noshot 0.4.0__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +928 -0
  2. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +1270 -0
  3. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +175 -0
  4. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +303 -0
  5. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +746 -0
  6. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +579 -0
  7. noshot/main.py +18 -18
  8. noshot/utils/__init__.py +2 -2
  9. noshot/utils/shell_utils.py +56 -56
  10. {noshot-0.4.0.dist-info → noshot-0.4.1.dist-info}/METADATA +58 -55
  11. noshot-0.4.1.dist-info/RECORD +15 -0
  12. {noshot-0.4.0.dist-info → noshot-0.4.1.dist-info}/WHEEL +1 -1
  13. {noshot-0.4.0.dist-info → noshot-0.4.1.dist-info/licenses}/LICENSE.txt +20 -20
  14. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +0 -535
  15. noshot/data/ML TS XAI/Football Player/4.ipynb +0 -395
  16. noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
  17. noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
  18. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
  19. noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
  20. noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
  21. noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
  22. noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
  23. noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
  24. noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
  25. noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
  26. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
  27. noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
  28. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
  29. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
  30. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
  31. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
  32. noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
  33. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
  34. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
  35. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/1.ipynb +0 -133
  36. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/Question.txt +0 -12
  37. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat +0 -1503
  38. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/2.ipynb +0 -139
  39. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/Question.txt +0 -12
  40. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/pop_failures.dat +0 -143
  41. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/3.ipynb +0 -130
  42. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/Qu.txt +0 -1
  43. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/go_track_tracks.csv +0 -164
  44. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/4.ipynb +0 -141
  45. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/Wilt.csv +0 -4340
  46. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/qu.txt +0 -1
  47. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +0 -1
  48. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +0 -886
  49. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +0 -292
  50. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +0 -1
