noshot 0.3.6__py3-none-any.whl → 0.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +133 -0
  2. noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +139 -0
  3. noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +130 -0
  4. noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +141 -0
  5. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +198 -0
  6. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +209 -0
  7. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +169 -0
  8. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +181 -0
  9. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +213 -0
  10. {noshot-0.3.6.dist-info → noshot-0.3.7.dist-info}/METADATA +1 -1
  11. noshot-0.3.7.dist-info/RECORD +53 -0
  12. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/1.ipynb +0 -255
  13. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/2.ipynb +0 -399
  14. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/3.ipynb +0 -276
  15. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/4.ipynb +0 -265
  16. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/1 - AirPassengers.ipynb +0 -563
  17. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -688
  18. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/3 - Bill Charge.ipynb +0 -819
  19. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -573
  20. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -421
  21. noshot-0.3.6.dist-info/RECORD +0 -53
  22. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/1/Question.txt +0 -0
  23. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/1/airfoil_self_noise.dat +0 -0
  24. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/2/Question.txt +0 -0
  25. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/2/pop_failures.dat +0 -0
  26. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/3/Qu.txt +0 -0
  27. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/3/go_track_tracks.csv +0 -0
  28. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/4/Wilt.csv +0 -0
  29. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/4/qu.txt +0 -0
  30. /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/1 - AirPassengers/AirPassengers.csv +0 -0
  31. /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/2 - Daily-total-female-births/daily-total-female-births.csv +0 -0
  32. /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/3 - Bill Charge/bill charge.csv +0 -0
  33. /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/4 - Daily min temperatures/daily-min-temperatures.csv +0 -0
  34. /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/5 - shampoo sales/shampoo_sales.csv +0 -0
  35. /noshot/data/ML TS XAI/{TSLabCIA-Question order may be different → TS Lab CIA}/Questions TMS 27 Feb 25.pdf +0 -0
  36. {noshot-0.3.6.dist-info → noshot-0.3.7.dist-info}/LICENSE.txt +0 -0
  37. {noshot-0.3.6.dist-info → noshot-0.3.7.dist-info}/WHEEL +0 -0
  38. {noshot-0.3.6.dist-info → noshot-0.3.7.dist-info}/top_level.txt +0 -0
@@ -1,819 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 13,
6
- "id": "5a3e5b8d-cfa8-4e7d-9641-3bf6a3366818",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "from statsmodels.tsa.stattools import adfuller\n",
15
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
16
- ]
17
- },
18
- {
19
- "cell_type": "code",
20
- "execution_count": 14,
21
- "id": "08f9b3df-ed97-4353-9a21-1a5b1894263c",
22
- "metadata": {},
23
- "outputs": [
24
- {
25
- "data": {
26
- "text/html": [
27
- "<div>\n",
28
- "<style scoped>\n",
29
- " .dataframe tbody tr th:only-of-type {\n",
30
- " vertical-align: middle;\n",
31
- " }\n",
32
- "\n",
33
- " .dataframe tbody tr th {\n",
34
- " vertical-align: top;\n",
35
- " }\n",
36
- "\n",
37
- " .dataframe thead th {\n",
38
- " text-align: right;\n",
39
- " }\n",
40
- "</style>\n",
41
- "<table border=\"1\" class=\"dataframe\">\n",
42
- " <thead>\n",
43
- " <tr style=\"text-align: right;\">\n",
44
- " <th></th>\n",
45
- " <th>Date</th>\n",
46
- " <th>Patient Name</th>\n",
47
- " <th>Age</th>\n",
48
- " <th>Bill Charge</th>\n",
49
- " </tr>\n",
50
- " </thead>\n",
51
- " <tbody>\n",
52
- " <tr>\n",
53
- " <th>0</th>\n",
54
- " <td>1/1/2023</td>\n",
55
- " <td>Bob</td>\n",
56
- " <td>33</td>\n",
57
- " <td>100.5</td>\n",
58
- " </tr>\n",
59
- " <tr>\n",
60
- " <th>1</th>\n",
61
- " <td>1/4/2023</td>\n",
62
- " <td>Bob</td>\n",
63
- " <td>24</td>\n",
64
- " <td>250.0</td>\n",
65
- " </tr>\n",
66
- " <tr>\n",
67
- " <th>2</th>\n",
68
- " <td>1/7/2023</td>\n",
69
- " <td>Bob</td>\n",
70
- " <td>56</td>\n",
71
- " <td>75.0</td>\n",
72
- " </tr>\n",
73
- " <tr>\n",
74
- " <th>3</th>\n",
75
- " <td>1/7/2023</td>\n",
76
- " <td>Eve</td>\n",
77
- " <td>40</td>\n",
78
- " <td>300.0</td>\n",
79
- " </tr>\n",
80
- " <tr>\n",
81
- " <th>4</th>\n",
82
- " <td>1/9/2023</td>\n",
83
- " <td>Charlie</td>\n",
84
- " <td>40</td>\n",
85
- " <td>150.5</td>\n",
86
- " </tr>\n",
87
- " </tbody>\n",
88
- "</table>\n",
89
- "</div>"
90
- ],
91
- "text/plain": [
92
- " Date Patient Name Age Bill Charge\n",
93
- "0 1/1/2023 Bob 33 100.5\n",
94
- "1 1/4/2023 Bob 24 250.0\n",
95
- "2 1/7/2023 Bob 56 75.0\n",
96
- "3 1/7/2023 Eve 40 300.0\n",
97
- "4 1/9/2023 Charlie 40 150.5"
98
- ]
99
- },
100
- "execution_count": 14,
101
- "metadata": {},
102
- "output_type": "execute_result"
103
- }
104
- ],
105
- "source": [
106
- "bill_data = pd.read_csv(\"bill charge.csv\")\n",
107
- "bill_data.head()"
108
- ]
109
- },
110
- {
111
- "cell_type": "code",
112
- "execution_count": 15,
113
- "id": "b66bbac2-8762-46d7-a4ea-374d5088a62b",
114
- "metadata": {},
115
- "outputs": [
116
- {
117
- "name": "stdout",
118
- "output_type": "stream",
119
- "text": [
120
- "Dataset Loaded Successfully\n",
121
- "<class 'pandas.core.frame.DataFrame'>\n",
122
- "RangeIndex: 20 entries, 0 to 19\n",
123
- "Data columns (total 4 columns):\n",
124
- " # Column Non-Null Count Dtype \n",
125
- "--- ------ -------------- ----- \n",
126
- " 0 Date 20 non-null object \n",
127
- " 1 Patient Name 20 non-null object \n",
128
- " 2 Age 20 non-null int64 \n",
129
- " 3 Bill Charge 20 non-null float64\n",
130
- "dtypes: float64(1), int64(1), object(2)\n",
131
- "memory usage: 772.0+ bytes\n"
132
- ]
133
- },
134
- {
135
- "data": {
136
- "text/plain": [
137
- "None"
138
- ]
139
- },
140
- "metadata": {},
141
- "output_type": "display_data"
142
- },
143
- {
144
- "data": {
145
- "text/html": [
146
- "<div>\n",
147
- "<style scoped>\n",
148
- " .dataframe tbody tr th:only-of-type {\n",
149
- " vertical-align: middle;\n",
150
- " }\n",
151
- "\n",
152
- " .dataframe tbody tr th {\n",
153
- " vertical-align: top;\n",
154
- " }\n",
155
- "\n",
156
- " .dataframe thead th {\n",
157
- " text-align: right;\n",
158
- " }\n",
159
- "</style>\n",
160
- "<table border=\"1\" class=\"dataframe\">\n",
161
- " <thead>\n",
162
- " <tr style=\"text-align: right;\">\n",
163
- " <th></th>\n",
164
- " <th>Date</th>\n",
165
- " <th>Patient Name</th>\n",
166
- " <th>Age</th>\n",
167
- " <th>Bill Charge</th>\n",
168
- " </tr>\n",
169
- " </thead>\n",
170
- " <tbody>\n",
171
- " <tr>\n",
172
- " <th>0</th>\n",
173
- " <td>1/1/2023</td>\n",
174
- " <td>Bob</td>\n",
175
- " <td>33</td>\n",
176
- " <td>100.5</td>\n",
177
- " </tr>\n",
178
- " <tr>\n",
179
- " <th>1</th>\n",
180
- " <td>1/4/2023</td>\n",
181
- " <td>Bob</td>\n",
182
- " <td>24</td>\n",
183
- " <td>250.0</td>\n",
184
- " </tr>\n",
185
- " <tr>\n",
186
- " <th>2</th>\n",
187
- " <td>1/7/2023</td>\n",
188
- " <td>Bob</td>\n",
189
- " <td>56</td>\n",
190
- " <td>75.0</td>\n",
191
- " </tr>\n",
192
- " <tr>\n",
193
- " <th>3</th>\n",
194
- " <td>1/7/2023</td>\n",
195
- " <td>Eve</td>\n",
196
- " <td>40</td>\n",
197
- " <td>300.0</td>\n",
198
- " </tr>\n",
199
- " <tr>\n",
200
- " <th>4</th>\n",
201
- " <td>1/9/2023</td>\n",
202
- " <td>Charlie</td>\n",
203
- " <td>40</td>\n",
204
- " <td>150.5</td>\n",
205
- " </tr>\n",
206
- " </tbody>\n",
207
- "</table>\n",
208
- "</div>"
209
- ],
210
- "text/plain": [
211
- " Date Patient Name Age Bill Charge\n",
212
- "0 1/1/2023 Bob 33 100.5\n",
213
- "1 1/4/2023 Bob 24 250.0\n",
214
- "2 1/7/2023 Bob 56 75.0\n",
215
- "3 1/7/2023 Eve 40 300.0\n",
216
- "4 1/9/2023 Charlie 40 150.5"
217
- ]
218
- },
219
- "metadata": {},
220
- "output_type": "display_data"
221
- }
222
- ],
223
- "source": [
224
- "print(\"Dataset Loaded Successfully\")\n",
225
- "display(bill_data.info())\n",
226
- "display(bill_data.head())"
227
- ]
228
- },
229
- {
230
- "cell_type": "code",
231
- "execution_count": 16,
232
- "id": "8c1f8430-5973-4533-aac8-56aa7bdd6507",
233
- "metadata": {},
234
- "outputs": [],
235
- "source": [
236
- "bill_data['Date'] = pd.to_datetime(bill_data['Date'])\n",
237
- "\n",
238
- "bill_data['Year'] = bill_data['Date'].dt.year\n",
239
- "bill_data['Month'] = bill_data['Date'].dt.month\n",
240
- "\n",
241
- "bill_data_numeric = bill_data[['Date', 'Bill Charge', 'Year', 'Month']]\n",
242
- "\n",
243
- "grouped = bill_data_numeric.groupby(['Year', 'Month'])['Bill Charge'].sum().reset_index()"
244
- ]
245
- },
246
- {
247
- "cell_type": "code",
248
- "execution_count": 17,
249
- "id": "74b2cf18-25d6-4707-8b32-81b588106545",
250
- "metadata": {},
251
- "outputs": [
252
- {
253
- "data": {
254
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAHUCAYAAABGRmklAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmW0lEQVR4nO3deXxU1eH///fs2Scb2SCBsAXCqqACKqIICmK12s/Hz6dqsVVbF6QVrRWtdakWt1r144K2KFW7+OsXtdaFigq4QWVfw74kZN8nk2UySe7vjyQDA2E1MDfk9Xw87iOZM/feOXfO3CTvnHPPtRiGYQgAAAAAAIScNdQVAAAAAAAArQjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAADTmD9/viwWi1auXNnh89OmTVOfPn2Cyvr06aMbbrjhuF7nm2++0UMPPaSqqqoTq2g39Pbbb2vIkCEKDw+XxWLR2rVrO1xvyZIlslgsQUtcXJzOOecc/fnPfz5k/YPbb8+ePbJYLJo/f36grP1zsWfPnmOq6/r16/XjH/9YmZmZCgsLU1RUlM4880w9+eSTqqioCHrtadOmHdM+AQA4VeyhrgAAAN/Fu+++q5iYmOPa5ptvvtHDDz+sG264QbGxsSenYqeR0tJSXX/99br00kv10ksvyeVyaeDAgUfc5ne/+50uvPBCSVJZWZneeOMN3XDDDfJ4PLrjjjsC651I+x3JH//4R912223KysrSL3/5S2VnZ8vv92vlypWaO3euli1bpnfffbfTXg8AgM5GSAcAdGlnnHFGqKtw3Px+vywWi+z2rvFreNu2bfL7/bruuut0wQUXHNM2AwYM0JgxYwKPp06dqhUrVuhvf/tbUEjvzPZbtmyZbr31Vk2aNEnvvfeeXC5X4LlJkybprrvu0sKFCzvt9Y5Fc3OzmpqaguoCAMCRMNwdANClHTxcuqWlRY8++qiysrIUHh6u2NhYDR8+XM8995wk6aGHHtIvf/lLSVJmZmZgSPaSJUsC2z/55JMaNGiQXC6XkpKS9KMf/Uj79u0Lel3DMPS73/1OvXv3VlhYmEaPHq1FixZpwoQJmjBhQmC99uHfb775pu666y717NlTLpdLO3bsUGlpqW677TZlZ2crKipKSUlJuuiii/Tll18GvVb7EPCnnnpKTzzxhPr06aPw8HBNmDAhEKDvvfdepaWlye126/vf/75KSkqO6f17//33NXbsWEVERCg6OlqTJk3SsmXLAs/fcMMNOu+88yRJ11xzjSwWS9DxHSur1aqoqCg5HI6g8hO5XOFwfve738lisejVV1/tMBQ7nU5973vfO6R84cKFOvPMMxUeHq5BgwbptddeC3r+eNvpySef1KOPPqrMzEy5XC4tXrxYkvTPf/5Tw4cPl8vlUt++ffXcc8/poYceksViCdqPYRh66aWXNHLkSIWHhysuLk4/+MEPtGvXrqD11qxZo2nTpikpKUkul0tpaWm67LLLDvmsAgC6lq7xL3wAQLfS3vt4MMMwjrrtk08+qYceeki//vWvNX78ePn9fm3ZsiVw/flNN92kiooK/d///Z/eeecdpaamSpKys7MlSbfeeqteffVVzZgxQ9OmTdOePXv0wAMPaMmSJVq9erUSExMlSffff7/mzJmjn/70p7rqqquUl5enm266SX6/v8Oh4LNnz9bYsWM1d+5cWa1WJSUlqbS0VJL04IMPKiUlRV6vV++++64mTJigzz777JAw/OKLL2r48OF68cUXVVVVpbvuukuXX365zjnnHDkcDr322mvau3ev7r77bt100016//33j/he/fWvf9W1116ryZMn629/+5t8Pp+efPLJwOufd955euCBB3T22Wfr9ttvDwxhP5bh6S0tLYE2LC8v1+uvv66NGzfq1VdfPeq2J6K5uVmff/65Ro0apfT09GPebt26dbrrrrt07733Kjk5WX/605904403qn///ho/frwkBa5jP9Z2ev755zVw4EA9/fTTiomJ0YABA7Rw4UJdddVVGj9+vN5++201NTXp6aefVnFx8SF1+tnPfqb58+dr5syZeuKJJ1RRUaFHHnlE48aN07p165ScnKza2lpNmjRJmZmZevHFF5WcnKyioiItXrxYNTU1J/5GAgBCzwAAwCRef/11Q9IRl969ewdt07t3b2P69OmBx9OmTTNGjhx5xNd56qmnDEnG7t27g8pzcnIMScZtt90WVP6f//zHkGTcd999hmEYRkVFheFyuYxrrrkmaL1ly5YZkowLLrggULZ48WJDkjF+/PijHn9TU5Ph9/uNiRMnGt///vcD5bt37zYkGSNGjDCam5sD5c8++6whyfje974XtJ9f/OIXhiSjurr6sK/V3NxspKWlGcOGDQvaZ01NjZGUlGSMGzfukGP4xz/+cdRjaF/34MVqtRr333//Iesf3H7tx/r6668Hyto/Fwe314GKiooMScb//M//HLWOB752WFiYsXfv3kBZfX29ER8fb/zsZz877HZHa6d+/foZjY2NQducddZZRnp6uuHz+QJlNTU1RkJCgnHgn2Ptn6Hf//73Qdvn5eUZ4eHhxj333GMYhmGsXLnSkGS89957x3y8AICugeHuAADTeeONN7RixYpDlvZh10dy9tlna926dbrtttv073//Wx6P55hft31Y8sHDr88++2wNHjxYn332mSRp+fLl8vl8+u///u+g9caMGXPI7PPtrr766g7L586dqzPPPFNhYWGy2+1yOBz67LPPlJOTc8i6U6dOldW6/1f34MGDJUmXXXZZ0Hrt5bm5uYc5Umnr1q0qKCjQ9ddfH7TPqKgoXX311Vq+fLnq6uoOu/3RPPHEE4F2W7Roke655x49/vjjgUsNzGLkyJHKyMgIPA4LC9PAgQO1d+/eoPWOp52+973vBQ3rr62t1cqVK3XllVfK6XQGyqOionT55ZcHbfvBBx/IYrHouuuuU1NTU2BJSUnRiBEjApdl9O/fX3FxcfrVr36luXPnavPmzZ3xdgAATICQDgAwncGDB2v06NGHLG63+6jbzp49W08//bSWL1+uKVOmKCEhQRMnTjzsbd0OVF5eLkmBIfAHSktLCzzf/jU5OfmQ9ToqO9w+n3nmGd16660655xztGDBAi1fvlwrVqzQpZdeqvr6+kPWj4+PD3rcHvgOV97Q0NBhXQ48hsMda0tLiyorKw+7/dH07ds30G4XX3yx5syZo5tuukm///3vtWXLlhPe7+EkJiYqIiJCu3fvPq7tEhISDilzuVxB7//xttPB72llZaUMwzimz0txcXFgXYfDEbQsX75cZWVlkiS3262lS5dq5MiRuu+++zRkyBClpaXpwQcflN/vP673AABgLlyTDgA4rdjtds2aNUuzZs1SVVWVPv30U91333265JJLlJeXp4iIiMNu2x7YCgsL1atXr6DnCgoKAtejt6/X0fXERUVFHfamHzw5mCS99dZbmjBhgl5++eWg8lNxTfGBx3qwgoICWa1WxcXFdeprDh8+XIZhaP369Ro0aFCn7ttms2nixIn6+OOPtW/fvkPa77s43nY6uK3j4uJksVgO+3k5UGJioiwWi7788ssOJ787sGzYsGH6+9//HnhP58+fr0ceeUTh4eG69957j/n4AADmQk86AOC0FRsbqx/84Ae6/fbbVVFRoT179kjaH3QO7gW96KKLJLWGsgOtWLFCOTk5mjhxoiTpnHPOkcvl0ttvvx203vLlyw8ZJn0kFovlkCC2fv36oNnVT5asrCz17NlTf/3rX4Mm5KutrdWCBQsCM753prVr10qSkpKSOnW/7WbPni3DMHTzzTersbHxkOf9fr/+9a9/Hfd+v2s7RUZGavTo0XrvvfeC6uX1evXBBx8ErTtt2jQZhqH8/PwOR5MMGzasw/qNGDFCf/jDHxQbG6vVq1cf9zECAMyDnnQAwGnl8ssv19ChQzV69Gj16NFDe/fu1bPPPqvevXtrwIABkhQIOs8995ymT58uh8OhrKwsZWVl6ac//an+7//+T1arVVOmTAnM7p6enq4777xTUuvw8lmzZmnOnDmKi4vT97//fe3bt08PP/ywUlNTg67xPpJp06bpt7/9rR588EFdcMEF2rp1qx555BFlZmZ2OLt9Z7JarXryySd17bXXatq0afrZz34mn8+np556SlVVVXr88ce/0/63b9+u5cuXS5Kqq6v16aefat68eRo9erTOP//8zjiEQ4wdO1Yvv/yybrvtNo0aNUq33nqrhgwZIr/frzVr1ujVV1/V0KFDD7kO/Gg6o50eeeQRXXbZZbrkkkv085//XM3NzXrqqacUFRUVmD1eks4991z99Kc/1Y9//GOtXLlS48ePV2RkpAoLC/XVV19p2LBhuvXWW/XBBx/opZde0pVXXqm+ffvKMAy98847qqqq0qRJk47r+AAA5kJIBwCcVi688EItWLBAf/rTn+TxeJSSkqJJkybpgQceCEzmNWHCBM2ePVt//vOf9cc//lEtLS1avHhxYEhzv379NG/ePL344otyu9269NJLNWfOnKDrlx977DFFRkZq7ty5ev311zVo0CC9/PLLuv/++xUbG3tMdb3//vtVV1enefPm6cknn1R2drbmzp2rd999NzBB2Mn0wx/+UJGRkZozZ46uueYa2Ww2jRkzRosXL9a4ceO+077vu+++wPeRkZHq3bu3HnjgAc2aNUs2m+27Vv2wbr75Zp199tn6wx/+oCeeeEJFRUVyOBwaOHCgfvjDH2rGjBnHvc/OaKdLL71UCxYs0G9+8xtdc801SklJ0W233aaCggK9+eabQeu+8sorGjNmjF555RW99NJLamlpUVpams4991ydffbZkqQBAwYoNjZWTz75pAoKCuR0OpWVlaX58+dr+vTpx32MAADzsBjGMdx0FgAAHNXu3bs1aNAgPfjgg0EhFeiI3+/XyJEj1bNnT33yySehrg4AwCToSQcA4ASsW7dOf/vb3zRu3DjFxMRo69atevLJJxUTE6Mbb7wx1NWDCd14442aNGmSUlNTVVRUpLlz5yonJ0fPPfdcqKsGADARQjoAACcgMjJSK1eu1Lx581RVVSW3260JEyboscceO+xt2NC91dTU6O6771ZpaakcDofOPPNMffTRR7r44otDXTUAgIkw3B0AAAAAAJPgFmwAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBLdbuK4lpYWFRQUKDo6WhaLJdTVAQAAAACc5gzDUE1NjdLS0mS1HrmvvNuF9IKCAqWnp4e6GgAAAACAbiYvL0+9evU64jrdLqRHR0dLan1zYmJiQlwbAAAAAMDpzuPxKD09PZBHj6TbhfT2Ie4xMTGEdAAAAADAKXMsl1wzcRwAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmERIQ/rLL7+s4cOHKyYmRjExMRo7dqw+/vjjI26zdOlSjRo1SmFhYerbt6/mzp17imoLAAAAAMDJFdKQ3qtXLz3++ONauXKlVq5cqYsuukhXXHGFNm3a1OH6u3fv1tSpU3X++edrzZo1uu+++zRz5kwtWLDgFNccAAAAAIDOZzEMwwh1JQ4UHx+vp556SjfeeOMhz/3qV7/S+++/r5ycnEDZLbfconXr1mnZsmXHtH+PxyO3263q6mrFxMR0Wr0BAAAAAOjI8eRQ+ymq01E1NzfrH//4h2prazV27NgO11m2bJkmT54cVHbJJZdo3rx58vv9cjgch2zj8/nk8/kCjz0eT+dWHJKk3NxclZWVhboaR5WYmKiMjIxQVwMAAAAAOhTykL5hwwaNHTtWDQ0NioqK0rvvvqvs7OwO1y0qKlJycnJQWXJyspqamlRWVqbU1NRDtpkzZ44efvjhk1J3tMrNzdWgwYNVX1cX6qocVXhEhLbk5BDUAQAAAJhSyEN6VlaW1q5dq6qqKi1YsEDTp0/X0qVLDxvULRZL0OP20foHl7ebPXu2Zs2aFXjs8XiUnp7eSbWHJJWVlam+rk7X/uopJWf0C3V1Dqs4d6f+8sQvVVZWRkgHAAAAYEohD+lOp1P9+/eXJI0ePVorVqzQc889p1deeeWQdVNSUlRUVBRUVlJSIrvdroSEhA7373K55HK5Or/iOERyRj/1GjAk1NUAAAAAgC7LdPdJNwwj6BryA40dO1aLFi0KKvvkk080evToDq9HBwAAAACgKwlpSL/vvvv05Zdfas+ePdqwYYPuv/9+LVmyRNdee62k1qHqP/rRjwLr33LLLdq7d69mzZqlnJwcvfbaa5o3b57uvvvuUB0CAAAAAACdJqTD3YuLi3X99dersLBQbrdbw4cP18KFCzVp0iRJUmFhoXJzcwPrZ2Zm6qOPPtKdd96pF198UWlpaXr++ed19dVXh+oQAAAAAADoNCEN6fPmzTvi8/Pnzz+k7IILLtDq1atPUo0AAAAAAAgd012TDgAAAABAd0VIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJAjpAAAAAACYBCEdAAAAAACTIKQDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0gEAAAAAMAlCOgAAAAAAJkFIBwAAAADAJEIa0ufMmaOzzjpL0dHRSkpK0pVXXqmtW7cecZslS5bIYrEcsmzZsuUU1RoAAAAAgJMjpCF96dKluv3227V8+XItWrRITU1Nmjx5smpra4+67datW1VYWBhYBgwYcApqDAAAAADAyWMP5YsvXLgw6PHrr7+upKQkrVq1SuPHjz/itklJSYqNjT2JtQMAAAAA4NQy1TXp1dXVkqT4+PijrnvGGWcoNTVVEydO1OLFiw+7ns/nk8fjCVoAAAAAADAj04R0wzA0a9YsnXfeeRo6dOhh10tNTdWrr76qBQsW6J133lFWVpYmTpyoL774osP158yZI7fbHVjS09NP1iEAAAAAAPCdhHS4+4FmzJih9evX66uvvjriellZWcrKygo8Hjt2rPLy8vT00093OER+9uzZmjVrVuCxx+MhqAMAAAAATMkUPel33HGH3n//fS1evFi9evU67u3HjBmj7du3d/icy+VSTExM0AIAAAAAgBmFtCfdMAzdcccdevfdd7VkyRJlZmae0H7WrFmj1NTUTq4dAAAAAACnVkhD+u23366//vWv+uc//6no6GgVFRVJktxut8LDwyW1DlfPz8/XG2+8IUl69tln1adPHw0ZMkSNjY166623tGDBAi1YsCBkxwEAAAAAQGcIaUh/+eWXJUkTJkwIKn/99dd1ww03SJIKCwuVm5sbeK6xsVF333238vPzFR4eriFDhujDDz/U1KlTT1W1AQAAAAA4KUI+3P1o5s+fH/T4nnvu0T333HOSagQAAAAAQOiYYuI4AAAAAABASAcAAAAAwDQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCRCGtLnzJmjs846S9HR0UpKStKVV16prVu3HnW7pUuXatSoUQoLC1Pfvn01d+7cU1BbAAAAAABOrpCG9KVLl+r222/X8uXLtWjRIjU1NWny5Mmqra097Da7d+/W1KlTdf7552vNmjW67777NHPmTC1YsOAU1hwAAAAAgM5nD+WLL1y4MOjx66+/rqSkJK1atUrjx4/vcJu5c+cqIyNDzz77rCRp8ODBWrlypZ5++mldffXVJ7vKAAAAAACcNCEN6Qerrq6WJMXHxx92nWXLlmny5MlBZZdcconmzZsnv98vh8MR9JzP55PP5ws89ng8nVjjky83N1dlZWWhrsYR5eTkhLoKx6Ur1DcxMVEZGRmhrsYx6QqfUalrvafoXHxGYXZ8RgEABzJNSDcMQ7NmzdJ5552noUOHHna9oqIiJScnB5UlJyerqalJZWVlSk1NDXpuzpw5evjhh09KnU+23NxcDRo8WPV1daGuyjHxer2hrsIReSpKJUnXXXddiGtydOEREdqSk2P6P4a60me0q7yn6Fx8RmF2fEYBAAczTUifMWOG1q9fr6+++uqo61oslqDHhmF0WC5Js2fP1qxZswKPPR6P0tPTv2NtT42ysjLV19Xp2l89peSMfqGuzmHlfLtUH//5OTU0NIS6KkdU720dRXHZz+5X1vBRIa7N4RXn7tRfnvilysrKTP+HUFf5jHal9xSdi88ozI7PKADgYKYI6XfccYfef/99ffHFF+rVq9cR101JSVFRUVFQWUlJiex2uxISEg5Z3+VyyeVydWp9T7XkjH7qNWBIqKtxWMW5O0NdheOSkNbb1O9nV2T2zyjAZxRmx2cUANAupLO7G4ahGTNm6J133tHnn3+uzMzMo24zduxYLVq0KKjsk08+0ejRow+5Hh0AAAAAgK4kpCH99ttv11tvvaW//vWvio6OVlFRkYqKilRfXx9YZ/bs2frRj34UeHzLLbdo7969mjVrlnJycvTaa69p3rx5uvvuu0NxCAAAAAAAdJqQhvSXX35Z1dXVmjBhglJTUwPL22+/HVinsLBQubm5gceZmZn66KOPtGTJEo0cOVK//e1v9fzzz3P7NQAAAABAlxfSa9LbJ3w7kvnz5x9SdsEFF2j16tUnoUYAAAAAAIROSHvSAQAAAADAfoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJnFBI79u3r8rLyw8pr6qqUt++fb9zpQAAAAAA6I5OKKTv2bNHzc3Nh5T7fD7l5+d/50oBAAAAANAd2Y9n5ffffz/w/b///W+53e7A4+bmZn322Wfq06dPp1UOAAAAAIDu5LhC+pVXXilJslgsmj59etBzDodDffr00e9///tOqxwAAAAAAN3JcYX0lpYWSVJmZqZWrFihxMTEk1IpAAAAAAC6o+MK6e12797d2fUAAAAAAKDbO6GQLkmfffaZPvvsM5WUlAR62Nu99tpr37liAAAAAAB0NycU0h9++GE98sgjGj16tFJTU2WxWDq7XgAAAAAAdDsnFNLnzp2r+fPn6/rrr+/s+gAAAAAA0G2d0H3SGxsbNW7cuM6uCwAAAAAA3doJhfSbbrpJf/3rXzu7LgAAAAAAdGsnNNy9oaFBr776qj799FMNHz5cDocj6PlnnnmmUyoHAAAAAEB3ckIhff369Ro5cqQkaePGjUHPMYkcAAAAAAAn5oRC+uLFizu7HgAAAAAAdHsndE06AAAAAADofCfUk37hhRcecVj7559/fsIVAgAAAACguzqhkN5+PXo7v9+vtWvXauPGjZo+fXpn1AsAAAAAgG7nhEL6H/7whw7LH3roIXm93u9UIQAAAAAAuqtOvSb9uuuu02uvvdaZuwQAAAAAoNvo1JC+bNkyhYWFdeYuAQAAAADoNk5ouPtVV10V9NgwDBUWFmrlypV64IEHOqViAAAAAAB0NycU0t1ud9Bjq9WqrKwsPfLII5o8eXKnVAwAAAAAgO7mhEL666+/3tn1AAAAAACg2zuhkN5u1apVysnJkcViUXZ2ts4444zOqhcAAAAAAN3OCU0cV1JSoosuukhnnXWWZs6cqRkzZmjUqFGaOHGiSktLj3k/X3zxhS6//HKlpaXJYrHovffeO+L6S5YskcViOWTZsmXLiRwGAAAAAACmckIh/Y477pDH49GmTZtUUVGhyspKbdy4UR6PRzNnzjzm/dTW1mrEiBF64YUXjuv1t27dqsLCwsAyYMCA4z0EAAAAAABM54SGuy9cuFCffvqpBg8eHCjLzs7Wiy++eFwTx02ZMkVTpkw57tdPSkpSbGzsMa3r8/nk8/kCjz0ez3G/HgAAAAAAp8IJ9aS3tLTI4XAcUu5wONTS0vKdK3U0Z5xxhlJTUzVx4kQtXrz4iOvOmTNHbrc7sKSnp5/0+gEAAAAAcCJOKKRfdNFF+vnPf66CgoJAWX5+vu68805NnDix0yp3sNTUVL366qtasGCB3nnnHWVlZWnixIn64osvDrvN7NmzVV1dHVjy8vJOWv0AAAAAAPguTmi4+wsvvKArrrhCffr0UXp6uiwWi3JzczVs2DC99dZbnV3HgKysLGVlZQUejx07Vnl5eXr66ac1fvz4DrdxuVxyuVwnrU4AAAAAAHSWEwrp6enpWr16tRYtWqQtW7bIMAxlZ2fr4osv7uz6HdWYMWNO6j8GAAAAAAA4VY5ruPvnn3+u7OzswORrkyZN0h133KGZM2fqrLPO0pAhQ/Tll1+elIoezpo1a5SamnpKXxMAAAAAgJPhuHrSn332Wd18882KiYk55Dm3262f/exneuaZZ3T++ecf0/68Xq927NgReLx7926tXbtW8fHxysjI0OzZs5Wfn6833ngj8Pp9+vTRkCFD1NjYqLfeeksLFizQggULjucwAAAAAAAwpeMK6evWrdMTTzxx2OcnT56sp59++pj3t3LlSl144YWBx7NmzZIkTZ8+XfPnz1dhYaFyc3MDzzc2Nuruu+9Wfn6+wsPDNWTIEH344YeaOnXq8RwGAAAAAACmdFwhvbi4uMNbrwV2ZrertLT0mPc3YcIEGYZx2Ofnz58f9Piee+7RPffcc8z7BwAAAACgKzmua9J79uypDRs2HPb59evXc304AAAAAAAn6LhC+tSpU/Wb3/xGDQ0NhzxXX1+vBx98UNOmTeu0ygEAAAAA0J0c13D3X//613rnnXc0cOBAzZgxQ1lZWbJYLMrJydGLL76o5uZm3X///SerrsBpxzAM1TU2y+trUoO/WQ3+FhXXWBVzzg/0xjqP/rFngzz1fnka/KppaFJTS4uamg01tRhqam5p+9r2uKVFVotFTptVDnvrV6fdJqfNIqfdKofNqjCHTTFhdrnDHXJHOFu/hjsUG+6QO6L1+8Qol+IiHLJYLKF+ewAAAIBu57hCenJysr755hvdeuutmj17duB6covFoksuuUQvvfSSkpOTT0pFga6oqaVFVXV+VdX55fU1ydvQpBrf/u9rfc1qPmReBrviJtyg97bWSqoNRbXltFuVEhPWurhbl+SYMKW6W5feCZGKizj8/BQAAAAATsxxhXRJ6t27tz766CNVVlZqx44dMgxDAwYMUFxc3MmoH9Al+JqaVVHbqIraRlXW+Vu/1jaqusGvI8yNGBDhtCnCaZPLbpPhq9W2bz/T/1x1pQb07qmYcLtiwhyKCrPLabPKbrPIbm3/apHDtv/7FkNqbGpRY3OLGpta5G/72l7W4G+Wp75J1fV+VdU3qrrt++p6v6rrGlVV3/oPhcamFuVW1Cm3ou6wdY4JsyspwqLEy+/W5iqbvIUexUY4FRvhUJjD1onvLgAAANB9HHdIbxcXF6ezzjqrM+sCdAkN/mYVexpU7PGppKb1q9fXdNj1nTarYiMcgaAd7bIrKsyuKFfrEumyy2bdP7R83/ZNWvbRc/rJb3+kM88ccCoOKYivqVklHp+KPQ0qrG4IfC3yNKioukEFVfUqrG6Qp6FJngYpMnuCcjxSzubiwD7CHTYlRjmVGOVSQvvXSKfstuOaBgMAAADodk44pAPdQVNzi4o9PhXXNASCeXW9v8N1I102xUc4FRfpVHyEU/GRrd9HOm1d6vpul92m9PgIpcdHHHad+sZm5VbU6bNvN2j2Y8/ojGk/kt8Rpar6RtX6mlXvb1ZeZb3yKusD21gkxUY4lBDlUmKUU8nRrUPow530ugMAAADtCOnAAZpbDBVVN2hfZZ32Vdar0NOg5pZDx6u7wx1KjnEpOSZMydFhSox2ymXvPmEz3GlTVkq0anuFyfPtAo2afq16DeglqXW4fUVdo8q8PpV7W7+WeX1q8Leoss6vyjq/dpTs31dMmF0pMa2BPTkmTD2iXXLa6XEHAABA90RIR7fW0mKouKZB+yrrta+yXgVV9Wo6KJRHOG0HhMjWYM4114d34KRz7dpnsW8N7I0q9bYOp6+q87cNm/dqW4lXUmuPe3ykUynuMPWMDVdabLhiwuxdajQCAAAAcKII6eh2/IZFW4o82l1aqz0VdWpsagl6PtxhU6+4cPWKC1d6XIRiuR3Zd2axWBTZdv1974TIQLnP36ziGl/bpQT7r+8vr21UeW2jNhV4JLVeSpDmbg3sabFhSoxyyUqbAAAA4DRESEe3UFnXqH2KV/L/ztE39SnSpv2TnLns1rZQHqFeceFKiHQSyk8Rl8OmjPgIZRxw/Xutr0lFbZPVFVTVq9jToFpfs7aXeLW9rbfdabMq1R2mXvGt/0jpEU1oBwAAwOmBkI7TkmEYKvb4tL2kRrvLalVZ55eUrLCMZElSQqRTmYmR6tsjUskxYQQ8E4l02dWvR5T69YiS1Dp5X5GnQQVVDSqorldhVYMam1u0t6JOeyvqJJUH/tGSHtc64V0cox8AAADQRRHScVop9/q0tbhG24q9QbOwWy1SjOHVrk//okunXamxY84LYS1xPOw2a9soh9be9hbDULm3Ufsq65RXWa/8ynr5mlq0s7RWO0trJUmRTpt6tfXQ9z7CLPUAAACA2RDS0eVV1/u1rbhGW4trVO5tDJTbrRb17RGp/j2ilJEQoY1LP9S6Vf9S+PcuD2Ft8V1ZLRb1iHapR7RLZ2TEqaXFUEmNT3mVdcqrqFNBdYNqG5u1tahGW4tqJEluh12x46drU4lPQ5tamD0eAAAApkVIR5fU4G8NYVuKalTkaQiUWy1Sn4RIDUyOVt8ekXLYCGOnO6vVohR3mFLcYTqrT7yamltUWN2gvMo67S2vU0mNT9V+q9xj/0sPLKnQ4998onH9E3XBwB66YGCPI94PHgAAADjVCOnoMgzDUH5VvTYWeLSjxBt0//L0uHANTIlW/x5R3B6tm7PbrEqPb702fVw/qa6xSWs3b9fipV8obdTF8viatWhzsRZtbp08MCs5WhMHJ+ni7GSN7BUrq5Vr2QEAABA6hHSYXq2vSTmFHm0q8KjqgOvME6Ocyk6N0cDkaEW6+CijYxFOuzIiW1T+4TNa+PAPFZbSX0u3lWrp1lKtyq3U1rZLJV5aslOJUU5dNChJEwcn6/wBiYpw8rkCAADAqcVfoDClFsNQbnmdNhZUa3dZrdo7zR02i7KSozWkp1vJ0S5m8MZxsVosGtrTraE93br9wv6qqmvUkq2l+jSnWEu3lqrM26j/b+U+/X8r98lpt+rcfgm6ODtZEwclK8UdFurqAwAAoBsgpMNUfE3N2lzg0bp91UGzs6fEhGlIzxgNTIpm0i90mtgIp648o6euPKOnGptatGJPhT7NKdanOcXKq6jX4q2lWry1VPdro4b1dGvi4CRNyk5WdmoM/yACAADASUFIhylU1TVq3b5qbS7wqLG5RZLksls1ODVGQ9JilBjlCnENcbpz2q06t3+izu2fqN9My9b2Eq8WbS7WZznFWpNXpQ351dqQX61nP92u9PhwXTokRZcOTdUZ6VzHDgAAgM5DSEfIGIahfZX1WptXpV1ltYHyuAiHzkiP06DUaGZnR0hYLBYNTI7WwORo3X5hf5V5ffp8S4k+3VysL7aXKq+iXn/8crf++OVuJUW7dMmQFE0ZmqKzM+Nl5zMLAACA74CQjlOuucXQliKP1uZVqeyA+5r3TojQGemxyoiPYCgxTCUxyqX/Hp2u/x6drrrGJn2xrVQfbyzS5zklKqnx6c3le/Xm8r2Ki3BoUnayLh2aonP7J8pl504DAAAAOD6EdJwy/uYWbcyv1urcKnl9TZIku9WiwakxGpkeq/hIZ4hrCBxdhNOuS4em6tKhqfI1NeubneVauKFIn2wuUmWdPzDxXJTLrosGJenSoSmakNWDmeIBAABwTPirESedz9+sdfuqtTavSvX+ZklSpNOmkRmxGprm5r7m6LJcdpsuzErShVlJeqx5qL7dU6F/byzSwk1FKvb49P66Ar2/rkBhDqsmDkrWZcNTdWFWksKdfOYBAADQMUI6TppaX1PrhFv7qgOTwbnDHRrVO06DU6K5dhenFbvNqnH9EjWuX6IevHyI1u6r0r83FunjjUXKrajThxsK9eGGQkU4bZo4OFmXDUvVhKwe/JMKAAAAQQjp6HQ1DX6t3FupTQUeNbfd4Dwh0qnRfeI0MCmambBx2rNaLTozI05nZsTp3imDtKnAo3+tL9CH6wu1r7Je/1pXoH+tK1Ck06aLs1sD+/iBBHYAAAAQ0tGJfIZVS7aWaGO+R81GazhPiQnTWX3ilJkYyWRw6JYsFouG9nRraE+37r10kNbvq27tVV9fqPyqev1zbYH+ubZAUS67JrUF9vMHMukcAABAd0VIx3fml02xF/5E39Ynq2VftSSpV2y4zs6MV6+4cMI50MZisWhEeqxGpMdq9pRBWptXpQ/WF+qjDYUqrG7Qu2vy9e6afEW77Jo0JFnThqfqvP495LRzaQgAAEB3QUjHCWvwN2vV3kqtVn+5zx6oFkmp7jCN7Zug9PiIUFcPMDWLxaIzMuJ0Rkac7p86WGvyKgOBvdjj0zur8/XO6nzFhNk1eUiKLhueqvP6J8rBXA4AAACnNUI6jpuvqVlrcqu0JreqbUI4q3yF2zS6T4IuHHUOPefAcbJaLRrVO16jesfrgcuytSq3Uh+ub51orrTGp/+3ap/+36p9io1w6NIhKZo2PE1j+sYz+SIAAMBpiJCOY9bU0qIN+6r17e4KNTS1ztaeGOVUD+9OLXxjluIffpWADnxHVqtFZ/WJ11l94vXAtGyt3FOhD9YX6uONhSrzNurvK/L09xV5SoxyasrQVE0bnqqz+sQzISMAAMBpgpCOozIMQ9uKvfpmZ5k8DU2SpPgIp8b0jVf/pCit/nxdiGsInJ5sVovO6Zugc/om6MHLs/Wf3RX6YH2BPt5YpDJvo95cvldvLt+r5BiXpg5L1bThaTozI5Z/lgEAAHRhhHQcUV5Fnb7aUaaSGp8kKdJp05h+CcpOiaHnDjiF7Darzu2fqHP7J+qRK4bq6x1l+te6Qn2yuUjFHp9e/3qPXv96j3rGhuuy4a097MN6ugnsAAAAXQwhHR0q8/r09Y4y7SmvkyQ5bVaN6h2nMzJimbgKCDGHzaoJWUmakJUkX9NQfbGtTB+sL9Cnm4uVX1WvV7/YpVe/2KXeCRG6rK2HfXBqNIEdAACgCyCkI4jX16RlO8uVU+iRIclqkYb1dOvszHhFOPm4AGbjsts0KTtZk7KT1eBv1uItJfpgfaE+21KsveV1emnJTr20ZKf69YjUtOFpunxEqvonRYe62gAAADgMUhckSU3NLVqdV6WVeyrkbzYkSf2TojSuX4LiIpwhrh2AYxHmsGnKsFRNGZaqWl+TPttSog/WFWjJtlLtLK3Vc59t13OfbdeglGhNG97aw94nMTLU1QYAAMABCOndnGEY2lHq1Vfb908Kl+oO0/kDEpXqDg9x7QCcqEiXXd8bkabvjUiTp8GvTzcX61/rCvTl9jJtKarRlqIaPf3JNg3tGaNpw9N02bBUpcdHhLraAAAA3R4hvRsrrfFp6bZS5VfVS5KiXHad2z9BWclcuwqcTmLCHLrqzF666sxeqqpr1L83FemD9YX6Zme5NuZ7tDHfo8c/3qKR6bG6fERrYE9xh4W62gAAAN0SIb0bqmts0rJd5dqU33rduc1q0aiMOI3uE8ekcMBpLjbCqWvOytA1Z2Wo3OvTxxuL9MH6Av1nd4XW5lVpbV6VHv1ws87qHa9pI1I1ZWiqekS7Ql1tAACAboOQ3o00txhav69Ky3dXqLGpRZI0IClK5/VPVEy4I8S1A3CqJUS5dN2Y3rpuTG+VeBr00YZCfbC+UCv3VurbPRX6dk+FHnp/k8b0TdC04Wm6dGiK4iOZowIAAOBkIqR3E/mV9Vq8tUTltY2SpB5RLl0wsId6xnHdOQApKSZMN5ybqRvOzVRBVb0+2lCof60v1Lq8Kn2zs1zf7CzXA//cqHP7J2ra8FRdMiRFbv65BwAA0OkI6ae5Wl+TvtrROlGUJIXZrRrXP1FD0mJk5bpzAB1Iiw3XTef31U3n91VeRZ0+WF+of60r0OZCj77YVqovtpXq1+9u1PiBiZo2PE0XZycrysWvEwAAgM7AX1WnqZYWQ+vzq7VsZ7kam1uHtg9Ni9G4/okKd9hCXDsAXUV6fIRundBPt07op12lXn2wvlAfrC/QtmKvPs0p0ac5JXLZrbowK0nTRqTqokFJinDyqwUAAOBE8ZfUaaiwul6Lt5Sq1OuTJCVFu3RhVhKzNQP4Tvr2iNLMiQM0c+IAbSuu0QfrCvTB+kLtKqvVwk1FWripSOEOmyYOTtK04WmakNVDYfxTEAAA4LgQ0k8j9Y3N+mpHmTYXeiRJLrtV4/olaGhPN0PbAXSqgcnRmjU5S3dOGqjNhZ5AD3teRX3b94WKctk1KTtZU4el6vwBiQR2AACAY0BIPw0YhqEtRTX6YnupGvytQ9uzU2N0bv8Ehp0COKksFouGpLk1JM2tey7J0vp91fpgfYE+XF+oguoGvbsmX++uyVek06YLByVpytBUTcjqoUiuYQcAAOgQfyV1cVV1jfp8S4nyKuslSQlRTl2UlaS0WGZtB3BqWSwWjUiP1Yj0WM2eMlhr8ir1wfpCLdxYpMLqhkAPu8tu1fiBPTRlaIomDk5mlngAAIADENK7qOYWQ6tyK/Xt7go1txiyWS06JzNeZ2bEyWZlaDuA0LJaLRrVO16jesfrN9OytW5ftT7e2BrY95bXadHmYi3aXCyHzaJx/RI1ZWiKJmUnKyHKFeqqAwAAhBQhvQsqrK7XZzn773meER+hC7N6KDbCGeKaAcChLBaLRqbHamR6rO69dJByCmu0cGOhPt5YpO0lXi3dVqql20p137sbdE5mgqYMS9ElQ1KUHMNklwAAoPshpHchvqZmfb2jXBvyqyVJ4Q6bxg9IVFZKtCxMDAegC7BYLMpOi1F2WoxmTc7SjhKvFm4s1MJNRdqY79GyXeVatqtcv/nnJp2ZEaspQ1N16dAUpcdHhLrqAAAAp4Q1lC/+xRdf6PLLL1daWposFovee++9o26zdOlSjRo1SmFhYerbt6/mzp178isaYoYhbS+p0ZvL9gYC+uDUaF0/trcGpcYQ0AF0Wf2TojTjogH64I7z9eU9F+r+qYN1ZkasJGl1bpUe+yhH5z+5WFOe+1LPLNqmjfnVMgwjtJUGAAA4iULak15bW6sRI0boxz/+sa6++uqjrr97925NnTpVN998s9566y19/fXXuu2229SjR49j2r4rskUnalmZXYV5RZKk2HCHLhqURK8SgNNOenyEbh7fVzeP76ui6gb9e1ORPt5YqG93Vyin0KOcQo+e/2y70txhujg7WZOyk3VOZoKc9pD+vxkAAKBThTSkT5kyRVOmTDnm9efOnauMjAw9++yzkqTBgwdr5cqVevrpp0+7kN7cYuiDbbVKu/ElFdZbZbVIo3vH66w+cbLb+IMUwOktxR2m6eP6aPq4Pir3+vT5lhIt2lysL7eXqaC6QW8s26s3lu1VdJhdE7KSNCk7WROyeigmjJniAQBA19alrklftmyZJk+eHFR2ySWXaN68efL7/XI4Dv3jzOfzyefzBR57PJ6TXs/O8NS/t+q1tR5ZXRFKcLZoyhl9mPW4m8nJyQl1FY6qK9TxQF2hvj6fTy5X1zjXExMTlZGRcdJfJyHKpf8ana7/Gp2uBn+zvt5RpkWbi/VpTrHKvI3617oC/WtdgRw2i8b0TdCk7GRdPDi5S96Ksit8Rk9VuwMnKjc3V2VlZaGuxjHpKudTV3lPu8r72ZXQ9qHRpUJ6UVGRkpOTg8qSk5PV1NSksrIypaamHrLNnDlz9PDDD5+qKnaaG8b10f9bsVtb33leV938UwJ6N+KpKJUkXXfddSGuybHzer2hrsIRda331CKpa1xzHR4RoS05Oaf0l2KYw6aJg5M1cXCyWloMrcmrarudW5F2ltbqy+1l+nJ7mX7zz00a2jNGQ2Jb5EjKlNkvY+9Kn9FQtDtwrHJzczVo8GDV19WFuirHpCucT13pPe0K72dXQtuHTpcK6ZIOmSStfQKhw02eNnv2bM2aNSvw2OPxKD09/eRVsJOkuMP00tQknfPgQlksPw11dXAK1XtbR3tc9rP7lTV8VIhrc2Q53y7Vx39+Tg0NDaGuyhF1lfe0/f00ez0lqTh3p/7yxC9VVlYWsl+Irfdij9Oo3nG6d8og7Sr1Bu6/viq3UhvzPdqYL6X9+P+0sMBQ/5YS9UmMVHpcuOkuG+oqn1EztDtwJGVlZaqvq9O1v3pKyRn9Ql2dI+oq51NXeU+7yvvZldD2odOlQnpKSoqKioqCykpKSmS325WQkNDhNi6Xq8sMHT2Y3cqs7d1ZQlpv9RowJNTVOKLi3J2hrsJxMft72v5+mr2eZtW3R5R+dkGUfnZBP5V7ffpsS4n+3zdbtXxvteoUpvX51VqfXy2b1aL0uHD1SYhUZmKkYsLNcx07bQ90juSMfpxLnYz3tPui7U+9LhXSx44dq3/9619BZZ988olGjx7d4fXoAIDuKSHKpf8ena7+1lKNvmuarpnzd3ldidpdViuvr0l7yuu0p7xOS7aVKj7CqT6JEeqTEKm02HDZ+AcpAAAIoZCGdK/Xqx07dgQe7969W2vXrlV8fLwyMjI0e/Zs5efn64033pAk3XLLLXrhhRc0a9Ys3XzzzVq2bJnmzZunv/3tb6E6BACAyRlNPqVFGOo1IEmGYai8tlF7ymq1p7xOBdX1qqhrVEVuo1bnVslpsyojPiIQ2iNdXep/2QAA4DQQ0r8+Vq5cqQsvvDDwuP3a8enTp2v+/PkqLCxUbm5u4PnMzEx99NFHuvPOO/Xiiy8qLS1Nzz///Gl3+zUAwMlhsViUGOVSYpRLo/vEy+dv1t6KOu0pr9WesjrV+5u1o9SrHaWtkyEmRbvUJyFSfRIjlBwTJuth5j8BAADoLCEN6RMmTAhM/NaR+fPnH1J2wQUXaPXq1SexVgCA7sLlsGlgcrQGJkfLMAwV1/jaetlrVezxqaSmdfl2T4XCHTalx4erd3ykMuIjFBVGLzsAAOh8/IUBAIBae9lTYsKUEhOmMX0TVOtrau1lL6vV3orWXvZtxV5tK27tZU+IdCo9PkK94yPUMy5cDpPNGA8AALomQjoAAB2IdNmVnRqj7NQYNbcYKqpuUG5FnXIr6lTsaVB5baPKaxu1Nq9KNotFqbFh6h0foYz4CPWIdh321qAAAABHQkgHAOAobFaLesaFq2dcuMb2S1CDv1l5bYF9b0WdahqatK+yXvsq6/X1znKGxgMAgBPGXw0AABynMIdNA5KjNaDtWvaqer9yy1sD+77KQ4fGx0c6ldHWy94zNlxOO0PjAQBAxwjpAAB8BxaLRXERTsVFODUiPTZoaPzeitYJ6CpqG1XRNjTeapGSY8LUKy5cveIilOYOC/UhAAAAEyGkAwDQiY5laHxhdYMKqxu0Yk+lbBaLIpUh97n/q6pmp5paWmS30tMOAEB3RUgHAOAkOnBovCRV1/u1r7JO+yrrlVdZp1pfszyKVOx512qdT9q0dJdSY8PUKy5C6XHhSo4Ok9XKJHQAAHQXhHQAAE4hd7hD7nC3hqS5A9ezf71sudbnbFfs4HPlb7Epr6JeeRX1WibJYbMoLTZc6XER6hUXrh7RLlmZOR4AgNMWIR0AgBBpv549VVX6/P0nNeXMV5UxfIzyKusDve2+phbtLa/T3vI6SZLLblWqO0w9Y1uH1CdFh8lGTzsAAKcNQjoAACZhsUgJUS4lRLk0Mj1WhmGo1OsL3N4tvy207ymv05620G63WpQSE6a02HClxYYp1c3s8QAAdGWEdAAATMpisSgpOkxJ0WE6MyNOLS2GSrw+FVTVty0Nqvc3a19VvfZV1bdtI/WIcqlnbHgguEc4+XUPAEBXwW9tAAC6CGtbr3lKTGtoNwxDlXV+5beF9vyqetU0NKmkxqeSGp/W5FVJkuIiHIHQ3jM2XNFhdlm4rh0AAFMipAMA0EVZLBbFRzoVH+nUsJ5uSVJNQ3tob1BBVb3KaxtVWedXZZ1fGws8kqQol12p7rC2pXUyOq5rBwDAHAjpAACcRqLDHBqU4tCglBhJUr2/WYVtvewFVQ0qqWmQ19ek7SVebS/xSmq9t3tStEup7jCltAX3KBd/IgAAEAr8BgYA4DQW7rCpb48o9e0RJUnyN7eoqLpBhZ6G1q/V9Wrwt6iwukGF1Q2B7aLD7IGe9hR3mHpEuUJ1CAAAdCuEdAAAuhGHzar0+Ailx0dIUuBe7UVtIb2wul7l3kbVNDSppsGrbcX7e9tjHXbFTvixlu9rUK8BDUqKDgvloQAAcFoipAMA0I2136s9LsKpwamtQ+Qbm1pUdEBPe1F1gxqaWlTus8p9ztV68ptKPfnNZ+oZG64R6W4N7xWrEb1iNayXm2HyAAB8R/wmBQAAQZx2qzLiI5RxYG97nV+btu3Uks8/1ZALpinP06T8tmvdP9pQJKn19m/9e0RpRHqsRvRya0R6rAalxHDfdgAAjgMhHQAAHJHFYlFcpFN9olpU8e8X9OzvfqwB2cO0Ib9a6/dVa11eldblVamguiEwId3/W7VPkuS0WTU4LUYj20L78F6x6psYKSuzyQMA0CFCOgAAOG7RYQ6N65eocf0SA2UlNQ1an1et9fuqtLYtvFfX+wMhXsv2tm7rsmtYW2gf1tOtYT3d6hUXzr3bAQAQIR0AAHSSpOgwXZwdpouzkyW1DpPPrajT2rwqrWsL7xvyq1Xja9I3O8v1zc7ywLbucIeG9ozR0LbQPjTNrd4JEQR3AEC3Q0gHAAAnhcViUe+ESPVOiNQVI3tKar0F3LbimsAw+Y0F1dpaVKPqer++3lGur3fsD+7RYXYNSYtpDe1tS2YCQ+UBAKc3QjoAADhlHDarhqS5NSTNrf89O0OS5Gtq1vZirzbkV2tDfrU25Vcrp6hGNQ1NWr6rQst3VQS2j3LZlZ0Wo6Fpbg3r1RrgMxOjZCO4AwBOE4R0AAAQUi67LdBT/r9tZf7mFm0v9mpjW3DfWFCtzQUeeX1N+nZ3hb7dvT+4hzmsykqJUXZqjLLTWr8OSolWJLeDAwB0Qfz2AgAApuOwWVsDd1qM/vusdElSU3OLdpbWtob2tmVTgUf1/ub9k9O1sVikPgmRQcE9Oy1GSdEurnMHAJgaIR0AAHQJdptVWSnRykqJ1g9G9ZIkNbcY2lteq82FHm0u8Cin0KPNhR4Ve3zaXVar3WW1+nBDYWAfCZFODT4ouPdNjJTdxr3cAQDmQEgHAABdls1qUd8eUerbI0rThqcFysu8vtbAXtAa2nMKPdpZWqvy2kZ9taNMX+0oC6zrtFs1KCVag1NiAr33WSnRiglzhOKQAADdHCEdAACcdhKjXDp/QA+dP6BHoKzB36xtxTVBwT2nsEZeX5PW76vW+n3VQfvoGRuuQW0991kp0RqcGqPMxEg56HUHAJxEhHQAANAthDlsGt4rVsN7xQbKWloM5VXWBQX3TQUeFVY3KL+qXvlV9fpsS0lgfYfNon49ojQoJVqDUlt73AelRCslJoxr3QEAnYKQDgAAui2rdf+93KcMSw2UV9f5tbW4RluKPNpSVKOtbYvX16QtRTXaUlQjrS0IrO8OdwQCe/vXgcnRimbIPADgOBHSAQAADuKOcOjszHidnRkfKDMMQ/sq61sDe3GNcgo92lpUo11ltaqu9x9yazhJ6hUXfkBwb701XCYT1QEAjoCQDgAAcAwsFovS4yOUHh+hi7OTA+W+pmbtKPEGettbe9pbZ5jfV1mvfZX1+jRn/5B5p82qfkmtQ+Yjm7wK73eWapta/wnAkHkAACEdAADgO3DZbRqS5taQNHdQeWVtY+uQ+UJP29D51hBf19jcNmmdR5KU9IMHtbBA+qx4p+IjnYqPdCoh0qWESKcSopyKctkJ7wDQjRDSAQAAToK4SKfG9E3QmL4JgbKWltYh81uKWofK/2dLrj5flSNXUh/5m6Vij0/FHp+kmsA2Tpu1NbhHOZXQHuKjXIp02gjvAHAaIqQDAACcIlarRRkJEcpIiNDkISk6N65Gf5lxh37xwjuK6jlA5V6fymsbVVHbqHJvo6rqG9XY3KIiT4OKPA1B+3LZra2hPSq45z3CyZ93ANCV8VMcAAAgxKwWBYa6DzigvLnFUGXd/tBeXtsa4qvr/PI1taigukEF1cHhPdxhC+p5T4h0KT7KqXCH7dQeFADghBDSAQAATMpmtSgxyqXEKJe0f646NTW3qLLO3xravW0hvrZR1fV+1fubA/d4P1CE0xYU2tt73l12wjsAmAkhHQAAoIux26zqEe1Sj2hXULm/uUUVtftDe/vw+ZqGJtU1NquusV55lcHhPcplb5uszhnogY+PJLwDQKgQ0gEAAE4TDptVyTFhSo4JCypvbGppC+5t17x7W0O819cUWHIr6oK2iXLZA8HdUmuVMy1Ldf6WU3k4ANAtEdIBAABOc067VSnuMKW4g8O7z9+8f6K6wFefan3NgfC+t6JOkl2p1/9e171brLTPP1P/5GgNTIrSwORoDUiO0oDkaEW5+LMSADoDP00BAAC6KZfDprTYcKXFhgeVN/ibg4bNF5RWqKC0UvbohMBkdV9sKw3aJs0dpgHJ0RrYFtoHJBHeAeBE8FMTAAAAQcIOCu/7LCV65uHpWrpshSJS+mpbsVfbimu0vaRG24u9KqnxBcL70oPCe8/YcA1Ibu1179/e+54UpUjCOwB0iJ+OAAAAOCZRTqvO7BOv0X3ig8qr6hq1vaQtuBd7tb2kRtuKvSqt8QVmml+y9dDwfmCve3uIJ7wD6O74KQgAAIDvJDbCqbP6xOusDsL7trbQvr2t931bsVdl3v3hffFB4b1XXHggtLcPn++fFKUIJ3+2Auge+GkHAACAkyI2wqmzM+N1dmZweK+sPbDnvSYQ5Mu8jdpXWa99lR2H9/aJ6gYmtX4lvAM4HfFTDQAAAKdUXGTH4b2itrE1tJd428J7jXaUeIPC++dbSgLrWyxt4T2ptdfdUV8nZ3I/NXGnOABdGCEdAAAAphAf6dQ5fRN0Tt+EoPKK2sZDet23F3tVXtuovIp65VXU67O28J56w3P65z5D7vI9im+7z3tC2xIX6ZTDZg3FoQHAMSOkAwAAwNTiI50a0zdBYw4K7+VeX1BoX72zUOv3lsoW4VZ1vV/V9X7tLqsN2sYd7ggK7vFRTsVHOGUnvAMwCUI6AAAAuqSEKJfGRrk0tl9reF+9ulGjRk3Wbc+/o7DkTJV7W+/z3nq/d58a/C1HDO8J7T3vUU4lRLoUF+EgvAM45QjpAAAAOK2E2aRecRHqFRcRKDMMQ/X+ZpV720N7a3Cv8DaqoWl/eN91QHi3SIppC+8JUe1D5wnvAE6ukIf0l156SU899ZQKCws1ZMgQPfvsszr//PM7XHfJkiW68MILDynPycnRoEGDTnZVAQAA0EVZLBZFOO2KiLcrPT44vNc1NgcH99rGo4Z3d7gjENwJ7wA6U0hD+ttvv61f/OIXeumll3TuuefqlVde0ZQpU7R582ZlZGQcdrutW7cqJiYm8LhHjx6noroAAAA4zVgsFkW67Ip0dRzeDxwuX9E2fN7X1KKqer+q6v3aWXpQeI84YNh8pEvxkU7FRTpktxLeARybkIb0Z555RjfeeKNuuukmSdKzzz6rf//733r55Zc1Z86cw26XlJSk2NjYU1RLAAAAdDcHhveMI4V3ry/wva+pRVV1flXVHT68twf3pkaLZAv5oFYAJhSynwyNjY1atWqV7r333qDyyZMn65tvvjnitmeccYYaGhqUnZ2tX//61x0OgW/n8/nk8/kCjz0ez3erOAAAALqtYwnv5V7fAcPnG9XYYXh3KGPWAt3xcYmGbVqlgclRGpAcrQHJUcpMjJTLbgvNAQIIuZCF9LKyMjU3Nys5OTmoPDk5WUVFRR1uk5qaqldffVWjRo2Sz+fTm2++qYkTJ2rJkiUaP358h9vMmTNHDz/8cKfXHwAAAGh3pPBe29gcFNwrahtV5qmX32pTfk2z8jcVaeGm/fuyWS3qkxChgcnRrcE9KUoDk6OVmRgpp51h88DpLuRjbCwWS9BjwzAOKWuXlZWlrKyswOOxY8cqLy9PTz/99GFD+uzZszVr1qzAY4/Ho/T09E6oOQAAAHBkFotFUS67olx29U6IDJTnbduk5++9Wa++/S+1RCdrR4lX24pb7/de42vSztJa7Syt1ccb93de2a0W9UmM1ICk1l73gclRykqOVp/ESDmYsA44bYQspCcmJspmsx3Sa15SUnJI7/qRjBkzRm+99dZhn3e5XHK5XCdcTwAAAKCzWSxSs7dcI1NcOvPMvoFywzBU5GnQ9uL9oX1bSetXr69JO0q82lHiDQrvDptFmYmRrcE9KVpZKa0hvnd8BLPNA11QyEK60+nUqFGjtGjRIn3/+98PlC9atEhXXHHFMe9nzZo1Sk1NPRlVBAAAAE4pi8WiVHe4Ut3hGj9w/x2M2sP7tmKvthfXaFtxTeD72sZmbSv2aluxVx+qMLCN02ZV3x6RGpgcrayU/cPm0+MjZLN2PHIVQOiFdLj7rFmzdP3112v06NEaO3asXn31VeXm5uqWW26R1DpUPT8/X2+88Yak1tnf+/TpoyFDhqixsVFvvfWWFixYoAULFoTyMAAAAICT6sDwfsFB4b2gukHbig4I7m097/X+Zm0pqtGWohpp3f59uexW9U9qHSrfPmx+YHK0esaGy0p4B0IupCH9mmuuUXl5uR555BEVFhZq6NCh+uijj9S7d29JUmFhoXJzcwPrNzY26u6771Z+fr7Cw8M1ZMgQffjhh5o6dWqoDgEAAAAIGYvFop6x4eoZG64LByUFyltaDO2rrG8N7m2hfVtxjXaUeOVratGmAo82FQTf9SjCaQu63n1AcrT8dc2n+pCAbi/kE8fddtttuu222zp8bv78+UGP77nnHt1zzz2noFYAAABA12W1WpSREKGMhAhdnL1/vqfmFkO5FXVt17vXtA2Tr9Gu0lrVNTZr3b5qrdtXHbSv9F+8rcVFdqU2FSs+0tl6v/colyKdtsNO+AzgxIU8pAMAAAA4NWzW1knmMhMjdcmQlEB5U3OL9pTXaXtxjbYW7+9531XqlVyRqmiUKg7qeXfZrUGhPSHSqfhIpyII78B3QkgHAAAAujm7rfU69f5JUZoybP+kzP9ZsUrnT71KV97zvBSdpPLa1vu9V9X55WtqUWF1gwqrG4L2FeawKiGyLbRHtYX4SJfCnbZTfVhAl0RIBwAAANAhh80if1mu0iNb1KtfQqC8qblFlXX+QGgv9zaqvLZR1fV+NfhblF9Vr/yq+qB9RTht+3veI12BAB/mILwDByKkAwAAADgudptVPaJd6hHtCir3N7eosrY1sJfXNrYFeJ88DU2qa2xWXWO99lUGh/dIl601tAeGzrcOm3fZCe/ongjpAAAAADqFw2ZVUkyYkmLCgsobm1pUUdeoCm+jymt9rSHe2yivr0m1vmbV+uqUW1EXtE2Uy66EqEN73h0266k8JOCUI6QDAAAAOKmcdqtSYsKUclB49zU1t/a2t4X21u99qvU1y+trktfXpL3lweE9JsyuhKgDet4jnWpuOZVHA5xchHQAAAAAIeGy25TqDleqOzyovMHffMC17r7A0Pm6xmZ5GprkaWjS7rLaA7ZwKO2nf9TvvqzQqKKcwCR4/ZOiFB3mOLUHBXxHhHQAAAAAphLmsCktNlxpscHhvb6xeX9o97Zf++5Tg79FjrhUrSz0aWXhrqBtUmLCgkL7gLavCVHB19MDZkFIBwAAANAlhDtt6uWMUK+4iECZYRjauXWz5j31oH7z9IvyueK0o9Sr7cVeldT4VORpUJGnQV/tKAvaV1yEQwOSotXvgODePylKqe4w7vOOkCKkAwAAAOiyLBaLwmySL2+DLu0fqTPPHBp4rrrerx0lXu0s8bYF9xrtKPVqX2W9Kuv8+nZPhb7dUxG0vyiXXf16RKp/UnRQ73t6fIRsVsI7Tj5COgAAAIDTkjvcoVG94zSqd1xQeX1js3aWerWjZP+yvaRGe8vr5PU1ad2+aq3bVx20jdNuVd/EyAOCe2uI75MYwe3i0KkI6QAAAAC6lXCnTUN7ujW0pzuovLGpRXvLaw8I7q1fd5Z65Wtq0ZaiGm0pqgnaxma1qHd8RGDYfL8eUeqXFKW+PSIVw6R1OAGEdAAAAABQa2/5gORoDUiODipvbjGUX1mv7SU1QQF+Z4lXNb4m7Sqr1a6yWi3aXBy0XY9ol/r1iFTfHq3hvW+PSPXvEaW02HCGzuOwCOkAAAAAcAQ2q0UZCRHKSIjQxMHJgXLDMFTs8bUF9xptL/FqV2mtdpa2TlpX2rYs3xV83bvLblVmYmRrr/tBIT7SRUTr7vgEAAAAAMAJsFgsSnGHKcUdpvMGJAY952nwa3dbYG8P7jtLvdpTVnfYofNS6y3j+iVFqm/iAQE+KUqpMWGy0vveLRDSAQAAAKCTxYQ5NCI9ViPSY4PKm1sM7ausCwruO0trtavUqzJvY+CWcV/vKA/aLtxha+19Tzqw9701zIc7mbjudEJIBwAAAIBTxGa1qHdCpHonROrCQUlBz1XX+bWzrPVa911ltYGve8pqVe9v1uZCjzYXeg7ZZ8/YcGUmRiozMVJ9EiPVt+37XnHhstusp+rQ0EkI6QAAAABgAu4Ih87MiNOZGcG3jPM3tyivYn/v+4G98JV1fuVX1Su/ql5f7SgL2s7edi19ZkJraM/sERkI8ykxYbJYGD5vRoR0AAAAADAxh82qvj2i1LdHlC5WctBzFbWN2lXq1e6y2qBlT3mtGvwt2lVaq12ltYfsM9xhC/S690mMUGZilDLbHsdFOk/VoaEDhHQAAAAA6KLiI52Kj4zX6D7xQeUtLYaKPA2HhPfdZbXKq6hTvb9ZOYUe5XQwfN4d7lBSuJRw2SzlVFtVV1yj2AiHYsOdctoZPn+yEdIBAAAA4DRjtVqUFhuutNhwnds/eOZ5f3OL9lXWa3dZ69D59p733aW1KqhuUHW9X9X1UtTQi7S5WtpcXRTYNtJlU2y4U3ERDsVG7P8aE26X3UqA7wyEdAAAAADoRhw2a+Da9IsGBT9X39isPeW1+nzFBt035zmNnHqdGu2Rqqrzq97frFpfs2p9rdfAH8giKSbcIXe4Q7HhDrkjHIHedwL88SGkAwAAAAAkSeFOmwanxqi+V7g8y/+h0df/r3oNSJckNfibVVXnV1Vdoyrr/Kqqb1RVnV+VdY3yNxttPfB