noshot 0.9.0__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +633 -0
- noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +326 -0
- noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +487 -0
- noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +845 -0
- noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +100 -0
- noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +90 -0
- noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +203 -0
- noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +3998 -0
- noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +271 -0
- noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +1545 -0
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-loan).ipynb +221 -0
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +229 -0
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +237 -0
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +241 -0
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +352 -0
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +110 -0
- noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +708 -0
- {noshot-0.9.0.dist-info → noshot-1.0.0.dist-info}/METADATA +1 -1
- noshot-1.0.0.dist-info/RECORD +32 -0
- noshot-0.9.0.dist-info/RECORD +0 -15
- {noshot-0.9.0.dist-info → noshot-1.0.0.dist-info}/WHEEL +0 -0
- {noshot-0.9.0.dist-info → noshot-1.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-0.9.0.dist-info → noshot-1.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,633 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"metadata": {
|
7
|
+
"id": "KLkDQCnJdSwP"
|
8
|
+
},
|
9
|
+
"outputs": [],
|
10
|
+
"source": [
|
11
|
+
"#EDA contd\n",
|
12
|
+
"import pandas as pd\n",
|
13
|
+
"chips = pd.read_csv('http://bit.ly/chiporders',sep='\\t')"
|
14
|
+
]
|
15
|
+
},
|
16
|
+
{
|
17
|
+
"cell_type": "markdown",
|
18
|
+
"metadata": {
|
19
|
+
"id": "tqEc5RzBkTNc"
|
20
|
+
},
|
21
|
+
"source": [
|
22
|
+
"Order ID: A unique identifier for each order. Quantity: The number of items ordered. Item Name: The name of the menu item. Choice Description: Additional details or customization options for the ordered item. Item Price: The price of the individual item. Order Date: The date and time when the order was placed. Total: The total cost of the order."
|
23
|
+
]
|
24
|
+
},
|
25
|
+
{
|
26
|
+
"cell_type": "code",
|
27
|
+
"execution_count": null,
|
28
|
+
"metadata": {
|
29
|
+
"id": "CpNMX3vamGxB"
|
30
|
+
},
|
31
|
+
"outputs": [],
|
32
|
+
"source": []
|
33
|
+
},
|
34
|
+
{
|
35
|
+
"cell_type": "code",
|
36
|
+
"execution_count": null,
|
37
|
+
"metadata": {
|
38
|
+
"colab": {
|
39
|
+
"base_uri": "https://localhost:8080/",
|
40
|
+
"height": 484
|
41
|
+
},
|
42
|
+
"id": "VdVdAHnMe2Wq",
|
43
|
+
"outputId": "484615aa-1583-47ee-93c4-b8e0457cb734"
|
44
|
+
},
|
45
|
+
"outputs": [],
|
46
|
+
"source": [
|
47
