noshot 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +133 -0
- noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +139 -0
- noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +130 -0
- noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +141 -0
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +198 -0
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +209 -0
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +169 -0
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +181 -0
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +213 -0
- {noshot-0.3.6.dist-info → noshot-0.3.8.dist-info}/METADATA +1 -1
- noshot-0.3.8.dist-info/RECORD +53 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/1.ipynb +0 -255
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/2.ipynb +0 -399
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/3.ipynb +0 -276
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/4.ipynb +0 -265
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/1 - AirPassengers.ipynb +0 -563
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -688
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/3 - Bill Charge.ipynb +0 -819
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -573
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -421
- noshot-0.3.6.dist-info/RECORD +0 -53
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/1/Question.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/1/airfoil_self_noise.dat +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/2/Question.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/2/pop_failures.dat +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/3/Qu.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/3/go_track_tracks.csv +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/4/Wilt.csv +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/4/qu.txt +0 -0
- /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/1 - AirPassengers/AirPassengers.csv +0 -0
- /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/2 - Daily-total-female-births/daily-total-female-births.csv +0 -0
- /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/3 - Bill Charge/bill charge.csv +0 -0
- /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/4 - Daily min temperatures/daily-min-temperatures.csv +0 -0
- /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/5 - shampoo sales/shampoo_sales.csv +0 -0
- /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/Questions TMS 27 Feb 25.pdf +0 -0
- {noshot-0.3.6.dist-info → noshot-0.3.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.3.6.dist-info → noshot-0.3.8.dist-info}/WHEEL +0 -0
- {noshot-0.3.6.dist-info → noshot-0.3.8.dist-info}/top_level.txt +0 -0
@@ -1,276 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "5bd9b810-1eef-4f1c-8b46-86e8e8f013d1",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"from sklearn.decomposition import PCA\n",
|
14
|
-
"from sklearn.linear_model import LinearRegression\n",
|
15
|
-
"from sklearn.model_selection import train_test_split\n",
|
16
|
-
"from sklearn.preprocessing import StandardScaler\n",
|
17
|
-
"from sklearn.metrics import r2_score, mean_squared_error"
|
18
|
-
]
|
19
|
-
},
|
20
|
-
{
|
21
|
-
"cell_type": "code",
|
22
|
-
"execution_count": 2,
|
23
|
-
"id": "733faa11-400f-4160-8292-e8bd90948264",
|
24
|
-
"metadata": {},
|
25
|
-
"outputs": [
|
26
|
-
{
|
27
|
-
"data": {
|
28
|
-
"text/html": [
|
29
|
-
"<div>\n",
|
30
|
-
"<style scoped>\n",
|
31
|
-
" .dataframe tbody tr th:only-of-type {\n",
|
32
|
-
" vertical-align: middle;\n",
|
33
|
-
" }\n",
|
34
|
-
"\n",
|
35
|
-
" .dataframe tbody tr th {\n",
|
36
|
-
" vertical-align: top;\n",
|
37
|
-
" }\n",
|
38
|
-
"\n",
|
39
|
-
" .dataframe thead th {\n",
|
40
|
-
" text-align: right;\n",
|
41
|
-
" }\n",
|
42
|
-
"</style>\n",
|
43
|
-
"<table border=\"1\" class=\"dataframe\">\n",
|
44
|
-
" <thead>\n",
|
45
|
-
" <tr style=\"text-align: right;\">\n",
|
46
|
-
" <th></th>\n",
|
47
|
-
" <th>id</th>\n",
|
48
|
-
" <th>id_android</th>\n",
|
49
|
-
" <th>speed</th>\n",
|
50
|
-
" <th>time</th>\n",
|
51
|
-
" <th>distance</th>\n",
|
52
|
-
" <th>rating</th>\n",
|
53
|
-
" <th>rating_bus</th>\n",
|
54
|
-
" <th>rating_weather</th>\n",
|
55
|
-
" <th>car_or_bus</th>\n",
|
56
|
-
" <th>linha</th>\n",
|
57
|
-
" </tr>\n",
|
58
|
-
" </thead>\n",
|
59
|
-
" <tbody>\n",
|
60
|
-
" <tr>\n",
|
61
|
-
" <th>0</th>\n",
|
62
|
-
" <td>1</td>\n",
|
63
|
-
" <td>0</td>\n",
|
64
|
-
" <td>19.210586</td>\n",
|
65
|
-
" <td>0.138049</td>\n",
|
66
|
-
" <td>2.652</td>\n",
|
67
|
-
" <td>3</td>\n",
|
68
|
-
" <td>0</td>\n",
|
69
|
-
" <td>0</td>\n",
|
70
|
-
" <td>1</td>\n",
|
71
|
-
" <td>NaN</td>\n",
|
72
|
-
" </tr>\n",
|
73
|
-
" <tr>\n",
|
74
|
-
" <th>1</th>\n",
|
75
|
-
" <td>2</td>\n",
|
76
|
-
" <td>0</td>\n",
|
77
|
-
" <td>30.848229</td>\n",
|
78
|
-
" <td>0.171485</td>\n",
|
79
|
-
" <td>5.290</td>\n",
|
80
|
-
" <td>3</td>\n",
|
81
|
-
" <td>0</td>\n",
|
82
|
-
" <td>0</td>\n",
|
83
|
-
" <td>1</td>\n",
|
84
|
-
" <td>NaN</td>\n",
|
85
|
-
" </tr>\n",
|
86
|
-
" <tr>\n",
|
87
|
-
" <th>2</th>\n",
|
88
|
-
" <td>3</td>\n",
|
89
|
-
" <td>1</td>\n",
|
90
|
-
" <td>13.560101</td>\n",
|
91
|
-
" <td>0.067699</td>\n",
|
92
|
-
" <td>0.918</td>\n",
|
93
|
-
" <td>3</td>\n",
|
94
|
-
" <td>0</td>\n",
|
95
|
-
" <td>0</td>\n",
|
96
|
-
" <td>2</td>\n",
|
97
|
-
" <td>NaN</td>\n",
|
98
|
-
" </tr>\n",
|
99
|
-
" <tr>\n",
|
100
|
-
" <th>3</th>\n",
|
101
|
-
" <td>4</td>\n",
|
102
|
-
" <td>1</td>\n",
|
103
|
-
" <td>19.766679</td>\n",
|
104
|
-
" <td>0.389544</td>\n",
|
105
|
-
" <td>7.700</td>\n",
|
106
|
-
" <td>3</td>\n",
|
107
|
-
" <td>0</td>\n",
|
108
|
-
" <td>0</td>\n",
|
109
|
-
" <td>2</td>\n",
|
110
|
-
" <td>NaN</td>\n",
|
111
|
-
" </tr>\n",
|
112
|
-
" <tr>\n",
|
113
|
-
" <th>4</th>\n",
|
114
|
-
" <td>8</td>\n",
|
115
|
-
" <td>0</td>\n",
|
116
|
-
" <td>25.807401</td>\n",
|
117
|
-
" <td>0.154801</td>\n",
|
118
|
-
" <td>3.995</td>\n",
|
119
|
-
" <td>2</td>\n",
|
120
|
-
" <td>0</td>\n",
|
121
|
-
" <td>0</td>\n",
|
122
|
-
" <td>1</td>\n",
|
123
|
-
" <td>NaN</td>\n",
|
124
|
-
" </tr>\n",
|
125
|
-
" </tbody>\n",
|
126
|
-
"</table>\n",
|
127
|
-
"</div>"
|
128
|
-
],
|
129
|
-
"text/plain": [
|
130
|
-
" id id_android speed time distance rating rating_bus \\\n",
|
131
|
-
"0 1 0 19.210586 0.138049 2.652 3 0 \n",
|
132
|
-
"1 2 0 30.848229 0.171485 5.290 3 0 \n",
|
133
|
-
"2 3 1 13.560101 0.067699 0.918 3 0 \n",
|
134
|
-
"3 4 1 19.766679 0.389544 7.700 3 0 \n",
|
135
|
-
"4 8 0 25.807401 0.154801 3.995 2 0 \n",
|
136
|
-
"\n",
|
137
|
-
" rating_weather car_or_bus linha \n",
|
138
|
-
"0 0 1 NaN \n",
|
139
|
-
"1 0 1 NaN \n",
|
140
|
-
"2 0 2 NaN \n",
|
141
|
-
"3 0 2 NaN \n",
|
142
|
-
"4 0 1 NaN "
|
143
|
-
]
|
144
|
-
},
|
145
|
-
"execution_count": 2,
|
146
|
-
"metadata": {},
|
147
|
-
"output_type": "execute_result"
|
148
|
-
}
|
149
|
-
],
|
150
|
-
"source": [
|
151
|
-
"file_path = \"go_track_tracks.csv\"\n",
|
152
|
-
"df = pd.read_csv(file_path)\n",
|
153
|
-
"df.head()"
|
154
|
-
]
|
155
|
-
},
|
156
|
-
{
|
157
|
-
"cell_type": "code",
|
158
|
-
"execution_count": 3,
|
159
|
-
"id": "bd1254cc-242c-439b-9baf-8c0b08daf597",
|
160
|
-
"metadata": {},
|
161
|
-
"outputs": [],
|
162
|
-
"source": [
|
163
|
-
"df = df.select_dtypes(include=[np.number]).dropna()\n",
|
164
|
-
"\n",
|
165
|
-
"X = df.iloc[:, :-1].values # Features\n",
|
166
|
-
"y = df.iloc[:, -1].values # Target\n",
|
167
|
-
"\n",
|
168
|
-
"scaler = StandardScaler()\n",
|
169
|
-
"X_scaled = scaler.fit_transform(X)\n",
|
170
|
-
"\n",
|
171
|
-
"pca = PCA(n_components=2)\n",
|
172
|
-
"X_pca = pca.fit_transform(X_scaled)\n",
|
173
|
-
"\n",
|
174
|
-
"X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
|
175
|
-
"X_pca_train, X_pca_test, _, _ = train_test_split(X_pca, y, test_size=0.2, random_state=42)\n",
|
176
|
-
"\n",
|
177
|
-
"lr_original = LinearRegression()\n",
|
178
|
-
"lr_original.fit(X_train, y_train)\n",
|
179
|
-
"y_pred_original = lr_original.predict(X_test)\n",
|
180
|
-
"\n",
|
181
|
-
"lr_pca = LinearRegression()\n",
|
182
|
-
"lr_pca.fit(X_pca_train, y_train)\n",
|
183
|
-
"y_pred_pca = lr_pca.predict(X_pca_test)"
|
184
|
-
]
|
185
|
-
},
|
186
|
-
{
|
187
|
-
"cell_type": "code",
|
188
|
-
"execution_count": 4,
|
189
|
-
"id": "e0116213-f55e-4512-95a0-e1983bddcd30",
|
190
|
-
"metadata": {},
|
191
|
-
"outputs": [
|
192
|
-
{
|
193
|
-
"name": "stdout",
|
194
|
-
"output_type": "stream",
|
195
|
-
"text": [
|
196
|
-
"R2 Original: 0.4536613357527902\n",
|
197
|
-
"RMSE Original: 0.3694039035562187\n",
|
198
|
-
"R2 PCA: 0.11602948561898774\n",
|
199
|
-
"RMSE PCA: 0.4698826416123009\n"
|
200
|
-
]
|
201
|
-
}
|
202
|
-
],
|
203
|
-
"source": [
|
204
|
-
"r2_original = r2_score(y_test, y_pred_original)\n",
|
205
|
-
"rmse_original = np.sqrt(mean_squared_error(y_test, y_pred_original))\n",
|
206
|
-
"\n",
|
207
|
-