+5Xaw3+gw+/7wHu5UbMT+QM8M9MEI6QAAAACAowpz2JTitinFHRZUbhiG6hqbVVnXqOp6v6rqWsN6VX1roPc3G6ppaFJNQ5PyKusP2W+U68AAvz/Iu8Md3fIaeEI6AAAAAOCEWSwWRbrsinTZ1Sv47nGBAN8e2qsP6IGvqversalFXl+TvL4m7as6NMBHOG2BYfPtIb49yLvstlN0hKcWIR0AAAAAcFIcGODTYsODnjMMQw1NLYcE9/bHDf4W1TU2q66xWQVVDYfsO9xhU7jFroTLZqmgpklnnqqDOskI6QAAAACAU85isbQG7Q6G0Eut18AHD59vC/Jtk9jV+5tVL6uihl6k5hYjBEdwchDSAQAAAACmE+awKcxhU3LMoQHe19Qa4Hft2qWFC/6q5Kt/FYIanhzd7yp8AAAAAECX5rLblBQdpl4RhjzL/yGnzRLqKnUaQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACZBSAcAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEiEP6S+99JIyMzMVFhamUaNG6csvvzzi+kuXLtWoUaMUFhamvn37au7cuaeopgAAAAAAnFwhDelvv/22fvGLX+j+++/XmjVrdP7552vKlCnKzc3tcP3du3dr6tSpOv/887VmzRrdd999mjlzphYsWHCKaw4AAAAAQOcLaUh/5plndOONN+qmm27S4MGD9eyzzyo9PV0vv/xyh+vPnTtXGRkZevbZZzV48GDddNNN+slPfqKnn376FNccAAAAAIDOZw/VCzc2NmrVqlW69957g8onT56sb775psNtli1bpsmTJweVXXLJJZo3b578fr8cDsch2/h8Pvl8vsDj6upqSZLH4/muh3DSeb1eSdK+7Zvkq68LcW0Orzh3pySpaM827YyMCHFtDo96dr6uUlfq2flK9+2WJK1atSrws8qMtm7dKomfo52lq7R7O6vVqpaWllBX44i6yme0q7R9V3k/Jd7TztZV3s92/HzqPO1t7/V6TZ3x2utmGMbRVzZCJD8/35BkfP3110Hljz32mDFw4MAOtxkwYIDx2GOPBZV9/fXXhiSjoKCgw20efPBBQxILCwsLCwsLCwsLCwsLS0iXvLy8o2blkPWkt7NYLEGPDcM4pOxo63dU3m727NmaNWtW4HFLS4sqKiqUkJBwxNfByefxeJSenq68vDzFxMSEujo4AbRh10b7dX20YddHG3Z9tGHXRvt1fV2lDQ3DUE1NjdLS0o66bshCemJiomw2m4qKioLKS0pKlJyc3OE2KSkpHa5vt9uVkJDQ4TYul0sulyuoLDY29sQrjk4XExNj6hMKR0cbdm20X9dHG3Z9tGHXRxt2bbRf19cV2tDtdh/TeiGbOM7pdGrUqFFatGhRUPmiRYs0bty4DrcZO3bsIet/8sknGj16dIfXowMAAAAA0JWEdHb3WbNm6U9/+pNee+015eTk6M4771Rubq5uueUWSa1D1X/0ox8F1r/lllu0d+9ezZo1Szk5OXrttdc0b9483X333aE6BAAAAAAAOk1Ir0m/5pprVF5erkceeUSFhYUaOnSoPvroI/Xu3VuSVFhYGHTP9MzMTH300Ue688479eKLLyotLU3PP/+8rr766lAdAr4Dl8ulBx988JDLEdB10IZdG+3X9dGGXR9t2PXRhl0b7df1nY5taDGMY5kDHgAAAAAAnGwhHe4OAAAAAAD2I6QDAAAAAGAShHQAAAAAAEyCkA4AAAAAgEkQ0nFSPfTQQ7JYLEFLSkpK4HnDMPTQQw8pLS1N4eHhmjBhgjZt2hTCGuOLL77Q5ZdfrrS0NFksFr333ntBzx9Lm/l8Pt1xxx1KTExUZGSkvve972nfvn2n8Ci6t6O14Q033HDIeTlmzJigdWjD0JkzZ47OOussRUdHKykpSVdeeaW2bt0atA7nobkdSxtyHprXyy+/rOHDhysmJkYxMTEaO3asPv7448DznH/md7Q25PzreubMmSOLxaJf/OIXgbLT+VwkpOOkGzJkiAoLCwPLhg0bAs89+eSTeuaZZ/TCCy9oxYoVSklJ0aRJk1RTUxPCGndvtbW1GjFihF544YUOnz+WNvvFL36hd999V3//+9/11Vdfyev1atq0aWpubj5Vh9GtHa0NJenSSy8NOi8/+uijoOdpw9BZunSpbr/9di1fvlyLFi1SU1OTJk+erNra2sA6nIfmdixtKHEemlWvXr30+OOPa+XKlVq5cqUuuugiXXHFFYE//jn/zO9obShx/nUlK1as0Kuvvqrhw4cHlZ/W56IBnEQPPvigMWLEiA6fa2lpMVJSUozHH388UNbQ0GC43W5j7ty5p6iGOBJJxrvvvht4fCxtVlVVZTgcDuPvf/97YJ38/HzDarUaCxcuPGV1R6uD29AwDGP69OnGFVdccdhtaENzKSkpMSQZS5cuNQyD87ArOrgNDYPzsKuJi4sz/vSnP3H+dWHtbWgYnH9dSU1NjTFgwABj0aJFxgUXXGD8/Oc/Nwzj9P9dSE86Trrt27crLS1NmZmZ+p//+R/t2rVLkrR7924VFRVp8uTJgXVdLpcuuOACffPNN6GqLo7gWNps1apV8vv9QeukpaVp6NChtKuJLFmyRElJSRo4cKBuvvlmlZSUBJ6jDc2lurpakhQfHy+J87ArOrgN23Eeml9zc7P+/ve/q7a2VmPHjuX864IObsN2nH9dw+23367LLrtMF198cVD56X4u2kNdAZzezjnnHL3xxhsaOHCgiouL9eijj2rcuHHatGmTioqKJEnJyclB2yQnJ2vv3r2hqC6O4ljarKioSE6nU3FxcYes0749QmvKlCn6r//6L/Xu3Vu7d+/WAw88oIsuukirVq2Sy+WiDU3EMAzNmjVL5513noYOHSqJ87Cr6agNJc5Ds9uwYYPGjh2rhoYGRUVF6d1331V2dnbgD3vOP/M7XBtKnH9dxd///netXr1aK1asOOS50/13ISEdJ9WUKVMC3w8bNkxjx45Vv3799Oc//zkwQYfFYgnaxjCMQ8pgLifSZrSreVxzzTWB74cOHarRo0erd+/e+vDDD3XVVVcddjva8NSbMWOG1q9fr6+++uqQ5zgPu4bDtSHnobllZWVp7dq1qqqq0oIFCzR9+nQtXbo08Dznn/kdrg2zs7M5/7qAvLw8/fznP9cnn3yisLCww653up6LDHfHKRUZGalhw4Zp+/btgVneD/5PVklJySH/FYM5HEubpaSkqLGxUZWVlYddB+aSmpqq3r17a/v27ZJoQ7O444479P7772vx4sXq1atXoJzzsOs4XBt2hPPQXJxOp/r376/Ro0drzpw5GjFihJ577jnOvy7kcG3YEc4/81m1apVKSko0atQo2e122e12LV26VM8//7zsdnugHU7Xc5GQjlPK5/MpJydHqampyszMVEpKihYtWhR4vrGxUUuXLtW4ceNCWEsczrG02ahRo+RwOILWKSws1MaNG2lXkyovL1deXp5SU1Ml0YahZhiGZsyYoXfeeUeff/65MjMzg57nPDS/o7VhRzgPzc0wDPl8Ps6/Lqy9DTvC+Wc+EydO1IYNG7R27drAMnr0aF177bVau3at+vbte3qfi6d6pjp0L3fddZexZMkSY9euXcby5cuNadOmGdHR0caePXsMwzCMxx9/3HC73cY777xjbNiwwfjf//1fIzU11fB4PCGuefdVU1NjrFmzxlizZo0hyXjmmWeMNWvWGHv37jUM49ja7JZbbjF69eplfPrpp8bq1auNiy66yBgxYoTR1NQUqsPqVo7UhjU1NcZdd91lfPPNN8bu3buNxYsXG2PHjjV69uxJG5rErbfearjdbmPJkiVGYWFhYKmrqwusw3lobkdrQ85Dc5s9e7bxxRdfGLt37zbWr19v3HfffYbVajU++eQTwzA4/7qCI7Uh51/XdeDs7oZxep+LhHScVNdcc42RmppqOBwOIy0tzbjqqquMTZs2BZ5vaWkxHnzwQSMlJcVwuVzG+PHjjQ0bNoSwxli8eLEh6ZBl+vTphmEcW5vV19cbM2bMMOLj443w8HBj2rRpRm5ubgiOpns6UhvW1dUZkydPNnr06GE4HA4jIyPDmD59+iHtQxuGTkdtJ8l4/fXXA+twHprb0dqQ89DcfvKTnxi9e/c2nE6n0aNHD2PixImBgG4YnH9dwZHakPOv6zo4pJ/O56LFMAzj1PXbAwAAAACAw+GadAAAAAAATIKQDgAAAACASRDSAQAAAAAwCUI6AAAAAAAmQUgHAAAAAMAkCOkAAAAAAJgEIR0AAAAAAJMgpAMAAAAAYBKEdAAAurg9e/bIYrFo7dq1kqQlS5bIYrGoqqpKkjR//nzFxsZ+59fprP0AAIDDI6QDAGBiN9xwgywWS2BJSEjQpZdeqvXr1wfWSU9PV2FhoYYOHfqdXmvx4sWaOnWqEhISFBERoezsbN11113Kz8//rocBAACOESEdAACTu/TSS1VYWKjCwkJ99tlnstvtmjZtWuB5m82mlJQU2e32E36NV155RRdffLFSUlK0YMECbd68WXPnzlV1dbV+//vfd8ZhHJbf7z+p+wcAoCshpAMAYHIul0spKSlKSUnRyJEj9atf/Up5eXkqLS2VdOhw9+O1b98+zZw5UzNnztRrr72mCRMmqE+fPho/frz+9Kc/6Te/+U3Q+v/+9781ePBgRUVFBf6B0G7FihWaNGmSEhMT5Xa7dcEFF2j16tVB21ssFs2dO1dXXHGFIiMj9eijj0qSHn30USUlJSk6Olo33XST7r33Xo0cOTJo29dff12DBw9WWFiYBg0apJdeeumEjhkAALMipAMA0IV4vV795S9/Uf/+/ZWQkNAp+/zHP/6hxsZG3XPPPR0+f+B16HV1dXr66af15ptv6osvvlBubq7uvvvuwPM1NTWaPn26vvzySy1fvlwDBgzQ1KlTVVNTE7TPBx98UFdccYU2bNign/zkJ/rLX/6ixx57TE888YRWrVqljIwMvfzyy0Hb/PGPf9T999+vxx57TDk5Ofrd736nBx54QH/+85875X0AAMAMTnxcHAAAOCU++OADRUVFSZJqa2uVmpqqDz74QFZr5/yvffv27YqJiVFqaupR1/X7/Zo7d6769esnSZoxY4YeeeSRwPMXXXRR0PqvvPKK4uLitHTp0qAh+j/84Q/1k5/8JPD4mmuu0Y033qgf//jHkqTf/OY3+uSTT+T1egPr/Pa3v9Xvf/97XXXVVZKkzMxMbd68Wa+88oqmT59+AkcOAID50JMOAIDJXXjhhVq7dq3Wrl2r//znP5o8ebKmTJmivXv3dsr+DcOQxWI5pnUjIiICAV2SUlNTVVJSEnhcUlKiW265RQMHDpTb7Zbb7ZbX61Vubm7QfkaPHh30eOvWrTr77LODyg58XFpaqry8PN14442KiooKLI8++qh27tx5zMcKAIDZ0ZMOAIDJRUZGqn///oHHo0aNktvt1h//+MfA9dzfxcCBA1VdXa3CwsKj9qY7HI6gxxaLRYZhBB7fcMMNKi0t1bPPPqvevXvL5XJp7NixamxsPOSYDnbwPwoO3G9LS4uk1iHv55xzTtB6NpvtiHUGAKAroScdAIAuxmKxyGq1qr6+vlP294Mf/EBOp1NPPvlkh8+332/9WHz55ZeaOXOmpk6dqiFDhsjlcqmsrOyo22VlZenbb78NKlu5cmXg++TkZPXs2VO7du1S//79g5bMzMxjrh8AAGZHTzoAACbn8/lUVFQkSaqsrNQLL7wgr9eryy+/vFP2n56erj/84Q+aMWOGPB6PfvSjH6lPnz7at2+f3njjDUVFRR3zbdj69++vN998U6NHj5bH49Evf/lLhYeHH3W7O+64QzfffLNGjx6tcePG6e2339b69evVt2/fwDoPPfSQZs6cqZiYGE2ZMkU+n08rV65UZWWlZs2adcLHDwCAmdCTDgCAyS1cuFCpqalKTU3VOeecoxUrVugf//iHJkyY0Gmvcdttt+mTTz5Rfn6+vv/972vQoEG66aabFBMTEzR7+9G89tprqqys1BlnnKHrr79eM2fOVFJS0lG3u/baazV79mzdfffdOvPMM7V7927dcMMNCgsLC6xz00036U9/+pPmz5+vYcOG6YILLtD8+fPpSQcAnFYsxoEXfAEAAJjEpEmTlJKSojfffDPUVQEA4JRhuDsAAAi5uro6zZ07V5dccolsNpv+9re/6dNPP9WiRYtCXTUAAE4petIBAEDI1dfX6/LLL9fq1avl8/mUlZWlX//614F7ogMA0F0Q0gEAAAAAMAkmjgMAAAAAwCQI6QAAAAAAmAQhHQAAAAAAkyCkAwAAAABgEoR0AAAAAABMgpAOAAAAAIBJENIBAAAAADAJQjoAAAAAACbx/wN8x/yC+kLYawAAAABJRU5ErkJggg==",
255
- "text/plain": [
256
- "<Figure size 1200x500 with 1 Axes>"
257
- ]
258
- },
259
- "metadata": {},
260
- "output_type": "display_data"
261
- }
262
- ],
263
- "source": [
264
- "plt.figure(figsize=(12, 5))\n",
265
- "sns.histplot(bill_data['Bill Charge'], bins=20, kde=True)\n",
266
- "plt.title(\"Histogram of Bill Charges\")\n",
267
- "plt.show()"
268
- ]
269
- },
270
- {
271
- "cell_type": "code",
272
- "execution_count": 18,
273
- "id": "c4e0af23-6eb9-477f-9a96-680f330b4a77",
274
- "metadata": {},
275
- "outputs": [
276
- {
277
- "data": {
278
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAHFCAYAAAAudofcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3rUlEQVR4nO3deVxU5f4H8M+wzAy7LDIDisiOiCsUQrkriuZVqxu3uqYtXsnMhfxlWpZZSXbLW11TW1yyTL1ds6zQwFS0K5ogm4o7uyCyL7Jzfn94mdvIIuLAmeXzfr3Oq+bM9zzn+4zgfH3Oc54jEQRBABERERFpjJHYCRARERHpGxZYRERERBrGAouIiIhIw1hgEREREWkYCywiIiIiDWOBRURERKRhLLCIiIiINIwFFhEREZGGscAiIiIi0jAWWEQi2rZtGyQSiWqTy+VQKpUYO3YsoqKiUFhYKHaKKhKJBKtWrVK9PnfuHFatWoXMzEyNnmfVqlVqn4lUKoWbmxsWLVqEsrIyVVzLZ9eV80dHR6v1RZP++c9/wtPTE1KpFBKJRC3nP7r9z14ikaB3794YM2YMfvrpp1bxt3/+R44cgUQiwZEjR1T7Wj67zjp27Bgee+wx9OnTB1KpFDY2NggJCcHGjRtRXV2tdu4FCxZ0ul0iYoFFpBW2bt2K+Ph4xMbG4pNPPsHQoUOxdu1aDBgwAAcPHhQ7PQBAfHw8nnvuOdXrc+fO4c0339R4gdXiwIEDiI+Px88//4wZM2bgn//8J8LCwqCJp3tFR0fjzTff1ECW6pKTk7Fw4UKMHTsWhw4dQnx8PKysrDo8puXP/vjx4/jss89gbGyMadOm4ccff1SLu/3zv1dvvPEGRo0ahby8PLz11luIjY3Frl27MH78eKxatQqvvfaaxs5FZIhMxE6AiAB/f38EBgaqXj/yyCNYsmQJHnzwQTz88MO4dOkSFAqFiBkCI0aM6NHzBQQEwMHBAQAwceJEFBcX46uvvsLx48fxwAMP9GgunXX27FkAwNy5c3H//fd36pjb/+wnT54MW1tb7Ny5E9OmTVPt1+Tn/+2332L16tV49tln8fnnn6uNeoWFheHll19GfHy8xs7XGQ0NDZBIJDAx4dcS6QeOYBFpqX79+uGDDz5AZWUlPv30U7X3EhIS8Kc//Ql2dnaQy+UYNmwY/vWvf6nFtFyCOnz4MJ5//nk4ODjA3t4eDz/8MK5du6YWe+jQIYwZMwb29vYwMzNDv3798Mgjj+DmzZuqmD9eotq2bRv+/Oc/AwDGjh2rusS1bds2vPXWWzAxMUFOTk6rPj3zzDOwt7dHbW3tXX8eLQVGVlZWh3FbtmzBkCFDIJfLYWdnh5kzZyI9PV31/pw5c/DJJ5+o+tSy3Wkk7k7tjhkzBn/9618BAEFBQZBIJJgzZ85d91Mul0MqlcLU1FRt/+2XCO/F6tWrYWtri48//rjNS4pWVlYIDQ1ttf+rr77CgAEDYG5ujiFDhrS6lHn58mU8/fTT8PLygrm5Ofr06YNp06YhLS1NLa7l8uZXX32Fl156CX369IFMJsPly5cBAJ9//jm8vb0hk8ng5+eHb775BnPmzEH//v3V2qmvr8fbb78NX19fyGQy9O7dG08//TRu3LihFteZn28iTWOBRaTFpkyZAmNjYxw9elS17/Dhw3jggQdQVlaGTZs24YcffsDQoUMRHh6Obdu2tWrjueeeg6mpKb755hu89957OHLkiKoQAIDMzExMnToVUqkUW7ZswYEDB/Duu+/CwsIC9fX1beY1depUrFmzBgDwySefID4+HvHx8Zg6dSrmzZsHExOTVkVhSUkJdu3ahWeffRZyufyuP4uWL9/evXu3GxMVFYVnn30WAwcOxHfffYePPvoIqampCA4OxqVLlwAAK1euxKOPPgoAqrzj4+Ph5OR0T+1u2LBBdVmt5bLfypUr79ivpqYmNDY2oqGhAbm5uVi8eDGqq6vxxBNPdO6DuUv5+fk4c+YMQkNDYW5u3unjfv75Z6xfvx6rV6/Gnj17VEXm1atXVTHXrl2Dvb093n33XRw4cACffPIJTExMEBQUhAsXLrRqc/ny5cjOzsamTZvw448/wtHREZ999hn+9re/YfDgwfjuu+/w2muv4c0331SbawYAzc3NmD59Ot5991088cQT+Pnnn/Huu+8iNjYWY8aMQU1NDYCu/XwTaYRARKLZunWrAEA4depUuzEKhUIYMGCA6rWvr68wbNgwoaGhQS3uoYceEpycnISmpia1tufPn68W99577wkAhPz8fEEQBOHf//63AEBITk7uMFcAwhtvvKF6/e233woAhMOHD7eKnT17tuDo6CjU1dWp9q1du1YwMjISMjIyOjzPG2+8IQAQCgoKhIaGBqG0tFT4+uuvBTMzM8HFxUWoqalR619Le6WlpYKZmZkwZcoUtfays7MFmUwmPPHEE6p9L7zwgtDZv/7upt3O/HneHnv7JpPJhA0bNrSKv/3zP3z4cKvPv+Wz68iJEycEAMIrr7xyxxz/eG6FQiFUVFSo9hUUFAhGRkZCVFRUu8c1NjYK9fX1gpeXl7BkyZJWuY8aNUotvqmpSVAqlUJQUJDa/qysLMHU1FRwdXVV7du5c6cAQNizZ49a7KlTpwQAqs+wsz/fRJrGESwiLSf8YVL35cuXcf78eTz55JMAgMbGRtU2ZcoU5Ofntxop+NOf/qT2evDgwQD+d6lt6NChkEql+Nvf/oYvv/xSbUSiqxYtWoTCwkJ8++23AG6NNmzcuBFTp05tdZmnPUqlEqamprC1tcVf//pXDB8+HAcOHGh39Cs+Ph41NTWtLsu5uLhg3Lhx+PXXX7vUl+5qt8X27dtx6tQpnDp1Cvv378fs2bPxwgsvYP369ffUrqaNHTtWbcK+QqGAo6Oj2iXbxsZGrFmzBn5+fpBKpTAxMYFUKsWlS5fULqe2eOSRR9ReX7hwAQUFBXjsscfU9vfr16/VvLuffvoJvXr1wrRp09R+D4YOHQqlUqka8eqOn2+izmCBRaTFqqurUVxcDGdnZwDA9evXAQBLly6Fqamp2jZ//nwAQFFRkVob9vb2aq9lMhkAqC6heHh44ODBg3B0dMQLL7wADw8PeHh44KOPPupy3sOGDcPIkSNVc51++uknZGZm3tWt/gcPHsSpU6eQnJyMoqIi/Pbbb/Dz82s3vri4GADavNTn7Oysev9udVe7LQYMGIDAwEAEBgZi8uTJ+PTTTxEaGoqXX3653SUe7kW/fv0AABkZGXd13O0/R8Ctn6WWnyMAiIyMxMqVKzFjxgz8+OOPOHnyJE6dOoUhQ4aoxbW4/TNt+SzbuqHj9n3Xr19HWVmZar7aH7eCggLV70F3/HwTdQZv1yDSYj///DOampowZswYAFDdVbd8+XI8/PDDbR7j4+Nz1+cZOXIkRo4ciaamJiQkJOCf//wnFi9eDIVCgb/85S9dyn3hwoX485//jNOnT2P9+vXw9vbGxIkTO338kCFDVP3tjJYCID8/v9V7165du6u2eqLdjgwePBi//PILLl682Om7ETvLyckJgwYNQkxMDG7evHlX87Du5Ouvv8ZTTz2lmp/XoqioCL169WoVf/sE+5bPuuUfEn9UUFCg9rrlpo0DBw60mcsfR9u64+eb6E44gkWkpbKzs7F06VLY2Nhg3rx5AG4VT15eXkhJSVGNety+3WndpY4YGxsjKChINfJ0+vTpdmNvHwm73cyZM9GvXz+89NJLOHjwIObPn39Xi2DereDgYJiZmeHrr79W25+bm4tDhw5h/Pjxnc69q+1qSnJyMoCOJ/Tfi5UrV6K0tBQLFy5sc12xqqoqxMTE3HW7EolE9dm2+Pnnn5GXl9ep4318fKBUKlvdEZudnY3jx4+r7XvooYdQXFyMpqamNn8P2vqHxt38fBPdK45gEWmBM2fOqOaQFBYW4tixY9i6dSuMjY2xd+9etS/aTz/9FGFhYZg0aRLmzJmDPn36oKSkBOnp6Th9+rRq3lNnbdq0CYcOHcLUqVPRr18/1NbWYsuWLQCACRMmtHucv78/AOCzzz6DlZUV5HI53NzcVKMQxsbGeOGFF7Bs2TJYWFh0acmCu9GrVy+sXLkSK1aswFNPPYXHH38cxcXFePPNNyGXy/HGG2+oYgcNGgQAWLt2LcLCwmBsbIzBgwdDKpXeU7td0fJnD9y6RPbdd98hNjYWM2fOhJub2z213Z4///nPWLlyJd566y2cP38ezz77LDw8PHDz5k2cPHkSn376KcLDw9tcqqEjDz30ELZt2wZfX18MHjwYiYmJ+Pvf/46+fft26ngjIyO8+eabmDdvHh599FE888wzKCsrw5tvvgknJycYGf1vTOAvf/kLduzYgSlTpmDRokW4//77YWpqitzcXBw+fBjTp0/HzJkzu/zzTXTPxJ5lT2TIbr+TTCqVCo6OjsLo0aOFNWvWCIWFhW0el5KSIjz22GOCo6OjYGpqKiiVSmHcuHHCpk2bWrV9+x1tt999Fh8fL8ycOVNwdXUVZDKZYG9vL4wePVrYt2+f2nG47S42QRCEDz/8UHBzcxOMjY0FAMLWrVvV3s/MzBQACBEREZ3+TFruhLtx40aHcbffRdjiiy++EAYPHixIpVLBxsZGmD59unD27Fm1mLq6OuG5554TevfuLUgkkjbbuV1n2r3XuwhtbGyEoUOHCuvWrRNqa2vV4m///Lt6F+EfxcXFCY8++qjg5OQkmJqaCtbW1kJwcLDw97//Xe2OQQDCCy+80Op4V1dXYfbs2arXpaWlwrPPPis4OjoK5ubmwoMPPigcO3ZMGD16tDB69OhWuX/77bdt5vXZZ58Jnp6eglQqFby9vYUtW7YI06dPF4YNG6YW19DQILz//vvCkCFDBLlcLlhaWgq+vr7CvHnzhEuXLgmC0PmfbyJNkwiCBp47QUTUhn/+859YuHAhzpw5g4EDB4qdDumosrIyeHt7Y8aMGfjss8/EToeoU3iJkIg0LikpCRkZGVi9ejWmT5/O4oo6raCgAO+88w7Gjh0Le3t7ZGVl4R//+AcqKyuxaNEisdMj6jQWWESkcTNnzkRBQQFGjhyJTZs2iZ0O6RCZTIbMzEzMnz8fJSUlMDc3x4gRI7Bp0yYW6qRTeImQiIiISMO4TAMRERGRhrHAIiIiItIwFlhEREREGsZJ7t2oubkZ165dg5WVVbeuYE1ERESaIwgCKisr4ezsrLbA7d1ggdWNrl27BhcXF7HTICIioi7Iycnp9JMIbscCqxu1PBMuJycH1tbWImdDREREnVFRUQEXF5d7erYrC6xu1HJZ0NramgUWERGRjrmX6T2c5E5ERESkYSywiIiIiDSMBRYRERGRhrHAIiIiItIwFlhEREREGsYCi4iIiEjDWGARERERaRgLLCIiIiINY4FFREREpGEssIiIiIg0jAUWERERkYaxwCIiIiLSMBZYRERERBrGAouIiIhIw0zEToCIxNHQ1IxL16twqbASNyrr0M/OHJ6OlnBzsIBEIhE7PSIincYCi8jA1DY04duEHGw8cgXXymsBAKbGEjQ0CQAAf2drzBvtgTB/JUyMOchNRNQVLLCIDMiFgko89+Up5JXVYIS7PZ4b6Q4XO3NYSI1RerMBV4uqEHP2Ol7cmYTBfWyw/onh6GdvLnbaREQ6RyIIgiB2EvqqoqICNjY2KC8vh7W1tdjpkIGLPXcdi3YlobeVDC+O80KfXmbtxl68XokNRy6juq4J7/95MCb7O/VgpkRE4tLE9zfH/4kMwIEz+fjb9gQMdLbGqmkDOyyuAMBbYYU1MwfBv481nv/6NPYm5fZQpkRE+oGXCIn0XHJOGRbvSkaQux1eHOcFo05OYDeXmuDFcV4wM72Kl/6VAgkkmDGsTzdnS0SkH1hgEemxvLIaPPvlKfSzN8fzoz07XVy1MJJI8NxIdwgAIv+VDDsLKUZ59+6eZImI9AgvERLpqeZm4b8jT8BLE30gNenar7uRRIK5D7pjcN9eWLDzNLKLb2o2USIiPcQCi0hPffN7Nk5cLcbfRnnA2sz0ntoyMpLghbGeMDc1wdztCbhZ36ihLImI9BMLLCI9lFNyE2ui0zHe1xGD+thopE1LmQkiJ3ojs7gab/+crpE2iYj0FQssIj30xr6zMJca44mgfhpt18XOHE8G9cM3J7Nx9OINjbZNRKRPWGAR6ZkTV4tx6HwhnrjfFeZSzd/HMmGAAoP62ODlf6eivKZB4+0TEekDFlhEekQQBETtT4dHbwsEudt1yzkkEgn+NsodFbUNWBPNS4VERG1hgUWkRw6cKUBKTjn+cl+/u16S4W44WMoQfp8Ldp/KQXJOWbedh4hIV7HAItITTc0C3vvlAob0tYG/hia2d2SCrwL97c2x8vszaG7mE7eIiP6IBRaRnog9V4CMomo8GtC3R85nZCTBnBA3pOWV418JOT1yTiIiXcECi0gPCIKATXFXMcDJCp6OVj12Xh+lFUZ5OWDtgfOorOWEdyKiFiywiPRAQlYpknPK8NAg5x4/d/h9/VBd14TPj17t8XMTEWkrFlhEeuCzuKvoa2uGof169fi57SykmDRQgc+PZeBGZV2Pn5+ISBuxwCLScRlF1TiYfh1TBjl1652DHfnT0D4wMgL+eeiSKOcnItI2LLCIdNyu37NhKTPBAx4OouVgKTPBn4b0wY6T2XwYNBERtKDA2rBhA9zc3CCXyxEQEIBjx451GB8XF4eAgADI5XK4u7tj06ZNrWL27NkDPz8/yGQy+Pn5Ye/evWrvb9y4EYMHD4a1tTWsra0RHByM/fv3q8XMmTMHEolEbRsxYsS9d5hIg+obm/FtYi4e9HKA1ETcX+dJAxWwkpngk8OXRc2DiEgbiPo38u7du7F48WK8+uqrSEpKwsiRIxEWFobs7Ow24zMyMjBlyhSMHDkSSUlJWLFiBRYuXIg9e/aoYuLj4xEeHo5Zs2YhJSUFs2bNwmOPPYaTJ0+qYvr27Yt3330XCQkJSEhIwLhx4zB9+nScPXtW7XyTJ09Gfn6+aouOju6eD4Koi2LPXUdJdT3G+TqKnQpkJsaYOtgJ/z6di5wSjmIRkWGTCIIg2gqBQUFBGD58ODZu3KjaN2DAAMyYMQNRUVGt4pctW4Z9+/YhPf1/j+eIiIhASkoK4uPjAQDh4eGoqKhQG5GaPHkybG1tsXPnznZzsbOzw9///nc8++yzAG6NYJWVleH777/vcv8qKipgY2OD8vJyWFtbd7kdovY8+cUJFFXVY9W0gWKnAgCobWjC4t3JmDJIiaiHB4udDhFRl2ji+1u0Eaz6+nokJiYiNDRUbX9oaCiOHz/e5jHx8fGt4idNmoSEhAQ0NDR0GNNem01NTdi1axeqq6sRHBys9t6RI0fg6OgIb29vzJ07F4WFhXfVR6LulF18E/+5XIxxPuKPXrWQmxpj6iAnfJuQi9xSjmIRkeESrcAqKipCU1MTFAqF2n6FQoGCgoI2jykoKGgzvrGxEUVFRR3G3N5mWloaLC0tIZPJEBERgb1798LPz0/1flhYGHbs2IFDhw7hgw8+wKlTpzBu3DjU1bV/G3pdXR0qKirUNqLu8m1iDiykxt32UOeumuingLnUGJ9xXSwiMmCiT3KX3HZbuSAIrfbdKf72/Z1p08fHB8nJyThx4gSef/55zJ49G+fOnVO9Hx4ejqlTp8Lf3x/Tpk3D/v37cfHiRfz888/t5hYVFQUbGxvV5uLi0m4s0b0QBAHfJ+Xhfjc7yEyMxU5HjdzUGKEDlfjXqRwUV3FdLCIyTKIVWA4ODjA2Nm41slRYWNhqBKqFUqlsM97ExAT29vYdxtzeplQqhaenJwIDAxEVFYUhQ4bgo48+ajdfJycnuLq64tKl9tf5Wb58OcrLy1VbTg6fz0bdIzmnDDmlNQgRcWmGjoT6KSAA+DI+S+xUiIhEIVqBJZVKERAQgNjYWLX9sbGxCAkJafOY4ODgVvExMTEIDAyEqalphzHttdlCEIQOL/8VFxcjJycHTk5O7cbIZDLV0g8tG1F3+CH5GmzNTeHnpJ0/Y1ZyU4z1ccSXxzNxs75R7HSIiHqcqJcIIyMj8cUXX2DLli1IT0/HkiVLkJ2djYiICAC3RoSeeuopVXxERASysrIQGRmJ9PR0bNmyBZs3b8bSpUtVMYsWLUJMTAzWrl2L8+fPY+3atTh48CAWL16silmxYgWOHTuGzMxMpKWl4dVXX8WRI0fw5JNPAgCqqqqwdOlSxMfHIzMzE0eOHMG0adPg4OCAmTNn9syHQ9SOxqZm/Jh6DcHu9jAyEmfl9s6YMsgJlbUN2PU7R3KJyPCYiHny8PBwFBcXY/Xq1cjPz4e/vz+io6Ph6uoKAMjPz1dbE8vNzQ3R0dFYsmQJPvnkEzg7O+Pjjz/GI488oooJCQnBrl278Nprr2HlypXw8PDA7t27ERQUpIq5fv06Zs2ahfz8fNjY2GDw4ME4cOAAJk6cCAAwNjZGWloatm/fjrKyMjg5OWHs2LHYvXs3rKyseujTIWpb/NViFFfVI8RTOy8PtuhtJUOIhwM2/5aB2SH9YazFxSARkaaJug6WvuM6WNQdln6bgv9cLsIHfx7S4Q0h2uDqjSq8+v0ZbHxyOMIGtX95nYhIm+j0OlhEdPcampoRc7YAQW72Wl9cAYB7b0sMUFph828ZYqdCRNSjWGAR6ZCTV0tQUduI+920a+2rjoT5OyEhqxSpuWVip0JE1GNYYBHpkF/OFqC3lQz97c3FTqXTAlxtobCWYfMxjmIRkeFggUWkI5qbBfxytgCBrrY6cXmwhZGRBKF+SvyUlo/rFbVip0NE1CNYYBHpiJTcMhRW1uG+/rpzebDFGJ/eMDWW4JuT2XcOJiLSAyywiHTEgbMFsDEzhY9C95YKMZea4EHP3thxMgv1jc1ip0NE1O1YYBHpAEEQcOBMAYb366XVi4t2JNRPgaKqeuw/ky92KkRE3Y4FFpEOuFpUjazimwh01b3Lgy1c7Mzh72yNL49nip0KEVG3Y4FFpAMOny+EqbEEA/vo9oK1oX5KnM4uw5m8crFTISLqViywiHTA4QuFGOhsDZmJsdip3JPhrrawt5Ti6xNZYqdCRNStWGARabmqukacvFqCIX1txU7lnhkbSTDOxxHfJ+ehorZB7HSIiLoNCywiLfefy0VobBYwrF8vsVPRiLG+jmhoEvBdYq7YqRARdRsWWERa7siFQvTpZQaFtVzsVDTC1lyKQFdbfHUiC3zWPBHpKxZYRFpMEAQcOl+IIS69xE5FoyYMUODKjWqczCgROxUiom7BAotIi6XnV+J6RR2G6VmBNdDZGs69zDjZnYj0FgssIi127NINyEyM4KPUvdXbOyKRSDDe1xEHzhSgqKpO7HSIiDSOBRaRFjt2qQgDnKxhaqx/v6qjvHpDIgH+zcnuRKSH9O9vbSI9UdvQhFOZJfB3thE7lW5hKTdBkJs9vjmZjeZmTnYnIv3CAotISyVklqKusRmD+upngQUA4wc4IrvkJo5fKRY7FSIijWKBRaSljl2+AVtzU7jYmomdSrfxUVihr60ZdpzkZHci0i8ssIi01LGLRRjobAOJRCJ2Kt2mZbJ77LnruFHJye5EpD9YYBFpoeKqOpzLr8CgPvp7ebDFg563JrvvOc3J7kSkP1hgEWmh//x3TpK/ARRYLZPdd57M5sruRKQ3WGARaaHjl4vQ19YMdhZSsVPpEeN8HZFVchPxVznZnYj0AwssIi10/Eox/JysxU6jx/gqreDcywy7fs8WOxUiIo1ggUWkZa6V1SC75Cb8nA2nwJJIJBjr0xv7zxSgpLpe7HSIiO4ZCywiLXPiv5fJBhjQCBZwa2V3QQC+42R3ItIDLLCItMyJq8XoZ2cOa7mp2Kn0KGszUwT2t8XO3znZnYh0HwssIi1z/EqxwY1etRjnq8CVG9VIzCoVOxUionvCAotIi+SW3kRuaQ0GGmiBNdDZGgprGXadyhE7FSKie8ICi0iLnLhaAgkAXycrsVMRhZFEgjHejvgp5RoqahvEToeIqMtYYBFpkfgrxXC1N4eVgc2/+qPRPr1R39SMH5KviZ0KEVGXscAi0iInrhbD10AvD7awNZdieD9b7DzJNbGISHexwCLSEvnlNcgrq4Gv0jAvD/7RWF9HnMuvQFpuudipEBF1CQssIi3xe0YJAMBHwQJrSN9esLeQYtcpjmIRkW5igUWkJU5llqBPLzP0MjeM5w92xNhIgtHevfF9Uh5u1jeKnQ4R0V0TvcDasGED3NzcIJfLERAQgGPHjnUYHxcXh4CAAMjlcri7u2PTpk2tYvbs2QM/Pz/IZDL4+flh7969au9v3LgRgwcPhrW1NaytrREcHIz9+/erxQiCgFWrVsHZ2RlmZmYYM2YMzp49e+8dJmrH7xkl8ObolcoYH0fcrG/CT6n5YqdCRHTXRC2wdu/ejcWLF+PVV19FUlISRo4cibCwMGRnt31ZICMjA1OmTMHIkSORlJSEFStWYOHChdizZ48qJj4+HuHh4Zg1axZSUlIwa9YsPPbYYzh58qQqpm/fvnj33XeRkJCAhIQEjBs3DtOnT1croN577z2sW7cO69evx6lTp6BUKjFx4kRUVlZ23wdCBqvsZj0uXq/i/Ks/6G0lw+C+NtjJB0ATkQ6SCCI+kyIoKAjDhw/Hxo0bVfsGDBiAGTNmICoqqlX8smXLsG/fPqSnp6v2RUREICUlBfHx8QCA8PBwVFRUqI1ITZ48Gba2tti5c2e7udjZ2eHvf/87nn32WQiCAGdnZyxevBjLli0DANTV1UGhUGDt2rWYN29ep/pXUVEBGxsblJeXw9rasO8Mo47FnruOudsT8FH4UDhay8VOR2uczCjGhwcv4ZfFo+DD4pOIeogmvr9FG8Gqr69HYmIiQkND1faHhobi+PHjbR4THx/fKn7SpElISEhAQ0NDhzHttdnU1IRdu3ahuroawcHBAG6NlBUUFKi1I5PJMHr06HbbAW4VYRUVFWobUWecyiyBvYUUva1kYqeiVQL62cLGzJSjWESkc0QrsIqKitDU1ASFQqG2X6FQoKCgoM1jCgoK2oxvbGxEUVFRhzG3t5mWlgZLS0vIZDJERERg79698PPzU7XRclxncwOAqKgo2NjYqDYXF5d2Y4n+6GRGMbyVVpBIJGKnolVMjI0wyssB353ORW1Dk9jpEBF1muiT3G//QhEEocMvmbbib9/fmTZ9fHyQnJyMEydO4Pnnn8fs2bNx7ty5e8pt+fLlKC8vV205OXyeGt1ZTX0TzuZVcP5VO8b6OqKithEHzrT/jxsiIm0jWoHl4OAAY2PjViNChYWFrUaOWiiVyjbjTUxMYG9v32HM7W1KpVJ4enoiMDAQUVFRGDJkCD766CNVGwDuKjfg1mXEljsTWzaiO0nJLUNjs8D1r9rhZGOGgc7W+IYruxORDhGtwJJKpQgICEBsbKza/tjYWISEhLR5THBwcKv4mJgYBAYGwtTUtMOY9tpsIQgC6urqAABubm5QKpVq7dTX1yMuLu6O7RDdrcSsUphLjeFiay52KlprnK8jfs8swZUbVWKnQkTUKSZinjwyMhKzZs1CYGAggoOD8dlnnyE7OxsREREAbl1yy8vLw/bt2wHcumNw/fr1iIyMxNy5cxEfH4/Nmzer3R24aNEijBo1CmvXrsX06dPxww8/4ODBg/jtt99UMStWrEBYWBhcXFxQWVmJXbt24ciRIzhw4ACAW5cGFy9ejDVr1sDLywteXl5Ys2YNzM3N8cQTT/TgJ0SGIDGzBJ6OljAy4vyr9tzX3w5WchPs+j0br071EzsdIqI7ErXACg8PR3FxMVavXo38/Hz4+/sjOjoarq6uAID8/Hy1NbHc3NwQHR2NJUuW4JNPPoGzszM+/vhjPPLII6qYkJAQ7Nq1C6+99hpWrlwJDw8P7N69G0FBQaqY69evY9asWcjPz4eNjQ0GDx6MAwcOYOLEiaqYl19+GTU1NZg/fz5KS0sRFBSEmJgYWFnxMg5pTnOzgMTsMkwY0P6lZwJMjY0wyqs3vk3MxdJJPpCZGIudEhFRh0RdB0vfcR0supPLhZWYsO4oVkwZgEF9bMROR6tdK6vBS9+m4KO/DMX0oX3EToeI9JhOr4NFRLfmXxlJAI/eFmKnovWce5nBz4mT3YlIN7DAIhJRYlYp+tmZw1wq6tV6nTHO1xEnMzjZnYi0HwssIhGdyiyFF5dn6LSWye47OYpFRFqOBRaRSEqq65FRVA1vFlidJjX532R3ruxORNqMBRaRSJKySwEA3o6WImeiW8b7OqK8pgH7z+SLnQoRUbtYYBGJ5HR2KWzNTfmA57vk1MsM/s7W+PoELxMSkfZigUUkktNZZfB0tOQDnrtg/AAFErNKcaGgUuxUiIjaxAKLSARNzQJScsvg2ZuXB7si0NUWvcxMseNkltipEBG1iQUWkQguFVbiZn0TPDnBvUtMjI0wxscRexJzUV3XKHY6REStsMAiEkFSdhmMJIC7AxcY7arxAxxR09CEH5KviZ0KEVErLLCIRJCUXQpXe3PITflMva5ysJRhmIstvjqRCT7xi4i0DQssIhGcziqDB+df3bMJfgqk51ciKadM7FSIiNSwwCLqYeU1Dbh8owqejpx/da8G97WBwlqGr+I52Z2ItAsLLKIelppbBgDw4gKj98xIIsF4XwV+Sr2G4qo6sdMhIlJhgUXUw05nlcFSZgKljVzsVPTCGJ/ekECCXadyxE6FiEiFBRZRD0vKKYVHbwsYcYFRjbCSmyLYwx47TmShsalZ7HSIiACwwCLqUYIgICWnDB68PKhRkwYqca28Fr+eLxQ7FSIiACywiHpUTkkNSm828A5CDXNzsICXwhJfHs8UOxUiIgAssIh6VPJ/J7jzETmaF+qnxPErxbh0nc8nJCLxscAi6kEpOWVQWMtgbWYqdip6Z4SbHWzNTfFlfKbYqRARscAi6klJ2aVw5+hVtzAxNsI4XwX+nZiL8poGsdMhIgPHAouohzQ0NePstQpeHuxGEwY4orFJwLcJXLKBiMTFAouoh1woqERdYzMnuHejXuZSjHC3x5fHM9HUzOcTEpF4WGAR9ZDknDIYSW7d8UbdZ9JAJXJKa/Br+nWxUyEiA8YCi6iHpOSUwdXeAlIT/tp1J09HS3grLLH5twyxUyEiA8a/6Yl6SHJOGdw5etUjwvydcDKjBGfyysVOhYgMFAssoh5QVdeIy4VVXMG9h9zX3w69rWTYwlEsIhIJCyyiHnAmrxwCwAnuPcTYSIJQPwX2pVxDYUWt2OkQkQFigUXUA1JzyyAzMUKfXmZip2Iwxvo4wtTYCNvjs8ROhYgMEAssoh6QklsONwcLGBtJxE7FYFjITDDGpze+OpGFm/WNYqdDRAaGBRZRD0jOLuMK7iII81eisrYB/07MFTsVIjIwLLCIullxVR3yymrg0Zt3EPa03lZyBLnZ4/OjV7nwKBH1KBZYRN0s9b9LBXCCuzimDnZCTmkNYs4WiJ0KERkQFlhE3Sw1pxxWchM4WsnETsUgefS2hJ+TNTYdvQJB4CgWEfUMFlhE3SwltwxuDhaQSDjBXSwPDXZCSk45TmaUiJ0KERkIFlhE3UgQBKTklsHdgZcHxTTUpRf62Zlj45ErYqdCRAZC9AJrw4YNcHNzg1wuR0BAAI4dO9ZhfFxcHAICAiCXy+Hu7o5Nmza1itmzZw/8/Pwgk8ng5+eHvXv3qr0fFRWF++67D1ZWVnB0dMSMGTNw4cIFtZg5c+ZAIpGobSNGjLj3DpNByS+vRXFVPSe4i0wikWDaEGfEXbyBc9cqxE6HiAyAqAXW7t27sXjxYrz66qtISkrCyJEjERYWhuzs7DbjMzIyMGXKFIwcORJJSUlYsWIFFi5ciD179qhi4uPjER4ejlmzZiElJQWzZs3CY489hpMnT6pi4uLi8MILL+DEiROIjY1FY2MjQkNDUV1drXa+yZMnIz8/X7VFR0d3zwdBeis199YEdy7RIL5gd3v0tpLh0ziOYhFR95MIIs76DAoKwvDhw7Fx40bVvgEDBmDGjBmIiopqFb9s2TLs27cP6enpqn0RERFISUlBfHw8ACA8PBwVFRXYv3+/Kmby5MmwtbXFzp0728zjxo0bcHR0RFxcHEaNGgXg1ghWWVkZvv/++y73r6KiAjY2NigvL4e1tXWX2yHd9fdfzmPnyWx88mSA2KkQgF/OFuCr+CwcXjoG/ezNxU6HiLSUJr6/RRvBqq+vR2JiIkJDQ9X2h4aG4vjx420eEx8f3yp+0qRJSEhIQENDQ4cx7bUJAOXlt0YZ7Ozs1PYfOXIEjo6O8Pb2xty5c1FYWNhhn+rq6lBRUaG2kWFLySmHG0evtMZYH0dYyk2wkaNYRNTNRCuwioqK0NTUBIVCobZfoVCgoKDt9WoKCgrajG9sbERRUVGHMe21KQgCIiMj8eCDD8Lf31+1PywsDDt27MChQ4fwwQcf4NSpUxg3bhzq6ura7VNUVBRsbGxUm4uLS/sfAOk9QRCQmlsGdwfOv9IWUhMjTPFX4t+JOSgo50Ogiaj7iD7J/fZb1wVB6PB29rbib99/N20uWLAAqamprS4fhoeHY+rUqfD398e0adOwf/9+XLx4ET///HO7uS1fvhzl5eWqLScnp91Y0n85JTWoqG2EOye4a5UJfgpITYzw2dGrYqdCRHpMtALLwcEBxsbGrUaWCgsLW41AtVAqlW3Gm5iYwN7evsOYttp88cUXsW/fPhw+fBh9+/btMF8nJye4urri0qVL7cbIZDJYW1urbWS4UnLLAABuXKJBq5hLTTBpoBLfnMxCcVX7I9JERPdCtAJLKpUiICAAsbGxavtjY2MREhLS5jHBwcGt4mNiYhAYGAhTU9MOY/7YpiAIWLBgAb777jscOnQIbm5ud8y3uLgYOTk5cHJy6lT/iNLyytHbUgYbM1OxU6HbTB6ohEQiwRe/ZYidChHpKVEvEUZGRuKLL77Ali1bkJ6ejiVLliA7OxsREREAbl1ye+qpp1TxERERyMrKQmRkJNLT07FlyxZs3rwZS5cuVcUsWrQIMTExWLt2Lc6fP4+1a9fi4MGDWLx4sSrmhRdewNdff41vvvkGVlZWKCgoQEFBAWpqagAAVVVVWLp0KeLj45GZmYkjR45g2rRpcHBwwMyZM3vmwyGdl5JTBjdeHtRKVnJTTPRT4MvjmSitrhc7HSLSQ6IWWOHh4fjwww+xevVqDB06FEePHkV0dDRcXV0BAPn5+WprYrm5uSE6OhpHjhzB0KFD8dZbb+Hjjz/GI488oooJCQnBrl27sHXrVgwePBjbtm3D7t27ERQUpIrZuHEjysvLMWbMGDg5Oam23bt3AwCMjY2RlpaG6dOnw9vbG7Nnz4a3tzfi4+NhZWXVQ58O6bLmZgFn8so5wV2LTR3shGZBwBe/cS4WEWmeqOtg6Tuug2W4LhdWYcK6OKyYMgCD+tiInQ6145uTWTh0vhD/eWUceplLxU6HiLSETq+DRaTP0vLKAABuHMHSag8NdkZjs4AvjnEuFhFpFgssom6QmlsOpbUcljITsVOhDlibmSLUT4Et/8lACediEZEGscAi6gZpueUcvdIRDw1xhiCAzygkIo1igUWkYU3NAs5cY4GlK6zlppjsr8SXxzNRWMnV3YlIM1hgEWnYlRtVqG1o5gruOmTKICcYG0mw4TBHsYhIM1hgEWlYWu6th4dzBEt3WMpMMGWQE3aczEJu6U2x0yEiPcACi0jD0vLK4WQjh7mUE9x1yZRBTjCXmuCjg+0/DouIqLNYYBFpWGpuGUevdJDc1BgzhvbBntO5uFxYKXY6RKTjWGARaVBjUzPOXauAOx/wrJPGD3CEvaUM7/9yQexUiEjHscAi0qDLN6pQ29jMZxDqKFNjIzw6vC8OnL2O09mlYqdDRDqMBRaRBqXllkMCoL+9udipUBc96OkAV3tzREWng08SI6KuYoFFpEFpeeVw7mXGCe46zMhIgsfv64dTmaU4mF4odjpEpKNYYBFpUEpuGUev9MDgvjYY1McGUfvT0djULHY6RKSDWGARaUhjUzPO51fCvTcnuOs6iUSCx+/vh6s3qrHrVI7Y6RCRDmKBRaQhlwqrUNfYDHcu0aAX3BwsMMrLAetiL6KitkHsdIhIx7DAItIQ1QR3Flh6I/y+fqiua8Qnhy+LnQoR6RgWWEQa0jLBXW5qLHYqpCF2FlI8NNgZW37LQHYxH6FDRJ3HAotIQ1LzuIK7PnposBOs5aZYsz9d7FSISIewwCLSgIamZqRfq2SBpYfkpsb4y/39cOBMAY5fLhI7HSLSEV0qsDIyMjSdB5FOu3S9CvVNnOCurx7wsIePwgqrfjzLZRuIqFO6VGB5enpi7Nix+Prrr1FbW6vpnIh0zpk8TnDXZxKJBLND+uPS9SrsOJktdjpEpAO6VGClpKRg2LBheOmll6BUKjFv3jz8/vvvms6NSGek5pWhjy0nuOszNwcLjPV1xPsxF1BUVSd2OkSk5bpUYPn7+2PdunXIy8vD1q1bUVBQgAcffBADBw7EunXrcOPGDU3nSaTVUnPL0d+eo1f6Lvw+FwgCsHb/ebFTISItd0+T3E1MTDBz5kz861//wtq1a3HlyhUsXboUffv2xVNPPYX8/HxN5UmktRr+u4I7J7jrP2u5KcLvc8G3iblIzCoROx0i0mL3VGAlJCRg/vz5cHJywrp167B06VJcuXIFhw4dQl5eHqZPn66pPIm01sXrlbcmuPdmgWUIxvk4wqO3BV7de4YT3omoXV0qsNatW4dBgwYhJCQE165dw/bt25GVlYW3334bbm5ueOCBB/Dpp5/i9OnTms6XSOucySuHkQS8RGggjIwkePoBN1woqMS245lip0NEWsqkKwdt3LgRzzzzDJ5++mkolco2Y/r164fNmzffU3JEuiA1txx9uIK7QfHobYmJfgp8EHMRUwY5wbmXmdgpEZGW6dIIVmxsLJYtW9aquBIEAdnZt25hlkqlmD179r1nSKTl0jjB3SCF3+cCuakRVu07K3YqRKSFulRgeXh4oKio9YrGJSUlcHNzu+ekiHRFfWMzzhdUcv6VATKXmmDWiP6IOXcdMWcLxE6HiLRMlwosQRDa3F9VVQW5XH5PCRHpkpYJ7m4OlmKnQiIY4W6H4f164bXvz6CitkHsdIhIi9zVHKzIyEgAt1Y1fv3112Fubq56r6mpCSdPnsTQoUM1miCRNmuZ4O5qb37nYNI7EsmtCe8v/zsV7x04j7dnDBI7JSLSEndVYCUlJQG4NYKVlpYGqVSqek8qlWLIkCFYunSpZjMk0mKpeZzgbugcLGV4LNAFX8ZnYvrQPrivv53YKRGRFrirAuvw4cMAgKeffhofffQRrK2tuyUpIl2RllvO5w8SQv0UiL9ahJf/nYr9i0ay4Cairs3B2rp1K4srMni3JrhXwJ3zrwyekZEEfxvpgdzSm/jHwYtip0NEWqDTI1gPP/wwtm3bBmtrazz88MMdxn733Xf3nBiRtrt4vRINTQLvICQAQB9bMzwyvC8+P3oVYf5OGOrSS+yUiEhEnS6wbGxsIJFIVP9PZOjSOMGdbvPQYGf8nlmCpd+m4KcXH+SlQiID1ulLhFu3boWVlZXq/zva7saGDRvg5uYGuVyOgIAAHDt2rMP4uLg4BAQEQC6Xw93dHZs2bWoVs2fPHvj5+UEmk8HPzw979+5Vez8qKgr33XcfrKys4OjoiBkzZuDChQtqMYIgYNWqVXB2doaZmRnGjBmDs2e5oCD9T2puOframkNmwi9RusXYSIKIUR7IKq7mpUIiA9elOVg1NTW4efOm6nVWVhY+/PBDxMTE3FU7u3fvxuLFi/Hqq68iKSkJI0eORFhYmGo1+NtlZGRgypQpGDlyJJKSkrBixQosXLgQe/bsUcXEx8cjPDwcs2bNQkpKCmbNmoXHHnsMJ0+eVMXExcXhhRdewIkTJxAbG4vGxkaEhoaiurpaFfPee+9h3bp1WL9+PU6dOgWlUomJEyeisrLyrvpI+is1twxunOBOt3GxM1ddKkzMKhE7HSISiURob9XQDoSGhuLhhx9GREQEysrK4OPjA6lUiqKiIqxbtw7PP/98p9oJCgrC8OHDsXHjRtW+AQMGYMaMGYiKimoVv2zZMuzbtw/p6emqfREREUhJSUF8fDwAIDw8HBUVFdi/f78qZvLkybC1tcXOnTvbzOPGjRtwdHREXFwcRo0aBUEQ4OzsjMWLF2PZsmUAgLq6OigUCqxduxbz5s3rVP8qKipgY2OD8vJy3hSgZ+oamzDw9V8wa4QrQge2/TxOMlxNzQLe/Oks6hubsX/RSJhLu/TYVyISiSa+v7s0gnX69GmMHDkSAPDvf/8bSqUSWVlZ2L59Oz7++ONOtVFfX4/ExESEhoaq7Q8NDcXx48fbPCY+Pr5V/KRJk5CQkICGhoYOY9prEwDKy8sBAHZ2t9avycjIQEFBgVo7MpkMo0eP7rCduro6VFRUqG2kny4UVKKxmRPcqW3GRhI8P8oDBeW1iIo+L3Y6RCSCLhVYN2/eVM3HiomJwcMPPwwjIyOMGDECWVlZnWqjqKgITU1NUCgUavsVCgUKCtp+rldBQUGb8Y2NjapnI7YX016bgiAgMjISDz74IPz9/VVttBzX2XaAW3O7bGxsVJuLi0u7saTbUnPLYWwkQT87FljUNqdeZngiqB++OpGFwxcKxU6HiHpYlwosT09PfP/998jJycEvv/yiGukpLCy866G0ljsTWwiC0GrfneJv3383bS5YsACpqaltXj6829yWL1+O8vJy1ZaTk9NuLOm2tNxyuNiaQWrSpV8hMhATBygwpK8N/u/bVJRU14udDhH1oC59O7z++utYunQp+vfvj6CgIAQHBwO4NZo1bNiwTrXh4OAAY2PjViNChYWFrUaOWiiVyjbjTUxMYG9v32FMW22++OKL2LdvHw4fPoy+ffuqnQfAXeUG3LqMaG1trbaRfkrN4wR3ujOJRIK/jfJAXUMTln+Xii5MeSUiHdWlAuvRRx9FdnY2EhIScODAAdX+8ePH4x//+Een2pBKpQgICEBsbKza/tjYWISEhLR5THBwcKv4mJgYBAYGwtTUtMOYP7YpCAIWLFiA7777DocOHYKbm5tavJubG5RKpVo79fX1iIuLazc3Mhy1DU24dL0KblzBnTrBzkKKuSPd8cvZ69h9iqPaRIaiy7e2KJVK1UhPi/vvv/+u2oiMjMSsWbMQGBiI4OBgfPbZZ8jOzkZERASAW5fc8vLysH37dgC37hhcv349IiMjMXfuXMTHx2Pz5s1ql/cWLVqEUaNGYe3atZg+fTp++OEHHDx4EL/99psq5oUXXsA333yDH374AVZWVqqRKhsbG5iZmUEikWDx4sVYs2YNvLy84OXlhTVr1sDc3BxPPPFElz4v0h/p+RWc4E535T43O4zzdcSqH8/iPjc7ePRmcU6k77pUYFVXV+Pdd9/Fr7/+isLCQjQ3N6u9f/Xq1U61Ex4ejuLiYqxevRr5+fnw9/dHdHQ0XF1dAQD5+flqa2K5ubkhOjoaS5YswSeffAJnZ2d8/PHHeOSRR1QxISEh2LVrF1577TWsXLkSHh4e2L17N4KCglQxLctCjBkzRi2frVu3Ys6cOQCAl19+GTU1NZg/fz5KS0sRFBSEmJgY1eR+MlxpebcmuLvYcgV36rxZI1xxPr8CL36ThL0vhHCBWiI916V1sB5//HHExcVh1qxZcHJyajXxe9GiRRpLUJdxHSz9tPTbFJzOKsU7MweJnQrpmKs3qvDGvrOYHdIfKx/yEzsdImqHJr6/uzSCtX//fvz888944IEHunRSIl2WksMJ7tQ17r0t8fj9/bD5tww86OmAsb6OYqdERN2kS5PcbW1tVYtyEhmSm/WNuHKjCu6cQ0NdFOavxDCXXoj8VzKuV9SKnQ4RdZMuFVhvvfUWXn/9dbXnERIZgrPXKtAsgBPcqcskEgkiRntAIpFg4c4kNDY13/kgItI5XbpE+MEHH+DKlStQKBTo37+/aomEFqdPn9ZIckTaJjW3HFJjI/S1NRM7FdJh1mamWDDWE2//fA4f/3oJkaE+YqdERBrWpQJrxowZGk6DSDek5ZbB1cEcJkZcwZ3uzQAnazwyvC/+eegy7nezx4NeDmKnREQa1KUC64033tB0HkQ6ITmnDN4KLtVBmjFjaB9cKKjEwl1J2L9oJBTWcrFTIiIN6fI/w8vKyvDFF19g+fLlKCkpAXDr0mBeXp7GkiPSJhW1DcgsvslFIkljjIwkmD/WEwCw4JvTnI9FpEe6VGClpqbC29sba9euxfvvv4+ysjIAwN69e7F8+XJN5kekNc7klQPgBHfSLBszU7w41hOJWaX4e8wFsdMhIg3pUoEVGRmJOXPm4NKlS5DL/zekHRYWhqNHj2osOSJtkppbDjNTYzjbcII7aZavkzUev78fPo27il/OFtz5ACLSel0qsE6dOoV58+a12t+nTx/Vc/2I9E1abjn6O5jDyEhy52CiuzR1kBPu72+Hl/6VgsyiarHTIaJ71KUCSy6Xo6KiotX+CxcuoHfv3vecFJE2Ss4pg5sD519R95BIJJg32h2WchNEfJ2ImvomsVMionvQpQJr+vTpWL16NRoaGgDc+oshOzsbr7zyitqDl4n0RXFVHfLKauDJ+VfUjcylJlgywRsZRdVY/l0quvCoWCLSEl0qsN5//33cuHEDjo6OqKmpwejRo+Hp6QkrKyu88847ms6RSHSpuS0T3DmCRd2rn5055o50x/fJ1/D1iSyx0yGiLurSOljW1tb47bffcPjwYSQmJqK5uRnDhw/HhAkTNJ0fkVZIyS2DtdwEjlYysVMhA/CApwMuF1Zh1Y/n4OdsjQBXPvuVSNfcdYHV3NyMbdu24bvvvkNmZiYkEgnc3NygVCohCAIkEk4AJv2TmlMGNwcL/nxTj3lyRD9kFVdj3lenEb3wQThyEVIinXJXlwgFQcCf/vQnPPfcc8jLy8OgQYMwcOBAZGVlYc6cOZg5c2Z35UkkGkEQkJxbzsuD1KNMjIywcLwXmgUBEV8nor6Ri5AS6ZK7KrC2bduGo0eP4tdff0VSUhJ27tyJXbt2ISUlBQcPHsShQ4ewffv27sqVSBTXymtRUl3PBUapx/Uyl2LxeC+k5pZj9U9nxU6HiO7CXRVYO3fuxIoVKzB27NhW740bNw6vvPIKduzYobHkiLRBSk4ZAPAROSQKL4UV5jzQH1+fyMbuU9lip0NEnXRXBVZqaiomT57c7vthYWFISUm556SItElKbhnsLaWwNZeKnQoZqPG+Coz3dcRr35/B6exSsdMhok64qwKrpKQECoWi3fcVCgVKS/nLT/olJacc7g68PEjimhPSH+4Oloj4KhGFFbVip0NEd3BXBVZTUxNMTNq/8dDY2BiNjY33nBSRtmhuFnAmjxPcSXwmxkZYNMELjc0C/vZVIuoaudI7kTa7q2UaBEHAnDlzIJO1vRZQXV2dRpIi0hZXi6pQVdcITxZYpAVszaVYMsEbq386i5Xfn8HaRwZz6RAiLXVXBdbs2bPvGPPUU091ORkibZOcUw4JwDsISWt4Olri2QfdsSnuCvz72OCp4P5ip0REbbirAmvr1q3dlQeRVkrOKUUfWzOYS7v00AOibjHauzeyiqvx5r5z8HK0QrCHvdgpEdFtuvQsQiJDkZxdxgnupJWeDHKFn7M1nt+RiJySm2KnQ0S3YYFF1I7ahiacL6iEhyPnX5H2MTaS4MVxnpCZGOG5LxNQXccbjIi0CQssonacvVaBxmaBE9xJa1nJTfHSRB9kl9zES9+moLlZEDslIvovFlhE7UjJKYOpsQT97MzFToWoXS525pg/xgMHzhTgn4cui50OEf0XCyyidiTnlKG/gwVMjPlrQtotsL8d/hzQF/84eBEHzhSInQ4RgQUWUbuSc8r4/EHSGTOH9cEIdzss2Z2M9PwKsdMhMngssIjaUFpdj+ySm5x/RTpDIpFg3igPKKxleO7LBJRU14udEpFBY4FF1Ibk3DIA4AgW6RS5qTEiJ/qgqq4Rz3+diIamZrFTIjJYLLCI2pCUXQYruQkU1m0/FopIW/W2kmHxeC8kZpXizR/Pip0OkcFigUXUhuTsUng6WvI5b6STfJ2sMSekP74+kY0dJ7PETofIILHAIrpNc7OApJwyzr8inTZ+gAKhfgq8/sNZnLxaLHY6RAZH9AJrw4YNcHNzg1wuR0BAAI4dO9ZhfFxcHAICAiCXy+Hu7o5Nmza1itmzZw/8/Pwgk8ng5+eHvXv3qr1/9OhRTJs2Dc7OzpBIJPj+++9btTFnzhxIJBK1bcSIEffUV9INV4uqUVnbCE+u4E46blawK3yVVoj4OhG5pXycDlFPErXA2r17NxYvXoxXX30VSUlJGDlyJMLCwpCdnd1mfEZGBqZMmYKRI0ciKSkJK1aswMKFC7Fnzx5VTHx8PMLDwzFr1iykpKRg1qxZeOyxx3Dy5ElVTHV1NYYMGYL169d3mN/kyZORn5+v2qKjozXTcdJqSdmlkAAssEjnmRgZYeF4L0j/+zidm/V8nA5RT5EIgiDasxWCgoIwfPhwbNy4UbVvwIABmDFjBqKiolrFL1u2DPv27UN6erpqX0REBFJSUhAfHw8ACA8PR0VFBfbv36+KmTx5MmxtbbFz585WbUokEuzduxczZsxQ2z9nzhyUlZW1ObrVWRUVFbCxsUF5eTmsra273A71rFf3puHoxRt479EhYqdCpBHZJTfxxr4zGOfriE+eGM65hUR3oInvb9FGsOrr65GYmIjQ0FC1/aGhoTh+/Hibx8THx7eKnzRpEhISEtDQ0NBhTHttduTIkSNwdHSEt7c35s6di8LCwrtug3TP6exSLs9AeqWfnTnmj/ZEdFoB1vNxOkQ9QrQCq6ioCE1NTVAoFGr7FQoFCgraftRDQUFBm/GNjY0oKirqMKa9NtsTFhaGHTt24NChQ/jggw9w6tQpjBs3DnV1de0eU1dXh4qKCrWNdMvN+kZcKKiEp4IFFumX+9zs8GhAX3wQexExZ/k4HaLuJvok99uHqgVB6HD4uq342/ffbZttCQ8Px9SpU+Hv749p06Zh//79uHjxIn7++ed2j4mKioKNjY1qc3FxuatzkvjScsvRLIB3EJJemjmsD+7vb4fFu5Nx8Xql2OkQ6TXRCiwHBwcYGxu3GlkqLCxsNQLVQqlUthlvYmICe3v7DmPaa7OznJyc4OrqikuXLrUbs3z5cpSXl6u2nJycezon9byknDLITY3gYmsudipEGmckkeD5MR5wsLz1OJ2ym3ycDlF3Ea3AkkqlCAgIQGxsrNr+2NhYhISEtHlMcHBwq/iYmBgEBgbC1NS0w5j22uys4uJi5OTkwMnJqd0YmUwGa2trtY10y+msUnj2toSREScBk3669Tgdb5RW12PBN0lo5ON0iLqFqJcIIyMj8cUXX2DLli1IT0/HkiVLkJ2djYiICAC3RoSeeuopVXxERASysrIQGRmJ9PR0bNmyBZs3b8bSpUtVMYsWLUJMTAzWrl2L8+fPY+3atTh48CAWL16siqmqqkJycjKSk5MB3Fr+ITk5WbU8RFVVFZYuXYr4+HhkZmbiyJEjmDZtGhwcHDBz5szu/2BIFIIgICGrFJ6OVmKnQtStFNZyLBzvheNXivDu/vNip0Okl0zEPHl4eDiKi4uxevVq5Ofnw9/fH9HR0XB1dQUA5Ofnq62J5ebmhujoaCxZsgSffPIJnJ2d8fHHH+ORRx5RxYSEhGDXrl147bXXsHLlSnh4eGD37t0ICgpSxSQkJGDs2LGq15GRkQCA2bNnY9u2bTA2NkZaWhq2b9+OsrIyODk5YezYsdi9ezesrPjlq6+yS26ipLoe3pzgTgbAv48N/jrCFV/8lgE/Z2s8PLyv2CkR6RVR18HSd1wHS7fsTcrFkt0p+HxWICzlov7bg6hHCIKAT49eRfyVYvz7+WAM7ttL7JSItIJOr4NFpG0Ss0rRp5cZiysyGBKJBM884IZ+9ub42/ZE3KhsfxkaIro7LLCI/isxqxRefDwOGRipiRGWTPBGXWMTnv86EfWNnPROpAkssIgAVNXdWmDUW8E5dmR47CykWDzBG8k5ZXjzx7Nip0OkF1hgEQFIySlDswB4cYI7GShvhRWefsANO05mY+fv2Xc+gIg6xAKLCLfWv7KQGcO5l5nYqRCJZpyvIyYMUGDl92eQmFUidjpEOo0FFhGAhKxSeDlaweguH6lEpG9mB7vC09ES8746jesVtWKnQ6SzWGCRwWtuFnCaE9yJAAAmxkZYNN4LgiBg3leJqGtsEjslIp3EAosM3sXCSlTWNcJXyQnuRADQy/zWpPez18rxxg+c9E7UFSywyOAlZJbC2EgCD45gEal4Olri6QfcsOtUDnaczBI7HSKdwwKLDF5CZgncHCwgMzEWOxUirTLWxxET/RR444eznPROdJdYYJHB+z2zhOtfEbXjqRGc9E7UFSywyKDll9fgWlktfFhgEbWpZdJ7syAg4mtOeifqLBZYZNASMksBAN5cYJSoXb3MpVgywQtn8sqx+sdzYqdDpBNYYJFBS8gsgZONHL3MpWKnQqTVPB2tMCfk1krvu7jSO9EdscAig8b5V0SdN87XEeN9HbHyhzNIyi4VOx0ircYCiwxWZW0DH/BMdJdmh/SHm4MFIr5OxI3KOrHTIdJaLLDIYCVklaJZAAY4scAi6ixTYyMsGu+N+sZmzN+RiIamZrFTItJKLLDIYP2eUQJbc1MoreVip0KkU+wspFg03huns8vwzs/pYqdDpJVYYJHBOnm1GD5KK0j4gGeiu+ajtMJTwa7YdjwT353OFTsdIq3DAosMUk19E1JzyzFAaS12KkQ6a+IABcZ498by79JwJq9c7HSItAoLLDJISdmlaGwW4OvEAouoqyQSCZ5+wA19bc3wt68SUFJdL3ZKRFqDBRYZpJMZJbCUmaCvrZnYqRDpNKmJEZZM8EZ1XRMWfHMajZz0TgSABRYZqJMZJfBRWsGI86+I7pm9pQwLx3nixNVivPfLBbHTIdIKLLDI4NQ3NiMpuxS+Si7PQKQpfs42eDLIFZ8dvYp9KdfETodIdCywyOCk5pahrrEZAzj/ikijwvyVeMDTHi//OwXp+RVip0MkKhZYZHBOXC2Gmakx+ttbiJ0KkV6RSCSYO9IdSms5/rY9AWU3OemdDBcLLDI4x68Uw1dpBWMjzr8i0jSZiTGWTPBG2c0GLNyZhKZmQeyUiETBAosMSl1jExKzSuHnzMuDRN3F0VqOF8d74bfLRXg/hpPeyTCxwCKDkpx9a/6VH+dfEXWrQX1s8Pj9/bDxyBX8nJovdjpEPY4FFhmU+KvFsJBx/hVRT5g6yAkhHvZ46dtknC/gpHcyLCywyKDEXynGAKU1jDj/iqjb/XHS+9wvOemdDAsLLDIYtQ1NOJ3N+VdEPUlu+r9J7wu+SeJK72QwWGCRwTidVYqGJoHzr4h6mKO1HAvHe+H4lSL8nSu9k4FggUUGI/5qMazkJnCxMxc7FSKD49/n1krvnx69ih+S88ROh6jbscAig/Hb5SL4OVnz+YNEIgnzV2KklwNe/ncqzuSVi50OUbdigUUGoaK2Aak55RjUx0bsVIgMlkQiwXMPuqOvrRnmbk/Ajco6sVMi6jaiF1gbNmyAm5sb5HI5AgICcOzYsQ7j4+LiEBAQALlcDnd3d2zatKlVzJ49e+Dn5weZTAY/Pz/s3btX7f2jR49i2rRpcHZ2hkQiwffff9+qDUEQsGrVKjg7O8PMzAxjxozB2bNn76mvJJ4TV4rRJAgssIhEJjUxQuREH9Q2NOH5rxNR38hJ76SfRC2wdu/ejcWLF+PVV19FUlISRo4cibCwMGRnZ7cZn5GRgSlTpmDkyJFISkrCihUrsHDhQuzZs0cVEx8fj/DwcMyaNQspKSmYNWsWHnvsMZw8eVIVU11djSFDhmD9+vXt5vbee+9h3bp1WL9+PU6dOgWlUomJEyeisrJScx8A9Zj/XC6CwloGR2u52KkQGTw7CykWT/BGSm4Z3th3FoLAx+mQ/pEIIv5kBwUFYfjw4di4caNq34ABAzBjxgxERUW1il+2bBn27duH9PR01b6IiAikpKQgPj4eABAeHo6Kigrs379fFTN58mTY2tpi586drdqUSCTYu3cvZsyYodonCAKcnZ2xePFiLFu2DABQV1cHhUKBtWvXYt68eZ3qX0VFBWxsbFBeXg5ra965Jqax7x+Bu4MFnhvpLnYqRPRfRy4U4tOjV/HW9IGYFdxf7HSIVDTx/S3aCFZ9fT0SExMRGhqqtj80NBTHjx9v85j4+PhW8ZMmTUJCQgIaGho6jGmvzbZkZGSgoKBArR2ZTIbRo0d32E5dXR0qKirUNhLftbIaZBRV8/IgkZYZ4+OIyf5KrNp3DscvF4mdDpFGiVZgFRUVoampCQqFQm2/QqFAQUFBm8cUFBS0Gd/Y2IiioqIOY9prs73ztBx3N+1ERUXBxsZGtbm4uHT6nNR9frtcBAnABUaJtNBfg1zh52yN53ecRlZxtdjpEGmM6JPcJbfdMi8IQqt9d4q/ff/dtqmp3JYvX47y8nLVlpOTc9fnJM37z+UiuPW2gJXcVOxUiOg2xkYSLBzvBXOpMZ7ZdgqVtQ1ip0SkEaIVWA4ODjA2Nm41IlRYWNhq5KiFUqlsM97ExAT29vYdxrTXZnvnAXDX7chkMlhbW6ttJK7mZgG/XSqCvzMvDxJpK0uZCV4K9UFBeS0W7kxCUzMnvZPuE63AkkqlCAgIQGxsrNr+2NhYhISEtHlMcHBwq/iYmBgEBgbC1NS0w5j22myLm5sblEqlWjv19fWIi4u7q3ZIfOfyK1BcXY8hLr3EToWIOtCnlxleHOeFuIs3sPbAebHTIbpnJmKePDIyErNmzUJgYCCCg4Px2WefITs7GxEREQBuXXLLy8vD9u3bAdy6Y3D9+vWIjIzE3LlzER8fj82bN6vdHbho0SKMGjUKa9euxfTp0/HDDz/g4MGD+O2331QxVVVVuHz5sup1RkYGkpOTYWdnh379+kEikWDx4sVYs2YNvLy84OXlhTVr1sDc3BxPPPFED306pAlxF2/AzNQY3o6WYqdCRHcwxKUXZo1wxWdHr8KztyUeu4/zWEl3iVpghYeHo7i4GKtXr0Z+fj78/f0RHR0NV1dXAEB+fr7amlhubm6Ijo7GkiVL8Mknn8DZ2Rkff/wxHnnkEVVMSEgIdu3ahddeew0rV66Eh4cHdu/ejaCgIFVMQkICxo4dq3odGRkJAJg9eza2bdsGAHj55ZdRU1OD+fPno7S0FEFBQYiJiYGVlVV3fiSkYYfPF8K/jzVMjEWfbkhEnTBpoBK5pTVYsTcN/ezNMcLdXuyUiLpE1HWw9B3XwRJXeU0Dhq+OxZwH+mPCgM7PwSMicTU2N+Pd/eeRW1qDH154AP0dLMROiQyMTq+DRdTdjl8uQpMgYEhfTnAn0iUmRkZYPN4bFlJjPL3tFMpv8s5C0j0ssEhvxV28gT69zNDbio/HIdI1lnITLJ3kgxuVdXh+RyIamvjMQtItLLBILwmCgCMXbmAwR6+IdJaTjRmWTPTG7xkleHVvGp9ZSDqFBRbppYvXq1BQUYshfXuJnQoR3QM/J2vMHemOfyXkYlPcVbHTIeo0Ue8iJOouB9OvQ25qhAFOvLmASNeN8u6NgoparD1wHv3szDF1sJPYKRHdEQss0ku/pl/HoD42kJpwkJZIH/w5oC8KK2uxZHcylDYyBLjaiZ0SUYf47UN6p7iqDknZZRjWz1bsVIhIQyQSCeaN8oBHbws892UCMov4YGjSbiywSO8cuXADAoBhfDwOkV4xNTbCkoneMDM1xuytv6Okul7slIjaxQKL9M6v56/D09ESvcylYqdCRBpmJTfFy5N9UXazAc99eQq1DU1ip0TUJhZYpFfqG5sRd+EGR6+I9JjCWo6loT44e60Ci3cloamZyzeQ9mGBRXrlVGYJquubOP+KSM95OlrixXFeiDl3Hat/PMs1skjrsMAivRJztgAOllL0tzcXOxUi6mYBrrZ4+gE3fBmfhU+Pco0s0i5cpoH0RnOzgANnCxDoageJRCJ2OkTUAyYMUKC4qh7v7j8PRysZHh7eV+yUiACwwCI9kppXjusVdbivPy8PEhmSxwL7oqymHv/371Q4WMowyru32CkR8RIh6Y8DZwpgLTeBj5KrtxMZEolEgucedMeQvjaY91UiUnPLxE6JiAUW6QdBEHDgTD6G97OFsREvDxIZGmMjCV4c54W+dmaYveV3XL1RJXZKZOBYYJFeuFxYhczim7ivPx+fQWSo5KbG+L9QH1jITDBr8++4XlErdkpkwFhgkV44cKYAZqbG8O9jI3YqRCQiK7kpXpnsi9qGJszafBLlNxvETokMFAss0gs/peVjqEsvPtyZiGBvKcPysAHIL6/F09t+R009V3unnsdvI9J5lwurcKGgEsHu9mKnQkRaoo+tGV6e5Itz+RWI+DoR9Y3NYqdEBoYFFum8n1KvwczUGEP4eBwi+gNPR0u8NNEHx68UIfJfyXykDvUoFlik0wRBwI8p1xDgasvLg0TUin8fGywY64XotHys/OEMH6lDPYbfSKTTLlyvxJUb1Qj24OVBImrb/W52mDvSHd+czMa7B86zyKIewZXcSaf9lJIPS5kJBvPuQSLqwBgfR9ysb8KncVdhLTfFC2M9xU6J9BwLLNJZLZcHA11tYWLMwVgi6tiUQU6oaWjC33+5AAupMeY84CZ2SqTHWGCRzkrKKUNWyU38dYSr2KkQkY54eFgf1DY0YdWP52AuNcFj97mInRLpKRZYpLO+O50Lewsp/Jz47EEi6hyJRIIn7u+H2oYmLNuTCrnUGH8a4ix2WqSHWGCRTqprbMKPKfkY7d0bRnz2IBHdBYlEgqcfcENdYzOW7EqGzMQIkwYqxU6L9AwnrpBOOnz+BsprGvCgp4PYqRCRDjKSSDBvlAfuc7PFCztO4/CFQrFTIj3DAot00t6kXLg7WMDFzlzsVIhIRxkbSfDCWE8MdemFedsT8Z/LRWKnRHqEBRbpnNLqevyaXogHOHpFRPfIxMgIC8d7wc/ZCs9uO4WTV4vFTon0BAss0jl7k/IgAAjh4qJEpAGmxkZYMsEHXgorzNl6CgmZJWKnRHqABRbpFEEQsOtUNgJcbdHLXCp2OkSkJ6QmRoic6A03BwvM3vI7TmeXip0S6TgWWKRTknLKcPF6Fcb5OIqdChHpGbmpMf5vkg9c7Mzx1ObfkZxTJnZKpMNYYJFO2fV7NnpbyTCoLx+NQ0SaJzc1xsuTfNGnlxlmfXESKSyyqItYYJHOqKxtwL6Ua7fWvpJw7Ssi6h5mUmO8PNkHTr3k+OsXJ5GaWyZ2SqSDRC+wNmzYADc3N8jlcgQEBODYsWMdxsfFxSEgIAByuRzu7u7YtGlTq5g9e/bAz88