|
+
"chips.head(10)"
|
48
|
+
]
|
49
|
+
},
|
50
|
+
{
|
51
|
+
"cell_type": "code",
|
52
|
+
"execution_count": null,
|
53
|
+
"metadata": {
|
54
|
+
"colab": {
|
55
|
+
"base_uri": "https://localhost:8080/"
|
56
|
+
},
|
57
|
+
"id": "cVA1ReI4hKAb",
|
58
|
+
"outputId": "05b9d9c8-8ea7-47e1-87ae-77d10ccd6d69"
|
59
|
+
},
|
60
|
+
"outputs": [],
|
61
|
+
"source": [
|
62
|
+
"chips.shape[0]"
|
63
|
+
]
|
64
|
+
},
|
65
|
+
{
|
66
|
+
"cell_type": "code",
|
67
|
+
"execution_count": null,
|
68
|
+
"metadata": {
|
69
|
+
"colab": {
|
70
|
+
"base_uri": "https://localhost:8080/"
|
71
|
+
},
|
72
|
+
"id": "Qlnk_G60hYtg",
|
73
|
+
"outputId": "a43698cb-8c31-4791-c559-1b8e53446669"
|
74
|
+
},
|
75
|
+
"outputs": [],
|
76
|
+
"source": [
|
77
|
+
"chips['order_id'].value_counts().head(15) #each order id ordered how many different times\n"
|
78
|
+
]
|
79
|
+
},
|
80
|
+
{
|
81
|
+
"cell_type": "code",
|
82
|
+
"execution_count": null,
|
83
|
+
"metadata": {
|
84
|
+
"colab": {
|
85
|
+
"base_uri": "https://localhost:8080/",
|
86
|
+
"height": 137
|
87
|
+
},
|
88
|
+
"id": "54oqEUsM2ok1",
|
89
|
+
"outputId": "7c7cc510-bd5e-4885-b100-fea12102301f"
|
90
|
+
},
|
91
|
+
"outputs": [],
|
92
|
+
"source": [
|
93
|
+
"#Extract the information of all oredered items containing chicken as one of the ingredint\n",
|
94
|
+
"chips[chips['item_name'] == 'Chicken']"
|
95
|
+
]
|
96
|
+
},
|
97
|
+
{
|
98
|
+
"cell_type": "code",
|
99
|
+
"execution_count": null,
|
100
|
+
"metadata": {
|
101
|
+
"id": "hfgJ8K8x2wr1"
|
102
|
+
},
|
103
|
+
"outputs": [],
|
104
|
+
"source": [
|
105
|
+
"chk = chips[chips['item_name'].str.contains('Chicken')]"
|
106
|
+
]
|
107
|
+
},
|
108
|
+
{
|
109
|
+
"cell_type": "code",
|
110
|
+
"execution_count": null,
|
111
|
+
"metadata": {
|
112
|
+
"colab": {
|
113
|
+
"base_uri": "https://localhost:8080/",
|
114
|
+
"height": 363
|
115
|
+
},
|
116
|
+
"id": "DjbRKWy92zJ2",
|
117
|
+
"outputId": "dcee2668-b95b-4bc4-caef-5de24985a126"
|
118
|
+
},
|
119
|
+
"outputs": [],
|
120
|
+
"source": [
|
121
|
+
"chk.head(10)"
|
122
|
+
]
|
123
|
+
},
|
124
|
+
{
|
125
|
+
"cell_type": "code",
|
126
|
+
"execution_count": null,
|
127
|
+
"metadata": {
|
128
|
+
"colab": {
|
129
|
+
"base_uri": "https://localhost:8080/"
|
130
|
+
},
|
131
|
+
"id": "r7d8Fyvy25__",
|
132
|
+
"outputId": "ed07c163-98db-40b4-d68c-4101da97e754"
|
133
|
+
},
|
134
|
+
"outputs": [],
|
135
|
+
"source": [
|
136
|
+
"chips['item_price'].str.replace('$','').astype(float).max()"
|
137
|
+
]
|
138
|
+
},
|
139
|
+
{
|
140
|
+
"cell_type": "code",
|
141
|
+
"execution_count": null,
|
142
|
+
"metadata": {
|
143
|
+
"colab": {
|
144
|
+
"base_uri": "https://localhost:8080/"
|
145
|
+
},
|
146
|
+
"id": "dCELCgWXj_l_",
|
147
|
+
"outputId": "84c811f1-12d4-473b-8c0a-8cd3088a523a"
|
148
|
+
},
|
149
|
+
"outputs": [],
|
150
|
+