"r2_pca = r2_score(y_test, y_pred_pca)\n",
|
208
|
-
"rmse_pca = np.sqrt(mean_squared_error(y_test, y_pred_pca))\n",
|
209
|
-
"\n",
|
210
|
-
"print(\"R2 Original:\", r2_original)\n",
|
211
|
-
"print(\"RMSE Original:\", rmse_original)\n",
|
212
|
-
"print(\"R2 PCA:\", r2_pca)\n",
|
213
|
-
"print(\"RMSE PCA:\", rmse_pca)"
|
214
|
-
]
|
215
|
-
},
|
216
|
-
{
|
217
|
-
"cell_type": "code",
|
218
|
-
"execution_count": 5,
|
219
|
-
"id": "ba2a1ef3-1554-4164-9966-3bc59fdb69e3",
|
220
|
-
"metadata": {},
|
221
|
-
"outputs": [
|
222
|
-
{
|
223
|
-
"data": {
|
224
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAHqCAYAAAAZLi26AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACwFklEQVR4nOzdeVxU9f7H8dcsDAMMgigoEu5m5dZilllqm6Zl2V5WmmmrbdeWX2aZVjfbb1a37JZL3sp2LbuVra5pabvaIuYWIKjINjAMM3N+f5xAEUxEhsPyfj4eU5zDOXM+M4Df+Zzv9/v52gzDMBARERERERGRWme3OgARERERERGRxkpJt4iIiIiIiEiYKOkWERERERERCRMl3SIiIiIiIiJhoqRbREREREREJEyUdIuIiIiIiIiEiZJuERERERERkTBR0i0iIiIiIiISJkq6RURERERERMJESbcAMHv2bGw2G6tXr97nMZs2bcJmszF79uy6C6wWLVq0CJvNVv5wOBwkJiYybNiwv33djU3Zz3rTpk1WhxJWXq+Xhx9+mKOOOgqPx0NMTAxHHnkkDz30EF6v94Cey2azMXny5BrFMXDgQAYOHFijc6ur7Hd70aJF1Tqu7OFyuUhMTKRfv35MnDiRzZs31ziGjIwMJk+ezA8//FDj5xBpTNSuql1tTNq3b1/hZ+3xeDjuuOOYM2dOpWNDoRD//e9/Oe2002jZsiUREREkJSVx1llnsWDBAkKhUKVzfv75Z2w2GxEREWRmZh5QbHvGZbPZaNasGSeccAJz586t8ev9u2vV9PNAXbjyyitp3779fo8bOHBg+ftlt9uJjY2lc+fOXHjhhbz99ttV/oyq67XXXuOpp56q8fmNlZJuqbbk5GRWrFjBmWeeaXUoB+Whhx5ixYoVLFq0iHvvvZevvvqKAQMGsH79eqtDqxNnnnkmK1asIDk52epQwiYrK4vjjz+e+++/n8GDBzNv3jzmz5/PkCFDePDBBzn++OPJysqq9vOtWLGCsWPH1iiW5557jueee65G54ZL2d/Al19+yYwZMxg4cCAzZ87k8MMP59VXX63Rc2ZkZDBlyhQl3SIHQO1q49AU2lWAfv36sWLFClasWFF+o2HUqFE8//zz5cf4fD6GDh3KqFGjSEpK4vnnn+eLL75g+vTptGnThgsvvJAFCxZUeu6XXnoJgEAgUGUivz8XXHABK1as4KuvvmL69Onk5+czYsQIXnvttZq/4EauY8eO5e/Z/PnzueuuuyguLubCCy9k4MCB5OXl1eh5lXTvgyFiGMasWbMMwFi1apXVoRwUr9e7z+99+eWXBmC89dZbFfa//PLLBmBMmjQp3OFV8nfxSs0NGjTIcDqdxtKlSyt9b+nSpYbT6TQGDx78t88RCoWMoqKicIVYq8p+t7/88stqHbf334BhGMbOnTuNo446ynA6ncZPP/10wDGsWrXKAIxZs2Yd8LkijZHaVbWrjUm7du2MM888s8K+Xbt2Gc2aNTM6d+5cvu/66683AOPll1+u8nl+//1348cff6ywz+fzGS1atDB69eplpKSkGIceeugBxQYY48aNq7Bv06ZNBmD079//gJ6rOte67777avU5a9OoUaOMdu3a7fe4AQMGGN26davyezNnzjQA46KLLqpRDGeeeWa1Ymhq1NMt1VbVMLjJkydjs9lYu3Ytl156KXFxcbRq1Yqrrrqq0h0ywzB47rnnOPLII4mKiqJ58+ZccMEF/PHHHxWO+/TTTznnnHM45JBDcLvddO7cmWuvvZYdO3ZUOK7s2t999x0XXHABzZs3p1OnTgf8unr37g1Qqedz/fr1jBgxgqSkJCIjIzn88MP597//Xen8tWvXMmjQIKKjo0lMTGTcuHH873//qzTcd+DAgXTv3p0lS5ZwwgknEB0dzVVXXQVAfn4+t99+Ox06dMDlcpGSksKtt95aaRj0W2+9xXHHHUdcXBzR0dF07Nix/DnAHNL14IMP0rVrV6KiooiPj6dnz55Mmzat/Jh9DYObOXMmvXr1wu12k5CQwLnnnssvv/xS4Zgrr7wSj8dDWloaQ4cOxePxkJqaym233UZJScl+3+tQKMSjjz7KYYcdRmRkJElJSYwcOZI///yzwnFl79WqVas46aSTyl/rww8/vN8hT6tXr+aTTz5hzJgxnHjiiZW+f+KJJ3LVVVexcOFCvv322/L9NpuNG2+8kenTp3P44YcTGRnJyy+/XP69vYeTLVu2jL59++J2u0lJSeHee+/lpZdeqvTe7j28vOzv6PHHH+fJJ5+kQ4cOeDwe+vbty8qVKyu9lksuuYT27dsTFRVF+/btufTSSw9qGPi+JCQk8MILLxAIBPjXv/5Vvj8tLY3Ro0fTpUsXoqOjSUlJYdiwYfz888/lxyxatIhjjz0WgNGjR5cPWSt7z+rydYg0JGpX1a42hHZ1X+Lj4+natWv5v+Xbtm3jpZdeYvDgwYwcObLKc7p06ULPnj0r7Js/fz47d+5k7NixjBo1it9//51ly5bVKKYy7dq1IzExsdLvYHV/L/Lz87n66qtp0aIFHo+HM844g99//73SdfY1nLvsb2lPoVCIZ555pvzvNT4+nuOPP57333+/wnFvvPEGffv2JSYmBo/Hw+DBg/n+++8rXWP27Nl07dq1/G+pJiMEqjJ69GiGDh3KW2+9VaGd/ve//03//v1JSkoiJiaGHj168Oijj1JaWlp+zMCBA/nf//7H5s2bKwz5LzNlyhSOO+44EhISaNasGUcffTQzZszAMIxaib0+c1odgDQO559/PhdffDFjxozh559/ZsKECYDZ4JS59tprmT17NjfffDOPPPIIOTk53H///Zxwwgn8+OOPtGrVCoANGzbQt29fxo4dS1xcHJs2beLJJ5/kxBNP5OeffyYiIqLCtc877zwuueQSrrvuugOeqwuwceNGAA499NDyfevWreOEE06gbdu2PPHEE7Ru3ZqFCxdy8803s2PHDu677z4AMjMzGTBgADExMTz//PMkJSUxd+5cbrzxxiqvlZmZyeWXX86dd97JQw89hN1up6ioiAEDBvDnn39y991307NnT9auXcukSZP4+eef+eyzz7DZbKxYsYKLL76Yiy++mMmTJ+N2u9m8eTNffPFF+fM/+uijTJ48mXvuuYf+/ftTWlrKr7/+Sm5u7t++B1OnTuXuu+/m0ksvZerUqezcuZPJkyfTt29fVq1aRZcuXcqPLS0t5eyzz2bMmDHcdtttLFmyhAceeIC4uDgmTZr0t9e5/vrr+c9//sONN97IWWedxaZNm7j33ntZtGgR3333HS1btiw/dtu2bVx22WXcdttt3HfffcybN48JEybQpk2bfTbmYH64BBg+fPg+jxk+fDj/+c9/+PTTTznmmGPK98+fP5+lS5cyadIkWrduTVJSUpXn//TTT5x++ukceuihvPzyy0RHRzN9+nReeeWVv339e/r3v//NYYcdVj4E695772Xo0KFs3LiRuLg4wPxA3rVrVy655BISEhLIzMzk+eef59hjj2XdunUV3q/acOyxx5KcnMySJUvK92VkZNCiRQsefvhhEhMTycnJ4eWXX+a4447j+++/p2vXrhx99NHMmjWL0aNHc88995QPlT3kkEMseR0ijYHaVbWr9aVd3ZfS0lI2b95MYmIiAF9++SWlpaV/2/5WZcaMGURGRnLZZZeRk5PD1KlTmTFjRpU3zqsrLy+PnJwcjj/++PJ91f29MAyD4cOH89VXXzFp0iSOPfZYli9fzpAhQ2ocD5gJ+iuvvMKYMWO4//77cblcfPfddxVu1jz00EPcc8895e2p3+/nscce46STTuKbb77hiCOOAMyEe/To0Zxzzjk88cQT5OXlMXnyZEpKSrDbD75P9eyzz+bDDz9k6dKltGvXDjD/HRkxYkT5DYsff/yRf/7zn/z666/l/y4999xzXHPNNWzYsIF58+ZVet5NmzZx7bXX0rZtWwBWrlzJTTfdRHp6+n5/1xs8azvapb6ozjC4jRs3Vho+et999xmA8eijj1Y49oYbbjDcbrcRCoUMwzCMFStWGIDxxBNPVDhu69atRlRUlHHnnXdWec1QKGSUlpYamzdvNgDjvffeq3Tt6g5fKxsG98YbbxilpaVGUVGRsXz5cqNr167GEUccYezatav82MGDBxuHHHKIkZeXV+E5brzxRsPtdhs5OTmGYRjGHXfcYdhsNmPt2rUVjhs8eHCl4b4DBgwwAOPzzz+vcOzUqVMNu91e6b1/++23DcD48MMPDcMwjMcff9wAjNzc3H2+xrPOOss48sgj//Z9KPtZb9y40TAMc3hYVFSUMXTo0ArHbdmyxYiMjDRGjBhRvm/UqFEGYLz55psVjh06dKjRtWvXv73uL7/8YgDGDTfcUGH/119/bQDG3XffXb6v7L36+uuvKxx7xBFH7HdY+HXXXWcAxq+//rrfWK6//vryfYARFxdX/rPdE3sNJ7vwwguNmJgYY/v27eX7gsGgccQRR1R4b8tey4ABA8q3y/6OevToYQQCgfL933zzjQEYc+fO3WfcgUDAKCwsNGJiYoxp06aV76+N4eVljjvuOCMqKupvY/D7/UaXLl2Mf/zjH+X7D2R4+b5eh0hjonZV7WpjaVcNwxxePnToUKO0tNQoLS01Nm7cWB77HXfcYRiGYTz88MMGYHz88cf7fb4ymzZtMux2u3HJJZdUiDUmJsbIz8+v1nOUvQelpaWG3+83fv/9d+Pss882YmNjjdWrV5cfV93fi48++sgAKrVP//znPyt9HtjXcO6yv6UyS5YsMQBj4sSJ+3wdW7ZsMZxOp3HTTTdV2F9QUGC0bt26fLh3MBg02rRpYxx99NHl/x4YhvleRkREHPTwcsPY/R488sgjVX4/GAwapaWlxpw5cwyHw1Hhs1N1h5eXPcf9999vtGjRosJraYw0vFxqxdlnn11hu2fPnvh8PrKzswH44IMPsNlsXH755QQCgfJH69at6dWrV4XhYtnZ2Vx33XWkpqbidDqJiIgov8u297AsMHsDDsTFF19MREQE0dHR9OvXj/z8fP73v/8RHx8PmEVAPv/8c84991yio6MrxDt06FB8Pl/5MODFixfTvXv38juPZS699NIqr928eXNOOeWUCvs++OADunfvzpFHHlnhWoMHD64wlK5s+O5FF13Em2++SXp6eqXn79OnDz/++CM33HADCxcuJD8/f7/vx4oVKyguLubKK6+ssD81NZVTTjmFzz//vMJ+m83GsGHDKuzr2bPnfocKf/nllwCVrtOnTx8OP/zwStdp3bo1ffr0OeDrVIfx1zCmvYd+nXLKKTRv3ny/5y9evJhTTjmlQg+C3W7noosuqnYMZ555Jg6Ho3y7bLjdnq+vsLCQ//u//6Nz5844nU6cTicejwev11vl30JtMPYa4hUIBHjooYc44ogjcLlcOJ1OXC4X69evr3YMVrwOkYZO7ara1frWrn744YdEREQQERFBhw4dePPNN7npppt48MEHq3V+VWbNmkUoFKowpP+qq67C6/XyxhtvlO8LBoMVfpZ7D4l/7rnniIiIwOVyceihh/LRRx8xd+7cCqPZqvt7Ufa+XnbZZRWuMWLEiBq/zo8++giAcePG7fOYhQsXEggEGDlyZIX43G43AwYMKI/vt99+IyMjgxEjRlT4HNOuXTtOOOGEGse4p70/CwB8//33nH322bRo0QKHw0FERAQjR44kGAxWOfS+Kl988QWnnXYacXFx5c8xadIkdu7cWf5vW2OlpFtqRYsWLSpsR0ZGAlBcXAyY87oMw6BVq1bl/2CXPVauXFk+rywUCjFo0CDeffdd7rzzTj7//HO++eab8sa47Pn2dKDVQh955BFWrVrF4sWLmThxIllZWQwfPrx87tTOnTsJBAI888wzlWIdOnQoQHm8O3fuLB++t6eq9u0r1qysLH766adK14qNjcUwjPJr9e/fn/nz55f/g3zIIYfQvXv3CktiTJgwgccff5yVK1cyZMgQWrRowamnnvq3S7fs3Llzn7G1adOm/PtloqOjcbvdFfZFRkbi8/n2eY2aXGfv36my61T1O7CnsiFLZcMbq1I2lCs1NbXC/ur+Lh3oz70q+/ubAbOBf/bZZxk7diwLFy7km2++YdWqVSQmJu73faipLVu20KZNm/Lt8ePHc++99zJ8+HAWLFjA119/zapVq+jVq1e1Y7DidYg0dGpXK1K7evDXqWm7WubEE09k1apVrF69mnXr1pGbm8vTTz+Ny+UCqtf+7ikUCjF79mzatGnDMcccQ25uLrm5uZx22mnExMQwY8aM8mM7depU4Wd5//33V3iuiy66iFWrVvHVV1/xwgsvEBsbyyWXXFKhgn51fy927tyJ0+ms9H61bt26Wq+rKtu3b8fhcPztc5TNPz/22GMrxfjGG29UiG9f8RxMjHsquxFT9nlgy5YtnHTSSaSnpzNt2jSWLl3KqlWrymsyVOd36JtvvmHQoEEAvPjiiyxfvpxVq1YxceLEaj9HQ6Y53VInWrZsic1mY+nSpeUfHPZUtm/NmjX8+OOPzJ49m1GjRpV/Py0tbZ/PvXdv5f507NixvMhL//79iYqK4p577uGZZ57h9ttvp3nz5jgcDq644op93pHs0KEDYDZgVS09tW3btmrH2rJlS6KioirM09v7+2XOOecczjnnHEpKSli5ciVTp05lxIgRtG/fnr59++J0Ohk/fjzjx48nNzeXzz77jLvvvpvBgwezdetWoqOjKz1/WaNS1bqYGRkZtTbfds/rlM31Dcd1Tj/9dO6++27mz5/PGWecUeUx8+fPLz92T9X9XTrQn3tN5OXl8cEHH3Dfffdx1113le8vKSkhJyen1q6zp2+++YZt27YxZsyY8n2vvPIKI0eO5KGHHqpw7I4dO8p7sf6OFa9DpClQu7rvWNWu1u51ysTFxZX/nKty8sknExERwfz587nuuuv2+3yfffZZeXJX1Q2BlStXsm7dOo444ggWLFhQobDcnjeHARITE8tj69u3L4cffjgDBgzgH//4Bx988AFQ/d+LFi1aEAgE2LlzZ4W4qvoddLvdVRa827tIYWJiIsFgkG3btu3zplbZ9d9+++3ykShVKYupqnhq63PI+++/j81mo3///oD5ucnr9fLuu+9WiO1Algl9/fXXiYiI4IMPPqhwk6nsM1ljp55uqRNnnXUWhmGQnp5O7969Kz169OgB7G489/4A8cILL4QttjvvvJPOnTvz8MMPU1BQQHR0NCeffDLff/89PXv2rDLesn/wBgwYwJo1a1i3bl2F53z99derff2zzjqLDRs20KJFiyqvVVVVzMjISAYMGMAjjzwCUGVVy/j4eC644ALGjRtHTk5OpaqqZfr27UtUVFSlImB//vknX3zxBaeeemq1X8vfKRv+t/d1Vq1axS+//FJr1+nduzeDBg1ixowZLF++vNL3ly1bxsyZMznjjDMqDDs7EAMGDOCLL76o0KiGQiHeeuutGse9t7JiLnv/Lbz00ksEg8Fau06ZnJwcrrvuOiIiIvjHP/5RIY69Y/jf//5XaRhmVT31ZefX5esQaSrUru6b2tXabVerq3Xr1uUjmvZVSXvDhg389NNPgFlAzW63M3/+fL788ssKj//+97/A7sKBPXr0qPAz3Dvp3ttJJ53EyJEj+d///seKFSuA6v9enHzyyQC8+uqrFZ6zqjW/27dvT3Z2doUbRX6/n4ULF1Y4rqwI255rmu9t8ODBOJ1ONmzYUGV8ZTcVunbtSnJyMnPnzq0wDHzz5s189dVXf/u+VMesWbP46KOPuPTSS8tHL1T174hhGLz44ouVzt/X6AmbzYbT6awwta64uLj8Z93YqadbKvjiiy+qbETKhn/VVL9+/bjmmmsYPXo0q1evpn///sTExJCZmcmyZcvo0aMH119/PYcddhidOnXirrvuwjAMEhISWLBgQXlF6nCIiIjgoYce4qKLLmLatGncc889TJs2jRNPPJGTTjqJ66+/nvbt21NQUEBaWhoLFiwor2x66623MnPmTIYMGcL9999Pq1ateO211/j1118BqlVB8tZbb+Wdd96hf//+/OMf/6Bnz56EQiG2bNnCJ598wm233cZxxx3HpEmT+PPPPzn11FM55JBDyM3NZdq0aURERDBgwAAAhg0bRvfu3enduzeJiYls3ryZp556inbt2lWolLqn+Ph47r33Xu6++25GjhzJpZdeys6dO5kyZQput7u8ouzB6tq1K9dccw3PPPMMdrudIUOGlFdZTU1NrZDoHaw5c+Zw2mmnMWjQIG6++ebyDx5ffPEF06ZN47DDDquwRM+BmjhxIgsWLODUU09l4sSJREVFMX369PIqv7VRObRZs2b079+fxx57jJYtW9