PMpkMfn5+2Lt3712fd86cOZBIJGrbiBEj7q2zdE/2pVxDfWMzxnj3FjsVItJz5lITLJvsC2UvOZ5kkUVdIGqBtXv3bixevBivvvoqkpKSMHLkSISFhSE7O7vN+IyMDEyZMgUjR45EUlISVqxYgYULF2LPnj2qmPj4eISHh2PWrFlISUnBrFmz8Nhjj+HkyZN3fd7JkycjPz9ftUVHR3fPB0F3JAgCvjyeieH9bGFvKRM7HSIyAOZSE7wy2RdKGzme/JyXC+nuSARBEMQ6eVBQEIYPH46NGzeq9g0YMAAzZsxAVFRUq/hly5Zh3759SE9PV+2LiIhASkoK4uPjAQDh4eGoqKjA/v37VTGTJ0+Gra0tdu7c2enzzpkzB2VlZfj++++73L+KigrY2NigvLwc1tZ8Xt69iL9SjMc/P4FXpwyAfx/OvyKinnOzvhFrD5zHtbJabH/2fgzvZyt2StTNNPH9LdoIVn19PRITExEaGqq2PzQ0FMePH2/zmPj4+FbxkyZNQkJCAhoaGjqMaWnzbs575MgRODo6wtvbG3PnzkVhYcePUqirq0NFRYXaRprx5fEM9LU1w0BnFqpE1LNujWQNQF/bWxPfE7O4ThbdmWgFVlFREZqamqBQKNT2KxQKFBQUtHlMQUFBm/GNjY0oKirqMKalzc6eNywsDDt27MChQ4fwwQcf4NSpUxg3bhzq6ura7VNUVBRsbGxUm4uLyx0+BeqMvLIaxJy7jlA/BSSc3E5EIjCTGmPZZF/0szfHrM2/c8V3uiPRJ7nf/oUpCEKHX6Jtxd++vzNt3ikmPDwcU6dOhb+/P6ZNm4b9+/fj4sWL+Pnnn9vNbfny5SgvL1dtOTk57cZS5319IgtmpsYY6cXJ7UQknpYlHNwdLDB76+84zmcXUgdEK7AcHBxgbGzcarSqsLCw1ehSC6VS2Wa8iYkJ7O3tO4xpabMr5wUAJycnuLq64tKlS+3GyGQyWFtbq210b6rqGvH1iSyM9nGE3NRY7HSIyMDdWozUFz4KKzy97RSOXOh46ggZLtEKLKlUioCAAMTGxqrtj42NRUhISJvHBAcHt4qPiYlBYGAgTE1NO4xpabMr5wWA4uJi5OTkwMnJqXMdJI3Y9Xs2btY3YYq/UuxUiIgA3HqszkuhPhjUxwbPfZmAX862Pa2FDJuolwgjIyPxxRdfYMuWLUhPT8eSJUuQnZ2NiIgIALcuuT311FOq+IiICGRlZSEyMhLp6enYsmULNm/ejKVLl6piFi1ahJiYGKxduxbnz5/H2rVrcfDgQSxevLjT562qqsLSpUsRHx+PzMxMHDlyBNOmTYODgwNmzpzZMx8Oob6xGZ8fu4oHPO25NAMRaRVTYyMsmuCFwP62mP/1afyQnCd2SqRlTMQ8eXh4OIqLi7F69Wrk5+fD398f0dHRcHV1BQDk5+errU3l5uaG6OhoLFmyBJ988gmcnZ3x8ccf45FHHlHFhISEYNeuXXjttdewcuVKeHh4YPfu3QgKCur0eY2NjZGWlobt27ejrKwMTk5OGDt2LHbv3g0rK6se+nRoX8o1XK+ow0sTfcROhYioFRMjI7w41gufmlzB4l3JuFnfhMfv7yd2WqQlRF0HS99xHayua24WEPrhUVjLTfB/k3zFToeIqF3N/10IOebcdbw2dQCeG+kudkp0jzTx/S3qCBZRe/afKcDlwiq8+aeBYqdCRNQhI4kEc0L6Q25qjLd/TkdFTQOWTPTmsjIGjgUWaZ2mZgH/OHgRQ/rawFvBS7JEpP0kEgkev78fLKTG+PjQZZTXNOCNaQNhZMQiy1CxwCKt83NaPi4XVuGt6Ry9IiLd8qehfWAuM8GW3zJQdrMB7z82BKbGoi85SSJggUVapalZwIcHL2KYSy94OnL0ioh0z4QBClhITbDhyGWU1TRg41+Hw1zKr1tDw7KatMp3p3Nx9UY1HgnoK3YqRERdFuxhj/+b5IOTGbceVF9aXS92StTDWGCR1qipb8Lff7mAEe528OhtKXY6RET3ZHDfXnhtqh8yi27i4Y3HkVt6U+yUqAexwCKtsfm3qyiprsdf7uM6MkSkHzx6W2LVtIG4Wd+ImRuO4+y1crFToh7CAou0wo3KOmw4cgWhfgoorOVip0NEpDFKGzlWTRsIa7kJ/rwpHkcv3hA7JeoBLLBIK7wfcwESCTBzGOdeEZH+6WUuxWtT/VQPid59KvvOB5FOY4FFokvMKsHuUzkID3SBpZx32hCRfpKbGuOlUB+M9emNZXvS8N6B82hu5sNU9BW/zUhUjU3NeHXvGXj0tsB4X4XY6RARdStjIwmeecANCms5Nh65goyiaqx7bCjMpMZip0YaxhEsEtW245m4UFCJpx9w44rHRGQQJBIJHhrsjCUTvXHofCH+vOk4CsprxU6LNIwFFokmq7ga78dcwEQ/BZdlICKDc19/O7wxbSDyy2sxbf1vSMouFTsl0iAWWCSK5mYBS79NgbXcFI/fz2UZiMgwuTlY4O0Z/rA1N0X4pyewJzFX7JRIQ1hgkSi2Hc/EqcxSzBvlDrkp5x4QkeFqucMwxNMeL32bgjd+OIOGpmax06J7xEnu1OMuFFRi7YHzmDxQCT9nG7HTISISnamxEf420h3uDhbYHp+FM9cqsOHJ4VwXUIdxBIt61M36RszfkQiFtQx/ud9F7HSIiLSGRCLBRD8lVj7kh4yiakz56BiOXykSOy3qIhZY1KNWfn8GuaU1WDjOGzITXhokIrqdt8IKa2YOgnMvM/z1i5P48OBFNHG9LJ3DAot6zDcns7HndB6eecANfWzNxE6HiEhr2ZiZ4pXJvpg5rC8+/vUSnvj8BJdy0DEssKhHHL9ShJU/nMFEPwVGefcWOx0iIq1nZCTBowF98epUP1wqrMKkD49if1q+2GlRJ7HAom6XWVSN578+DT8nazwV7Cp2OkREOsXPyRrvPjwIPgorPL/jNP7v2xRU1DaInRbdAQss6laFFbWYtfkkLKTGWDjeCyZG/JEjIrpbVnJTLJ7ghb+NcsdPqfmY9I+j+O0SJ8BrM37bUbcpv9mAWZt/R3V9E14J84WljKuCEBF1lUQiwVgfR6x9ZDDsLKT46+aTeGVPKsprOJqljVhgUbcor2nAU1tP4lpZDZaH+aK3FddyISLShN5WMqyYMgDPPuiGH5KvYcK6OPyUeg2CwDsNtQkLLNK4kup6PP7ZCVwprMayMF/0tTUXOyUiIr1iJJFgwgAF/v7oYLjamWPBN0mYveV3ZBRVi50a/RcLLNKoa2U1CP80HnllNXht6gA+xJmIqBvZW8rwUqgPlob64HxBJSaui0PU/nRU1TWKnZrBkwgcU+w2FRUVsLGxQXl5OaytrcVOp9ul5pbhmW0JkEiAZZN90acX17oiIuop9Y3N+DH1Gn5MuQZLuQmWTPBG+H0uMDXmWMrd0sT3NwusbmRIBdYPyXlY9u9UuNibI3KCN3qZS8VOiYjIIBVX1eFfiTk4drEIrg7miJzog4cGOcHISCJ2ajqDBZaWM4QCq7ahCW/+eBY7f8/BSC8HPPegO6Qm/NcSEZHYsoqrsftUDpJyyuCtsMTC8V4I83eCMQutO2KBpeX0vcA6nV2K//s2BTklNZgT0h9jfHpDIuEvLhGRNrl4vRJ7TuciNbccbg4WiBjtjulD+0BuyufBtocFlpbT1wKrsrYBHx28hC3/yYCbgwXmjfKAix3vFCQi0mZXblThh+Q8JGSWws5CilnBrnji/n5wtOYyOrdjgaXl9K3AamoWsOd0LtYeOI+q2kY8PLwvpg7icDMRkS7JL6tB9JkCHLt0A43NAkL9FPjL/f3woKcD/z7/LxZYWk5fCqymZgE/p+Xjw4MXcfVGNR7wtMfj9/WDvaVM7NSIiKiLbtY34ujFIvx6/jpyS2vgZCPHjGF9MH2oM3yVuvudpQkssLScrhdYVXWN+DYhB1v/k4nskpsY5tILjwT05dpWRER6RBAEXLlRhSMXbuBkRgmq6hrh6WiJKf5KhA5UYqCztcHNr2WBpeV0scBqbhaQkFWKbxNy8FNqPuoamzDC3R5h/k7wdGRhRUSkzxqbmpGSW46TGcU4nV2K6romKKxlGOfriJFevRHiYW8Qy/Bo4vtb9PvpN2zYADc3N8jlcgQEBODYsWMdxsfFxSEgIAByuRzu7u7YtGlTq5g9e/bAz88PMpkMfn5+2Lt3712fVxAErFq1Cs7OzjAzM8OYMWNw9uzZe+uslqptaMKRC4V444czCIr6FY99Go+jl27gocFO+Pgvw/DiOC8WV0REBsDE2AgBrraYP8YTm54MwKtTBiCgny3iLt7A/B2nMWx1LKZ8dAxv/ngW0Wn5uFZWw2cgtsNEzJPv3r0bixcvxoYNG/DAAw/g008/RVhYGM6dO4d+/fq1is/IyMCUKVMwd+5cfP311/jPf/6D+fPno3fv3njkkUcAAPHx8QgPD8dbb72FmTNnYu/evXjsscfw22+/ISgoqNPnfe+997Bu3Tps27YN3t7eePvttzFx4kRcuHABVlZWPfchdYOK2gacyS3HqcxSnMwoRmJWKeoam+FgKcV9/e1wv5sdvBVWMDKwIWEiIvofE2Mj+PexgX8fG8wCUFRVh7S8cpzPr0B0Wj62/icTwK2HTw/qYwN/Z2v4OlnDR2kFVztzmBj4CvKiXiIMCgrC8OHDsXHjRtW+AQMGYMaMGYiKimoVv2zZMuzbtw/p6emqfREREUhJSUF8fDwAIDw8HBUVFdi/f78qZvLkybC1tcXOnTs7dV5BEODs7IzFixdj2bJlAIC6ujooFAqsXbsW8+bN61T/xL5EWF3XiKzim8goqsblwipcuF6Bc9cqkFl8EwBgITOGr8Iavk5WGOrSC316mRncdXYiIuqa0pv1uFxYhSs3qpBZVI3M4psor2kAAJgYSdDf3gLuvS3gam+OfvYW6NvLDH1szeBkI4eV3FTk7Dumie9v0Uaw6uvrkZiYiFdeeUVtf2hoKI4fP97mMfHx8QgNDVXbN2nSJGzevBkNDQ0wNTVFfHw8lixZ0irmww8/7PR5MzIyUFBQoHYumUyG0aNH4/jx450usLpTVV0jUnLKUHqzHqXV9SiqqkdRVR0KKmpRUF6LvNIalP33Bx0ArOUm6GtrDm+FFSb7O8GjtwWcbcz46AQiIuoSW/NbVz3u62+n2lde04Cckpu4VlaDvLIaFFTUIjW3HDeq6tDU/L/xHHOpMXpbyeBoJUNvKxnsLKSwM5eil7kUvcxNYS03hZXcBJZyE1jJTGEuM4aF1ARyUyOdGQgQrcAqKipCU1MTFAqF2n6FQoGCgoI2jykoKGgzvrGxEUVFRXBycmo3pqXNzpy35b9txWRlZbXbp7q6OtTV1alel5eXA7hVCWva2z+dw65TOe2+LzUxgpOlFA6WciitZbCQt/xR16OgqAQFRSUaz4mIiKiFuQRwtzGCu40ZmpvlKKtpQHFV/a2BgZs3kXGtEhkaOM/yMB88OaK/Blr6n5bv7Xu5yCfqHCwArSpRQRA6rE7bir99f2fa1FTMH0VFReHNN99std/FxaXdY7rTFVHOSkRE1HPmfwjM76a2KysrYWNj06VjRSuwHBwcYGxs3Gq0qrCwsNXIUQulUtlmvImJCezt7TuMaWmzM+dVKpUAbo1kOTk5dSo3AFi+fDkiIyNVr5ubm1FSUgJ7e3udGdLsjIqKCri4uCAnJ0dnlp/QBPab/TYEhtpvwHD7zn637rcgCKisrISzs3OX2xetwJJKpQgICEBsbCxmzpyp2h8bG4vp06e3eUxwcDB+/PFHtX0xMTEIDAyEqampKiY2NlZtHlZMTAxCQkI6fV43NzcolUrExsZi2LBhAG7N3YqLi8PatWvb7ZNMJoNMpr66ea9eve70Uegsa2trg/plbMF+Gxb22/AYat/Zb3VdHblqIeolwsjISMyaNQuBgYEIDg7GZ599huzsbERERAC4NSKUl5eH7du3A7h1x+D69esRGRmJuXPnIj4+Hps3b1bdHQgAixYtwqhRo7B27VpMnz4dP/zwAw4ePIjffvut0+eVSCRYvHgx1qxZAy8vL3h5eWHNmjUwNzfHE0880YOfEBEREekiUQus8PBwFBcXY/Xq1cjPz4e/vz+io6Ph6uoKAMjPz0d2drYq3s3NDdHR0ViyZAk++eQTODs74+OPP1atgQUAISEh2LVrF1577TWsXLkSHh4e2L17t2oNrM6cFwBefvll1NTUYP78+SgtLUVQUBBiYmJ0fg0sIiIi6gEC0V2qra0V3njjDaG2tlbsVHoU+81+GwJD7bcgGG7f2e/u6TefRUhERESkYYa9jj0RERFRN2CBRURERKRhLLCIiIiINIwFFhEREZGGscCidr3zzjsICQmBubl5uwumZmdnY9q0abCwsICDgwMWLlyI+vp6tZi0tDSMHj0aZmZm6NOnD1avXn1Pz3cSw4YNG+Dm5ga5XI6AgAAcO3ZM7JTuydGjRzFt2jQ4OztDIpHg+++/V3tfEASsWrUKzs7OMDMzw5gxY3D27Fm1mLq6Orz44otwcHCAhYUF/vSnPyE3N7cHe3H3oqKicN9998HKygqOjo6YMWMGLly4oBajj33fuHEjBg8erFpQMTg4GPv371e9r499bktUVJRqncMW+tr3VatWQSKRqG0tTykB9LffAJCXl4e//vWvsLe3h7m5OYYOHYrExETV+z3W9265N5H0wuuvvy6sW7dOiIyMFGxsbFq939jYKPj7+wtjx44VTp8+LcTGxgrOzs7CggULVDHl5eWCQqEQ/vKXvwhpaWnCnj17BCsrK+H999/vwZ7cm127dgmmpqbC559/Lpw7d05YtGiRYGFhIWRlZYmdWpdFR0cLr776qrBnzx4BgLB371619999913ByspK2LNnj5CWliaEh4cLTk5OQkVFhSomIiJC6NOnjxAbGyucPn1aGDt2rDBkyBChsbGxh3vTeZMmTRK2bt0qnDlzRkhOThamTp0q9OvXT6iqqlLF6GPf9+3bJ/z888/ChQsXhAsXLggrVqwQTE1NhTNnzgiCoJ99vt3vv/8u9O/fXxg8eLCwaNEi1X597fsbb7whDBw4UMjPz1dthYWFqvf1td8lJSWCq6urMGfOHOHkyZNCRkaGcPDgQeHy5cuqmJ7qOwssuqOtW7e2WWBFR0cLRkZGQl5enmrfzp07BZlMJpSXlwuCIAgbNmwQbGxs1NYZiYqKEpydnYXm5uZuz10T7r//fiEiIkJtn6+vr/DKK6+IlJFm3V5gNTc3C0qlUnj33XdV+2prawUbGxth06ZNgiAIQllZmWBqairs2rVLFZOXlycYGRkJBw4c6LHc71VhYaEAQIiLixMEwbD6bmtrK3zxxRcG0efKykrBy8tLiI2NFUaPHq0qsPS572+88YYwZMiQNt/T534vW7ZMePDBB9t9vyf7zkuE1GXx8fHw9/dXexjmpEmTUFdXpxqOjY+Px+jRo9We0Thp0iRcu3YNmZmZPZ3yXauvr0diYiJCQ0PV9oeGhuL48eMiZdW9MjIyUFBQoNZnmUyG0aNHq/qcmJiIhoYGtRhnZ2f4+/vr1OdSXl4OALCzswNgGH1vamrCrl27UF1djeDgYIPo8wsvvICpU6diwoQJavv1ve+XLl2Cs7Mz3Nzc8Je//AVXr14FoN/93rdvHwIDA/HnP/8Zjo6OGDZsGD7//HPV+z3ZdxZY1GUFBQVQKBRq+2xtbSGVSlFQUNBuTMvrlhhtVlRUhKampjb7oAv5d0VLvzrqc0FBAaRSKWxtbduN0XaCICAyMhIPPvgg/P39Aeh339PS0mBpaQmZTIaIiAjs3bsXfn5+et1nANi1axdOnz6NqKioVu/pc9+DgoKwfft2/PLLL/j8889RUFCAkJAQFBcX63W/r169io0bN8LLywu//PILIiIisHDhQtUzjXuy76I+i5B63qpVq/Dmm292GHPq1CkEBgZ2qj2JRNJqnyAIavtvjxH+O8G9rWO1VVt90KX8u6Irfdalz2XBggVITU1VexB8C33su4+PD5KTk1FWVoY9e/Zg9uzZiIuLU72vj33OycnBokWLEBMTA7lc3m6cPvY9LCxM9f+DBg1CcHAwPDw88OWXX2LEiBEA9LPfzc3NCAwMxJo1awAAw4YNw9mzZ7Fx40Y89dRTqrie6DtHsAzMggULkJ6e3uHW8q/5O1Eqla2q+dLSUjQ0NKj+ddBWTGFhIYDW/4LQRg4ODjA2Nm6zD7qQf1e03GnUUZ+VSiXq6+tRWlrabow2e/HFF7Fv3z4cPnwYffv2Ve3X575LpVJ4enoiMDAQUVFRGDJkCD766CO97nNiYiIKCwsREBAAExMTmJiYIC4uDh9//DFMTEzaHU3Xh77fzsLCAoMGDcKlS5f0+s/cyckJfn5+avsGDBiA7OxsAD37O84Cy8A4ODjA19e3w62jf+n9UXBwMM6cOYP8/HzVvpiYGMhkMgQEBKhijh49qrZ0Q0xMDJydndG/f3+N9q07SKVSBAQEIDY2Vm1/bGwsQkJCRMqqe7m5uUGpVKr1ub6+HnFxcao+BwQEwNTUVC0mPz8fZ86c0erPRRAELFiwAN999x0OHToENzc3tff1ue+3EwQBdXV1et3n8ePHIy0tDcnJyaotMDAQTz75JJKTk+Hu7q63fb9dXV0d0tPT4eTkpNd/5g888ECrpVcuXrwIV1dXAD38O97p6fBkcLKysoSkpCThzTffFCwtLYWkpCQhKSlJqKysFAThf8s0jB8/Xjh9+rRw8OBBoW/fvmrLNJSVlQkKhUJ4/PHHhbS0NOG7774TrK2tdXKZhs2bNwvnzp0TFi9eLFhYWAiZmZlip9ZllZWVqj9PAMK6deuEpKQk1dIT7777rmBjYyN89913QlpamvD444+3eRtz3759hYMHDwqnT58Wxo0bp/W3cD///POCjY2NcOTIEbXb12/evKmK0ce+L1++XDh69KiQkZEhpKamCitWrBCMjIyEmJgYQRD0s8/t+eNdhIKgv31/6aWXhCNHjghXr14VTpw4ITz00EOClZWV6u8tfe3377//LpiYmAjvvPOOcOnSJWHHjh2Cubm58PXXX6tieqrvLLCoXbNnzxYAtNoOHz6sisnKyhKmTp0qmJmZCXZ2dsKCBQvUlmQQBEFITU0VRo4cKchkMkGpVAqrVq3SmSUaWnzyySeCq6urIJVKheHDh6tu69dVhw8fbvPPdvbs2YIg3LqV+Y033hCUSqUgk8mEUaNGCWlpaWpt1NTUCAsWLBDs7OwEMzMz4aGHHhKys7NF6E3ntdVnAMLWrVtVMfrY92eeeUb189u7d29h/PjxquJKEPSzz+25vcDS1763rO1kamoqODs7Cw8//LBw9uxZ1fv62m9BEIQff/xR8Pf3F2QymeDr6yt89tlnau/3VN8lgqBjS2oTERERaTnOwSIiIiLSMBZYRERERBrGAouIiIhIw1hgEREREWkYCywiIiIiDWOBRURERKRhLLCIiIiINIwFFhHpjczMTEgkEiQnJwMAjhw5AolEgrKyMgDAtm3b0KtXr3s+j6baISL9xQKLiHTCnDlzIJFIVJu9vT0mT56M1NRUVYyLiwvy8/M7/cDy9hw+fBhTpkyBvb09zM3N4efnh5deegl5eXn32g0iMhAssIhIZ0yePBn5+fnIz8/Hr7/+ChMTEzz00EOq942NjaFUKmFiYtLlc3z66aeYMGEClEol9uzZg3PnzmHTpk0oLy/HBx98oIlutKuhoaFb2yeinsMCi4h0hkwmg1KphFKpxNChQ7Fs2TLk5OTgxo0bAFpfIrxbubm5WLhwIRYuXIgtW7ZgzJgx6N+/P0aNGoUvvvgCr7/+ulr8L7/8ggEDBsDS0lJV/LU4deoUJk6cCAcHB9jY2GD06NE4ffq02vESiQSbNm3C9OnTYWFhgbfffhsA8Pbbb8PR0RFWVlZ47rnn8Morr2Do0KFqx27duhUDBgyAXC6Hr68vNmzY0KU+E1H3YIFFRDqpqqoKO3bsgKenJ+zt7TXS5rfffov6+nq8/PLLbb7/x3lXN2/exPvvv4+vvvoKR48eRXZ2NpYuXap6v7KyErNnz8axY8dw4sQJeHl5YcqUKaisrFRr84033sD06dORlpaGZ555Bjt27MA777yDtWvXIjExEf369cPGjRvVjvn888/x6quv4p133kF6ejrWrFmDlStX4ssvv9TI50BE967r4+hERD3sp59+gqWlJQCguroaTk5O+Omnn2BkpJl/K166dAnW1tZwcnK6Y2xDQwM2bdoEDw8PAMCCBQuwevVq1fvjxo1Ti//0009ha2uLuLg4tcuaTzzxBJ555hnV6/DwcDz77LN4+umnAQCvv/46YmJiUFVVpYp566238MEHH+Dhhx8GALi5ueHcuXP49NNPMXv27C70nIg0jSNYRKQzxo4di+TkZCQnJ+PkyZMIDQ1FWFgYsrKyNNK+IAiQSCSdijU3N1cVVwDg5OSEwsJC1evCwkJERETA29sbNjY2sLGxQVVVFbKzs9XaCQwMVHt94cIF3H///Wr7/vj6xo0byMnJwbPPPgtLS0vV9vbbb+PKlSud7isRdS+OYBGRzrCwsICnp6fqdUBAAGxsbPD555+r5i/dC29vb5SXlyM/P/+Oo1impqZqryUSCQRBUL2eM2cObty4gQ8//BCurq6QyWQIDg5GfX19qz7d7vYi74/tNjc3A7h1mTAoKEgtztjYuMOciajncASLiHSWRCKBkZERampqNNLeo48+CqlUivfee6/N91vW0+qMY8eOYeHChZgyZQoGDhwImUyGoqKiOx7n4+OD33//XW1fQkKC6v8VCgX69OmDq1evwtPTU21zc3PrdH5E1L04gkVEOqOurg4FBQUAgNLSUqxfvx5VVVWYNm2aRtp3cXHBP/7xDyxYsAAVFRV46qmn0L9/f+Tm5mL79u2wtLTs9FINnp6e+OqrrxAYGIiKigr83//9H8zMzO543Isvvoi5c+ciMDAQISEh2L17N1JTU+Hu7q6KWbVqFRYuXAhra2uEhYWhrq4OCQkJKC0tRWRkZJf7T0SawxEsItIZBw4cgJOTE5ycnBAUFIRTp07h22+/xZgxYzR2jvnz5yMmJgZ5eXmYOXMmfH198dxzz8Ha2lrtLsE72bJlC0pLSzFs2DDMmjULCxcuhKOj4x2Pe/LJJ7F8+XIsXboUw4cPR0ZGBubMmQO5XK6Kee655/DFF19g27ZtGDRoEEaPHo1t27ZxBItIi0iEP17cJyIirTNx4kQolUp89dVXYqdCRJ3ES4RERFrk5s2b2LRpEyZNmgRjY2Ps3LkTBw8eRGxsrNipEdFd4AgWEZEWqampwbRp03D69GnU1dXBx8cHr732mmrNKyLSDSywiIiIiDSMk9yJiIiINIwFFhEREZGGscAiIiIi0jAWWEREREQaxgKLiIiISMNYYBERERFpGAssIiIiIg1jgUVERESkYSywiIiIiDTs/wEAyBGJXbDyCgAAAABJRU5ErkJggg==",
279
- "text/plain": [
280
- "<Figure size 640x480 with 1 Axes>"
281
- ]
282
- },
283
- "metadata": {},
284
- "output_type": "display_data"
285
- }
286
- ],
287
- "source": [
288
- "sns.kdeplot(bill_data['Bill Charge'], fill=True)\n",
289
- "plt.title(\"Density Plot of Bill Charges\")\n",
290
- "plt.show()"
291
- ]
292
- },
293
- {
294
- "cell_type": "code",
295
- "execution_count": 19,
296
- "id": "9a0540e9-6a05-47cf-8bd3-af5dfbc6d1c4",
297
- "metadata": {},
298
- "outputs": [
299
- {
300
- "data": {
301