"source": [
|
151
|
+
"c1=chips['item_price'].str.replace('$','')\n",
|
152
|
+
"c1.head(5)\n"
|
153
|
+
]
|
154
|
+
},
|
155
|
+
{
|
156
|
+
"cell_type": "code",
|
157
|
+
"execution_count": null,
|
158
|
+
"metadata": {
|
159
|
+
"colab": {
|
160
|
+
"base_uri": "https://localhost:8080/",
|
161
|
+
"height": 35
|
162
|
+
},
|
163
|
+
"id": "bUSoL50c3A7X",
|
164
|
+
"outputId": "d99c9d2f-9bea-4906-80d8-a2eb91b770e5"
|
165
|
+
},
|
166
|
+
"outputs": [],
|
167
|
+
"source": [
|
168
|
+
"chips.loc[3598]['item_name']"
|
169
|
+
]
|
170
|
+
},
|
171
|
+
{
|
172
|
+
"cell_type": "code",
|
173
|
+
"execution_count": null,
|
174
|
+
"metadata": {
|
175
|
+
"colab": {
|
176
|
+
"base_uri": "https://localhost:8080/"
|
177
|
+
},
|
178
|
+
"id": "jAH6N9vEjoRB",
|
179
|
+
"outputId": "ca0bf772-6c0a-4100-b930-5003d390c3f3"
|
180
|
+
},
|
181
|
+
"outputs": [],
|
182
|
+
"source": [
|
183
|
+
"#Explore oreder id as : - Each order id ordered how many items\n",
|
184
|
+
"chips.groupby('order_id')['quantity'].sum().head(20)"
|
185
|
+
]
|
186
|
+
},
|
187
|
+
{
|
188
|
+
"cell_type": "markdown",
|
189
|
+
"metadata": {
|
190
|
+
"id": "_0MD-W-R40AO"
|
191
|
+
},
|
192
|
+
"source": [
|
193
|
+
"https://datascience.fm/pandas-for-simple-data-analysys/"
|
194
|
+
]
|
195
|
+
},
|
196
|
+
{
|
197
|
+
"cell_type": "markdown",
|
198
|
+
"metadata": {
|
199
|
+
"id": "qJlmbndSyfW0"
|
200
|
+
},
|
201
|
+
"source": [
|
202
|
+
"Order ID: A unique identifier for each order.\n",
|
203
|
+
"Quantity: The number of items ordered.\n",
|
204
|
+
"Item Name: The name of the menu item.\n",
|
205
|
+
"Choice Description: Additional details or customization options for the ordered item.\n",
|
206
|
+
"Item Price: The price of the individual item.\n",
|
207
|
+
"Order Date: The date and time when the order was placed.\n",
|
208
|
+
"Total: The total cost of the order."
|
209
|
+
]
|
210
|
+
},
|
211
|
+
{
|
212
|
+
"cell_type": "code",
|
213
|
+
"execution_count": null,
|
214
|
+
"metadata": {
|
215
|
+
"colab": {
|
216
|
+
"base_uri": "https://localhost:8080/"
|
217
|
+
},
|
218
|
+
"id": "GBinyLCCygzd",
|
219
|
+
"outputId": "9f3fa4d1-9bf4-4673-e37e-c4136d81e7ea"
|
220
|
+
},
|
221
|
+
"outputs": [],
|
222
|
+
"source": [
|
223
|
+
"# finding is there any columns present in our data\n",
|
224
|
+
"chips.isnull().sum()"
|
225
|
+
]
|
226
|
+
},
|
227
|
+
{
|
228
|
+
"cell_type": "code",
|
229
|
+
"execution_count": null,
|
230
|
+
"metadata": {
|
231
|
+
"colab": {
|
232
|
+
"base_uri": "https://localhost:8080/"
|
233
|
+
},
|
234
|
+
"id": "dM82Vf8ly2jL",
|
235
|
+
"outputId": "e91b122b-1b3e-401f-c4f8-9a9b1aa0d54b"
|
236
|
+
},
|
237
|
+
"outputs": [],
|
238
|
+
"source": [
|
239
|
+
"chips.index"
|
240
|
+
]
|
241
|
+
},
|
242
|
+
{
|
243
|
+
"cell_type": "code",
|
244
|
+
"execution_count": null,
|
245
|
+
"metadata": {
|
246
|
+
"colab": {