  51. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +0 -546
  52. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +0 -921
  53. noshot-0.4.0.dist-info/RECORD +0 -48
  54. {noshot-0.4.0.dist-info → noshot-0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,164 +0,0 @@
1
- "id","id_android","speed","time","distance","rating","rating_bus","rating_weather","car_or_bus","linha"
2
- 1,0,19.2105856218409,0.138048888888889,2.652,3,0,0,1,""
3
- 2,0,30.848229110141,0.171484722222222,5.29,3,0,0,1,""
4
- 3,1,13.5601009375705,0.0676986111111111,0.918,3,0,0,2,""
5
- 4,1,19.7666790267834,0.389544444444444,7.7,3,0,0,2,""
6
- 8,0,25.8074009208982,0.154800555555556,3.995,2,0,0,1,""
7
- 10,2,1.34691332363334,0.00668194444444444,0.009,2,0,0,1,""
8
- 11,3,36.8507874006155,0.228000555555556,8.402,3,0,0,1,""
9
- 12,1,17.4051312905583,0.0387816666666667,0.675,3,0,0,2,""
10
- 13,1,15.3954361396997,0.526844444444444,8.111,3,0,0,2,""
11
- 14,1,8.90272943762594,0.00303277777777778,0.027,2,0,0,2,""
12
- 16,3,15.0413480246533,0.217866111111111,3.277,3,0,0,1,""
13
- 17,3,14.4400981237154,0.268142222222222,3.872,3,0,0,1,""
14
- 18,1,16.3567325479505,0.0770325,1.26,2,0,0,2,""
15
- 19,1,17.5427999490819,0.333869166666667,5.857,2,0,0,2,""
16
- 20,4,9.45181557237199,0.276772222222222,2.616,2,0,0,1,""
17
- 21,4,9.45181557237199,0.276772222222222,2.616,2,0,0,1,""
18
- 22,4,16.2635039490851,0.450948333333333,7.334,2,0,0,1,""
19
- 23,4,21.2235944272772,0.289724722222222,6.149,3,0,0,1,""
20
- 24,4,19.4236545402881,0.236567222222222,4.595,2,0,0,2,""
21
- 25,4,20.7996291423591,0.425440277777778,8.849,3,0,0,2,""
22
- 26,4,8.72437241694035,1.94294777777778,16.951,1,0,0,2,""
23
- 27,4,8.72437241694035,1.94294777777778,16.951,1,0,0,2,""
24
- 28,3,8.68613764219664,0.502409722222222,4.364,3,0,0,1,""
25
- 30,3,54.9959473181491,1.01407472222222,55.77,3,0,0,1,""
26
- 31,3,54.9959473181491,1.01407472222222,55.77,3,0,0,1,""
27
- 33,1,12.6110448093387,0.579095555555556,7.303,2,0,0,2,""
28
- 34,3,14.5342872001012,0.0790544444444444,1.149,3,0,0,1,""
29
- 35,3,10.2882266731803,0.318422222222222,3.276,3,0,0,1,""
30
- 36,3,18.3281891367296,0.130945833333333,2.4,3,0,0,1,""
31
- 37,1,17.1776350229212,0.166088055555556,2.853,3,0,0,1,""
32
- 38,1,17.0978233675256,0.133233333333333,2.278,3,0,0,1,""
33
- 39,1,32.5207021199134,0.203716388888889,6.625,3,0,0,1,""
34
- 40,1,19.934809873384,0.329122777777778,6.561,3,0,0,1,""
35
- 41,1,21.5138017732911,0.6572525,14.14,2,0,0,1,""
36
- 42,1,27.5257702575601,0.292380555555556,8.048,3,0,0,1,""
37
- 43,1,28.104520679061,0.276574722222222,7.773,3,0,0,1,""
38
- 44,3,22.3224624996634,0.0825177777777778,1.842,3,0,0,1,""
39
- 45,3,22.3224624996634,0.0825177777777778,1.842,3,0,0,1,""
40
- 46,3,32.3773039972723,0.166196666666667,5.381,3,0,0,1,""
41
- 47,1,22.3779245187911,0.3471725,7.769,2,0,0,1,""
42
- 48,1,24.9082558704182,0.264851944444444,6.597,2,0,0,1,""
43
- 49,5,37.1409017347196,0.500849444444444,18.602,3,0,0,2,""
44
- 50,5,37.1409017347196,0.500849444444444,18.602,3,0,0,2,""
45
- 51,2,72.92675452038,0.00906388888888889,0.661,1,0,0,2,""
46
- 54,1,0.0663753526190608,0.0150658333333333,0.001,2,0,0,1,""
47
- 55,1,83.3281350578336,0.0837172222222222,6.976,3,0,0,1,""
48
- 56,1,83.3281350578336,0.0837172222222222,6.976,3,0,0,1,""