K+fXsWL17MjBkzqtXD/HfWr1/PypUrCYVC7Ny5k6+//poZM2aQn5/PnDlz6NatW/mxZ511FrNnz+awww6jZ8+efPvttzz22GOVelU6depEVFQUr776Kocffjgej4c2bdrQpk2bsL0OkYZA7ara1cbQrlbXk08+yR9//MGVV17JwoULOffcc2nVqhU7duzg008/ZdasWbz++uukpKTw3nvvMXjwYM4555wqn+tf//oXc+bMYerUqZUq7FfHAw88wBtvvMG9997LZ599Vu3fi0GDBtG/f3/uvPNOvF4vvXv3Zvny5VUmhxdffDGTJk3ikksu4Y477sDn8/H0009Xuql80kknccUVV/Dggw+SlZXFWWedRWRkJN9//z3R0dHcdNNNtG/fnvvvv5+JEyfyxx9/cMYZZ9C8eXOysrL45ptviImJYcqUKdjtdh544AHGjh3Lueeey9VXX01ubi6TJ08+oOHlxcXFFaaZ/PHHH8yfP58PPviAAQMGMH369PJjTz/9dFwuF5deeil33nknPp+P559/nl27dlV63h49evDuu+/y/PPPc8wxx2C32+nduzdnnnkmTz75JCNGjOCaa65h586dPP7441WO1GmU6r52m9RHZZU39/XYuHHj31ZZ3bOK857Pt2cVZ8MwjJkzZxrHHXecERMTY0RFRRmdOnUyRo4cWaG65Lp164zTTz/diI2NNZo3b25ceOGFxpYtWypVjNzXtfdlf5WbjzvuOKN58+blVUw3btxoXHXVVUZKSooRERFhJCYmGieccILx4IMPVjhvzZo1xmmnnWa43W4jISHBGDNmjPHyyy8bgPHjjz+WH/d3lSILCwuNe+65x+jatavhcrmMuLg4o0ePHsY//vEPY9u2bYZhGMYHH3xgDBkyxEhJSTFcLpeRlJRkDB061Fi6dGn58zzxxBPGCSecYLRs2dJwuVxG27ZtjTFjxhibNm0qP2ZfP5uXXnrJ6NmzZ/n1zznnnErVY0eNGmXExMRUin/vKp37EgwGjUceecQ49NBDjYiICKNly5bG5ZdfbmzdurXCcft6r/ZVJbQqhYWFxkMPPWQceeSRRnR0tBEdHW307NnTePDBB43CwsJKxwPGuHHjqnyuvX/3DMMwli5dahx33HFGZGSk0bp1a+OOO+4wHnnkkUqVcPdVvfyxxx7b73X+/PNP4/zzzzeaN29uxMbGGmeccYaxZs0ao127dsaoUaPKjzvQ6uVlD6fTabRo0cLo27evcffdd1f4PSmza9cuY8yYMUZSUpIRHR1tnHjiicbSpUsrvS7DMIy5c+cahx12mBEREVHhtVT3dYg0JmpX1a42pna1Xbt2xplnnrnf4wzDXKHi5ZdfNk455RQjISHBcDqdRmJiojFkyBDjtddeM4LBoPHUU08ZgDF//vx9Ps/06dMNwHjnnXf+9np/137fcccdBmAsXrzYMIzq/V4YhmHk5uYaV111lREfH29ER0cbp59+uvHrr79W+Xngww8/NI488kgjKirK6Nixo/Hss89W+fMLBoPGv/71L6N79+7l1+7bt6+xYMGCCsfNnz/fOPnkk41mzZoZkZGRRrt27YwLLrjA+Oyzzyoc99JLLxldunQxXC6XceihhxozZ86s9s+zrJp92SMmJsbo2LGjccEFFxhvvfWWEQwGK52zYMECo1evXobb7TZSUlKMO+64o7zK+Z6fP3JycowLLrjAiI+PN2w2W4X3YebMmUbXrl2NyMhIo2PHjsbUqVONGTNmVPn309jYDKMJrEYuUseuueYa5s6dy86dO8sLjEjjN2jQIDZt2lTtKp4iIlI9aldFpCHT8HKRg3T//ffTpk0bOnbsSGFhIR988AEvvfQS99xzjz4YNGLjx4/nqKOOIjU1lZycHF599VU+/fTTCtVWRUTkwKldFZHGRkm3yEGKiIjgscce488//yQQCNClSxeefPJJbrnlFqtDkzAKBoNMmjSJbdu2YbPZOOKII/jvf//L5ZdfbnVoIiINmtpVEWlsNLxcREREREREJEy0ZJiIiIiIiIhImCjpFhEREREREQkTJd0iIiIiIiIiYdLkCqmFQiEyMjKIjY3FZrNZHY6IiEglhmFQUFBAmzZtsNub7v1xtdkiIlKfVbe9bnJJd0ZGBqmpqVaHISIisl9bt27lkEMOsToMy6jNFhGRhmB/7XWTS7pjY2MB841p1qyZxdGIiIhUlp+fT2pqanmb1VSpzRYRkfqsuu11k0u6y4anNWvWTA24iIjUa019SLXabBERaQj211433YliIiIiIiIiImGmpFtEREREREQkTJR0i4iIiIiIiISJkm4RERERERGRMFHSLSIiIiIiIhImSrpFREREREREwkRJt4iIiIiIiEiYKOkWERERERERCRMl3SIiIiIiIiJhoqRbREREREREJEyUdIuIiIiIiIiEiZJuERGRgxAKGWzNKeLXbflszSkiFDKsDqnWTZ06lWOPPZbY2FiSkpIYPnw4v/32237PW7x4Mccccwxut5uOHTsyffr0OohWRESkfnFaHYCIiEhDlZZdwMI1WWzYXogvEMTtdNAp0cPg7q3onBRrdXi1ZvHixYwbN45jjz2WQCDAxIkTGTRoEOvWrSMmJqbKczZu3MjQoUO5+uqreeWVV1i+fDk33HADiYmJnH/++XX8CkRERKxjMwyj8d2S/xv5+fnExcWRl5dHs2bNrA5HREQaqLTsAmYt30SO109ynJtol5Mif4DMPB8JMS5G92tf48S7vrdV27dvJykpicWLF9O/f/8qj/m///s/3n//fX755Zfyfddddx0//vgjK1asqNZ16vv7ICIiTVt12ykNLxcRETlAoZDBwjVZ5Hj9dEnyEOuOwGG3EeuOoEuShxyvn0/WZjXKoeYAeXl5ACQkJOzzmBUrVjBo0KAK+wYPHszq1aspLS0Na3wiIiL1iZJuERGRA5SeW8yG7YUkx7mx2WwVvmez2UiOc5OWXUh6brFFEYaPYRiMHz+eE088ke7du+/zuG3bttGqVasK+1q1akUgEGDHjh1VnlNSUkJ+fn6Fh4iISK3w+2H9eksuraRbRETkAHn9AXyBINGuqkujRLkclASCeP2BOo4s/G688UZ++ukn5s6du99j974hUTajbe/9ZaZOnUpcXFz5IzU19eADFhER2bkTBg2Ck06CrVvr/PJKukVERA5QjMuJ2+mgaB9JdbE/SKTTQcw+kvKG6qabbuL999/nyy+/5JBDDvnbY1u3bs22bdsq7MvOzsbpdNKiRYsqz5kwYQJ5eXnlj60WfDASEZFG5tdf4bjjYPFiKCqCtLQ6D6FxfRoQERGpAynxUXRK9LAmIw9PpLNCz61hGGTm+eiREkdKfJSFUdYewzC46aabmDdvHosWLaJDhw77Padv374sWLCgwr5PPvmE3r17ExERUeU5kZGRREZG1krMIiIifPIJXHQR5OVB+/awYAH8zdSocFFPt4iIyAGy220M7t6KhBgX67MLKfCVEgiFKPCVsj67kIQYF4O6tcJur3oYdUMzbtw4XnnlFV577TViY2PZtm0b27Zto7h495z1CRMmMHLkyPLt6667js2bNzN+/Hh++eUXZs6cyYwZM7j99tuteAkiItLU/PvfMHSomXD36wdff21Jwg1KukVERGqkc1Iso/u1p3ubOHKLStm0w0tuUSk9UuIOarmw+uj5558nLy+PgQMHkpycXP544403yo/JzMxky5Yt5dsdOnTgww8/ZNGiRRx55JE88MADPP3001qjW0REwm/GDLjxRggGYeRI+PxzSEqyLByt0y0iInIQQiGD9NxivP4AMS4nKfFRB93DrbbKpPdBRERqpLAQ+vc3h5b/3//BPgp4HqzqtlOa0y0iInIQ7HYbqQnRVochIiLStGVmQuvWZoLt8cDKleByVTgkHDfKq0NJt4iIiIiIiDRcixbB+efD7bfDhAnmvr0S7rTsAhauyWLD9kJ8gSBup4NOiR4Gd28V9ilhmtMtIiIiIiIiDdOMGXD66ZCTA++9B6WllQ5Jyy5g1vJNrMnIIz46go4tPcRHR7AmI49ZyzeRll0Q1hCVdIuIiIiIiEjDEgyaPdtjx0IgABdfDF9+CXstSxkKGSxck0WO10+XJA+x7ggcdhux7gi6JHnI8fr5ZG0WoVD4Sp0p6RYREREREZGGo6AAhg+HJ54wt++7D+bOhaioSoem5xazYXshyXFubHsVVLPZbCTHuUnLLiQ9t7jSubVFc7pFRERERESkYQgEYOBA+O47cLth1iy45JJ9Hu71B/AFgkS7KifkAFEuB1n5Prz+QJgCVk+3iIiIiIiINBROJ1x3nVmpfNGiv024AWJcTtxOB0X7SKqL/UEinQ5iXOHrj1bSLSIiIiIiIvVbwR7Fzq6+Gn75BY47br+npcRH0SnRQ2aeD8OoOG/bMAwy83x0TvKQEl91T3htUNItIiIiIiIi9VMoBBMnwlFHwc6du/fHx1frdLvdxuDurUiIcbE+u5ACXymBUIgCXynrswtJiHExqFursK7XraRbRERERERE6h+vFy68EB56CDZsgPnza/Q0nZNiGd2vPd3bxJFbVMqmHV5yi0rpkRLH6H7tw75OtwqpiYiIiIiISP2Sng5nn20WTIuIgBdfhFGjavx0nZNi6TjQQ3puMV5/gBiXk5T4qLD2cJdR0i0iIiIiIiL1x+rVZsKdmQktW8K8eXDiiQf9tHa7jdSE6FoI8MAo6RYREREREZH64Ysv4KyzoLgYunWDBQugQ4daeepQyFBPt4iIiIiIiDRhvXpBmzZw6KHw+uvQrFmtPG1adgEL12SxYXshvkAQt9NBp0QPg7u30pxuERERERERacQCAXP9bYAWLWDxYmjVave+g5SWXcCs5ZvI8fpJjnMT7YqiyB9gTUYeGXnFYS+mpurlIiIiIiIiYo1t2+Ckk8xCaWVSUmot4Q6FDBauySLH66dLkodYdwQOu41YdwRdkjzkeP18sjaLUMjY/5PVkJJuERERERERqXs//gh9+sDKlXDPPVBQUOuXSM8tZsP2QpLj3NhsFedv22w2kuPcpGUXkp5bXOvXLqOkW0REREREROrW++9Dv36wdas5f3vpUoit/SHeXn8AXyBItKvqnvMol4OSQBCvP1Dr1y6jpFtERERERETqhmHAY4/B8OHg9cKpp5o93YceGpbLxbicuJ0OivaRVBf7g0Q6HcTsIymvDUq6RUREREREJPwMA66+Gu680/z6uuvgo4+gefOwXTIlPopOiR4y83wYRsV524ZhkJnno3OSh5T4qLDFYGnSPXXqVI499lhiY2NJSkpi+PDh/Pbbb397zrvvvsvpp59OYmIizZo1o2/fvixcuLCOIhYREREREZEasdmgY0ew2+Hpp+G55yAiIqyXtNttDO7eioQYF+uzCynwlRIIhSjwlbI+u5CEGBeDurUK63rdlibdixcvZty4caxcuZJPP/2UQCDAoEGD8Hq9+zxnyZIlnH766Xz44Yd8++23nHzyyQwbNozvv/++DiMXERERERGRatmzh3nCBPj2W7jpJjMJrwOdk2IZ3a893dvEkVtUyqYdXnKLSumREhf25cIAbMbefewW2r59O0lJSSxevJj+/ftX+7xu3bpx8cUXM2nSpP0em5+fT1xcHHl5eTSrpYXWRUREapPaKpPeBxGRRmDhQpg6FT74ADweS0MJhQzSc4vx+gPEuJykxEcdVA93ddupejWnOy8vD4CEhIRqnxMKhSgoKDigc0RERERERCSMDAOeeQaGDoXFi+HRR62OCLvdRmpCNIe1bkZqQnRYh5TvKXwl2g6QYRiMHz+eE088ke7du1f7vCeeeAKv18tFF11U5fdLSkooKSkp387Pzz/oWEVERERERGQfSkvhllvg+efN7SuvhIkTLQ3JSvUm6b7xxhv56aefWLZsWbXPmTt3LpMnT+a9994jKSmpymOmTp3KlClTaitMERERERER2Zddu+Cii+Czz8w52488ArffXmfzt/9ObQ8vr656Maf7pptuYv78+SxZsoQOHTpU65w33niD0aNH89Zbb3HmmWfu87iqerpTU1M1P0xEROotzWU26X0QEWlgNmwwh5P//jvExMBrr8HZZ1sdFQBp2QUsXJPFhu2F+AJB3E4HnRI9DO7eqsaF1KrbTlna020YBjfddBPz5s1j0aJF1U64586dy1VXXcXcuXP/NuEGiIyMJDIysjbCFRERERERkX1xuSAvD1JTYcEC6NXL6ogAM+GetXwTOV4/yXFuol1RFPkDrMnIIyOvOOwVzC1NuseNG8drr73Ge++9R2xsLNu2bQMgLi6OqChzcfIJEyaQnp7OnDlzADPhHjlyJNOmTeP4448vPycqKoq4uDhrXoiIiIiIiEhTl5oKH38MrVubj3ogFDJYuCaLHK+fLkkebH8Nc491R+CJdLI+u5BP1mbRsaUnbEPNLa1e/vzzz5OXl8fAgQNJTk4uf7zxxhvlx2RmZrJly5by7RdeeIFAIMC4ceMqnHPLLbdY8RJERERERESapmAQbrsN3nln974jj6w3CTdAem4xG7YXkhznLk+4y9hsNpLj3KRlF5KeWxy2GCwfXr4/s2fPrrC9aNGi8AQjIiIiIiIi1ZOfD5deCh9+CNOnw4knQqtWVkdVidcfwBcIEu2KqvL7US4HWfk+vP5A2GKoV+t0i4iIiIiISD23aRP062cm3FFRMHt2vUy4AWJcTtxOB0X7SKqL/UEinQ5iXOHrj1bSLSIichBCIYOtOUX8ui2frTlFhEKWLwoiIiISPsuXQ58+sGYNJCfDkiVw4YVWR7VPKfFRdEr0kJnnqzTS2jAMMvN8dE7ykBJfdU94bag363SLiIg0NOFYfkRERKTe+u9/YexY8Pvh6KPh/fchJcXqqP6W3W5jcPdWZOQVsz7bnNsd5XJQ7A+SmecjIcbFoG6twrpet3q6RUREaqBs+ZE1GXnER0fQsaWH+OgI1mTkMWv5JtKyC6wOUUREpHZ9/72ZcJ93ntnDXc8T7jKdk2IZ3a893dvEkVtUyqYdXnKLSumREhf25cJAPd0iIiIHrD4sPyIiIlLnHnvMXHv7iivA3rD6bzsnxdJxoIf03GK8/gAxLicp8VF10k43rHdKRESkHqgPy4+IiIiE3Z9/wrhxZu82gMMBo0Y1uIS7jN1uIzUhmsNaNyM1IbrOboyrp1tEROQA1YflR0RERMJq1So4+2zYtg0iI+HJJ62OqMFqmLcoRERELFQflh8REREJmzffhP79zYS7e3e4+WarI2rQlHSLiIgcoPqw/IiIiEitMwy4/364+GLw+eDMM80lwtq3tzqyBk1Jt4iIyAEqW34kIcbF+uxCCnylBEIhCnylrM8urJPlR0RERGpVcTGMGAH33Wdujx8P770HzZpZG1cjoHFvIiIiNVC2/EjZOt1Z+T4inQ56pMQxqJvW6RYRkQbmzz/ho4/A6YTnnzfX45ZaoaRbRESkhqxcfkRERKRWdekCb79tJt0DB1odTaOipFtEROQglC0/IiIi0uCUDR8/+WRz+7TTrI0nzEIhw5Ib5Uq6RUREREREmhLDgMceg7vugvh4+P57aNfO6qjCKi27oHxKmC8QxO100CnRw+Du4Z8SpqRbRERERESkqSgpgeuug9mzze1LL4WUFEtDCre07AJmLd9EjtdPcpybaFcURf4AazLyyMgrZnS/9mFNvJV0i4iIiIiINAXbt8N558GyZeBwwLRpMG6c1VGFVShksHBNFjleP12SPNhs5nDyWHcEnkgn67ML+WRtFh1besI21FxJt4iIiIiISGO3di0MGwYbN0JcHLz5JgwaZHVUYZeeW8yG7YUkx7nLE+4yNpuN5Dg3admFpOcWh61Gi9bpFhERERERaeyefdZMuDt1ghUrmkTCDeD1B/AFgkS7qu5vjnI5KAkE8foDYYtBPd0iIiIiIiKN3VNPQVQUTJwILVpYHU2diXE5cTsdFPkDxLojKn2/2B8k0ukgZh9JeW1QT7eIiIiIiEhjU1oKL7wAoZC5HRkJTz7ZpBJugJT4KDolesjM82EYRoXvGYZBZp6PzkkeUuKjwhaDkm4REREREZHGJCcHzjjDrFI+caLV0VjKbrcxuHsrEmJcrM8upMBXSiAUosBXyvrsQhJiXAzq1iqs63VreLmIiIiIiEhj8fvvcNZZsH49eDxwwglWR2S5zkmxjO7Xvnyd7qx8H5FOBz1S4hjUTet0i4iIiIiISHV88QVccAHs2gVt28KCBdCzp9VR1Qudk2LpONBDem4xXn+AGJeTlPiosPZwl9HwchEREdmvJUuWMGzYMNq0aYPNZmP+/Pn7PefVV1+lV69eREdHk5yczOjRo9m5c2f4gxURaYr+8x8YPNhMuPv2hW++UcK9F7vdRmpCNIe1bkZqQnSdJNygpFtERESqwev10qtXL5599tlqHb9s2TJGjhzJmDFjWLt2LW+99RarVq1i7NixYY5URKQJ2rIFbrkFAgG47DKzx7tVK6ujkr9oeLmIiIjs15AhQxgyZEi1j1+5ciXt27fn5ptvBqBDhw5ce+21PProo+EKUUSk6WrbFmbNgg0b4O67wVY3PbhSPerpFhERkVp3wgkn8Oeff/Lhhx9iGAZZWVm8/fbbnHnmmVaHJiLSOPzxB/z44+7tSy4xK5Ur4a53lHSLiIhIrTvhhBN49dVXufjii3G5XLRu3Zr4+HieeeaZfZ5TUlJCfn5+hYeIiFRh6VI47jg480zIyLA6GtkPJd0iIiJS69atW8fNN9/MpEmT+Pbbb/n444/ZuHEj11133T7PmTp1KnFxceWP1NTUOoxYRKSBePllOPVU2LEDWre2OpoGJRQy2JpTxK/b8tmaU0QoZNTJdW2GYdTNleqJ/Px84uLiyMvLo1mzZlaHIyIiUkl9b6tsNhvz5s1j+PDh+zzmiiuuwOfz8dZbb5XvW7ZsGSeddBIZGRkkJydXOqekpISSkpLy7fz8fFJTU+vt+yAiUqdCIXO+9iOPmNsXXGAm4NHR1sbVQKRlF5Sv0+0LBHE7HXRK9DC4e83X6a5ue61CaiIiIlLrioqKcDorfsxwOBwA7Ot+f2RkJJGRkWGPTUSkwSkshMsvh/feM7fvuQemTAG7Bi5XR1p2AbOWbyLH6yc5zk20K4oif4A1GXlk5BUzul/7Gife1aGkW0RERParsLCQtLS08u2NGzfyww8/kJCQQNu2bZkwYQLp6enMmTMHgGHDhnH11Vfz/PPPM3jwYDIzM7n11lvp06cPbdq0sepliIg0TJMmmQl3ZCTMmGEuCybVEgoZLFyTRY7XT5ckD7a/Cs3FuiPwRDpZn13IJ2uz6NjSE7Z1u5V0i4iIyH6tXr2ak08+uXx7/PjxAIwaNYrZs2eTmZnJli1byr9/5ZVXUlBQwLPPPsttt91GfHw8p5xyCo+UDYsUEZHqmzwZfvoJHngA+va1OpoGJT23mA3bC0mOc5cn3GVsNhvJcW7SsgtJzy0mNSE8Q/U1p1tERKSeUVtl0vsgIk3a119Dnz5aAuwg/botn6c/X0/Hlh4cVfRkB0IhNu3wctOpXTis9YG1NdVtpzQJQEREREREpL4wDLjvPjj+eHjySaujafBiXE7cTgdF/kCV3y/2B4l0OohxhW8QuJJuERERERGR+qC4GC65BO6/39zevt3aeBqBlPgoOiV6yMzzVSrkaRgGmXk+Oid5SImPClsMmtMtIiIiIiJitcxMOOccWLUKIiJg+nS46iqro2rw7HYbg7u3IiOvmPXZ5tzuKJeDYn+QzDwfCTEuBnVrFbYiaqCkW0RERERExFrffw/DhkF6OrRoAe+8AwMGWB1Vo9E5KZbR/dqXr9Odle8j0umgR0ocg7rVfJ3u6lLSLSIiIiIiYpWcHBg4EPLz4fDDYcEC6NTJ6qganc5JsXQc6CE9txivP0CMy0lKfFRYe7jLKOkWERERERGxSkICPPQQvP8+vPkmxMVZHVGjZbfbwrYs2N9et86vuIepU6dy7LHHEhsbS1JSEsOHD+e3337b73mLFy/mmGOOwe1207FjR6ZPn14H0YqIiFQWChlszSni1235bM0pIhRqUitxiohITZSUwNatu7fHjYMPP1TC3UhZ2tO9ePFixo0bx7HHHksgEGDixIkMGjSIdevWERMTU+U5GzduZOjQoVx99dW88sorLF++nBtuuIHExETOP//8On4FIiLSlKVlF5TPD/MFgridDjolehjcPfzzw0REpIHKzoZzz4UdO2DlSmje3NzvcFgbl4SNpUn3xx9/XGF71qxZJCUl8e2339K/f/8qz5k+fTpt27blqaeeAuDwww9n9erVPP7440q6RUSkzqRlFzBr+SZyvH6S49xEu6Io8gdYk5FHRl4xo/u1V+ItIiIV/fyzWTBt82azV/v33+G446yOSsKsXq3TnZeXB0BCQsI+j1mxYgWDBg2qsG/w4MGsXr2a0tLSSseXlJSQn59f4SEiInIwQiGDhWuyyPH66ZLkIdYdgcNuI9YdQZckDzleP5+szdJQcxER2e1//4MTTjAT7s6dzV5uJdxNQr1Jug3DYPz48Zx44ol07959n8dt27aNVq1aVdjXqlUrAoEAO3bsqHT81KlTiYuLK3+kpqbWeuwiItK0pOcWs2F7IT3y0nHn55JfXMqOwhLyi82bv8lxbtKyC0nPLbY4UhERsZxhwJNPmj3chYVmpfKVK+Gww6yOTOpIvUm6b7zxRn766Sfmzp2732Nttopl3Q3DqHI/wIQJE8jLyyt/bN2zYIGIiEgNeAuLOPmtF7jm1vPp/sQUVvyxk6837mTFHztZvWkXvtIgJYEgXn/A6lBFRMRqTz4Jt91mJt9jx8LCheZa3NJk1Islw2666Sbef/99lixZwiGHHPK3x7Zu3Zpt27ZV2JednY3T6aRFFb+8kZGRREZG1mq8IiLShH37LR1HXclha9cAEJGXi8cWxBYdSWkwRHaBj53eElIToolx1YtmVkRErHTFFfDcc3DjjXDrrVBFR6E0bpZ+GjAMg5tuuol58+axaNEiOnTosN9z+vbty4IFCyrs++STT+jduzcRERHhClVERJq64mKYMgUefxxXMEiBJ45Hh97ArwOG4vir4myk00FEtI0tu4ppFQiR3MxtcdAiImKJnTt392YnJcGaNRAVZW1MYhlLh5ePGzeOV155hddee43Y2Fi2bdvGtm3bKC7ePQduwoQJjBw5snz7uuuuY/PmzYwfP55ffvmFmTNnMmPGDG6//XYrXoKIiDQF69bBkUfCI49AMIj3vAuY9NAbfHP8YHYVBygJBAkZBiWBILuKSomPduFy2snM91kduYiI1LXPPjMLpc2evXufEu4mzdKk+/nnnycvL4+BAweSnJxc/njjjTfKj8nMzGTLli3l2x06dODDDz9k0aJFHHnkkTzwwAM8/fTTWi5MRETCJzkZ8vPN/7/3Hlv/PYOShJYc0y6BxFg3vtIQu4r8+EpDJDVzc3TbeCKdds3pFhFpap5/Hs44A3JzYc4ccx63NHmWDy/fn9l73iH6y4ABA/juu+/CEJGIiMhfVq2C3r3NuXfNm8P770OXLhAfT0xOEW6nA3eEnWPbN6fAF8AfDOFy2Il1OyksCVBSGtKcbhGRpiIQgPHj4ZlnzO0rroAXX9T87XomFDJIzy3G6w8Q43KSEh+F3R7+n5E+DYiIiOwpJ8f84PTyy/DKK3DZZeb+Y48tPyQlPopOiR7WZOTRJclDs6jdNUUMwyAzz0ePlDhS4jWcUESk0cvNhYsvhk8+MbcfegjuuksJdz2Tll3AwjVZbNheiC8QxO100CnRw+DureicFBvWayvpFhERKfPuu3DDDZCVZX5YWr++ysPsdhuDu7ciI6+Y9dmFJMe5iXI5KPYHyczzkRDjYlC3VnVy91xERCxUXAwnnAC//ALR0fDf/8J551kdlewlLbuAWcs3keP1kxznJtoVRZE/wJqMPDLyihndr31YE+96s063iIiIZbZtgwsugPPPNxPuww6DZctg8uR9ntI5KZbR/drTvU0cuUWlbNrhJbeolB4pcWFvvEVEpJ6IioKLLoKUFLPdUMJd74RCBgvXZJHj9dMlyUOsOwKH3UasO4IuSR5yvH4+WZtFKBS++ffq6RYRkaZt/ny46irYtQscDnNI4D33gHv/y311Toql40CPJfPDRETEQj7f7nbivvvgppt2LxEm9Up6bjEbtpuj0mx7Dfm32Wwkx7lJyy4kPbeY1ITosMSgpFtERJq25s3NhPuoo2DmTHNpsANgt9vC1kiLiEg9EwzChAnw5ZeweLE5pNxmU8Jdj3n9AXyBINGuquusRLkcZOX7wrriiIaXi4hI0xIKwc8/794eMAA++gi+/vqAE24REWlCCgvN4eOPPQarV8P//md1RFINMS4nbqeDon0k1cX+IJFOR1hXHFHSLSIiTcf69XDyyXD88fDHH7v3n3EGRETs+zwREWnatmyBfv3M5SMjI2HuXLjwQqujkmooW3EkM89XacnqshVHOid5wrriiJJuERFp/AIBs2eiZ09YssQcCrhnb7eIiMi+rFxpLhv500/QqpU5rPySS6yOSqqpbMWRhBgX67MLKfCVEgiFKPCVsj67sE5WHNGcbhERadx++gnGjDGHAgKcfjr85z/Qvr2lYYmISAOwYIHZo11SAr16mdupqVZHJQeobMWRsnW6s/J9RDod9EiJY1A3rdMtIiJScw8+CFOmmD3d8fHw5JNw5ZVmT7eIiMj+dO8OzZqZa3G/8gp4PFZHJDVk5YojSrpFRKTx8vvNhHv4cHjuOUhOtjoiERGp70IhsP81C7dDB3N4efv2u/dJg2XViiP6zRERkcajqAg2b969PXGiWfTm3XeVcIuIyP6lp0PfvuYw8jIdOyrhloOi3x4REWkcFi0yC6Wde67Zuw1mhdlhwzScXERE9u/bb6FPH/jmG7jlFnO0lEgtUNItIiINW14eXHutuRTYhg2wfTts3Gh1VCIi0pC88w6cdBJkZMARR8Bnn4HLZXVU0kgo6RYRkYbrf/+Dbt3MauQA110Ha9dCly7WxiUiIg2DYcA//wkXXADFxXDGGfDVV+aQcpFaokJqIiLS8Hi9Zu/2q6+a2507w0svwYABdR5KKGRYUglVREQOUjAIo0btbktuuQUefxycSpGkduk3SkREGh63G/74wyxsM368uSxYdN1XI03LLihf89MXCOJ2OuiU6GFw9/Cv+SkiIgfJ4YC4ODPJfvZZ82auSBgo6RYRkYYhI8Ncazs62vygNGsW5OfDscdaEk5adgGzlm8ix+snOc5NtCuKIn+ANRl5ZOQVM7pfeyXeIiL13bRpcOWVlrUl0jRoTreIiNRvhgEzZpiFbSZN2r2/a1fLPiSFQgYL12SR4/XTJclDrDsCh91GrDuCLkkecrx+PlmbRShkWBKfiIjsw4IF5ioXpaXmttOphFvCTkm3iIjUXxs3wumnw9ixZpXy5ct3f1CyUHpuMRu2F5Ic58a213JkNpuN5Dg3admFpOcWWxShiIhUYBjwxBNwzjkwfz4895zVEUkToqRbRETqn2DQHPLXvTt8/rk5h/vxx2HZMoiIsDo6vP4AvkCQaFfVs7SiXA5KAkG8/kAdRyYiIpX4/XD11XD77Wbyfc01cMMNVkclTYjmdIuISP2yYQNccQWsWGFuDxhgVibv3NnauPYQ43Lidjoo8geIdVe+CVDsDxLpdBCzj6RcRETqyM6dcP75sHixWXzzySfh5pvBplUmpO6op1tEROoXt9tcazs2FqZPhy++qFcJN0BKfBSdEj1k5vkwjIrztg3DIDPPR+ckDynxURZFKCIi/PorHHecmXDHxsIHH5jLginhljqmW/AiImK9zZuhXTvz65QUeOMN6NYNUlOtjWsf7HYbg7u3IiOvmPXZ5tzuKJeDYn+QzDwfCTEuBnVrpfW6RUSsVFoKWVnQoYNZQK1bN6sjkiZKPd0iImIdnw/uvhs6dYKPPtq9/4wz6m3CXaZzUiyj+7Wne5s4cotK2bTDS25RKT1S4rRcmIhIfdCjB3z4IXz9tRJusZR6ukVExBrLl8OYMfDbb+b2woUwZIi1MR2gzkmxdBzoIT23GK8/QIzLSUp8lHq4RUSsEAjAbbfBBRfASSeZ+8r+L2IhJd0iIlK3CgvN3u1nnzWryLZubS7dcu65VkdWI3a7jdSEaKvDEBFp2nJz4cIL4bPP4PXXIS3NnMctUg8o6RYRkbrz5Zdw1VWwaZO5PXq0uW5q8+aWhiUiIg1YWhqcdZY5cio6Gl54QQm31CtKukVEpO7k5poJd7t28OKLcPrpVkckIiIN2aJF5pJgOTlwyCHw/vtw1FFWRyVSgQqpiYhIeGVk7P763HNhxgxYs0YJt4iIHJwZM8y2JCcH+vSBb75Rwi31kpJuEREJj6wsuOgis3psdvbu/VddBR6PdXGJiEjDZxjw6adm8bSLLzZ7vJOTrY5K6rlQyGBrThG/bstna04RoZBRJ9fV8HIREaldhgGvvgq33GL2Pjgc8MUXcMklVkcmIiKNhc0Gs2bBySfDNdeY2yJ/Iy27gIVrstiwvRBfIIjb6aBToofB3VuFfZlP9XSLiEjt2brVLGZzxRVmwt2rlzncTwm3iIgcrE2bYMIECIXM7agouPZaJdyyX2nZBcxavok1GXnER0fQsaWH+OgI1mTkMWv5JtKyC8J6ffV0i4hI7fjPf+D226GgAFwumDQJ7rwTIiKsjkxERBq6r76C4cNh+3aIi4O77rI6ImkgQiGDhWuyyPH66ZLkwfbXTZpYdwSeSCfrswv5ZG0WHVt6sNvDcwNHSbeIiNSOH34wE+7jjzeL2xxxhNUR1YlQyCA9txivP0CMy0lKfFTYGm0RkSbplVdgzBjw++HII+Hyy62OSBqQ9NxiNmwvJDnOXZ5wl7HZbCTHuUnLLiQ9t5jUhOiwxKCkW0REaiYQgLw8aNHC3H74YejZE66+2pzH3QRYOT9MRKTRC4Xg3nvhoYfM7eHDzQQ8JsbSsKRh8foD+AJBol1RVX4/yuUgK9+H1x8IWwya0y0iIgfu55/hhBPM6uTGX5U/mzWD665rUgm3lfPDREQaNa8XLrxwd8J9113wzjtKuOWAxbicuJ0OivaRVBf7g0Q6HcS4wtcfraRbRESqz++HyZPhmGNg1Sr49lv4/Xero6pze88Pi3VH4LDbiHVH0CXJQ47Xzydrs+psKZK6sGTJEoYNG0abNm2w2WzMnz9/v+eUlJQwceJE2rVrR2RkJJ06dWLmzJnhD1ZEGr5ffoEPPjBrhLz8MkydCnalLnLgUuKj6JToITPPh2FUbJcNwyAzz0fnJA8p8VX3hNcGDS8XEZHqWbXKXGN7zRpz+5xz4LnnoE0ba+OyQH2YH1bXvF4vvXr1YvTo0Zx//vnVOueiiy4iKyuLGTNm0LlzZ7KzswkEwjd8T0Qakd69Yc4cSEmBE0+0OhppwOx2G4O7tyIjr5j12WbbHeVyUOwPkpnnIyHGxaBurcJaj8XS20U1uWv+6quv0qtXL6Kjo0lOTmb06NHs3Lkz/MGKiDRVPp9Zlfz4482EOzERXn8d5s1rkgk37Dk/rOp711EuByWBYFjnh9W1IUOG8OCDD3LeeedV6/iPP/6YxYsX8+GHH3LaaafRvn17+vTpwwknnBDmSEWkwXr7bfjpp93bF1+shFtqReekWEb3a0/3NnHkFpWyaYeX3KJSeqTEMbpf+8a9TnfZXfNnn322WscvW7aMkSNHMmbMGNauXctbb73FqlWrGDt2bJgjFRFpwmw2+Ogjs6DNZZfBunXmB6EmvC5qfZgfVt+9//779O7dm0cffZSUlBQOPfRQbr/9doqLi60OTUTqG8OABx4w53APGwY7dlgdkTRCnZNiuX5gJ/5x+qHcdGoX/nH6oVw3oFOdFD619NPAkCFDGDJkSLWPX7lyJe3bt+fmm28GoEOHDlx77bU8+uij4QpRRKRpys+HqChzje3ISJg9G7Kz4cwzrY6sXiibH7YmIw9PpLPCEPOy+WE9UuLCOj+svvvjjz9YtmwZbrebefPmsWPHDm644QZycnL2Oa+7pKSEkpKS8u38/Py6CldErFJcbC4HNneuuX3eedC8ubUxSaNlt9ssmfbVoKoRnHDCCfz55598+OGHGIZBVlYWb7/9NmfqQ6CISO358EPo1g0ef3z3vmOPVcK9h7L5YQkxLtZnF1LgKyUQClHgK2V9dmGdzA+r70KhEDabjVdffZU+ffowdOhQnnzySWbPnr3P3u6pU6cSFxdX/khNTa3jqEWkTm3bBiefbCbcTie88AL8619NZhUMaToaXNL96quvcvHFF+NyuWjdujXx8fE888wz+zynpKSE/Pz8Cg8REanCzp1wxRVmcv3nn+ZaqKWlVkdVb1k9P6y+S05OJiUlhbi4uPJ9hx9+OIZh8Oeff1Z5zoQJE8jLyyt/bN26ta7CFZG69uOP0KcPfP212bO9cCFcc43VUYmERYOabLZu3TpuvvlmJk2axODBg8nMzOSOO+7guuuuY8aMGVWeM3XqVKZMmVLHkYqINCCGAW+9BTfeCNu3m0uy3HqrOb8uIsLq6Oq1zkmxdBzoIT23GK8/QIzLSUp8VJPu4S7Tr18/3nrrLQoLC/F4PAD8/vvv2O12DjnkkCrPiYyMJDIysi7DFBGrTJkCW7fCoYeaS4N16WJ1RCJhYzP2XqzMIjabjXnz5jF8+PB9HnPFFVfg8/l46623yvctW7aMk046iYyMDJKTkyudU9X8sNTUVPLy8mjWrFmtvgYRkQYnMxNuuAHKVo/o1g1mzIDjjrM0rKYuPz+fuLi4etVWFRYWkpaWBsBRRx3Fk08+ycknn0xCQgJt27ZlwoQJpKenM2fOnPLjDz/8cI4//nimTJnCjh07GDt2LAMGDODFF1+s1jXr4/sgIrUkNxf+7//g4Yc1h1sarOq2Uw1qeHlRURF2e8WQHX/N+djXvYPIyEiaNWtW4SEiIn/JyzPncDudMGkSfPutEm6p0urVqznqqKM46qijABg/fjxHHXUUkyZNAiAzM5MtW7aUH+/xePj000/Jzc2ld+/eXHbZZQwbNoynn37akvhFxGIlJea0pbLP7PHx5hxuJdzSBFg6vHzPu+YAGzdu5IcfftjnXfNhw4Zx9dVX8/zzz5cPL7/11lvp06cPbZroWrEiIgcsPx/KbkAedhi89BL06gU9e1obl9RrAwcO3OcNboDZs2dX2nfYYYfx6aefhjEqEWkQduwwq5IvXQo5OfDXSkQiTYWlPd0Hetf8yiuv5Mknn+TZZ5+le/fuXHjhhXTt2pV3333XkvhFRBqUUAieeQZSU83CNWWuuEIJt4iIhMe6dWbBtKVLzRu+hx5qdUQida7ezOmuK5ofJiJN0m+/meugLl9ubo8dC9WcVyt1T22Vqbbeh1DIULE7ESt8/DFcfLE5wqpjR1iwAI44wuqoRGpNddupBlW9XEREDlBpqbne9pQp5nw6jwcefRSuvdbqyETqRFp2AQvXZLFheyG+QBC300GnRA+Du7dq8su6iYSNYcCzz5orYYRCcNJJ8O670LKl1ZGJWEJJt4hIY/XDD3DVVfD99+b2GWeYRWvatrU0LJG6kpZdwKzlm8jx+kmOcxPtiqLIH2BNRh4ZecVaT10kXNau3Z1wX3klTJ8OWg5QmjAl3SIijdWqVWbC3bw5PPWUOXfbpiG10jSEQgYL12SR4/XTJcmD7a/f/Vh3BJ5IJ+uzC/lkbRYdW3o01FyktnXvDk8+CX4/3H672h6pN6yabqSkW0SkMfF6ISbG/HrsWNi2Da6+Glq3tjYukTqWnlvMhu2FJMe5yxPuMjabjeQ4N2nZhaTnFpOaEG1RlCKNyPr15vKTHTqY27fcYm08InuxcrpRg1qnW0RE9sHrNYfydetmFqwBs2fh3nuVcEuT5PUH8AWCRLuq7l+IcjkoCQTx+gN1HJlII/Tll3DccXDWWZCXZ3U0IpWUTTdak5FHfHQEHVt6iI+OYE1GHrOWbyItuyCs11fSLSLS0H3+OfToAdOmwebN8N57VkckYrkYlxO300GRP4BhGOQXl7KjsIT84lIMw6DYHyTS6SBmH0m5iFTTf/4DgwbBrl0QG2sW7RSpR/aebhTrjsBhtxHrjqBLkoccr59P1mYRCoVvUS+1NCIiDVVurjlXbsYMc7ttW/PDz+DBloYlUh+kxEfRKdHDyj92EgiF2FVUSiAYwumw0zw6AqfdTt9OLUiJj7I6VJGGKRg026CnnjK3L70UZs4Et9vSsET2Vh+mG6mnW0SkIXr/fXMoeVnCfeONsGaNEm6Rv9jtNg5LjiUz38cfO7zYbRAXHYHdBn/s8JKZ76Nr61gVUROpifx8GDZsd8J9//3w6qtKuKVeqg/TjZR0i4g0RK+8AhkZcOihsHQpPPOMOaxPRABzOOGvmQUkx7np2CKGkAH5xaWEDOjYMobkODe/bSsI63BCkUbrppvgo48gKgrefNOsH6IK5VJP7TndqCp1Md1Iw8tFRBoCwwCfz/yAA2aSffjhcNddu/eJSLmy4YRdkjx4Ip0U+AL4gyFcDjuxbieFJQFVLxepqYcfht9+g2efhd69rY5G5G+VTTdak5GHJ9JZYYi5YRhk5vnokRIX1ulG6ukWEanv/vzTHMY3atTufa1awZQpSrhF9qE+DCcUaVR+/HH318nJsGKFEm5pEOx2G4O7tyIhxsX67EIKfKUEQiEKfKWszy4kIcbFoG6twjrdSD3dIiL1VSgEL70Ed9xhzp9zucx1ULt0sToykXqvbDhhRm4RmXk+svNLKA2GiHDYSWoWSXKcW9XLRaojFIJ77oGpU82pTZddZu7XcHJpQDonxTK6X/vydbqz8n1EOh30SIljULfwr9OtlkZEpD7asAHGjoVFi8zt4483i6Yp4RaplpT4KOKjIvhw7Tb8pUGCIYOQYWC32dhV5GfjziLO7N5a1ctF/o7XC1dcAfPmmdtpadbGI3IQOifF0nGgh/TcYrz+ADEuJynxUXVSUFNJt4hIfRIMmutt33MPFBdDdDT8859m0RqHw+roRBqUXcV+8opKKQ0GcdhsYAMMCBoGEaXmMmIisg9lU5t++MEcaTVjBlx+udVRiRwUu91mSR0PJd0iIvVJUZG5BEtxMZxyCrz4InTsaHVUIg3On7uK+OnPPMDAYbMRMgwMw8y7HTYz+/7xz1z+3FVE2xYxFkcrUs+sWgVnnw3btkFSEsyfD337Wh2VSIOlpFtExGqlpeB0mvPjYmPNedxbtsCYMZozJ1JDG7YXkp3vAwwMIBgCAzPptjkADLbn+9iwvVBJt8ietm6FAQPMm7/du8MHH0C7dlZHJdKgqXq5iIiVVq82q7++9NLufYMGmfO5lXCL1NiOQj++QJCSgEEgZGC3gcMOdhsEQgYlAYPiQJAdhX6rQxWpX1JT4R//gDPPhK++UsItUguq3dP9008/VftJe/bsWaNgRESajOJimDwZHn/crAz7yCMwerTZ4y1ykNRmQ3y00+zdNsBhY3ehHBsQMggaZu93fLT+5kQoLjaLprVsaW4/8MBffzyqJSJSG6rd0hx55JHYbDYMw6iwoHhVgsHgQQcmItJoLVli9mSvX29uX3IJPP20Em6pNWqzobg0VFY3zXwYRvn3yr6y/XWcSJOWmQnDh4PdDl9+CW63+bWI1Jpq/0Vt3LiRP/74g40bN/LOO+/QoUMHnnvuOb7//nu+//57nnvuOTp16sQ777wTznhFRBquggIYN86cK7d+PbRpA++9B3PnQmKi1dFJDYVCBltzivh1Wz5bc4oIhYz9nxRmarPBYbfhctpx2AAbhIzdD2xm73ek046jDpaKEam3fvgB+vSBb76B33/ffTNYRGpVtbtV2u0xn+PCCy/k6aefZujQoeX7evbsSWpqKvfeey/Dhw+v1SBFRBqFX36B6dPNr6++Gh59FOLjLQ1JDk5adgEL12SxYXshvkAQt9NBp0QPg7u3onNSrGVxqc2GRE8kcVEReP0BSgMh9rwXYrdBhMNOTKSTRE+kdUGKWOm99+Cyy8xh5YcdBgsWQOfOVkcl0ijVaCzjzz//TIcOHSrt79ChA+vWrTvooEREGo1AYPew8T594OGH4ZhjzOXApEFLyy5g1vJN5Hj9JMe5iXZFUeQPsCYjj4y8Ykb3a29p4l2mqbbZR6c2p0tSLOsy84mNdFLkDxEyDOw2G9EuOyUBg0NbxXJ0anOrQxWpW4Zh3vSdMMH8+vTT4c03dRNYJIxqNGHj8MMP58EHH8Tn85XvKykp4cEHH+Twww+vteBERBq0d94xew1+/XX3vjvuUMLdCIRCBgvXZJHj9dMlyUOsOwKH3UasO4IuSR5yvH4+WZtVL4aaN9U22+m0c2W/9jSPcREMQWKsi5TmbhJjze2EGBejTmiP06m5q9LETJ4Md91lJtw33AAffqiEWyTMatTTPX36dIYNG0Zqaiq9evUC4Mcff8Rms/HBBx/UaoAiIg3Otm1w441m0g1m7/bs2ZaGJLUrPbeYDdsLSY5zVypUZrPZSI5zk5ZdSHpuMakJ0RZFaWrKbfaph7cCYPbyTWza6aXUFyLCYadr61hGndC+/PsiTcoVV5hTnSZNMuuMiEjY1Sjp7tOnDxs3buSVV17h119/xTAMLr74YkaMGEFMTExtxygi0jAYBsyZY65vumuXOaz8rrvgnnusjkxqmdcfwBcIEu2KqvL7US4HWfk+vP5AHUdWWVNvs089vBUDuiTy3dZd7PT6aRHj4ujU5urhlqYlLw/i4syvO3eGtDSItX76i0hTUeP1aaKjo7nmmmtqMxYRkYZryxa49lr4+GNz++ijYcYMOPJIS8OS8IhxOXE7HRT5A8S6Iyp9v9gfJNLpIMZVP5aBa+ptttNpp0+HFlaHIWKNjz4yC6a9+ioMGWLuU8ItUqdqfJv3v//9LyeeeCJt2rRh8+bNAPzrX//ivffeq7XgREQajNdfNxPuyEiYOhW+/loJdyOWEh9Fp0QPmXm+Cus/g7kedGaej85JHlLiq+4Jr2tqs0WaIMOAadPgrLPM0VfPP291RCJNVo2S7ueff57x48czZMgQdu3aRTAYBKB58+Y89dRTtRmfiEj99de/fYA5pPyaa+DHH80h5c760cMp4WG32xjcvRUJMS7WZxdS4CslEApR4CtlfXYhCTEuBnVrhb0erAGtNlukCSotheuug1tvhVAIrroK3n7b6qhEmqwaJd3PPPMML774IhMnTsS5xwfL3r178/PPP9dacCIi9VIgAI88Yi4BVlJi7ouIgBdegK5drY1N6kznpFhG92tP9zZx5BaVsmmHl9yiUnqkxNWb5cJAbbZIk5OTA2ecAf/5D9hs8Pjj8NJL4HJZHZlIk1WjrpiNGzdy1FFHVdofGRmJ1+s96KBEROqtH380ewy++87cfu01GD3a2pjEMp2TYuk40EN6bjFef4AYl5OU+Kh60cNdRm22SBOyaxccfzysXw8eD8ydaw4vFxFL1ainu0OHDvzwww+V9n/00UccccQRBxuTiEj9U1IC994LvXubCXd8PMyaBVdeaXVkYjG73UZqQjSHtW5GakJ0vUq4QW22SJMSHw8DB0LbtrB8uRJukXqiRj3dd9xxB+PGjcPnMwvIfPPNN8ydO5epU6fy0ksv1XaMIiLWWrnS7N3+5Rdz+7zz4N//htatrY1LpBrUZos0AX6/OXzcZjPbp9xcSEy0OioR+UuNku7Ro0cTCAS48847KSoqYsSIEaSkpDBt2jQuueSS2o5RRMRakyaZCXerVuaHmfPPtzoikWpTmw2hkFGvpwCI1FggALffDr/9BgsWmEU8IyKUcIvUMzZj77VODtCOHTsIhUIkJSXVVkxhlZ+fT1xcHHl5eTRr1szqcESkvgqFwP7XDJw//jCXAXvkEUhIsDYuaRLC1VY1xTY7LbuAhWuy2LC9EF8giNvpoFOih8HdW9WbYnciNZKXB5dcYi5XCbBwIQwaZG1MIk1MddupGs3pPuWUU8jNzQWgZcuW5Y13fn4+p5xySk2eUkSkfsjLg6uvhptu2r2vY0d48UUl3NIgNeU2Oy27gFnLN7EmI4/46Ag6tvQQHx3Bmow8Zi3fRFp2gdUhitTMH3/ACSeYCXdUFLz1lhJukXqsRkn3okWL8Pv9lfb7fD6WLl160EGJiFhiwQI44ghzaZXp0yEtzeqIRA5aU22zQyGDhWuyyPH66ZLkIdYdgcNuI9YdQZckDzleP5+szSIUOqgBfyJ1b+lSOO44WLcO2rQxty+4wOqoRORvHNCc7p9++qn863Xr1rFt27by7WAwyMcff0xKSkrtRSciUhe2b4dbbjGXVgHo3BlmzDD/L9JANfU2Oz23mA3bC0mOc2OzVZy/bbPZSI5zk5ZdSHpuMakJ0RZFKXKA3nwTLr8cSkvhmGPgvfegEf8dizQWB5R0H3nkkdhsNmw2W5VD0qKionjmmWdqLTgRkbAyDHj9dbj5Ztixw5zDfdttMGWKOVxPpAFr6m221x/AFwgS7ar6bznK5SAr34fXH6jjyEQOwqGHmoXSzj4b5syBaN0wEmkIDijp3rhxI4Zh0LFjR7755hsS96iM6HK5SEpKwuFw1HqQIiJhkZsLN94IOTnQo4fZu33ssVZHJVIrmnqbHeNy4nY6KPIHiHVHVPp+sT9IpNNBjKtGC7mI1B3DMJcCAzjySPjmGzj88N3FPkWk3juglqZdu3YAhEKhsAQjIhJ2e354ad4cnn0Wfv8dJkww1zgVaSSaepudEh9Fp0QPazLy8EQ6KwwxNwyDzDwfPVLiSInXqBapx7ZsgYsugn/9C/r2Nfd162ZtTCJywGp0i2zq1KnMnDmz0v6ZM2fyyCOPVPt5lixZwrBhw2jTpg02m4358+fv95ySkhImTpxIu3btiIyMpFOnTlXGIiJSyR9/wGmnwbx5u/ddeincd58Sbmm0aqvNbmjsdhuDu7ciIcbF+uxCCnylBEIhCnylrM8uJCHGxaBurbRet9RfX38NffqY/7/2WnMpSxFpkGqUdL/wwgscdthhlfZ369aN6dOnV/t5vF4vvXr14tlnn632ORdddBGff/45M2bM4LfffmPu3LlVxiIiUi4YhKeeMoeQf/EF3H67uU+kCaitNrsh6pwUy+h+7eneJo7colI27fCSW1RKj5Q4Rvdrr3W6pf6aOxcGDICsLLPtWrBAw8lFGrAaTWTatm0bycnJlfYnJiaSmZlZ7ecZMmQIQ4YMqfbxH3/8MYsXL+aPP/4g4a/1ctu3b1/t80WkCVq3DsaMgZUrze2BA801txvxXFaRPdVWm91QdU6KpeNAD+m5xXj9AWJcTlLio9TDLfVTKGQW87z/fnP7rLPgtdcgVjeIRBqyGt0yS01NZfny5ZX2L1++nDZt2hx0UPvy/vvv07t3bx599FFSUlI49NBDuf322ykuLt7nOSUlJeTn51d4iEgTUFoKDz4IRx1lJtyxsfDCC/D551oKTJoUq9rs+sRut5GaEM1hrZuRmhCthFvqp5ISc8pTWcJ9++0wf74SbpFGoEY93WPHjuXWW2+ltLS0fBmSzz//nDvvvJPbbrutVgPc0x9//MGyZctwu93MmzePHTt2cMMNN5CTk7PPed1Tp05lypQpYYtJROqp5cvh3nvNr4cOhenTITXV2phELGBVmy0iBygiAgIB8//Tp8NVV1kdkYjUEpthGMaBnmQYBnfddRdPP/00fr8fALfbzf/93/8xadKkmgViszFv3jyGDx++z2MGDRrE0qVL2bZtG3FxcQC8++67XHDBBXi9XqKqWFe3pKSEkpKS8u38/HxSU1PJy8ujWbNmNYpVROqpPSuTA/zjH9C7N4wYUXG/SD2Xn59PXFxcrbRV4Wiz60ptvg8iDYLXCz//DMcfb3UkIlIN1W2napR0lyksLOSXX34hKiqKLl26EBkZWdOnqlbSPWrUKJYvX05aWlr5vl9++YUjjjiC33//nS5duuz3OmrARRqpZcvgttvgnXfgkEOsjkbkoISjrarNNruuqM2WRu/dd+Gjj+A//9HNYZEGqLrt1EGVQfR4PBx77LF07969Thrvfv36kZGRQWFhYfm+33//HbvdziH6kC3SNBUWwk03Qf/+8M03u4eUi0gFdd1mi8jfMAyYOhXOPx9eeglefdXqiEQkjKo9p/u8885j9uzZNGvWjPPOO+9vj3333Xer9ZyFhYUVeq03btzIDz/8QEJCAm3btmXChAmkp6czZ84cAEaMGMEDDzzA6NGjmTJlCjt27OCOO+7gqquuqnJouYg0cp98AtdcA5s3m9tjxsDjj1sbk0g9EI42W0RqSUkJXH01/Pe/5vZNN8Ell1gbk4iEVbWT7ri4OGx/DXspm099sFavXs3JJ59cvj1+/HjAHEY+e/ZsMjMz2bJlS/n3PR4Pn376KTfddBO9e/emRYsWXHTRRTz44IO1Eo+INBC7dsH48TB7trndoYO5DNipp1oalkh9EY42W0RqQXY2nHsufPWVuXTlM8/A9ddbHZWIhNlBzeluiDQ/TKQRmDQJHnjAnP92883wz39CTIzVUYnUGrVVJr0P0qisWQPDhsGmTRAXB2+9BaefbnVUInIQqttO1WjJMBERS911F3z3Hdx9N5xwgtXRiIiI7F9ODqSnQ+fOsGABHHaY1RGJSB2pdtJ91FFHlQ9V25/vvvuuxgGJiFRgGOa8t7fegvnzzeF40dHwwQdWRyZSb4WjzV6yZAmPPfYY3377LZmZmftdcWRPy5cvZ8CAAXTv3p0ffvihWueINDr9+8O8eeZyYC1aWB2NiNShaifdezasPp+P5557jiOOOIK+ffsCsHLlStauXcsNN9xQ60GKSBO1ZQtcey18/LG5/eqrMHKktTGJNADhaLO9Xi+9evVi9OjRnH/++dU+Ly8vj5EjR3LqqaeSlZVV7fNEGjy/H+64wyz42a2bue/MM62NSUQsUaM53WPHjiU5OZkHHnigwv777ruPrVu3MnPmzFoLsLZpfphIAxAKwfTp8H//Zy4JFhkJkyeb63BHRFgdnUjY1WZbFY4222azVbun+5JLLqFLly44HA7mz59/QD3darOlwdq5Ey64ABYtgk6dYN06cLmsjkpEallY1+l+6623GFlFb9Pll1/OO++8U5OnFBExrV8PJ58M48aZCfcJJ8APP5jzuJVwixwwK9vsWbNmsWHDBu67776wXkekXvn1V3MI+aJF4PHAtGlKuEWauBol3VFRUSxbtqzS/mXLluF2uw86KBFpwq66CpYsMauRP/20+bWKzYjUmFVt9vr167nrrrt49dVXcTqrN5utpKSE/Pz8Cg+RBuXTT82EOy0N2rWDFSs0pFxEala9/NZbb+X666/n22+/5fjjjwfM+WEzZ85k0qRJtRqgiDQxzz4LEybAc89B+/ZWRyPS4FnRZgeDQUaMGMGUKVM49NBDq33e1KlTmTJlSlhiEgm7554zl7EMBs1RWvPmQVKS1VGJSD1Q43W633zzTaZNm8Yvv/wCwOGHH84tt9zCRRddVKsB1jbNDxOpR/x+eOghsNvNtbdFBKj9tqq22+z9zenOzc2lefPmOByO8n2hUAjDMHA4HHzyySeccsoplc4rKSmhpKSkfDs/P5/U1FS12VL/BYPmmttffglXXAEvvmjWIxGRRq267XWNk+6GSkm3SD3xzTfmUPK1a8HphN9+g44drY5K5ICFQgbpucV4/QFiXE5S4qOw26u3XNe+1Pe2an9JdygUYt26dRX2Pffcc3zxxRe8/fbbdOjQgZiYmP1ep76/DyIV5OTA66/D9ddDNZfsE5GGrbrtVI2Gl4N5F/vtt9/mjz/+4PbbbychIYHvvvuOVq1akZKSUtOnFZHGrqjI7NX+17/MKuWJieaQ8g4drI5M5IClZRewcE0WG7YX4gsEcTsddEr0MLh7KzonxVodXrnaaLMLCwtJS0sr3964cSM//PADCQkJtG3blgkTJpCens6cOXOw2+107969wvlJSUm43e5K+0UarA0b4J134M47ze2EBNDSuSJShRol3T/99BOnnXYacXFxbNq0ibFjx5KQkMC8efPYvHkzc+bMqe04RaQxWLQIxo41P6gAXH65mXy3bGlpWCI1kZZdwKzlm8jx+kmOcxPtiqLIH2BNRh4ZecWM7te+XiTetdVmr169mpNPPrl8e/z48QCMGjWK2bNnk5mZyZYtW8LyGkTqnSVL4LzzzKXBWrY0R26JiOxDjaqXjx8/niuvvJL169dXqHw6ZMgQlixZUmvBiUgjkpMDZ51lJtyHHAIffAD//a8SbmmQQiGDhWuyyPH66ZLkIdYdgcNuI9YdQZckDzleP5+szSIUsn4GV2212QMHDsQwjEqP2bNnAzB79mwWLVq0z/MnT558QGt0i9Rbs2bBaaeZCXfv3nDGGVZHJCL1XI2S7lWrVnHttddW2p+SksK2bdsOOigRaYQSEuCf/4RrrzXncWsJFWnA0nOL2bC9kOQ4N7a95m7abDaS49ykZReSnltsUYS7qc0WqSXBINxxh9mrXVoKF10EixdDmzZWRyYi9VyNkm63213l2pm//fYbiYmJBx2UiDQCO3aYFVwXL96975ZbYPp0UEEkaeC8/gC+QJBoV9WztKJcDkoCQbz+QB1HVpnabJFaUFAA554Ljz9ubt93n1k0LTra2rhEpEGoUdJ9zjnncP/991NaWgqYd/W3bNnCXXfdxfnnn1+rAYpIA2MY8