|
247
|
+
"base_uri": "https://localhost:8080/",
|
248
|
+
"height": 449
|
249
|
+
},
|
250
|
+
"id": "1_kxS-uNy5jS",
|
251
|
+
"outputId": "6932e070-cfef-4c06-ed06-38896291c0f6"
|
252
|
+
},
|
253
|
+
"outputs": [],
|
254
|
+
"source": [
|
255
|
+
"#Which was the most ordered item? and How many items were ordered?\n",
|
256
|
+
"c = chips.groupby('item_name')\n",
|
257
|
+
"c = c.sum()\n",
|
258
|
+
"c = c.sort_values(['quantity'], ascending=False)\n",
|
259
|
+
"c.head(10)"
|
260
|
+
]
|
261
|
+
},
|
262
|
+
{
|
263
|
+
"cell_type": "code",
|
264
|
+
"execution_count": null,
|
265
|
+
"metadata": {
|
266
|
+
"colab": {
|
267
|
+
"base_uri": "https://localhost:8080/",
|
268
|
+
"height": 363
|
269
|
+
},
|
270
|
+
"id": "nBP7cVNa0Dif",
|
271
|
+
"outputId": "ee795041-c866-49a2-8583-e3aa66dee4fa"
|
272
|
+
},
|
273
|
+
"outputs": [],
|
274
|
+
"source": [
|
275
|
+
"import pandas as pd\n",
|
276
|
+
"dt = pd.DataFrame({'id' : [1,2,2,2,3,3,3,4,5,6] ,\n",
|
277
|
+
" 'order count' : [1,2,1,3,1,1,2,1,2,1]})\n",
|
278
|
+
"dt"
|
279
|
+
]
|
280
|
+
},
|
281
|
+
{
|
282
|
+
"cell_type": "code",
|
283
|
+
"execution_count": null,
|
284
|
+
"metadata": {
|
285
|
+
"colab": {
|
286
|
+
"base_uri": "https://localhost:8080/"
|
287
|
+
},
|
288
|
+
"id": "GzwktX2e2QW3",
|
289
|
+
"outputId": "96a044ff-6e27-41a4-9ef6-af3013117041"
|
290
|
+
},
|
291
|
+
"outputs": [],
|
292
|
+
"source": [
|
293
|
+
"dt['id'].value_counts()"
|
294
|
+
]
|
295
|
+
},
|
296
|
+
{
|
297
|
+
"cell_type": "code",
|
298
|
+
"execution_count": null,
|
299
|
+
"metadata": {
|
300
|
+
"colab": {
|
301
|
+
"base_uri": "https://localhost:8080/"
|
302
|
+
},
|
303
|
+
"id": "1QDYXTOa2Ysh",
|
304
|
+
"outputId": "0e7c485a-b822-4dbc-a557-452b998a9bb5"
|
305
|
+
},
|
306
|
+
"outputs": [],
|
307
|
+
"source": [
|
308
|
+
"dt.groupby('id')['order count'].sum()"
|
309
|
+
]
|
310
|
+
},
|
311
|
+
{
|
312
|
+
"cell_type": "code",
|
313
|
+
"execution_count": null,
|
314
|
+
"metadata": {
|
315
|
+
"id": "GCKreTOi_oFA"
|
316
|
+
},
|
317
|
+
"outputs": [],
|
318
|
+
"source": [
|
319
|
+
"https://builtin.com/software-engineering-perspectives/pandas-iloc\n",
|
320
|
+
"\n",
|
321
|
+
"https://www.geeksforgeeks.org/difference-between-loc-and-iloc-in-pandas-dataframe/"
|
322
|
+
]
|
323
|
+
},
|
324
|
+
{
|
325
|
+
"cell_type": "code",
|
326
|
+
"execution_count": null,
|
327
|
+
"metadata": {
|
328
|
+
"id": "2UTru4cnmJFi"
|
329
|
+
},
|
330
|
+
"outputs": [],
|
331
|
+
"source": [
|
332
|
+
"TI=pd.read_csv('TRAIN1.csv')"
|
333
|
+
]
|
334
|
+
},
|
335
|
+
{
|
336
|
+
"cell_type": "code",
|
337
|
+
"execution_count": null,
|
338
|
+
"metadata": {
|
339
|
+
"colab": {
|
340
|
+
"base_uri": "https://localhost:8080/",
|
341
|
+
"height": 503
|
342
|
+
},
|
343
|
+
"id": "Dlm6gTAEnKGO",
|
344
|
+
"outputId": "0efc16b3-96eb-4729-c4b3-9e19baee8e04"
|
345
|
