngtpMvVp6W7E,271
19
- noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/Tweets.csv,sha256=Ane-od292wq2VFN3f3f_rsEua7DpGwpTeJ7_HxRUBvg,2548
20
3
  noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb,sha256=397KrOUOxsmKB5VZIAhG7QTxFdmLi7IV-CzsYyIIJJQ,8651
21
4
  noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb,sha256=yUHoexSUzeD1KbrhOIhPAg_Yd-WWLlMDuqBUmkdq70M,12138
22
5
  noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb,sha256=FjeGzLcrwxfGnER5aNc523_otdU_wlsBYiVYvgBrkVk,6953
6
+ noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. Yolo Object Detection.ipynb,sha256=O9xelh1BDIlCvGlFVlGrns9mlpFgiEFCuTXXGitYkfk,11735
23
7
  noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb,sha256=6h4eV8A6tuGrB72iqSiI98qv80Eb_H_XoKdyIKM431I,8785
8
+ noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/5. Auto Encoder.ipynb,sha256=mBctKBt-8WNLFjyg57gPuJ1xlYbTEn2wjAmtig-XySo,4254
24
9
  noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb,sha256=U6q8Uwqs830cZSgWKmk29nClnfGem0qc2Lkf6qT1lU0,6377
25
10
  noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb,sha256=PLYLcsA8tGxMGXb9e2rqQI6zPidC6UNayMx5JqKhOI8,3420
26
11
  noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb,sha256=MknRySzMml400I2J8mrCteFj3A_5SDwzIZwZ-Vv1ksM,4980
@@ -34,6 +19,7 @@ noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb,sha256=kheRjG7QuHB2g6IaH
34
19
  noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb,sha256=rLSsgBpcspl2ym0m33PRfIknATKTrEde1FgjY27dJNE,5971
35
20
  noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb,sha256=Wvk7hvqd7MSSUY37Z0vMp7nf0xA6FSkw5L9-H-N_nUs,543555
36
21
  noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb,sha256=1t0V9Bq6ywXGl7gtmsNpe15c4p5uoaVC32pUyXUqR1M,5423
22
+ noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex5.ipynb,sha256=mBctKBt-8WNLFjyg57gPuJ1xlYbTEn2wjAmtig-XySo,4254
37
23
  noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb,sha256=qpZN91XMM-W_Z5ePwjF-xZWMz4v8WK8kQersGCPUs54,11186
38
24
  noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb,sha256=9QfH0tR5HvjHZrSXApzD8qrgsUCCPqpmeDOtiYwRq9Q,3803
39
25
  noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb,sha256=UdqrWLEuJdPOWFGSagxexuCoXHSdGEHbQmDguJgrR-A,11128
@@ -43,8 +29,8 @@ noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb,sha256=fk4c-bI
43
29
  noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb,sha256=m3ujDj3fLIP1j202GSC5uf8J_qdoKq8oO2M2eYKtCMY,17497
44
30
  noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
45
31
  noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
46
- noshot-14.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
47
- noshot-14.0.0.dist-info/METADATA,sha256=uTL7BqtTuRhQMXvy-rJDQMEsjNRYG2q216wfE-1BK2A,2574
48
- noshot-14.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
49
- noshot-14.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
50
- noshot-14.0.0.dist-info/RECORD,,
32
+ noshot-15.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
33
+ noshot-15.0.0.dist-info/METADATA,sha256=OY6sUs4gKqbMWGCBjiRJubhrZKrC_UUMQbr4C9fychM,2574
34
+ noshot-15.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
35
+ noshot-15.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
36
+ noshot-15.0.0.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.