OabcMQR8MorZs92MGh1VCK1KsblxO10ULSPpLrYHyTS6SBmH0l5XVKbLVILVqwwp0VFRsLcuTB5siqUi0i11Sjpfvzxx9m+fTtJSUkUFxczYMAAOnfuTGxsLP/85z9rO0YRaSgyMszCMhdfDNu3Q7duMGcO7LFWr0hjkBIfRadED5l5PvZeedMwDDLzfHRO8pASH2VRhLupzRapBYMGmSttLF4Ml1xidTQi0sDU6BZ8s2bNWLZsGV988QXfffcdoVCIo48+mtNOO6224xORhsAwzMIy48dDXp657vbEiXD33eByWR2dSK2z220M7t6KjLxi1mebc7ujXA6K/UEy83wkxLgY1K3VQa/XXRvUZovU0JtvwnHHQbt25raWAxORGrIZe9+i349AIIDb7eaHH35okGttVncBcxE5AJ98AoMHm1/37g0zZ0KPHtbGJFIH9lynuyRgDinvnORhULeDW6e7ttoqtdkiNRAKmXO2H3zQbMu++go8HqujEpF6qLrt1AH3dDudTtq1a0dQczRFpMzpp8MFF5g9ArfeavZ0izQBnZNi6TjQQ3puMV5/gBiXk5T4qHrRww1qs0UOWFERjBoFb79tbg8dqmJpInLQajSn+5577mHChAnk5OTUdjwi0hD88otZxbXs3wCbzRyGd/vtSrilybHbbaQmRHNY62akJkTXm4S7jNpskWpKT4f+/c2EOyLCnDb18MNgr9HHZRGRcjX6dPz000+TlpZGmzZtaNeuHTExMRW+/91339VKcCJSz5SWwmOPwZQp4PdDUhK88IL5PVVxFamX1GaLVMO338LZZ5sFQVu2hHnz4MQTrY5KRBqJGiXdw4cPx2azVarYKiKN2Pffw1VXwQ8/mNtDhsA991gakojsn9psCIWMejsFQOoBwzCnRmVkmMtdLlgAHTtaHZWINCIHlHQXFRVxxx13MH/+fEpLSzn11FN55plnaNmyZbjiExGr+Xxw//3w6KPmetsJCTBtGlx2mXq3ReoxtdmmPYvd+QJB3E4HnRI9DO5+cMXupBGx2eD1181VN6ZNg7g4qyMSkUbmgCap3HfffcyePZszzzyTSy+9lM8++4zrr78+XLGJSH0wZQpMnWom3BdeCOvWweWXK+EWqefUZpsJ96zlm1iTkUd8dAQdW3qIj45gTUYes5ZvIi27wOoQxSo+H7z33u7tlBSYPVsJt4iExQH1dL/77rvMmDGDSy65BIDLLruMfv36EQwGcTgcYQlQRCx2xx2wcCHce69ZPE1EGoSm3maHQgYL12SR4/XTJcmD7a8bhbHuCDyRTtZnF/LJ2iw6tvRoqHlTk5VltmcrVphFQC+80OqIRKSRO6Ce7q1bt3LSSSeVb/fp0wen00lGRkatByYiFvn0U7j+enOOG5jDyb/9Vgm3SAPT1Nvs9NxiNmwvJDnOXZ5wl7HZbCTHuUnLLiQ9t9iiCMUSP/8MffqYCXfz5tCihdURiUgdCoUMtuYU8eu2fLbmFBEK1U29kwPq6Q4Gg7hcropP4HQSCARqNSgRsUBuLtx2G8ycaW6ffDJcdJH5tYaSizQ4Tb3N9voD+AJBol1RVX4/yuUgK9+H19803g8BPvgALr0UCgvh0EPNgmmHHmp1VCJSR9KyC/jo522s2pRDYUkAT6STY9snMKRH67DX+DigpNswDK688koiIyPL9/l8Pq677roKS5C8++67tRehiITf/Plwww2QmWkm2DfeCEOHWh2ViByEpt5mx7icuJ0OivwBYt0Rlb5f7A8S6XQQ46rRQi7SkBgGPPmkOV3KMOCUU8y1uJs3tzoyEakjadkFPPDBL6xJz6MkECQUMrDbbazNyGf15l3ce9bhYU28D6ilGTVqVKV9l19+ea0FIyJ1LDsbbrrJnNMG0LUrvPSS1iYVaQSaepudEh9Fp0QPazLy8EQ6KwwxNwyDzDwfPVLiSImvuidcGpFly+D2282vr70WnnkGIirfiBGRxikUMvj3l2ms3pyDETKIjnQS4bBRGjQoKgmwenMOz325gccv7BW2Gh8HlHTPmjUrLEGIiAUMA845B1auBIfD7AG47z5wu62OTERqQVNvs+12G4O7tyIjr5j12ebc7iiXg2J/kMw8HwkxLgZ1a6Uiak3BSSfB//0ftGlj3mjWlCmRJmXLTi/L1u8gFDKIj4ogZEAwZOCw2YiLiiC3uJRladvZstNL+0RPWGLQmCqRpspmg4cfhn/8w+zdPvpoqyMSEalVnZNiGd2vffk63Vn5PiKdDnqkxDGom9bpbtR+/dUskpaYaG4//LC18YiIZVZv3kVhSYBIh43CkgCBkIFhmB+FnXYbkQ4bBb4AqzfvUtItIgcpFIIXXzT/hbnmGnPfgAGwejXYD2ghAxGRBqNzUiwdB3pIzy3G6w8Q43KSEh+lHu7G7JNPzEKgPXrAZ5/BHnUNRKTp8QWCBEMGPsMAbNhsYLeBAZQGDfyYSbgvEAxbDEq6RZqCtDQYOxYWL4boaDjjDGjb1vyeEm4RaeTsdhupCdFWhyF14d//hltugeBfH569XiXdIk1cx8QYbJgJtg0DbJT3dGOYybfTbqNjYsx+nqnm9GlbpDELBuGJJ6Bnz90J90MPQUqK1ZGJiIjUnkAAxo0zV98IBmHUKLOXOyHB6shExGJtmkXhjnCYc7kB9ki4g0DIAHeEgzbNwldYUz3dIo3VmjUwZgx88425feqp8J//QMeO1sYlIiJSm3JzzeHkn366u17JHXeoYJqIAFBUGiQm0klhSYCQASEb2P7q4cYwh5p73E6KSjW8XEQOxM6dcNxxUFQEzZqZvd1jxugDiIiIND4jR5oJd0wMvPIKDB9udUQiUo8UlgRw2G2kxLvZVVSKrzSI8Vey7XY5aB4dgYFZZC1clHSLNEYtWsD48fDTT/DccxpOLiJNWihkqJBaY/bYY7B5M7z8Mhx5pNXRiEg943E7iXI5CAYNDmvtptAfJBAM4XTY8bgc5HhLcTpseNzhS42VdIs0BkVFMHkyjBix+wPH5MlmkTT1botIE5aWXVC+ZJgvEMTtdNAp0cPg7loyrEH77Tfo2tX8umtX+P57FQYVkSrFRkbQNiGarTlF7CoqxeN24ol0UhoMsauoFKfTTmrzKGIjI8IWg5JukYZu8WKzMnlaGnz+uTmH2+EwHyISdj5fgDe+20L6Lh8pzd1cfHRb3GG8Wy7Vl5ZdwKzlm8jx+kmOcxPtiqLIH2BNRh4ZecWM7tdeiXdDEwzCnXfCtGnw8cdw2mnmfiXcIrIPKfFRHJXanJLSEIGQmWgXlgRw2u0kxkbitNs5um1zUuLDV0jN0n+hlixZwrBhw2jTpg02m4358+dX+9zly5fjdDo5UsOIpKnKz4frr4eBA82EOyUFpkxRsi1Sh5745DeOe/gzprz/C/9ZupEp7//CcQ9/xhOf/GZ1aE1eKGSwcE0WOV4/XZI8xLojcNhtxLoj6JLkIcfr55O1WYRChtWhSnUVFJjztZ980ky+v//e6ohEpAGw220M7t6Kti2iiYuKoEdKM3q3a06PlGbERUXQtkU0g7q1Cuu0I0uTbq/XS69evXj22WcP6Ly8vDxGjhzJqaeeGqbIqicUMtiaU8Sv2/LZmlOkhlvqzocfQrduMH26uX3ttbB2LZx1lrVxiTQhT3zyG88v2kCeL0jor30hIM8X5PlFG5R4Wyw9t5gN2wtJjnNj22uajc1mIznOTVp2Iem5xRZFKAdk82bo1w8++ADcbnj9dbNCuYhINXROimV0v/b0SIknGIICX4BgCHoeEl8no54sHf82ZMgQhgwZcsDnXXvttYwYMQKHw3FAveO1SXPExDIffwxnnml+3akTvPginHyytTGJNDE+X4AZy/4g8NfNVttfD+OvRyBkMHPZH4zr30lDzS3i9QfwBYJEu6oeLhjlcpCV78PrD1+1WqklX30F554L2dnQujW89x706WN1VCLSwHROiqV9/xi+27qLnV4/LWJcHJ3aHKcz/P3QDe6TwKxZs9iwYQOvvPIKDz74oCUxaI6YWOr00+HEE80PHA88ANHRVkck0uS8tnoLRX6zf9sOZsb91/9shtnj7fWHeG31Fq46saNFUTZtMS4nbqeDIn8AT6STAl8AfzCEy2En1u2k2B8k0ukgxtXgPgo1LWvXmjeW/X6zUOiCBXDIIVZHJSINUFWdpqs27qqTTtMG1dKsX7+eu+66i6VLl+J0Vi/0kpISSkpKyrfz8/MPKoY954h1ToyhsCTIriI/LoedzokxpG338snaLDq29Gg5EqkdmZnwz3/Co4+aCbbDAV98ARHhq7AoIn/v+y27dm/81cVt/PVleZf33sdJnUqJj6JTooeVf+wsL5xTtkRM8+gInHY7fTu1CGvhHKkFRxwBl14KeXnmGtwxMVZHJCINkNWdpg0m6Q4Gg4wYMYIpU6Zw6KGHVvu8qVOnMmXKlFqLo2yOWFSEnW8355JT5CcQCuG020mIdtE6LrJ8jlhqgnog5SAYBsyeba63nZsLUVHmWqSghFvEYtGu3QUL9yznYZT/p/JxUrfsdhuHJccy74d0CnyltIhxERcdQbE/yB87vMS6I+jaOlY3yOsjrxdCIYiNNZe9/M9/wOlUhXIRqZG9C2uW1fmIdUfgiXSyPrsw7J2mDeZfr4KCAlavXs2NN96I0+nE6XRy//338+OPP+J0Ovniiy+qPG/ChAnk5eWVP7Zu3XpQcXj9AXYUlvBbVgHZBT7cEXaaR7twR9jJLvDxW1YBOwpLNEdMDs6mTTB4MFx1lZlwH3MMXHGF1VGJyF/O6tmmVo+T2hcKGfyaWUBynJsOCdH4SkNsLyjBVxqiQ4tokuPc/LatQEVQ65v0dOjfH0aMMCuUA7hcSrhFpMbqQ2HNBtPT3axZM37++ecK+5577jm++OIL3n77bTp06FDleZGRkURGRtZaHNERDnYUllBUEiCp2e4fXKTTgSvGTla+DwzzOJEDFgrBc8/BXXeZd/rdbnMZsPHjzbv8IlIvHNe+Bc3cTvJ9+77BGud2clz7FnUYleyp7ENWosdFZp7PHPpv/DXv3mYj0ePSyLT6ZvVqOPtsc1rVli3mDehOnayOSkQauD0LaxqGUanGR10U1rT0U3xhYSFpaWnl2xs3buSHH34gISGBtm3bMmHCBNLT05kzZw52u53u3btXOD8pKQm3211pfziV1ak12NfQA/N7um8uNXLPPTB1qvn1SSfBSy/BAUynEJG6kVVYQrc2zfhuyy5KApX/xY902jiiTTOyCkuU0FmkbGTaTq8fX2mQSKcdt8uOEYLsghLyfQFaxLg0Mq2+eOstGDUKiovNJTE/+ADat7c6KhFpBMoKa2bkFrEtr6TK6cHhLqxp6Vid1atXc9RRR3HUUUcBMH78eI466igmTZoEQGZmJlu2bLEyxEqKS4O09LjwuJ3keP2UBIKEDIOSQJAcrx+P20lLj4vi0qDVoUpDdMMNkJIC//43LFqkhFuknvL6AzSPcXHa4a1JaebC5QSnHVxOSGkWyamHtyJBCZ2loiIc7Cj0s8vrx+cPklVQQkauj6yCEnz+ILu8fnYU+onSyDRrGYa5EsdFF5kJ99Ch5hJhSrhFpJakxEcRHx3Bqk27yMovrjA9OCu/mFWbdhEfHRHWwpqW9nQPHDgQw9h3n/Ds2bP/9vzJkyczefLk2g1qP2JcTlp6ImnpcZGZV8KuIj+FJQGcdjtJzdy0bhYJ2LQEiVTPjz+ad/MnTjS3DzkENmyAWpwSISK1r+yueXx0BOcdk0pmno+i0iDREQ6S49x4/UFyi0rVFljIBpQEguT7Somw23BFOHDY7AQNgyJ/gNKQQZTLsc9xa1JHxo+Hp54yv/7HP8yCoQ7dCBGRWlaWcu41p9vc3vcY5tqiTwMHqGwJkjUZefRuF09hSbB8ToAn0kHadi89UuK0BIn8vZIS887+I49AIGAWSjvjDPN7SrhF6r0924IuSR5Smu8eQm4YBpl5PrUFFissCRAM/vVBqooPWTYMgiGDwhKNRrDUZZfBzJnw+ONw9dVWRyMijVB6bjG5xaUc2755pU7TVn91mu4qKg1rjQ8l3QfIbrcxuHsrMvKKSdvuJTnOTfxfS5CkbfeSEONiULdWWoJE9m3FChgzBn75xdw+/3w48khLQxKRA7NnW7A+26yIGuVyUOwPkpnnU1tQDxSWBAgaBknNIikpNSguDeI3QthtNmIinUQ6bfgDSrot4fXuXm+7d2/YuBESEqyNSUQarbJCah1bejikeXSlQmpBw2DTDm9Yp4Rp/YUa6JwUy+h+7emW3Iz0XcX89Gcu6buK6d6mWdgXVpcGzOuFW2+Ffv3MhLtVK3j7bfPRurXV0YnIASprC7q3iSO3qJRNO7zkFpXSIyVObUE94PmrIi2GjeS4SFKbR3FI8yhSm0eR3CwSDBvRLgcet/of6tT770OHDrBq1e59SrhFJIzKpoQV+QPYbDaaRUXQ0hNJs6gIbDYbxf5g2AupqaU5GLa/Hn99rYrlsk+GAYMGmcVhwKzQ+uST+qAh0sB1Toql40AP6bnFeP0BYlxOUuKj1MNdD8RGRtA2IZqtOUXkeP24IhzYbTYCoRAFviBOp4PU5lHERkZYHWrTYBjmfO277jK/fvpp+O9/rY5KRJqAPaeEeSKdFdbqrqspYUq6ayAtu4BZyzexs9BPnDuC5tEuQiGDNen5ZOb51MMhldlscNtt8Oef8MILu+dvi0iDZ7fbtCxYPZQSH8VRqc3Z5fWTXeBje6GfYMjAYbcRF+UkPtrF0W2ba959XSgpgeuug7ICuddfD9OmWRqSiDQd9WFKmJLuAxQKGSxck8WWnCICgRCbdnrL13lrHhWB1x/gk7VZdGzpUU9HU/f++xAMwrnnmtvnnQdDhkCUPuCJiISb3W7jsORY5v2QTklpiISYCGw2s5O1qCRIni9A19axaqvDbccOs/1buhTsdjPZHjeucnE7EZEwKpsStnBNFhu2F5KV7yPS6aBHShyDurUKe4epku4DlJ5bzPdbd7G9wEcgaOBxO4lwOCkNhtheWILDbuO7LbvCWv1O6rnt2+Hmm+H116FFC3MOd1KS+T0l3CIidSIUMvg1s4C4KCcl/gA53tIKPd1xUU5+21bAyV2TlHiHS0YGnHiiWSitWTN4800YPNjqqESkibJySpiS7gNU4Ctly84igqEQLTyR5XMCIp0OXDF2dhaWsDWniAJfqcWRSp0zDDPRvvlm886+3W5WKY/VVAMRkbpWdpO80BfAFeHgEHcENjsYISgJhij0BXSTPNxatYJu3cxe7QUL4IgjrI5IRJo4q6aEKek+QIUlAYpLg8S6K07CB7DZbERGOCjwBbQESVOTnm7OV/vgA3O7Z0+YMcNcCkVEROpcQUkpW3KKCAYNWnhcFdpsj2Gws9Bv3iQv0U3yWmUYEAqBw2E+XnvNnNPdsqXVkYmIWEZJ9wEqW4KkpDSEJ9KoVP2upDSkJUiamh07oHt3yM0FlwvuvRfuvNP8WkRELFHoC1Ds/7ub5HbzJrlPN8lrTWmpOdqrqMgsmmazmaO9NOJLROqJUMjQ8PKGYO8lSMw53XZK/xqq5nTatQRJU9OyJVxyCXz/PcycqeFzIiL1gCfSSVSEg5LSYJVLxJSUBs2b5JH6KFQrdu2CCy+Ezz83k+1x46BPH6ujEhEpl5ZdUF5IzRcI4nY66JToYXB3FVKrd8qWICkpDREIhdhVVEphSQCn3U5ibCROu11LkDR2wSA88wycfTZ07Gjue/JJs2fb4bA2NhERASDWHUHbFtH8uWsfN8kddlITool16yb5QVu/Hs46C37/HWJizCHlSrhFpB4pW/I5x+snOc5NtCuKIn+ANRl5ZOQVh33JZyXdB2jPdd52FpZwSPMoHHYbwZBBgS9AC09k2Nd5EwutXWsWR/v6a7MozGefmXf0VZVcRKReKb9JHggRCITYVVyKtySAo+wmuUM3yWvFF1/ABReYPd2pqWbb2KuX1VGJiJQrW/I5x+unS5KnfORTrDsCT6ST9dmFYV/yWUl3Dey9zluRP0Ck00HPQ+LrZJ03sYDfD488Ag88YM5Za9bMHFIuIiL1UsWb5H4OSYje6ya5SzfJD9bs2XD11RAIwPHHw7x50Lq11VGJiFSQnlvMhu2FJMe5q6zxkRznJi27MKyrWSjpriEr13mTOrZ6tdm7/dNP5vZZZ8Hzz8Mhh1gbl4iI/K193ySP003y2nDIIWa18hEjzBU73G6rIxIRqcTrD+ALBIl2VT2yKcrlICvfh9cfvsKaSroPglXrvEkd+uQTGDLEXP6kZUt4+mmzh9ummysiIg1B56RY2veP4butu9jp9dMixsXRqc1xOu1Wh9YwGcbuNvC008zpVkcfrXZRROqtGJcTt9NBkT9QZR2PYn+QSKeDGFf4UmO1OCJ/Z8AAOOwwM9Fetw4uvVQfLESkSVqyZAnDhg2jTZs22Gw25s+f/7fHv/vuu5x++ukkJibSrFkz+vbty8KFC+sm2D2kZRfwwpI/eP2brSz4MYPXv9nKC0v+IC27oM5jafA2boT+/eHXX3fvO+YYtYsiUq+lxEfRKdFDZp4PwzAqfM8wDDLzfHRO8oS1xoeSbpE9FRTA1Knm/DSAyEj46iuYOxcSE62NTUTEQl6vl169evHss89W6/glS5Zw+umn8+GHH/Ltt99y8sknM2zYML7//vswR7pbWbXaNRl5xEdH0LGlh/joCNZk5DFr+SYl3gdi2TKzIvmyZXDddVZHIyJSbWU1PhJiXKzPLqTAV0ogFKLAV8r67EISYsJf40PDy0XKLFwI11wDW7aYd+3vusvcHxdnbVwiIvXAkCFDGDJkSLWPf+qppypsP/TQQ7z33nssWLCAo446qpajq6w+VKttNObMMQum+f3mUPJXX7U6IhGRA7J3jY+sfB+RTgc9