+
},
|
346
|
+
"outputs": [],
|
347
|
+
"source": [
|
348
|
+
"TI.head(5)"
|
349
|
+
]
|
350
|
+
},
|
351
|
+
{
|
352
|
+
"cell_type": "code",
|
353
|
+
"execution_count": null,
|
354
|
+
"metadata": {
|
355
|
+
"id": "q7XM07H2ned5"
|
356
|
+
},
|
357
|
+
"outputs": [],
|
358
|
+
"source": []
|
359
|
+
},
|
360
|
+
{
|
361
|
+
"cell_type": "code",
|
362
|
+
"execution_count": null,
|
363
|
+
"metadata": {
|
364
|
+
"colab": {
|
365
|
+
"base_uri": "https://localhost:8080/"
|
366
|
+
},
|
367
|
+
"id": "tMWfUl4uoeuA",
|
368
|
+
"outputId": "3252dae9-17c8-44d0-ccdf-1075cebc2097"
|
369
|
+
},
|
370
|
+
"outputs": [],
|
371
|
+
"source": [
|
372
|
+
"TI.info()"
|
373
|
+
]
|
374
|
+
},
|
375
|
+
{
|
376
|
+
"cell_type": "code",
|
377
|
+
"execution_count": null,
|
378
|
+
"metadata": {
|
379
|
+
"colab": {
|
380
|
+
"base_uri": "https://localhost:8080/",
|
381
|
+
"height": 825
|
382
|
+
},
|
383
|
+
"id": "PFovvtAyojjo",
|
384
|
+
"outputId": "e984ce14-e828-45ec-e01c-b2f21b4cd7a4"
|
385
|
+
},
|
386
|
+
"outputs": [],
|
387
|
+
"source": [
|
388
|
+
"TI.loc[TI['Sex']=='male'] #to get list of male passengers"
|
389
|
+
]
|
390
|
+
},
|
391
|
+
{
|
392
|
+
"cell_type": "code",
|
393
|
+
"execution_count": null,
|
394
|
+
"metadata": {
|
395
|
+
"colab": {
|
396
|
+
"base_uri": "https://localhost:8080/",
|
397
|
+
"height": 382
|
398
|
+
},
|
399
|
+
"id": "5fJ239izo6ib",
|
400
|
+
"outputId": "4128a4d6-f941-433a-d3cd-c40948043eb8"
|
401
|
+
},
|
402
|
+
"outputs": [],
|
403
|
+
"source": [
|
404
|
+
"titanic=TI\n",
|
405
|
+
"titanic.loc[(titanic['Sex']=='male') & (titanic['Embarked']=='S')].head()"
|
406
|
+
]
|
407
|
+
},
|
408
|
+
{
|
409
|
+
"cell_type": "code",
|
410
|
+
"execution_count": null,
|
411
|
+
"metadata": {
|
412
|
+
"colab": {
|
413
|
+
"base_uri": "https://localhost:8080/",
|
414
|
+
"height": 237
|
415
|
+
},
|
416
|
+
"id": "DjAfl0z8qLt1",
|
417
|
+
"outputId": "dc93282a-9baf-4d9e-e5df-7877da0e16f7"
|
418
|
+
},
|
419
|
+
"outputs": [],
|
420
|
+
"source": [
|
421
|
+
"titanic.loc[0:5,['Sex','Age']]"
|
422
|
+
]
|
423
|
+
},
|
424
|
+
{
|
425
|
+
"cell_type": "code",
|
426
|
+
"execution_count": null,
|
427
|
+
"metadata": {
|
428
|
+
"colab": {
|
429
|
+
"base_uri": "https://localhost:8080/",
|
430
|
+
"height": 174
|
431
|
+
},
|
432
|
+
"id": "CqicL_wcqc2M",
|
433
|
+
"outputId": "e2a2747a-b1f6-441e-c851-b501fa2d3859"
|
434
|
+
},
|
435
|
+
"outputs": [],
|
436
|
+
"source": [
|
437
|
+
"titanic.iloc[0:4,2:5]"
|
438
|
+
]
|
439
|
+
},
|
440
|
+
{
|
441
|
+
"cell_type": "code",
|
442
|
+
"execution_count": null,
|
443
|
+
"metadata": {
|
444
|
+
"colab": {
|
445
|
+
"base_uri": "https://localhost:8080/",
|
446
|
+
"height": 331
|
447
|
+
},
|
448
|
+
"id": "He6iEhi2qhYm",
|
449
|
+
"outputId": "75b67880-3620-4a93-c36b-396f341ca199"
|
450
|
+
},
|
451
|
+
"outputs": [],
|
452
|
+
"source": [