49
- 58,6,96.2060288173573,0.350695277777778,33.739,2,0,0,2,""
50
- 61,1,3.23767476085357,0.0101925,0.033,2,0,0,2,""
51
- 63,1,0.582100412321125,0.00343583333333333,0.002,2,0,0,2,""
52
- 65,1,1.3868378812199,0.00432638888888889,0.006,2,0,0,2,""
53
- 67,1,0.180865138244603,0.0331738888888889,0.006,2,0,0,2,""
54
- 70,1,0.187306514971514,0.0320330555555556,0.006,2,0,0,2,""
55
- 71,1,2.7403516784654,0.00364916666666667,0.01,2,0,0,2,""
56
- 78,1,1.55177191415992,0.00902194444444445,0.014,2,0,0,2,""
57
- 99,1,0.891614214585237,0.0325252777777778,0.029,2,0,0,2,""
58
- 128,1,1.2619744642138,0.133124722222222,0.168,2,0,0,2,""
59
- 131,7,19.8334720520812,0.509290555555556,10.101,3,0,0,1,""
60
- 132,7,16.8934214662962,0.563710555555556,9.523,3,0,0,1,""
61
- 133,7,20.5827023203105,0.493181111111111,10.151,3,0,0,1,""
62
- 134,8,0.307454685867442,0.458604166666667,0.141,2,0,0,1,""
63
- 135,8,0.307454685867442,0.458604166666667,0.141,2,0,0,1,""
64
- 136,9,21.6717437150604,0.248941666666667,5.395,3,0,0,1,""
65
- 137,9,21.6717437150604,0.248941666666667,5.395,3,0,0,1,""
66
- 138,9,33.2011779795367,0.104604722222222,3.473,3,0,0,1,""
67
- 139,9,33.2011779795367,0.104604722222222,3.473,3,0,0,1,""
68
- 140,9,26.8955892313514,0.230483888888889,6.199,3,0,0,1,""
69
- 141,9,26.8955892313514,0.230483888888889,6.199,3,0,0,1,""
70
- 142,9,31.0853313305217,0.240402777777778,7.473,3,0,0,1,""
71
- 143,9,31.0853313305217,0.240402777777778,7.473,3,0,0,1,""
72
- 145,8,0.461929548480813,0.114736111111111,0.053,2,0,0,1,""
73
- 146,8,0.777134962438477,0.0193016666666667,0.015,2,0,0,1,""
74
- 147,8,1.28318369631319,0.355366111111111,0.456,2,0,0,1,""
75
- 148,8,1.48769112698506,0.00470527777777778,0.007,2,0,0,1,""
76
- 149,8,23.0511917163542,0.318378333333333,7.339,3,0,0,1,""
77
- 150,7,21.2391801941645,0.4751125,10.091,3,0,0,1,""
78
- 151,7,21.3008271746005,0.443175277777778,9.44,3,0,0,1,""
79
- 153,7,24.4305935108028,0.416649722222222,10.179,3,0,0,1,""
80
- 155,1,0.637205734851614,0.00470805555555556,0.003,2,0,0,2,""
81
- 156,3,17.9277713150431,0.0212519444444444,0.381,3,0,0,1,""
82
- 157,10,0.196122416279442,0.0866805555555556,0.017,1,0,0,2,""
83
- 158,10,0.0358392609147971,0.0558047222222222,0.002,1,0,0,2,""
84
- 159,1,1.03398755385352,0.00290138888888889,0.003,3,0,0,2,""
85
- 171,1,8.98564792345559,0.00400638888888889,0.036,1,3,1,2,"008 - SANTA TEREZA B INDUSTRIA"
86
- 173,1,0.727684346701164,0.0137422222222222,0.01,3,0,0,1,"carro"
87
- 177,1,3.45644242463035,0.00433972222222222,0.015,3,1,1,2,"040 - MARCOS FREIRE II DIA "
88
- 179,1,1.58068057080132,0.00506111111111111,0.008,3,1,2,2,"008 - SANTA TEREZA B INDUSTRIA"
89
- 180,1,0.254912373871482,0.0235375,0.006,2,0,0,1,"carro"
90
- 190,1,0.919540229885058,0.002175,0.002,2,0,0,1,"carro"
91
- 205,1,1.02290889717635,0.00782083333333333,0.008,3,2,1,2,"409 - RIOMAR DIA "
92
- 206,1,0.0601222485720966,0.0166327777777778,0.001,3,0,0,1,"carro"
93
- 207,1,0.0669367155853642,0.104576388888889,0.007,3,0,0,1,"carro"
94
- 208,1,13.4687985264441,0.294978055555556,3.973,3,0,0,1,"carro"
95
- 209,10,0.125918420126597,0.262074444444444,0.033,2,0,0,1,"carro"
96
- 210,10,23.784876752306,0.266513888888889,6.339,1,2,2,2,"051 - ATALAIA CENTRO "
97