UuqmxoeSbpGcHBg/Hl5+2dzu0AGOPdbamEREGplQKERBQQEJCQl1cr36UK22wQuFYOJEePhhc/u888wEPCbG2rhERGrAykLYSrqlaXvnHRg3DrKyzN7tW26BBx/UBwoRkVr2xBNP4PV6ueiii/Z5TElJCSUlJeXb+fn5Nb5efahW26B5vXD55VA2d3/iRLj/frBrZqKINFxWFcLWv5zSdE2ZAhdcYCbchx8Oy5fDv/6lhFtEpJbNnTuXyZMn88Ybb5CUlLTP46ZOnUpcXFz5IzU1tcbX3LNabVXqolptg+Z0ws6d4HLBf/9r3pBWwi0iUiP611OarosvBo8H7rkHvv8e+va1OiIRkUbnjTfeYMyYMbz55pucdtppf3vshAkTyMvLK39s3bq1xtetD9VqG7TISHj3XVi82OzxFhGRGtPtXWk6tmyBzz+H0aPN7cMOg02boEULS8MSEWms5s6dy1VXXcXcuXM588wz93t8ZGQkkZGRtXLtsmq1GXnFrM8253ZHuRwU+4Nk5vnqpFptg/PGG/Dzz2avNkDLluZDREQOipJuafxCIZg+Hf7v/6CoCLp1M5c9ASXcIiLVVFhYSFpaWvn2xo0b+eGHH0hISKBt27ZMmDCB9PR05syZA5gJ98iRI5k2bRrHH38827ZtAyAqKoq4OloVwupqtQ2GYZhTrqZMMbdPPBHOOMPamEREGhEl3dK4/f47jB0LS5ea2/36QXy8pSGJiDREq1ev5uSTTy7fHj9+PACjRo1i9uzZZGZmsmXLlvLvv/DCCwQCAcaNG8e4cePK95cdX1esrFbbIBQXmyPA3njD3L79djj9dGtjEhFpZGzG3hOdGrn8/Hzi4uLIy8ujWbNmVocj4RIIwJNPwn33gc9nFkd7+GG44QYVghGRek9tlUnvQ5hlZsI558CqVWbhtOnTYcwYq6MSEfn/9u49Pqrq3vv4dy6ZyZWJQBJCuBNUBI0cIhWRAnITlGqrBR6rKEVO8QJHqXpKLyq2yjm1Wg5FxD4Pl4cWeVEsIioKPlhAEC3B0ApYJQgCISThkstMLpPJ7OePLcHILTNksifJ5/16zevFXtkz85uVkF9+e+21VrPR0DzFSDdaHsMwb4vbuNE8HjlS+uMfpW7dLA0LAICokZsrfe970pEjUtu25qJpQ4ZYHRUAtEgM+aHlsdmk8ePN28iXLJHWr6fgBgDgm/bvNwvuK6+UPv6YghsAIoiRbrQMH30kVVef+aNh6lTp9tulC+wHCwBAq3XnndKrr0pjxrDWCQBEGCPdaN58PmnmTOmGG6R77pHKy812m42CGwCA06qrzXx55MiZtv/1vyi4AaAJMNKN5uv9980R7S+/NI+HDZNqa62NCQCAaFNcLH3/+9K2bdLWrebdYSwqCgBNht+4aH5KS81ie/hws+Du3Flat076v/+XK/YAAHzTnj3SgAFmwe3xSM8+S8ENAE2MkW40L0VFUr9+0tGj5vEDD5hbgbGVDAAA9b3zjjRhgjn1qmdP6a23zIXTAABNikudaF5SU6VBg6TMTGnzZmnBAgpuAAC+yTCkuXOlW281C+4hQ8wVyim4AcASjHQjuhmG9Je/mPO1Ty+M9sorktstxcdbGxsAANGoutrcMjMYlKZMMS9Qu1xWRwUArRYj3ZcgGDR0+GSF/nWsTIdPVigYNKwOqWXJz5duu02aOFGaPv1M+2WXUXADAHA+sbHS2rXS/PnS//7fFNwAYDFGusOUV1Sud3cf06f5parwBxTvcurqDI9u7ttBmalJVofXvBmGtGiR9Nhj5qJpMTFSnz7mFXsWfwEA4GxffCFt2SLdf7953LWr9NBD1sYEAJBE0R2WvKJyzf1/+/T5sXL5a2pVK0MO2fRlsU//OlauR0b0ovAO15dfSv/+79LGjebxgAFmAd63r7VxAQAQrTZulO6807xQ3aGDOZcbABA1GDYMUTBo6NWPDynn4Ekd91aprDogX3WtyqoDOu6tUs7Bk3r140Pcah6O99+Xrr7a/OMhLk763e+kDz+k4AYQ1ZhqBEstXCiNHi2VlEjXXy9dd53VEQEAvsXSonvLli0aN26cOnbsKJvNpjVr1lzw/NWrV2vkyJFKSUlRmzZtNHDgQK1fv75pgv3akVMV2vx5sbzVAUk2uZx2xcU45HLaJdnkrQ5oyxfFOnKqoknjahGys6V27aShQ6V//lP66U8lh8PqqADgvPKKyvXypv36/XtfaN7Gffr9e1/o5U37lVdUbnVoaOkCAek//sPcOrO2VvrRj8yL12lpVkcGAPgWS4tun8+nrKwszZ8/v0Hnb9myRSNHjtS6deu0c+dODRs2TOPGjVNubm6EIz0jr9irovJq2SXFxTjktNtks0lOu01xMQ7ZJRWWVSuv2NtkMTVbNTXSsmXmHG7J3Ppr61ZzpDsz09rYAOAi8orKtWTbQe0+Wqrk+Bj1aJ+o5PgY7T5aqiXbDlJ4I3JKS6Vx46R588zjZ5+V/vQncwE1AEDUsXRO95gxYzRmzJgGnz937tx6x88995zeeOMNvfnmm+rXr18jR3duJ7x+BYJBJbicstnqf81mk2KcDlX4Azrh9TdJPM3WJ59IP/6x9I9/SH7/mYVfunSxNi4AaIBg0ND63YU66fOrV2qibF8nhKTYGCW6ndpX5NWGPYXq0T5RdrvtIq8GhOjtt6V33zWnYv3pT9Idd1gdEQDgApr1QmrBYFDl5eVq27btec+prq5WdXV13XFZWdklvWe7RJdi7Db5g0G5DFvdH1qSZBiGaoJBxdhtapfI9hznVFUlzZ4tPf+8eTtcu3aSx2N1VAAQkvySSu0v9irdE1svD0iSzWZTuidWeUVe5ZdUqnNbtjhEI7vrLmn/fmnsWKl/f6ujAQBcRLNeSO2FF16Qz+fT+PHjz3vOnDlz5PF46h6dO3e+pPfMTElUSpJbwaChypqgAkFDhmEo8PVxMGgoNcmtzJTES3qfFmnrVikrS/qv/zIL7vHjpb17pR/+0OrIACAkPn9AVYFaxbvOfe06zuVQdaBWPn+giSNDi7VypXTy5JnjX/2KghsAmolmW3SvWLFCTz/9tFauXKnU1NTznjdr1iyVlpbWPQ4fPnxJ79vpsngNuSJViW6nZBiq9NfKW12rSn+tZBhKdDv13StS1ekyRjbqef556bvfNfcRTU+XXn/d/APiAt87AIhWCS6nYr+eTnQulf5auZ0OJZynKAcarLZWeuIJaeJEc1uwmhqrIwIAhKhZ/jWwcuVKTZkyRatWrdKIESMueK7b7Zbb7W6097bbbbrrO120v9irT4+UKlBbKyNoyGa3yel06IoOSbrrO12Yw/dtgwebk94nTza3ArvsMqsjAoCwZSTHqWdKonYfLVWi23nWVKOC0ipdneFRRnKchVGi2fN6zVXJ1641jwcNYlcPAGiGml3RvWLFCv34xz/WihUrdMstt1gWR1JsjNoluuUP1CpoGLLbbHI7HUqKjbEspqhy6pS0fbs530wy9w7917+kXr2sjQsAGoHdbtPovmk6WlqpfUXm3O44l0OV/loVlFapbYJLo/qkcQEW4Tt0SPre98wFR91uafFicy43AKDZsbTo9nq9ysvLqzs+cOCAdu3apbZt26pLly6aNWuW8vPztWzZMklmwT1p0iT9z//8j66//nodO3ZMkhQXFydPEy3GdXrF2tqgoZv7pMlbXSt/bVAuh12Jbofyin2sWPv669KDD5qF9z/+IV1xhdlOwQ2gBclMTdLkQd20fneh9hd7VVhWJbfToaszPBrVJ02ZqUlWh4jm6qOPpNtvlwoLzWlYa9ZIAwdaHRUAIEyWFt05OTkaNmxY3fHMmTMlSffee6+WLl2qgoICHTp0qO7rr7zyigKBgB566CE99NBDde2nz28K31yx1m63q01c/WnxrXrF2sJCafp0adUq8/jKK6WKCmtjAoAIykxNUo+hicovqZTPH1CCy6mM5LjWe9EVl662VpoyxcypV18tvfmm1LWr1VEBAC6BpUX30KFDZRjGeb/+7UJ606ZNkQ2oAc6sWHvueXpxLocKy6pa14q1hiH9+c/SI4+YK6s6HNJ//qe5smpsrNXRAUBE2e221neRFZHjcEh/+Yv03HPSwoVSEndMAEBz1+zmdFvtmyvWnmv+dqtbsdYwzNVUV682j6+91px31q+fpWEBANBsVFSY66AMH24e9+kjLV9ubUwAgEbTbLcMs8rpFWsLSqvOGqU/vWJtZmpi61mx1maTsrPNRV6ee076+98puAEAaKijR6UhQ6Sbb5Y2b7Y6GgBABLSS4djG880Va78o9Cop1imH3abaoKHyqoDaJbaCFWv37TOvymdlmcePPWaOdrNQGgAADffJJ+YK5fn5Urt25oVsAECLw0h3GDJTk3TTlanyVtVo8xdFend3gTZ/USRvdY1uujK15a5YGwhIzz8vXXONuW1JdbXZHhNDwQ0AQChWr5ZuvNEsuHv3lj7+WPrud62OCgAQARTdYcgrKtey7Qe1t6BM3uqAqmtq5a0OaO/RMi3bflB5ReVWh9j4Pv3U3K7kiSekqiqpY0eprMzqqAAAaF4Mw5yOdccdUmWlNGqUOZ+7Z0+rIwMARAhFd4iCQUML/pannIOnVB0IKt7lVHK8S/Eup6oDQeUcPKUFf8tTMHj+VdmbFb9feuop6d/+TcrJkTweadEiacMGKSXF6ugAAGhe3nhD+sUvzH9Pny69/baZWwEALRZzukN06KRPH+w7LsMw5ImLqZu77bbbFGO3qaSyRlvzjuvQSZ+6tU+0ONpLVFhorqS6Z495fPvt0ksvmaPcAAAgdLfdJk2aJF1/vfTAA1ZHAwBoAhTdIdpx8JS81QHFuxxnLZZmt9sU73KovCqgHQdPNf+iOzXVfBQVSfPnSz/8IYu8AAAQqs8+k7p0kRISzDy6dCn5FABaEW4vD1FVTa0MQ3KcJ1nabTYZhnles7Rli1T+9Zx0m01atkzau1caP54/EAAACNVbb0kDBpij28Gg2UY+BYBWhaI7RL3SEuVy2lX5dfH9TaeLbZfTrl5pzWyUu6xMmjbN3Cv0Zz87096pk9S+vXVxAQDQHBmG9OKL5pZgXq908qTk81kdFQDAAhTdIcru0la9UhMVCBqq8AcUCBoyDNU7vjwtUdld2lodasOtWyf16SO98op5bBg664oCAABoGL9f+vd/l376UzOfTp0qrV8vJbXQLUUBABdE0R0ip9OuB4dlKiUpVoGgoSp/rSr8AVX5axUIGkpNitUDQzPldDaDrj1+XLr7bumWW6QjR8ztSv72N2nBAm59AwAgHCdOSKNHS//n/0h2u/T735sXtV0uqyMDAFiEhdTCMLx3miRpydYD2l/sVU1tUDEOuzJTE3XfoO51X49q27ZJ3/++VFxs/lHw6KPSM89I8fFWRwYAQPNkGOZOH1u3mqPaK1aYF7YBAK0aRXeYhvdO05BeKfrk8Cmd8PnVLsGlf+t8WfMY4ZakzEyptta8rXzxYnORFwAAED6bTXr+eWnyZGnVKqlvX6sjAgBEAYruS+B02jWgezurw2gYw5Def9/cd1uS0tKkjRul3r0lt9va2AAAaM4OHJC6dzf/ff310u7dksNhbUwAgKjRTIZlcUkOHjTnl40YIb3++pn2a6+l4AYAIFyBgPTww+aIdm7umXYKbgDAN1B0t2TBoDRvnvnHwHvvSbGx5hxuAABwaUpKzPnaL70kVVRI27dbHREAIEpxe3lL9a9/SVOmSB9+aB4PHmyupHr55dbGBQBAc5eXJ40bZ+ba+Hjpz382FycFAOAcGOluiV55xbx1/MMPpcREcwuwTZsouAEAuFSbN0vf+Y5ZcGdkmCuVU3ADAC6Ake6WqEsXqbpauvlmswDv0sXqiAAAaP62b5dGjpRqaqTsbOmNN6SOHa2OCgAQ5Si6W4KqKumf/zyz7deYMdIHH0iDBpnblwAAgEt33XXmLiBt2khLlpi3lgMAcBEU3c3dhx+ac7ePHpX27JE6dTLbb7zR2rgAAGgJysvNnT5cLsnplP76V3NhUjsz9AAADUPGaK68XmnGDLO4Pr2Qy1dfWR0VAAAtx1dfmXeNPfSQZBhmW3w8BTcAICSMdDdH770nTZ16psiePFl64QXpssusjQsAgJZi+3bp9tuloiLzceyYlJ5udVQAgGaIS7XNiWGYxfaoUWbB3bWrtH69tHgxBTcAAI1l+XJp6FCz2M7KknbsoOAGAISNors5sdnMxVtsNmn6dGn3brMABwAAly4YlH75S+nuuyW/X7rtNnNLsM6drY4MANCMcXv5JQgGDeWXVMrnDyjB5VRGcpzs9kZeLbyoSPL5pO7dzeNf/1q6805p4MDGfR8AAFq7qVPNu8ck6T//U3ruOeZvAwAuGUV3mPKKyrV+d6H2F3tVFahVrNOhnimJGt03TZmpSZf+BoYhvfqq9B//IV1xhbRli+RwmAu4UHADAND4fvhDacUKacEC6b77rI4GANBCUHSHIa+oXEu2HdRJn1/pnljFu+JU4Q9o99FSHS2t1ORB3S6t8D58WHrgAentt81jn08qLpY6dGicDwAAAEzV1eaWYJJ0883SgQNSWpq1MQEAWhTumQpRMGho/e5CnfT51Ss1UUmxMXLYbUqKjVGv1ESd9Pm1YU+hgkEjnBeXXnlF6tPHLLhdLvN28h07KLgBAGhsr70m9eol5eWdaaPgBgA0MoruEOWXVGp/sVfpnljZbPXnb9tsNqV7YpVX5FV+SWVoL1xcLA0fLk2bJpWXS9dfL+Xmmgu6xMQ04icAACB0W7Zs0bhx49SxY0fZbDatWbPmos/ZvHmz+vfvr9jYWPXo0UMLFy6MfKANYRjSs8+at5MfPizNnWt1RACAFoyiO0Q+f0BVgVrFu859Z36cy6HqQK18/kBoL5ycLJWWmnO25841V0u96qpLjhcAgMbg8/mUlZWl+fPnN+j8AwcOaOzYsRo8eLByc3P185//XDNmzNBf//rXCEd6EVVV0j33mBe1JemRRyi6AQARxZzuECW4nIp1OlThDygp9uwR6Ep/rdxOhxLOU5TX89lnUo8e5lyymBhzX1C322wDACCKjBkzRmPGjGnw+QsXLlSXLl009+uCtnfv3srJydHvfvc73XHHHRGK8iIKC6Xbb5c++khyOqX586Wf/MSaWAAArQYj3SHKSI5Tz5REFZRWyTDqz9s2DEMFpVXKTE1URnLc+V/E75dmz5aysszb207r3ZuCGwDQImzfvl2jRo2q1zZ69Gjl5OSopqam6QP68ktpwACz4E5Oltavp+AGADQJRrpDZLfbNLpvmo6WVmpfkTm3O87lUKW/VgWlVWqb4NKoPmnn3697xw5pyhTp00/N4717zblltkbe3xsAAAsdO3ZMad9alCwtLU2BQEDHjx9Xenr6Wc+prq5WdXV13XFZWVnjBdSxo/lwu6W33pIuv7zxXhsAgAtgpDsMmalJmjyom/p29KikokYHj/tUUlGjqzM8598urLJSeuIJc4G0Tz+V2rc39wJdtYqCGwDQIn17wdHTd4h9u/20OXPmyOPx1D06d+7ceMHExkpvvGGOdFNwAwCaECPdYcpMTVKPoYnKL6mUzx9QgsupjOS4c49w79wpTZx4ZkuSu+4yF21JSWnSmAEAaCodOnTQsWPH6rUVFRXJ6XSqXbt253zOrFmzNHPmzLrjsrKyxi28U1Mb77UAAGggiu5LYLfb1Llt/MVPTE6W8vOljAzp5ZelceMiHhsAAFYaOHCg3nzzzXptGzZsUHZ2tmLOsxWm2+2W2+1uivAAAGgy3F4eKZ99dubfPXtKa9dKe/ZQcAMAmiWv16tdu3Zp165dkswtwXbt2qVDhw5JMkepJ02aVHf+tGnT9NVXX2nmzJn67LPPtHjxYi1atEiPPfaYFeEDAGAZS4vuLVu2aNy4cerYsaNsNpvWrFlz0eds3rxZ/fv3V2xsrHr06KGFCxdGPtBQnDghTZok9ekjbdlypn3ECMnjsS4uAAAuQU5Ojvr166d+/fpJkmbOnKl+/frpySeflCQVFBTUFeCS1L17d61bt06bNm3Stddeq1//+teaN2+edduFAQBgEUtvL/f5fMrKytLkyZMblIQPHDigsWPHaurUqfrzn/+sbdu26cEHH1RKSkp0JPHXXpMeekgqKpLsdnOl8u9+1+qoAAC4ZEOHDj1rq8xvWrp06VltQ4YM0SeffBLBqAAAiH6WFt1jxozRmDFjGnz+woUL1aVLF82dO1eS1Lt3b+Xk5Oh3v/udtUV3QYH08MPS6tXm8VVXSYsXS9/5jnUxAQAAAAAs16zmdG/fvl2jRo2q1zZ69Gjl5OSopqbGmqBWrjSL7NWrJadT+tWvpE8+oeAGAAAAADSv1cuPHTumtLS0em1paWkKBAI6fvy40tPTz3pOdXW1qqur647LysoaN6iaGqmkROrf3xzdvuaaxn19AAAAAECz1ayKbkmy2ervg316ftm320+bM2eOZs+eHbmAfvQjyeWSfvADc6QbAAAAAICvNavbyzt06KBjx47VaysqKpLT6VS7du3O+ZxZs2aptLS07nH48OHGDcpmk8aPp+AGAAAAAJylWVWKAwcO1JtvvlmvbcOGDcrOzlZMTMw5n+N2u+V2uyMSTzBoKL+kUj5/QAkupzKS42S3n3vEHQAAAADQ+lhadHu9XuXl5dUdHzhwQLt27VLbtm3VpUsXzZo1S/n5+Vq2bJkkadq0aZo/f75mzpypqVOnavv27Vq0aJFWrFjR5LHnFZVr/e5C7S/2qipQq1inQz1TEjW6b5oyU5OaPB4AAAAAQPSxtOjOycnRsGHD6o5nzpwpSbr33nu1dOlSFRQU6NChQ3Vf7969u9atW6dHH31UL730kjp27Kh58+Y1+XZheUXlWrLtoE76/Er3xCreFacKf0C7j5