|
453
|
+
"# importing the module\n",
|
454
|
+
"import pandas as pd\n",
|
455
|
+
"\n",
|
456
|
+
"# creating a sample dataframe\n",
|
457
|
+
"data = pd.DataFrame({'Brand': ['Maruti', 'Hyundai', 'Tata',\n",
|
458
|
+
"\t\t\t\t\t\t\t'Mahindra', 'Maruti', 'Hyundai',\n",
|
459
|
+
"\t\t\t\t\t\t\t'Renault', 'Tata', 'Maruti'],\n",
|
460
|
+
"\t\t\t\t\t'Year': [2012, 2014, 2011, 2015, 2012,\n",
|
461
|
+
"\t\t\t\t\t\t\t2016, 2014, 2018, 2019],\n",
|
462
|
+
"\t\t\t\t\t'Kms Driven': [50000, 30000, 60000,\n",
|
463
|
+
"\t\t\t\t\t\t\t\t\t25000, 10000, 46000,\n",
|
464
|
+
"\t\t\t\t\t\t\t\t\t31000, 15000, 12000],\n",
|
465
|
+
"\t\t\t\t\t'City': ['Gurgaon', 'Delhi', 'Mumbai',\n",
|
466
|
+
"\t\t\t\t\t\t\t'Delhi', 'Mumbai', 'Delhi',\n",
|
467
|
+
"\t\t\t\t\t\t\t'Mumbai', 'Chennai', 'Ghaziabad'],\n",
|
468
|
+
"\t\t\t\t\t'Mileage': [28, 27, 25, 26, 28,\n",
|
469
|
+
"\t\t\t\t\t\t\t\t29, 24, 21, 24]})\n",
|
470
|
+
"\n",
|
471
|
+
"# displaying the DataFrame\n",
|
472
|
+
"display(data)\n"
|
473
|
+
]
|
474
|
+
},
|
475
|
+
{
|
476
|
+
"cell_type": "code",
|
477
|
+
"execution_count": null,
|
478
|
+
"metadata": {
|
479
|
+
"colab": {
|
480
|
+
"base_uri": "https://localhost:8080/",
|
481
|
+
"height": 112
|
482
|
+
},
|
483
|
+
"id": "M3Kx0Fc9q61W",
|
484
|
+
"outputId": "3693ebf1-957a-4604-f337-4d81f2808f1f"
|
485
|
+
},
|
486
|
+
"outputs": [],
|
487
|
+
"source": [
|
488
|
+
"# selecting cars with brand 'Maruti' and Mileage > 25\n",
|
489
|
+
"display(data.loc[(data.Brand == 'Maruti') & (data.Mileage > 25)])"
|
490
|
+
]
|
491
|
+
},
|
492
|
+
{
|
493
|
+
"cell_type": "code",
|
494
|
+
"execution_count": null,
|
495
|
+
"metadata": {
|
496
|
+
"colab": {
|
497
|
+
"base_uri": "https://localhost:8080/",
|
498
|
+
"height": 174
|
499
|
+
},
|
500
|
+
"id": "tO82gnyMrI58",
|
501
|
+
"outputId": "10c47a2e-bf5a-4d8c-9017-a59b9c9da8cf"
|
502
|
+
},
|
503
|
+
"outputs": [],
|
504
|
+
"source": [
|
505
|
+
"# selecting range of rows from 2 to 5\n",
|
506
|
+
"display(data.loc[2: 5])"
|
507
|
+
]
|
508
|
+
},
|
509
|
+
{
|
510
|
+
"cell_type": "code",
|
511
|
+
"execution_count": null,
|
512
|
+
"metadata": {
|
513
|
+
"colab": {
|
514
|
+
"base_uri": "https://localhost:8080/",
|
515
|
+
"height": 331
|
516
|
+
},
|
517
|
+
"id": "vOazh8vUrRTR",
|
518
|
+
"outputId": "ca85cb51-427a-4398-f0af-d12d40aa3a35"
|
519
|
+
},
|
520
|
+
"outputs": [],
|
521
|
+
"source": [
|
522
|
+
"# updating values of Mileage if Year < 2015\n",
|
523
|
+
"data.loc[(data.Year < 2015), ['Mileage']] = 22\n",
|
524
|
+
"display(data)"
|
525
|
+
]
|
526
|
+
},
|
527
|
+
{
|
528
|
+
"cell_type": "code",
|
529
|
+
"execution_count": null,
|
530
|
+
"metadata": {
|
531
|
+
"colab": {
|
532
|
+
"base_uri": "https://localhost:8080/",
|
533
|
+
"height": 174
|
534
|
+
},
|
535
|
+
"id": "QMZcapyCrWWU",
|
536
|
+
"outputId": "32bd940a-938b-41fd-f4c5-4bed9ddfd9cc"
