noshot 0.4.1__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +32 -714
  2. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +29 -1071
  3. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +7 -105
  4. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +16 -152
  5. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +26 -575
  6. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +23 -382
  7. noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +633 -0
  8. noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +326 -0
  9. noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +487 -0
  10. noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +845 -0
  11. noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +100 -0
  12. noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +90 -0
  13. noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +203 -0
  14. noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +3998 -0
  15. noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +271 -0
  16. noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +1545 -0
  17. noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-loan).ipynb +221 -0
  18. noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +229 -0
  19. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +237 -0
  20. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +241 -0
  21. noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +352 -0
  22. noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +110 -0
  23. noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +708 -0
  24. {noshot-0.4.1.dist-info → noshot-1.0.0.dist-info}/METADATA +1 -1
  25. noshot-1.0.0.dist-info/RECORD +32 -0
  26. noshot-0.4.1.dist-info/RECORD +0 -15
  27. {noshot-0.4.1.dist-info → noshot-1.0.0.dist-info}/WHEEL +0 -0
  28. {noshot-0.4.1.dist-info → noshot-1.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  29. {noshot-0.4.1.dist-info → noshot-1.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,110 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "FFBo6iBNxTi5"
7
+ },
8
+ "source": [
9
+ "# **Deepchecks**"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": null,
15
+ "metadata": {
16
+ "colab": {
17
+ "base_uri": "https://localhost:8080/",
18
+ "height": 1000,
19
+ "resources": {
20
+ "http://localhost:8080/jupyterlab-plotly.js": {
21
+ "data": "",
22
+ "headers": [
23
+ [
24
+ "content-length",
25
+ "0"
26
+ ]
27
+ ],
28
+ "ok": false,
29
+ "status": 404,
30
+ "status_text": "Not Found"
31
+ }
32
+ }
33
+ },
34
+ "id": "9SHBGTax-S9g",
35
+ "outputId": "6e74a110-e2d7-4c07-e1a1-e60f1ee98bac"
36
+ },
37
+ "outputs": [],
38
+ "source": [
39
+ "!pip install numpy==1.24.3\n",
40
+ "import pandas as pd\n",
41
+ "from sklearn.model_selection import train_test_split\n",
42
+ "!pip install deepchecks\n",
43
+ "from deepchecks.tabular import Dataset\n",
44
+ "from deepchecks.tabular.suites import data_integrity, train_test_validation\n",
45
+ "\n",
46
+ "# Load the dataset manually (replace with the actual path)\n",
47
+ "file_path = \"/content/adults.csv\" # Update this with your dataset file path\n",
48
+ "column_names = [\n",
49
+ " 'age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status',\n",
50
+ " 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss',\n",
51
+ " 'hours-per-week', 'native-country', 'income'\n",
52
+ "]\n",
53
+ "\n",
54
+ "# Read CSV file\n",
55
+ "df = pd.read_csv(file_path, names=column_names, skipinitialspace=True)\n",
56
+ "\n",
57
+ "# Convert categorical features to string (if needed)\n",
58
+ "cat_features = ['workclass', 'education', 'marital-status', 'occupation',\n",
59
+ " 'relationship', 'race', 'sex', 'native-country']\n",
60
+ "df[cat_features] = df[cat_features].astype(str)\n",
61
+ "\n",
62
+ "# Separate features and labels\n",
63
+ "X = df.drop(columns=['income'])\n",
64
+ "y = df['income']\n",
65
+ "\n",
66
+ "# Split into train and test sets\n",
67
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
68
+ "\n",
69
+ "# Create Deepchecks Dataset objects\n",
70
+ "train_ds = Dataset(X_train, label=y_train, cat_features=cat_features)\n",
71
+ "test_ds = Dataset(X_test, label=y_test, cat_features=cat_features)\n",
72
+ "\n",
73
+ "# Run Data Integrity Suite\n",
74
+ "integrity_suite = data_integrity()\n",
75
+ "integrity_result = integrity_suite.run(train_ds)\n",
76
+ "integrity_result.show()\n",
77
+ "\n",
78
+ "# Run Train-Test Validation Suite\n",
79
+ "validation_suite = train_test_validation()\n",
80
+ "validation_result = validation_suite.run(train_ds, test_ds)\n",
81
+ "validation_result.show()\n",
82
+ "\n"
83
+ ]
84
+ }
85
+ ],
86
+ "metadata": {
87
+ "colab": {
88
+ "provenance": []
89
+ },
90
+ "kernelspec": {
91
+ "display_name": "Python 3 (ipykernel)",
92
+ "language": "python",
93
+ "name": "python3"
94
+ },
95
+ "language_info": {
96
+ "codemirror_mode": {
97
+ "name": "ipython",
98
+ "version": 3
99
+ },
100
+ "file_extension": ".py",
101
+ "mimetype": "text/x-python",
102
+ "name": "python",
103
+ "nbconvert_exporter": "python",
104
+ "pygments_lexer": "ipython3",
105
+ "version": "3.12.4"
106
+ }
107
+ },
108
+ "nbformat": 4,
109
+ "nbformat_minor": 4
110
+ }