bqaGmlJg/qRuENAAAAALC26B46dGjdQmjnsnTp0rPahgwZok8++SSCUV1YMGho/e5CnfT51Ss1sW4Bt6TYGCW6ndpX5NWGPYXq0T6RW80BAAAAoJVrVgupRYP8kkrtL/Yq3RN71orpNptN6Z5Y5RV5lV9SaVGEAAAAAIBoQdEdIp8/oKpAreJd575JIM7lUHWgVj5/oIkjAwAAAABEG4ruECW4nIp1OlRxnqK60l8rt9OhhPMU5QAAAACA1oOiO0QZyXHqmZKogtKqs+ajG4ahgtIqZaYmKiM5zqIIAQAAAADRgqI7RHa7TaP7pqltgkv7irwqr6pRIBhUeVWN9hV51TbBpVF90lhEDQAAAABA0R2OzNQkTR7UTX07elRSUaODx30qqajR1RketgsDAAAAANRh4nGYMlOT1GNoovJLKuXzB5TgciojOY4RbgAAAABAHYruS2C329S5bbzVYQAAAAAAohS3lwMAAAAAECEU3QAAAAAARAhFNwAAAAAAEULRDQAAAABAhLCQ2iUIBg1WLwcAAAAAnBdFd5jyisq1fneh9hd7VRWoVazToZ4piRrdN419ugEAAAAAkii6w5JXVK4l2w7qpM+vdE+s4l1xqvAHtPtoqY6WVmryoG4U3gAAAAAA5nSHKhg0tH53oU76/OqVmqik2Bg57DYlxcaoV2qiTvr82rCnUMGgYXWoAAAAAACLUXSHKL+kUvuLvUr3xMpmqz9/22azKd0Tq7wir/JLKi2KEAAAAAAQLSi6Q+TzB1QVqFW869x35se5HKoO1MrnDzRxZAAAAACAaEPRHaIEl1OxTocqzlNUV/pr5XY6lHCeohwAAAAA0HpQdIcoIzlOPVMSVVBaJcOoP2/bMAwVlFYpMzVRGclxFkUIAAAAAIgWFN0hstttGt03TW0TXNpX5FV5VY0CwaDKq2q0r8irtgkujeqTxn7dAAAAAACK7nBkpiZp8qBu6tvRo5KKGh087lNJRY2uzvCwXRgAAAAAoA4Tj8OUmZqkHkMTlV9SKZ8/oASXUxnJcYxwAwAAAADqMNJ9CYJBQwWllTpw3KeC0kr25gYAAAAA1MNId5g2flaoJVsPaH+xV/7aoFwOu3qmJGryjd01vHea1eEBAICvBYMGd6YBACxD0R2GjZ8Vavabe3XSVy2HzSabTaqordWuIyWa/eZeSaLwBgAgCuQVlWv97kLtL/aqKlCrWKdDPVMSNbpvGmuwAACaBLeXhygQCGrB3/JUXF4lp92mWJdD8S6nYl0OOe02FZdX6eVNeQoEglaHCgBAq5ZXVK4l2w5q99FSJcfHqEf7RCXHx2j30VIt2XZQeUXlVocIAGgFKLpDlHPopPYVeeW02xTvcsppN0e6v3n8RaFXOYdOWh0qAACtVjBoaP3uQp30+dUrNVFJsTFy2G1Kio1Rr9REnfT5tWFPIeuxAAAijqI7RPsKvfIHgoqLccj2relgNpsUG+OQPxDUvkKvNQECAADll1Rqf7FX6Z5Y2b6VsG02m9I9scor8iq/pNKiCAEArQVFd4hivy62a41zXxkPGkZd8Q0AAKzh8wdUFahVvOvcy9fEuRyqDtTK5w80cWQAgNaGojtE13W7TIlupyr9tWfdkhYMGqrw1yop1qnrul1mUYQAACDB5VSs06GK8xTVlf5auZ0OJZynKAcAoLFQdIeoS9sEDe7VXjabTWVVAVUHggoGDVUHgiqrCshus+nGzPbq0jbB6lABAGi1MpLj1DMlUQWlVTK+dXeaYRgqKK1SZmqiMpLjLIoQANBacHk3RHa7TQ8Oy9QJn1+788tUVVOrSsOQzWZTbIxDfTPa6MFhmez/CQCAhex2m0b3TdPR0krtKzLndse5HKr016qgtEptE1wa1SeNfA0AiDiK7jBkpibpV7depXc+LdCOg6fkrQ4o0e3UgG5tdfPVHdj3EwCAKJCZmqTJg7rV7dNdWFYlt9OhqzM8GtWHfboBAE2DojtMmalJemhYovJLKuXzB5TgciojOY4r5gAARJHM1CT1GEq+BgBYh6L7EtjtNnVuG291GAAA4ALI1wAAK7GQGgAAAAAAEULRDQAAAABAhFB0AwAAAAAQIRTdAAAAAABEiOVF94IFC9S9e3fFxsaqf//++uCDDy54/vLly5WVlaX4+Hilp6dr8uTJOnHiRBNFCwAAAABAw1ladK9cuVKPPPKIfvGLXyg3N1eDBw/WmDFjdOjQoXOev3XrVk2aNElTpkzRnj17tGrVKu3YsUP3339/E0cOAAAAAMDFWVp0v/jii5oyZYruv/9+9e7dW3PnzlXnzp318ssvn/P8jz76SN26ddOMGTPUvXt33XjjjfrJT36inJycJo4cAAAAAICLs6zo9vv92rlzp0aNGlWvfdSoUfrwww/P+ZwbbrhBR44c0bp162QYhgoLC/Xaa6/plltuOe/7VFdXq6ysrN4DAAAAAICmYFnRffz4cdXW1iotLa1ee1pamo4dO3bO59xwww1avny5JkyYIJfLpQ4dOig5OVl/+MMfzvs+c+bMkcfjqXt07ty5UT8HAAAAAADnY/lCajabrd6xYRhntZ22d+9ezZgxQ08++aR27typd999VwcOHNC0adPO+/qzZs1SaWlp3ePw4cONGj8AAAAAAOfjtOqN27dvL4fDcdaodlFR0Vmj36fNmTNHgwYN0uOPPy5Juuaaa5SQkKDBgwfrN7/5jdLT0896jtvtltvtbvwPAAAAAADARVhWdLtcLvXv31/vvfeevv/979e1v/fee7rtttvO+ZyKigo5nfVDdjgckswR8oY4fR5zuwEA0ep0jmpobmupyNkAgGjW0HxtWdEtSTNnztQ999yj7OxsDRw4UH/84x916NChutvFZ82apfz8fC1btkySNG7cOE2dOlUvv/yyRo8erYKCAj3yyCMaMGCAOnbs2KD3LC8vlyTmdgMAol55ebk8Ho/VYViGnA0AaA4ulq8tLbonTJigEydO6JlnnlFBQYH69u2rdevWqWvXrpKkgoKCent233fffSovL9f8+fP105/+VMnJybrpppv03//93w1+z44dO+rw4cNKSko679zxUJSVlalz5846fPiw2rRpc8mv1xrQZ+Gh30JHn4WHfgtdY/eZYRgqLy9v8AXllqoxczY/1+Gh30JHn4WHfgsdfRaexuy3huZrm9Ha7127RGVlZfJ4PCotLeWHvYHos/DQb6Gjz8JDv4WOPot+fI/CQ7+Fjj4LD/0WOvosPFb0m+WrlwMAAAAA0FJRdAMAAAAAECEU3ZfI7XbrqaeeYluyENBn4aHfQkefhYd+Cx19Fv34HoWHfgsdfRYe+i109Fl4rOg35nQDAAAAABAhjHQDAAAAABAhFN0AAAAAAEQIRTcAAAAAABFC0X0BW7Zs0bhx49SxY0fZbDatWbPmos/ZvHmz+vfvr9jYWPXo0UMLFy6MfKBRJtR+W716tUaOHKmUlBS1adNGAwcO1Pr165sm2CgRzs/aadu2bZPT6dS1114bsfiiVTj9Vl1drV/84hfq2rWr3G63evbsqcWLF0c+2CgRTp8tX75cWVlZio+PV3p6uiZPnqwTJ05EPtgoMWfOHF133XVKSkpSamqqbr/9dn3++ecXfR75oGmRs0NHvg4POTt05OvwkLNDF605m6L7Anw+n7KysjR//vwGnX/gwAGNHTtWgwcPVm5urn7+859rxowZ+utf/xrhSKNLqP22ZcsWjRw5UuvWrdPOnTs1bNgwjRs3Trm5uRGONHqE2menlZaWatKkSRo+fHiEIotu4fTb+PHjtXHjRi1atEiff/65VqxYoSuvvDKCUUaXUPts69atmjRpkqZMmaI9e/Zo1apV2rFjh+6///4IRxo9Nm/erIceekgfffSR3nvvPQUCAY0aNUo+n++8zyEfND1ydujI1+EhZ4eOfB0ecnboojZnG2gQScbrr79+wXOeeOIJ48orr6zX9pOf/MS4/vrrIxhZdGtIv53LVVddZcyePbvxA2oGQumzCRMmGL/85S+Np556ysjKyopoXNGuIf32zjvvGB6Pxzhx4kTTBBXlGtJnzz//vNGjR496bfPmzTM6deoUwciiW1FRkSHJ2Lx583nPIR9Yi5wdOvJ1eMjZoSNfh4ecHZ5oydmMdDei7du3a9SoUfXaRo8erZycHNXU1FgUVfMTDAZVXl6utm3bWh1KVFuyZIn279+vp556yupQmo21a9cqOztbv/3tb5WRkaHLL79cjz32mCorK60OLWrdcMMNOnLkiNatWyfDMFRYWKjXXntNt9xyi9WhWaa0tFSSLvg7inwQ/fgeXTrydcORs0NDvg4POfts0ZKznY3yKpAkHTt2TGlpafXa0tLSFAgEdPz4caWnp1sUWfPywgsvyOfzafz48VaHErX27dunn/3sZ/rggw/kdPLfuKG+/PJLbd26VbGxsXr99dd1/PhxPfjggzp58mSrmyfWUDfccIOWL1+uCRMmqKqqSoFAQN/73vf0hz/8werQLGEYhmbOnKkbb7xRffv2Pe955IPox/fo0pGvG4acHTrydXjI2fVFU85mpLuR2Wy2eseGYZyzHee2YsUKPf3001q5cqVSU1OtDicq1dbW6q677tLs2bN1+eWXWx1OsxIMBmWz2bR8+XINGDBAY8eO1YsvvqilS5dy9fw89u7dqxkzZujJJ5/Uzp079e677+rAgQOaNm2a1aFZ4uGHH9Y///lPrVix4qLnkg+iH9+j8JGvG4acHR7ydXjI2fVFU87mclsj6tChg44dO1avraioSE6nU+3atbMoquZj5cqVmjJlilatWqURI0ZYHU7UKi8vV05OjnJzc/Xwww9LMpOTYRhyOp3asGGDbrrpJoujjE7p6enKyMiQx+Opa+vdu7cMw9CRI0fUq1cvC6OLTnPmzNGgQYP0+OOPS5KuueYaJSQkaPDgwfrNb37TqkYDp0+frrVr12rLli3q1KnTBc8lH0Q/vkfhI183HDk7POTr8JCzz4i2nE3R3YgGDhyoN998s17bhg0blJ2drZiYGIuiah5WrFihH//4x1qxYkWrnnfSEG3atNGnn35ar23BggV6//339dprr6l79+4WRRb9Bg0apFWrVsnr9SoxMVGS9MUXX8hut1/0F3JrVVFRcdbtkA6HQ9KZq8AtnWEYmj59ul5//XVt2rSpQf/HyAfRj+9ReMjXoSFnh4d8HR5ydhTn7EZbkq0FKi8vN3Jzc43c3FxDkvHiiy8aubm5xldffWUYhmH87Gc/M+65556687/88ksjPj7eePTRR429e/caixYtMmJiYozXXnvNqo9giVD77dVXXzWcTqfx0ksvGQUFBXWPkpISqz5Ckwu1z76tta6EGmq/lZeXG506dTLuvPNOY8+ePcbmzZuNXr16Gffff79VH6HJhdpnS5YsMZxOp7FgwQJj//79xtatW43s7GxjwIABVn2EJvfAAw8YHo/H2LRpU73fURUVFXXnkA+sR84OHfk6POTs0JGvw0PODl205myK7gv429/+Zkg663HvvfcahmEY9957rzFkyJB6z9m0aZPRr18/w+VyGd26dTNefvnlpg/cYqH225AhQy54fmsQzs/aN7XGBG4Y4fXbZ599ZowYMcKIi4szOnXqZMycObPeL+KWLpw+mzdvnnHVVVcZcXFxRnp6uvGjH/3IOHLkSNMHb5Fz9ZckY8mSJXXnkA+sR84OHfk6POTs0JGvw0PODl205mzb18EBAAAAAIBGxurlAAAAAABECEU3AAAAAAARQtENAAAAAECEUHQDAAAAABAhFN0AAAAAAEQIRTcAAAAAABFC0Q0AAAAAQIRQdAMAAAAAECEU3QCiis1m05o1a6wOAwAAXAD5Gmg4im6gFfvwww/lcDh08803h/S8bt26ae7cuZEJCgAA1EO+Bpo3im6gFVu8eLGmT5+urVu36tChQ1aHAwAAzoF8DTRvFN1AK+Xz+fSXv/xFDzzwgG699VYtXbq03tfXrl2r7OxsxcbGqn379vrBD34gSRo6dKi++uorPfroo7LZbLLZbJKkp59+Wtdee22915g7d666detWd7xjxw6NHDlS7du3l8fj0ZAhQ/TJJ59E8mMCANCska+B5o+iG2ilVq5cqSuuuEJXXHGF7r77bi1ZskSGYUiS3n77bf3gBz/QLbfcotzcXG3cuFHZ2dmSpNWrV6tTp0565plnVFBQoIKCgga/Z3l5ue6991598MEH+uijj9SrVy+NHTtW5eXlEfmMAAA0d+RroPlzWh0AAGssWrRId999tyTp5ptvltfr1caNGzVixAg9++yzmjhxombPnl13flZWliSpbdu2cjgcSkpKUocOHUJ6z5tuuqne8SuvvKLLLrtMmzdv1q233nqJnwgAgJaHfA00f4x0A63Q559/rr///e+aOHGiJMnpdGrChAlavHixJGnXrl0aPnx4o79vUVGRpk2bpssvv1wej0cej0der5f5aQAAnAP5GmgZGOkGWqFFixYpEAgoIyOjrs0wDMXExOjUqVOKi4sL+TXtdnvd7W6n1dTU1Du+7777VFxcrLlz56pr165yu90aOHCg/H5/eB8EAIAWjHwNtAyMdAOtTCAQ0LJly/TCCy9o165ddY9//OMf6tq1q5YvX65rrrlGGzduPO9ruFwu1dbW1mtLSUnRsWPH6iXyXbt21Tvngw8+0IwZMzR27Fj16dNHbrdbx48fb9TPBwBAS0C+BloORrqBVuatt97SqVOnNGXKFHk8nnpfu/POO7Vo0SL9/ve/1/Dhw9WzZ09NnDhRgUBA77zzjp544glJ5r6fW7Zs0cSJE+V2u9W+fXsNHTpUxcXF+u1vf6s777xT7777rt555x21adOm7vUzMzP1pz/9SdnZ2SorK9Pjjz8e1lV6AABaOvI10HIw0g20MosWLdKIESPOSuCSdMcdd2jXrl1q06aNVq1apbVr1+raa6/VTTfdpI8//rjuvGeeeUYHDx5Uz549lZKSIknq3bu3FixYoJdeeklZWVn6+9//rscee6ze6y9evFinTp1Sv379dM8992jGjBlKTU2N7AcGAKAZIl8DLYfN+PakDgAAAAAA0CgY6QYAAAAAIEIougEAAAAAiBCKbgAAAAAAIoSiGwAAAACACKHoBgAAAAAgQii6AQAAAACIEIpuAAAAAAAihKIbAAAAAIAIoegGAAAAACBCKLoBAAAAAIgQim4AAAAAACKEohsAAAAAgAj5/7Kn1iufmY22AAAAAElFTkSuQmCC",
|
225
|
-
"text/plain": [
|
226
|
-
"<Figure size 1000x500 with 2 Axes>"
|
227
|
-
]
|
228
|
-
},
|
229
|
-
"metadata": {},
|
230
|
-
"output_type": "display_data"
|
231
|
-
}
|
232
|
-
],
|
233
|
-
"source": [
|
234
|
-
"plt.figure(figsize=(10, 5))\n",
|
235
|
-
"\n",
|
236
|
-
"plt.subplot(1, 2, 1)\n",
|
237
|
-
"plt.scatter(y_test, y_pred_original, alpha=0.5)\n",
|
238
|
-
"plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--', color='red')\n",
|
239
|
-
"plt.xlabel(\"Actual\")\n",
|
240
|
-
"plt.ylabel(\"Predicted\")\n",
|
241
|
-
"plt.title(\"Linear Regression on Original Data\")\n",
|
242
|
-
"\n",
|
243
|
-
"plt.subplot(1, 2, 2)\n",
|
244
|
-
"plt.scatter(y_test, y_pred_pca, alpha=0.5)\n",
|
245
|
-
"plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--', color='red')\n",
|
246
|
-
"plt.xlabel(\"Actual\")\n",
|
247
|
-
"plt.ylabel(\"Predicted\")\n",
|
248
|
-
"plt.title(\"Linear Regression on PCA-Reduced Data\")\n",
|
249
|
-
"\n",
|
250
|
-
"plt.tight_layout()\n",
|
251
|
-
"plt.show()"
|
252
|
-
]
|
253
|
-
}
|
254
|
-
],
|
255
|
-
"metadata": {
|
256
|
-
"kernelspec": {
|
257
|
-
"display_name": "Python 3 (ipykernel)",
|
258
|
-
"language": "python",
|
259
|
-
"name": "python3"
|
260
|
-
},
|
261
|
-
"language_info": {
|
262
|
-
"codemirror_mode": {
|
263
|
-
"name": "ipython",
|
264
|
-
"version": 3
|
265
|
-
},
|
266
|
-
"file_extension": ".py",
|
267
|
-
"mimetype": "text/x-python",
|
268
|
-
"name": "python",
|
269
|
-
"nbconvert_exporter": "python",
|
270
|
-
"pygments_lexer": "ipython3",
|
271
|
-
"version": "3.12.4"
|
272
|
-
}
|
273
|
-
},
|
274
|
-
"nbformat": 4,
|
275
|
-
"nbformat_minor": 5
|
276
|
-
}
|