|
537
|
+
},
|
538
|
+
"outputs": [],
|
539
|
+
"source": [
|
540
|
+
"\n",
|
541
|
+
"# selecting 0th, 2nd, 4th, and 7th index rows\n",
|
542
|
+
"display(data.iloc[[0, 2, 4, 7]])"
|
543
|
+
]
|
544
|
+
},
|
545
|
+
{
|
546
|
+
"cell_type": "code",
|
547
|
+
"execution_count": null,
|
548
|
+
"metadata": {
|
549
|
+
"colab": {
|
550
|
+
"base_uri": "https://localhost:8080/",
|
551
|
+
"height": 174
|
552
|
+
},
|
553
|
+
"id": "AnwKkMkvrZrt",
|
554
|
+
"outputId": "c183117f-5a13-4484-945f-cba21854d475"
|
555
|
+
},
|
556
|
+
"outputs": [],
|
557
|
+
"source": [
|
558
|
+
"# selecting rows from 1 to 4 and columns from 2 to 4\n",
|
559
|
+
"display(data.iloc[1: 5, 2: 5])"
|
560
|
+
]
|
561
|
+
},
|
562
|
+
{
|
563
|
+
"cell_type": "code",
|
564
|
+
"execution_count": null,
|
565
|
+
"metadata": {
|
566
|
+
"colab": {
|
567
|
+
"base_uri": "https://localhost:8080/",
|
568
|
+
"height": 1000
|
569
|
+
},
|
570
|
+
"id": "YBHhMDsgsC4d",
|
571
|
+
"outputId": "8599d99a-9522-47a8-8adf-1f107303e673"
|
572
|
+
},
|
573
|
+
"outputs": [],
|
574
|
+
"source": [
|
575
|
+
"# Bar plot\n",
|
576
|
+
"import seaborn as sns\n",
|
577
|
+
"import matplotlib.pyplot as plt\n",
|
578
|
+
"\n",
|
579
|
+
"df=titanic\n",
|
580
|
+
"sns.countplot(x='Survived', data=df)\n",
|
581
|
+
"plt.xlabel('Survival Status')\n",
|
582
|
+
"plt.ylabel('Count')\n",
|
583
|
+
"plt.title('Survival Count')\n",
|
584
|
+
"plt.show()\n",
|
585
|
+
"\n",
|
586
|
+
"# Histogram\n",
|
587
|
+
"plt.hist(df['Age'], bins=10)\n",
|
588
|
+
"plt.xlabel('Age')\n",
|
589
|
+
"plt.ylabel('Frequency')\n",
|
590
|
+
"plt.title('Distribution of Age')\n",
|
591
|
+
"plt.show()\n",
|
592
|
+
"\n",
|
593
|
+
"# Scatter plot\n",
|
594
|
+
"plt.scatter(df['Age'], df['Fare'])\n",
|
595
|
+
"plt.xlabel('Age')\n",
|
596
|
+
"plt.ylabel('Fare')\n",
|
597
|
+
"plt.title('Age vs. Fare')\n",
|
598
|
+
"plt.show()\n",
|
599
|
+
"\n",
|
600
|
+
"# Box plot\n",
|
601
|
+
"sns.boxplot(x=df['Survived'], y=df['Fare'])\n",
|
602
|
+
"plt.xlabel('Survival Status')\n",
|
603
|
+
"plt.ylabel('Fare')\n",
|
604
|
+
"plt.title('Survival Status vs. Fare')\n",
|
605
|
+
"plt.show()"
|
606
|
+
]
|
607
|
+
}
|
608
|
+
],
|
609
|
+
"metadata": {
|
610
|
+
"colab": {
|
611
|
+
"provenance": []
|
612
|
+
},
|
613
|
+
"kernelspec": {
|
614
|
+
"display_name": "Python 3 (ipykernel)",
|
615
|
+
"language": "python",
|
616
|
+
"name": "python3"
|
617
|
+
},
|
618
|
+
"language_info": {
|
619
|
+
"codemirror_mode": {
|
620
|
+
"name": "ipython",
|
621
|
+
"version": 3
|
622
|
+
},
|
623
|
+
"file_extension": ".py",
|
624
|
+
"mimetype": "text/x-python",
|
625
|
+
"name": "python",
|
626
|
+
"nbconvert_exporter": "python",
|
627
|
+
"pygments_lexer": "ipython3",
|
628
|
+
"version": "3.12.4"
|
629
|
+
}
|
630
|
+
},
|
631
|
+
"nbformat": 4,
|
632
|
+
"nbformat_minor": 4
|
633
|
+
}
|