- 248,10,24.003004419964,0.288463888888889,6.924,3,1,2,2,"051 - ATALAIA CENTRO "
98
- 32446,10,21.1954933253485,0.310773611111111,6.587,3,2,2,2,"051 - ATALAIA CENTRO "
99
- 32447,10,21.1954933253485,0.310773611111111,6.587,3,2,2,2,"051 - ATALAIA CENTRO "
100
- 37945,10,20.3702468927379,0.391600555555556,7.977,3,1,2,2,"051 - ATALAIA CENTRO "
101
- 37949,11,2.87800872909554,0.0128561111111111,0.037,1,2,2,2,"007 - FERNANDO COLLOR ATALAIA "
102
- 37950,10,18.7935954343691,0.12616,2.371,3,1,2,2,"100 1 - CIRCULAR SHOPPINGS "
103
- 37951,10,18.7935954343691,0.12616,2.371,3,1,2,2,"100 1 - CIRCULAR SHOPPINGS "
104
- 37953,10,14.9003918467513,0.462269722222222,6.888,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
105
- 37954,10,14.9003918467513,0.462269722222222,6.888,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
106
- 37955,10,25.5547121629502,0.442071111111111,11.297,3,1,2,2,"080 - BUGIO ATALAIA"
107
- 37956,10,6.76963371457903,0.168842222222222,1.143,3,0,0,1,"carro"
108
- 37957,10,22.4681840403171,0.369900833333333,8.311,3,0,0,1,"carro"
109
- 37960,1,13.5322194428727,0.467846388888889,6.331,1,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
110
- 37961,10,17.9720982129203,0.454092777777778,8.161,3,1,2,2,"080 - BUGIO ATALAIA"
111
- 37962,12,14.7120528108936,1.27915527777778,18.819,2,0,0,1,"carro"
112
- 37964,10,29.5409544460097,0.213940277777778,6.32,3,1,2,2,"051 - ATALAIA CENTRO"
113
- 37965,10,15.6202167120987,0.330469166666667,5.162,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
114
- 37967,1,0.00977939318865264,0.3067675,0.003,1,1,1,2,"040 - MARCOS FREIRE II DIA"
115
- 37969,1,16.7788951880074,0.193099722222222,3.24,1,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
116
- 37971,1,4.87144790257104,0.00862166666666667,0.042,3,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
117
- 37972,1,4.87144790257104,0.00862166666666667,0.042,3,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
118
- 37973,1,0.366662786637178,0.0190911111111111,0.007,2,0,0,1,"carro"
119
- 37979,1,0.559217096065508,0.05007,0.028,3,1,2,2,"034 - TERM ROD L BATISTA"
120
- 37982,1,4.68039003250271,0.00384583333333333,0.018,3,1,2,2,"034 - TERM ROD L BATISTA"
121
- 37983,1,1.60135225301366,0.00624472222222222,0.01,3,1,2,2,"034 - TERM ROD L BATISTA"
122
- 37989,10,18.7052756317992,0.436935555555556,8.173,1,1,1,2,"702 - AUGUSTO FRANCO BEIRA MAR"
123
- 37990,1,1.83416125334352,0.00218083333333333,0.004,3,1,2,2,"020 - PIABETA DIA"
124
- 37992,10,13.5582998412167,0.5305975,7.194,2,0,0,1,"carro"
125
- 37993,13,0.102032140124139,0.00980083333333333,0.001,3,1,2,2,"031 - EDUARDO GOMES DES. MAYNA"
126
- 37995,10,0.177183941021579,0.214466388888889,0.038,3,1,2,2,"001 - A FRANCO BUGIO"
127
- 37996,13,25.9576025205289,0.537453333333333,13.951,2,0,0,1,"carro"
128
- 37997,13,25.9576025205289,0.537453333333333,13.951,2,0,0,1,"carro"
129
- 37998,1,1.4140938015555,0.00353583333333333,0.005,3,0,0,1,"carro"
130
- 38000,1,16.685368043088,0.4456,7.435,3,2,2,2,"715 - TIJUQUINHA DES MAYNARD"
131
- 38001,10,10.9412890874282,0.766088888888889,8.382,3,1,2,2,"007 - FERNANDO COLLOR ATALAIA"
132
- 38002,12,30.3970446454738,0.804716388888889,24.461,3,0,0,1,"carro"
133
- 38003,14,6.75973582327488,0.487888888888889,3.298,2,0,0,1,"carro"
134
- 38012,15,25.6549384144076,0.3566175,9.149,2,0,0,1,"carro"
135
- 38013,15,17.6544921328944,0.525588611111111,9.279,1,0,0,1,"carro"
136
- 38015,10,24.5047380202986,0.198043333333333,4.853,1,2,2,2,"051 - ATALAIA CENTRO"
137
- 38016,1,11.5665726177222,0.441358055555556,5.105,1,3,1,2,"031 - EDUARDO GOMES DES. MAYNA"
138
- 38017,16,14.6308963601367,0.766733611111111,11.218,2,0,0,1,"carro"
139
- 38018,17,0.398475672427697,0.0175669444444444,0.007,3,1,2,2,"061 - M. FREIRE CENTRO"
140
- 38019,16,9.07685860763604,0.512401944444444,4.651,2,0,0,1,"carro"
141
- 38020,18,25.4513325533673,0.193978055555556,4.937,3,0,0,1,"carro"
142
- 38021,18,25.4513325533673,0.193978055555556,4.937,3,0,0,1,"carro"
143
- 38022,1,19.3767939170255,0.351399722222222,6.809,1,2,2,2,"031 - EDUARDO GOMES DES. MAYNA"
144
- 38024,10,7.13806787802501,0.580829444444444,4.146,3,1,2,2,"051 - ATALAIA CENTRO"
145
- 38030,1,1.78318709312199,0.00392555555555556,0.007,3,1,2,2,"031 - EDUARDO GOMES DES. MAYNA"
146
- 38031,19,0.172012210205695,0.459269722222222,0.079,3,1,2,2,"020 - PIABETA DIA"
147
- 38039,20,1.31161192942279,0.0160108333333333,0.021,3,1,2,2,"002 - FERNANDO COLLOR DIA"
148
- 38044,21,23.1993918615228,0.234230277777778,5.434,3,2,2,2,"001 - A FRANCO BUGIO"
149
- 38045,21,23.5029280217167,0.159426944444444,3.747,3,1,2,2,"001 - A FRANCO BUGIO"
150
- 38064,22,1.4451421176245,0.0927244444444444,0.134,3,2,2,2,"707 - CASTELO BRANCO CENTRO"
151
- 38069,23,0.536246276067527,0.0223777777777778,0.012,3,1,2,2,"001 - A FRANCO BUGIO"
152
- 38072,24,36.6470717274739,0.200070555555556,7.332,3,0,0,1,"carro"
153
- 38073,24,31.3673367669048,0.2558075,8.024,3,0,0,1,"carro"
154
- 38074,24,25.5623968267628,0.177526388888889,4.538,3,0,0,1,"carro"
155
- 38075,24,38.0281073650115,0.171346944444444,6.516,3,0,0,1,"carro"
156
- 38076,24,28.1424373938593,0.226703888888889,6.38,3,0,0,1,"carro"
157
- 38077,24,21.8120695151521,0.143773611111111,3.136,3,0,0,1,"carro"
158
- 38079,24,23.8285145972787,0.196906944444444,4.692,2,0,0,1,"carro"
159
- 38080,24,28.3366193216111,0.110457777777778,3.13,3,0,0,1,"carro"
160
- 38081,24,30.051731888125,0.218756111111111,6.574,2,0,0,1,"carro"
161
- 38082,24,30.1737883866982,0.255387222222222,7.706,3,0,0,1,"carro"
162
- 38084,25,1.15377219409012,0.0130008333333333,0.015,1,3,2,2,"721 - CASTELO BRANCO SUISSA"
163
- 38090,26,0.843222985633979,0.00711555555555556,0.006,3,1,2,2,"002 - FERNANDO COLLOR DIA"
164
- 38092,27,1.37299771167048,0.0167516666666667,0.023,3,1,2,2,"060 - PADRE PEDRO CAMPUS"
@@ -1,141 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "8b01d639-7417-4a71-a735-d519043691ac",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from sklearn.decomposition import PCA\n",
14
- "from sklearn.neighbors import KNeighborsClassifier\n",
15
- "from sklearn.model_selection import train_test_split\n",
16
- "from sklearn.preprocessing import StandardScaler, LabelEncoder\n",
17
- "from sklearn.metrics import accuracy_score"
18
- ]
19
- },
20
- {
21
- "cell_type": "code",
22
- "execution_count": null,
23
- "id": "03cbb0a7-0a95-4e08-94a9-028c664ecbe1",
24
- "metadata": {},
25
- "outputs": [],
26
- "source": [
27
- "file_path = \"Wilt.csv\"\n",
28
- "df = pd.read_csv(file_path)\n",
29
- "df.head()"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "0a4961c3-0fea-401b-a7f0-5f6fd0eb9e69",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "y = df.iloc[:, 0]\n",
40
- "X = df.iloc[:, 1:]"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": null,
46
- "id": "d6699a1a-5436-40d7-84b9-f2c3d5e87850",
47
- "metadata": {},
48
- "outputs": [],
49
- "source": [
50
- "if y.dtype == 'object':\n",
51
- " class_mapping = {label: idx for idx, label in enumerate(y.unique())}\n",
52
- " y = y.map(class_mapping)\n",
53
- "\n",
54
- "scaler = StandardScaler()\n",
55
- "X_scaled = scaler.fit_transform(X)\n",
56
- "\n",
57
- "pca = PCA(n_components=2)\n",
58
- "X_pca = pca.fit_transform(X_scaled)\n",
59
- "\n",
60
- "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
61
- "X_pca_train, X_pca_test, _, _ = train_test_split(X_pca, y, test_size=0.2, random_state=42)"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": null,
67
- "id": "0c6c271e-3725-4472-b082-a96aa9850ec6",
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "knn_original = KNeighborsClassifier(n_neighbors=5)\n",
72
- "knn_original.fit(X_train, y_train)\n",
73
- "y_pred_original = knn_original.predict(X_test)\n",
74
- "accuracy_original = accuracy_score(y_test, y_pred_original)\n",
75
- "\n",
76
- "knn_pca = KNeighborsClassifier(n_neighbors=5)\n",
77
- "knn_pca.fit(X_pca_train, y_train)\n",
78
- "y_pred_pca = knn_pca.predict(X_pca_test)\n",
79
- "accuracy_pca = accuracy_score(y_test, y_pred_pca)\n",
80
- "\n",
81
- "print(\"Accuracy without PCA:\", accuracy_original)\n",
82
- "print(\"Accuracy with PCA:\", accuracy_pca)"
83
- ]
84
- },
85
- {
86
- "cell_type": "code",
87
- "execution_count": null,
88
- "id": "5b129aaa-8fba-4dac-a4be-e94c277d40ae",
89
- "metadata": {},
90
- "outputs": [],
91
- "source": [
92
- "plt.figure(figsize=(6, 4))\n",
93
- "plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='coolwarm', alpha=0.5)\n",
94
- "plt.xlabel(\"Principal Component 1\")\n",
95
- "plt.ylabel(\"Principal Component 2\")\n",
96
- "plt.title(\"PCA Visualization of Wilt Dataset\")\n",
97
- "plt.colorbar(label=\"Class\")\n",
98
- "plt.show()"
99
- ]
100
- },
101
- {
102
- "cell_type": "code",
103
- "execution_count": null,
104
- "id": "a4b9dcf0-d091-4ece-9651-e84932fb1eba",
105
- "metadata": {},
106
- "outputs": [],
107
- "source": [
108
- "labels = ['Without PCA', 'With PCA']\n",
109
- "accuracies = [accuracy_original, accuracy_pca]\n",
110
- "plt.figure(figsize=(6, 4))\n",
111
- "plt.bar(labels, accuracies, color=['blue', 'orange'])\n",
112
- "plt.xlabel(\"Model\")\n",
113
- "plt.ylabel(\"Accuracy\")\n",
114
- "plt.title(\"KNN Classification Accuracy Comparison\")\n",
115
- "plt.ylim(0, 1)\n",
116
- "plt.show()"
117
- ]
118
- }
119
- ],
120
- "metadata": {
121
- "kernelspec": {
122
- "display_name": "Python 3 (ipykernel)",
123
- "language": "python",
124
- "name": "python3"
125
- },
126
- "language_info": {
127
- "codemirror_mode": {
128
- "name": "ipython",
129
- "version": 3
130
- },
131
- "file_extension": ".py",
132
- "mimetype": "text/x-python",
133
- "name": "python",
134
- "nbconvert_exporter": "python",
135
- "pygments_lexer": "ipython3",
136
- "version": "3.12.4"
137
- }
138
- },
139
- "nbformat": 4,
140
- "nbformat_minor": 5
141
- }