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9g0lEQVR4nO3deXgUVaL+8bfJ0glLmiVk0xDAi2wBhbAlyKYQRFFhlEUwoiKKwihG7w9RUcCRiM44qAiKF40IAleRAUZAg7JeAgKyuPBEHNGwpA0gdEAhIUn9/oC0aboTiKTpdOX7eZ5+0nXq1MmpQqmXU6eqLIZhGAIAADCRGr7uAAAAQGUj4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4ADVwGuvvSaLxaL4+PhLamfFihWaNGlS5XSqivvpp59ksViUnp5e4W0PHTqkSZMmaefOnW7rJk2aJIvFcukdBFAuAg5QDbzzzjuSpG+//VZbtmz50+2sWLFCkydPrqxumdahQ4c0efJkjwHn/vvvV2Zm5uXvFFDNEHAAk9u2bZt27dqlm2++WZI0Z84cH/fIu37//XeP5YZh6NSpU5e5N+6uvPJKdenSxdfdAEyPgAOYXEmgefHFF5WUlKSFCxe6hIC1a9fKYrFo7dq1Ltudf4nmnnvu0RtvvCFJslgszs9PP/0kSTp9+rQmTJigJk2aKDg4WFdccYXGjBmj48ePu/Xpgw8+UGJiomrXrq3atWvr2muvdQte77zzjq655hqFhISofv36GjhwoPbs2eNS55577lHt2rX19ddfKzk5WXXq1NENN9zg7OPYsWP15ptvqmXLlrJarXrvvfckSXv37tWwYcMUEREhq9Wqli1bOvetPD/88IPuvfdeNWvWTDVr1tQVV1yhW265RV9//bXL8ezYsaMk6d5773Uep5JLe54uURUXF+ull15SixYtZLVaFRERobvvvlsHDhxwqdezZ0/Fx8dr69at6tatm2rWrKmmTZvqxRdfVHFx8QX7D1QnBBzAxE6dOqUFCxaoY8eOio+P13333acTJ07oww8/rHBbEydO1B133CFJyszMdH6io6NlGIYGDBigv//970pJSdEnn3yi1NRUvffee7r++uuVn5/vbOfZZ5/V8OHDFRMTo/T0dC1ZskQjRozQzz//7KyTlpamkSNHqnXr1vr444/16quvavfu3UpMTNTevXtd+lVQUKBbb71V119/vZYuXepyCe1f//qXZs2apWeffVaffvqpunXrpu+++04dO3bUN998o3/84x/697//rZtvvlmPPPLIBS+/HTp0SA0aNNCLL76oVatW6Y033lBgYKA6d+6srKwsSVL79u317rvvSpKeeeYZ53G6//77y2z3oYce0vjx49WnTx8tW7ZMzz//vFatWqWkpCQdOXLEpa7dbtfw4cN11113admyZerXr58mTJigefPmldt3oNoxAJjW3LlzDUnGm2++aRiGYZw4ccKoXbu20a1bN2edNWvWGJKMNWvWuGy7b98+Q5Lx7rvvOsvGjBljePprY9WqVYYk46WXXnIpX7RokSHJmD17tmEYhvHjjz8aAQEBxvDhw8vs87Fjx4zQ0FDjpptucinPzs42rFarMWzYMGfZiBEjDEnGO++849aOJMNmsxm//vqrS3nfvn2NK6+80nA4HC7lY8eONUJCQpz1Pe3/+QoLC42CggKjWbNmxmOPPeYs37p1a5nbPvfccy7HcM+ePYYk4+GHH3apt2XLFkOS8dRTTznLevToYUgytmzZ4lK3VatWRt++fcvsJ1AdMYIDmNicOXMUGhqqoUOHSpJq166tQYMGacOGDW4jIZfiiy++kHT2klFpgwYNUq1atfT5559LkjIyMlRUVKQxY8aU2VZmZqZOnTrl1lZsbKyuv/56Z1ul3X777R7buv7661WvXj3n8unTp/X5559r4MCBqlmzpgoLC52fm266SadPn9bmzZvL7FthYaGmTp2qVq1aKTg4WIGBgQoODtbevXvdLp9drDVr1khyP3adOnVSy5Yt3fY3KipKnTp1cilr27atywgYAC5RAab1ww8/aP369br55ptlGIaOHz+u48ePOy8zldxZVRmOHj2qwMBANWzY0KXcYrEoKipKR48elSQdPnxY0tmJtuW1JUnR0dFu62JiYpzrS9SsWVNhYWEe2zq/jaNHj6qwsFCvv/66goKCXD433XSTJLldEiotNTVVEydO1IABA7R8+XJt2bJFW7du1TXXXPOnJzBXdH8bNGjgVs9qtVaJCdRAVRLo6w4A8I533nlHhmHoo48+0kcffeS2/r333tPf/vY3hYSESJLLPBmp/BP9+Ro0aKDCwkIdPnzYJeQYhiG73e6cdFuy7sCBA4qNjS2zLUnKyclxW3fo0CGFh4e7lJX3TJnz19WrV08BAQFKSUkpcxSpSZMmZbY3b9483X333Zo6dapL+ZEjR1S3bt0ytytP6f09P/h52l8AF4cRHMCEioqK9N577+mqq67SmjVr3D6PP/64cnJytHLlSjVu3FiStHv3bpc2li1b5tau1WqVJLfRgpI7l86f6Lp48WL99ttvzvXJyckKCAjQrFmzyux7YmKiQkND3do6cOCAvvjiC2dbf0bNmjXVq1cv7dixQ23btlWHDh3cPp5GSEpYLBbnMSjxySef6ODBgy5lZR0nT66//npJ7sdu69at2rNnzyXtL1CdMYIDmNDKlSt16NAhTZs2TT179nRbHx8frxkzZmjOnDnq37+/evfurbS0NNWrV09xcXH6/PPP9fHHH7tt16ZNG0nStGnT1K9fPwUEBKht27bq06eP+vbtq/HjxysvL09du3bV7t279dxzz6ldu3ZKSUmRJDVu3FhPPfWUnn/+eZ06dUp33nmnbDabvvvuOx05ckSTJ09W3bp1NXHiRD311FO6++67deedd+ro0aOaPHmyQkJC9Nxzz13SsXn11Vd13XXXqVu3bnrooYfUuHFjnThxQj/88IOWL1/unE/kSf/+/ZWenq4WLVqobdu22r59u15++WW3kZerrrpKoaGhmj9/vlq2bKnatWsrJiZGMTExbm02b95cDzzwgF5//XXVqFFD/fr1008//aSJEycqNjZWjz322CXtL1Bt+XiSMwAvGDBggBEcHGzk5uaWWWfo0KFGYGCgYbfbjZycHOOOO+4w6tevb9hsNuOuu+4ytm3b5nYnUH5+vnH//fcbDRs2NCwWiyHJ2Ldvn2EYhnHq1Clj/PjxRlxcnBEUFGRER0cbDz30kHHs2DG33z137lyjY8eORkhIiFG7dm2jXbt2bncc/c///I/Rtm1bIzg42LDZbMZtt91mfPvtty51RowYYdSqVcvj/kkyxowZ43Hdvn37jPvuu8+44oorjKCgIKNhw4ZGUlKS8be//c2lzvn7f+zYMWPkyJFGRESEUbNmTeO6664zNmzYYPTo0cPo0aOHy+9YsGCB0aJFCyMoKMiQZDz33HOGYbjfRWUYhlFUVGRMmzbNuPrqq42goCAjPDzcuOuuu4z9+/e71OvRo4fRunVrt/0ZMWKEERcX53FfgerKYhiG4cuABQAAUNmYgwMAAEyHgAMAAEyHgAMAAEzHqwFn/fr1uuWWWxQTEyOLxaJ//etfF9xm3bp1SkhIUEhIiJo2bao333zTrc7ixYvVqlUrWa1WtWrVSkuWLPFC7wEAgL/yasD57bffdM0112jGjBkXVX/fvn266aab1K1bN+3YsUNPPfWUHnnkES1evNhZJzMzU0OGDFFKSop27dqllJQUDR48WFu2bPHWbgAAAD9z2e6islgsWrJkiQYMGFBmnfHjx2vZsmUu73QZPXq0du3apczMTEnSkCFDlJeXp5UrVzrr3HjjjapXr54WLFjgtf4DAAD/UaUe9JeZmank5GSXsr59+2rOnDk6c+aMgoKClJmZ6fbgq759+2r69Olltpufn+/yGPri4mL9+uuvatCgQbmPeQcAAFWHYRg6ceKEYmJiVKNG+RehqlTAsdvtioyMdCmLjIxUYWGhjhw5oujo6DLr2O32MttNS0vT5MmTvdJnAABwee3fv7/cl/ZKVSzgSO4vxyu5gla63FOd8kZiJkyYoNTUVOeyw+FQo0aNtH///jLfQlwR/8z4XumbflJRsfvVvoAaFt2T1FiP9bn6kn8PAADVWV5enmJjY1WnTp0L1q1SAScqKsptJCY3N1eBgYHOF+CVVef8UZ3SrFar2wvyJCksLKxSAs7dPVrqvW2/qIaH2UwWizSiR0uFhdW65N8DAADcBzo8qVLPwUlMTFRGRoZL2WeffaYOHTooKCio3DpJSUmXrZ/naxJeS9Nub6sapY53gMWiGhZp2u1t1TiccAMAwOXk1RGckydP6ocffnAu79u3Tzt37lT9+vXVqFEjTZgwQQcPHtTcuXMlnb1jasaMGUpNTdWoUaOUmZmpOXPmuNwd9eijj6p79+6aNm2abrvtNi1dulSrV6/Wxo0bvbkrFzSoQ6zirwhTv1fP9uPe6xrrrs5xhBsAAHzAqyM427ZtU7t27dSuXTtJUmpqqtq1a6dnn31WkpSTk6Ps7Gxn/SZNmmjFihVau3atrr32Wj3//PN67bXXdPvttzvrJCUlaeHChXr33XfVtm1bpaena9GiRercubM3d+WixDX4I8yk9rmacAMAgI9Uy7eJ5+XlyWazyeFwVMocnBK/FxSq1bOfSpK+m9JXNYOr1BQnAAD8WkXO31VqDg4AAEBlIOAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTuSwBZ+bMmWrSpIlCQkKUkJCgDRs2lFn3nnvukcVicfu0bt3aWSc9Pd1jndOnT1+O3QEAAFWc1wPOokWLNG7cOD399NPasWOHunXrpn79+ik7O9tj/VdffVU5OTnOz/79+1W/fn0NGjTIpV5YWJhLvZycHIWEhHh7dwAAgB/wesB55ZVXNHLkSN1///1q2bKlpk+frtjYWM2aNctjfZvNpqioKOdn27ZtOnbsmO69916XehaLxaVeVFSUt3cFAAD4Ca8GnIKCAm3fvl3Jycku5cnJydq0adNFtTFnzhz17t1bcXFxLuUnT55UXFycrrzySvXv3187duwos438/Hzl5eW5fAAAgHl5NeAcOXJERUVFioyMdCmPjIyU3W6/4PY5OTlauXKl7r//fpfyFi1aKD09XcuWLdOCBQsUEhKirl27au/evR7bSUtLk81mc35iY2P//E4BAIAq77JMMrZYLC7LhmG4lXmSnp6uunXrasCAAS7lXbp00V133aVrrrlG3bp10//+7//q6quv1uuvv+6xnQkTJsjhcDg/+/fv/9P7AgAAqr5AbzYeHh6ugIAAt9Ga3Nxct1Gd8xmGoXfeeUcpKSkKDg4ut26NGjXUsWPHMkdwrFarrFZrxToPAAD8lldHcIKDg5WQkKCMjAyX8oyMDCUlJZW77bp16/TDDz9o5MiRF/w9hmFo586dio6OvqT+AgAAc/DqCI4kpaamKiUlRR06dFBiYqJmz56t7OxsjR49WtLZy0cHDx7U3LlzXbabM2eOOnfurPj4eLc2J0+erC5duqhZs2bKy8vTa6+9pp07d+qNN97w9u4AAAA/4PWAM2TIEB09elRTpkxRTk6O4uPjtWLFCuddUTk5OW7PxHE4HFq8eLFeffVVj20eP35cDzzwgOx2u2w2m9q1a6f169erU6dO3t4dAADgByyGYRi+7sTllpeXJ5vNJofDobCwsEpr9/eCQrV69lNJ0ndT+qpmsNfzIwAA1UZFzt+8iwoAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJgOAQcAAJhOoK87AAAALo1hGDKMc99LliUZhnT2m/5Yf15Z6frOeufqlKxXGW3Kuf0f9SUpMMCiiDoh3tzlCyLgAAD8TskJ3dPJ/PwTucd65Wzv6aRtlPqdF2pbLuXn6peUndfH89s6W/f89tzbNM6tcK1TddS2BlaPgDNz5ky9/PLLysnJUevWrTV9+nR169bNY921a9eqV69ebuV79uxRixYtnMuLFy/WxIkT9Z///EdXXXWVXnjhBQ0cONBr+wAAZSkoLFZ+YZHyC4uVX1isgsJi5wnIH5x/IpXkcrJ1XXY9yZeUlV4ub13p0YAK/263kz5QNq8HnEWLFmncuHGaOXOmunbtqrfeekv9+vXTd999p0aNGpW5XVZWlsLCwpzLDRs2dH7PzMzUkCFD9Pzzz2vgwIFasmSJBg8erI0bN6pz585e3R8A1YthGCooOhtc8s+UCjLnvhcUFquYEy5Q5VgML/8zo3Pnzmrfvr1mzZrlLGvZsqUGDBigtLQ0t/olIzjHjh1T3bp1PbY5ZMgQ5eXlaeXKlc6yG2+8UfXq1dOCBQsu2Ke8vDzZbDY5HA6XEHWpfi8oVKtnP5UkfTelr2oGcwUQqOoMw3COvOQXFp0LLn8EmbOjMb7uJeBfalsD1eZKW6W3W5Hzt1fPwAUFBdq+fbuefPJJl/Lk5GRt2rSp3G3btWun06dPq1WrVnrmmWdcLltlZmbqsccec6nft29fTZ8+3WNb+fn5ys/Pdy7n5eVVcE8A+Kvi4nMjMKVHXwqLdPpckDlTRIABzMirAefIkSMqKipSZGSkS3lkZKTsdrvHbaKjozV79mwlJCQoPz9f77//vm644QatXbtW3bt3lyTZ7fYKtZmWlqbJkydXwh4BqGqKig3XOTDnBZmCQtILUB1dlmsoFovFZdkwDLeyEs2bN1fz5s2dy4mJidq/f7/+/ve/OwNORducMGGCUlNTnct5eXmKjY2t8H4AuPyKig2Pl45KgsyZIgIMAHdeDTjh4eEKCAhwG1nJzc11G4EpT5cuXTRv3jznclRUVIXatFqtslqtFeg5gMuluNg477IRAQbApfNqwAkODlZCQoIyMjJcbuHOyMjQbbfddtHt7NixQ9HR0c7lxMREZWRkuMzD+eyzz5SUlFQ5HQdQaUrmwJw+wyUkAJeP1y9RpaamKiUlRR06dFBiYqJmz56t7OxsjR49WtLZy0cHDx7U3LlzJUnTp09X48aN1bp1axUUFGjevHlavHixFi9e7Gzz0UcfVffu3TVt2jTddtttWrp0qVavXq2NGzd6e3cAnMd5F1IZk3gLCot93UUA1ZDXA86QIUN09OhRTZkyRTk5OYqPj9eKFSsUFxcnScrJyVF2drazfkFBgZ544gkdPHhQoaGhat26tT755BPddNNNzjpJSUlauHChnnnmGU2cOFFXXXWVFi1axDNwAC/gNmoA/sjrz8GpingODuDK4x1Ipb5Xv78lAFwK0z8HB8DFKS4++wj6YsNQ8bn33ZT+WXzu3TOefhafe3x9cXHp+obzfTYldYqL/3jMfnGp8jM8iReACRFwgHOKiw0VnRcwio2ztym7BoVS38/VLSo23IJI6fWlg0fxuZfxFRtytgUAqFwEHFQpLqMSpX4aurSwUVLmGjQIGQBgVgScasg4/9KHPF8S0XmXOzyNRpRe/qNOSTtlB5U/tnUNIgAAVAYCjp84ejJfJ/MLXQOIyhjtKGMeRuk6AACYGQHHTxz7vUCHTxT4uhsAAPiFGr7uAAAAQGUj4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMJ9HUHAPhGjuOU1mYd1uGT+WpY26qezRsq2hbq624BQKUg4ADV0NqsXM3e8KMskgxJFknLdx/Sg92bqsfVET7uHQBcOi5RAdVMjuOUZm/4UYYhFRty+fnW+h9ld5z2dRcB4JJdloAzc+ZMNWnSRCEhIUpISNCGDRvKrPvxxx+rT58+atiwocLCwpSYmKhPP/3UpU56erosFovb5/Rp/mIGLmRt1mFZylhnkbQmK/dydgcAvMLrAWfRokUaN26cnn76ae3YsUPdunVTv379lJ2d7bH++vXr1adPH61YsULbt29Xr169dMstt2jHjh0u9cLCwpSTk+PyCQkJ8fbuAH7v8Ml8GWWsM86tBwB/5/U5OK+88opGjhyp+++/X5I0ffp0ffrpp5o1a5bS0tLc6k+fPt1leerUqVq6dKmWL1+udu3aOcstFouioqK82nfAjBrWtjrn3pzPcm49APg7r47gFBQUaPv27UpOTnYpT05O1qZNmy6qjeLiYp04cUL169d3KT958qTi4uJ05ZVXqn///m4jPKXl5+crLy/P5QNUVz2bNyx3BKdXcyYZA/B/Xg04R44cUVFRkSIjI13KIyMjZbfbL6qNf/zjH/rtt980ePBgZ1mLFi2Unp6uZcuWacGCBQoJCVHXrl21d+9ej22kpaXJZrM5P7GxsX9+pwA/F20L1YPdm8pSaiJODYtksUgPdm+qKBuXegH4v8tym7jF4jql0TAMtzJPFixYoEmTJmnp0qWKiPjjX5VdunRRly5dnMtdu3ZV+/bt9frrr+u1115za2fChAlKTU11Lufl5RFyUK31uDpCjRvU0pMffy1JujE+Sn1aRhFuAJiGVwNOeHi4AgIC3EZrcnNz3UZ1zrdo0SKNHDlSH374oXr37l1u3Ro1aqhjx45ljuBYrVZZrcwrAEqLDPsjzAxKiFVIUIAPewMAlcurl6iCg4OVkJCgjIwMl/KMjAwlJSWVud2CBQt0zz336IMPPtDNN998wd9jGIZ27typ6OjoS+4zAADwf16/RJWamqqUlBR16NBBiYmJmj17trKzszV69GhJZy8fHTx4UHPnzpV0NtzcfffdevXVV9WlSxfn6E9oaKhsNpskafLkyerSpYuaNWumvLw8vfbaa9q5c6feeOMNb+8OAADwA14POEOGDNHRo0c1ZcoU5eTkKD4+XitWrFBcXJwkKScnx+WZOG+99ZYKCws1ZswYjRkzxlk+YsQIpaenS5KOHz+uBx54QHa7XTabTe3atdP69evVqVMnb+8OAADwAxbDMMq6Y9S08vLyZLPZ5HA4FBYWVmnt/l5QqFbPnn3q8ndT+qpmcOXlxx9yT+jwiYJKaw84faZI96ZvlSS9e09H5uAAqDS1rYFqc6Wt0tutyPmbd1EBAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADTIeAAAADT8fq7qIBLleM4pbVZh3X4ZL4a1raqZ/OGiraF+rpbAIAqjICDKm1tVq5mb/hRFkmGJIuk5bsP6cHuTdXj6ggf9w4AUFVxiQpVVo7jlGZv+FGGIRUbcvn51vofZXec9nUXAQBVFAEHVdbarMOylLHOImlNVu7l7A4AwI8QcFBlHT6ZL6OMdca59QAAeELAQZXVsLa13BGchrWtl7M7AAA/QsBBldWzecNyR3B6NWeSMQDAMwIOqqxoW6ge7N5UllLDODUsksUiPdi9qaJsIb7rHACgSuM2cVRpPa6OUOMGtfTkx19Lkm6Mj1KfllGEGwBAuQg4qPIiw/4IM4MSYhUSFODD3gAA/AGXqAAAgOkQcAAAgOlwiQoAqiHe8QazI+AAQDXDO95QHXCJCgCqEd7xhuqCgAMA1QjveEN1QcABgGqEd7yhuiDgAEA1wjveUF0QcACgGuEdb6guCDgAUI3wjjdUF9wmDgDVDO94Q3VAwAGAaoh3vMHsuEQFAABMh4ADAABMh0tUAFCJeMcTUDUQcACgkvCOJ6DquCyXqGbOnKkmTZooJCRECQkJ2rBhQ7n1161bp4SEBIWEhKhp06Z688033eosXrxYrVq1ktVqVatWrbRkyRJvdR8ALoh3PAFVi9dHcBYtWqRx48Zp5syZ6tq1q9566y3169dP3333nRo1auRWf9++fbrppps0atQozZs3T//3f/+nhx9+WA0bNtTtt98uScrMzNSQIUP0/PPPa+DAgVqyZIkGDx6sjRs3qnPnzhfdt98LChVYUFhp+/p7qbZ+r8R2JenUmSKdPlNUqW36i/xS+51fTY+BN3BcK9fqPb84R27OZ5GUsceuQQmxl7lXZePPH94UWMNS6edBqWLnVothGGU91LJSdO7cWe3bt9esWbOcZS1bttSAAQOUlpbmVn/8+PFatmyZ9uzZ4ywbPXq0du3apczMTEnSkCFDlJeXp5UrVzrr3HjjjapXr54WLFjg1mZ+fr7y8/94v0peXp5iY2MVO+5/VcNas1L2EwAAeFdx/u/aP32wHA6HwsLCyq3r1UtUBQUF2r59u5KTk13Kk5OTtWnTJo/bZGZmutXv27evtm3bpjNnzpRbp6w209LSZLPZnJ/Y2KrzrygAAFD5vHqJ6siRIyoqKlJkZKRLeWRkpOx2u8dt7Ha7x/qFhYU6cuSIoqOjy6xTVpsTJkxQamqqc7lkBOfLp2+4YAKsKv5z+KSOnCiotPbyzxRp9PyvJElvDm8vKw/5qhQcV+/wh+Nqzzutp5Z8LU9j4haLlDawjcvD9XDx/OHPvwR9Pau2NVCtr6j882teXp6ip19c3ctyF5XF4vruWsMw3MouVP/88oq0abVaZbW6vyG3ZnCgagb7x41koUEBXnvSqNWLbVdnHFfvqKrHtXGDWnqwe1O9td71LipDZ9/xFNeglm87aBJV9c/fk+rc15CgAK+cXwsr0KZXz+7h4eEKCAhwG1nJzc11G4EpERUV5bF+YGCgGjRoUG6dstoEgMuhx9URah4ZpjVZuc7n4PRqHsE7ngAf8OocnODgYCUkJCgjI8OlPCMjQ0lJSR63SUxMdKv/2WefqUOHDgoKCiq3TlltAsDlEmUL0Z2dGumR65vpzk6NCDeAj3j9+kxqaqpSUlLUoUMHJSYmavbs2crOztbo0aMlnZ0fc/DgQc2dO1fS2TumZsyYodTUVI0aNUqZmZmaM2eOy91Rjz76qLp3765p06bptttu09KlS7V69Wpt3LjR27sDAAD8gNcDzpAhQ3T06FFNmTJFOTk5io+P14oVKxQXFydJysnJUXZ2trN+kyZNtGLFCj322GN64403FBMTo9dee835DBxJSkpK0sKFC/XMM89o4sSJuuqqq7Ro0aIKPQMHAACY12WZYfvwww/r4Ycf9rguPT3draxHjx766quvym3zjjvu0B133FEZ3QMAACbD28QBAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAFWaPe+08/uH2/crx3HKh72BvyDgAACqrLVZuXpqydfO5VXf2PX4h7u07vtcH/YK/oCAAwCoknIcpzR7w48yjD/Kig3JMKS31v8ou+N02Rv7CKNNVQcBBwBQJa3NOixLGessktZkVa1RHEabqhYCDgCgSjp8Ml9GGeuMc+urCn8cbTI7Ag5QiRieBipPw9rWckdwGta2Xs7ulMvfRpuqAwIOUEkYngYqV8/mDcsdwenVPOJydqdc/jTaVF0QcIBKwPA0UPmibaF6sHtTWSxSDYtcfj7YvamibCG+7qKTP402VReBvu4AfOP8Sym9W0Yq2hbqwx75t5LhaU//gisZnr6zU6PL3CvA//W4OkLNI8O0JitXh0/mq2Ftq3o1j6hS4UY6O9q0fPchj+uq2mhTdUHAqYbWZuVq9oYfncurvrFr5Td2Pdi9qXpczf+EfwbD04D3RNlCqvw/EEpGm95a/6PzHzslP6vaaFN1QcCpZsq6lCKdvZTSPDKM/xH/hJLh6bJGcBieBszPX0abqgvm4FQzzPT3Dn+aDAnAe0pGmx65vpnu7NSoSocbs9/1ScCpZriU4h3+NBkSAKrDXZ9coqpmuJTiPQxPA/AH1WWqAgGnmmGmv3f5w2RIANVbdbnrk0tU1QyXUgCgeqsuUxUYwamGuJQCANVXdZmqQMCppriUAgDVU3WZqsAlKgAAqpHqMlWBERwAAKqZ6jBVgYADAEA1ZPapClyiAgAApkPAAQAApkPAAQAApkPAAQAApkPAAQAApkPAAQAApkPAAQAApuPVgHPs2DGlpKTIZrPJZrMpJSVFx48fL7P+mTNnNH78eLVp00a1atVSTEyM7r77bh065PpI6Z49e8pisbh8hg4d6s1dAQAAfsSrAWfYsGHauXOnVq1apVWrVmnnzp1KSUkps/7vv/+ur776ShMnTtRXX32ljz/+WN9//71uvfVWt7qjRo1STk6O8/PWW295c1cAAIAf8dqTjPfs2aNVq1Zp8+bN6ty5syTp7bffVmJiorKystS8eXO3bWw2mzIyMlzKXn/9dXXq1EnZ2dlq1OiPJy7WrFlTUVFR3uo+AADwY14bwcnMzJTNZnOGG0nq0qWLbDabNm3adNHtOBwOWSwW1a1b16V8/vz5Cg8PV+vWrfXEE0/oxIkTZbaRn5+vvLw8lw8AADAvr43g2O12RUS4v3I9IiJCdrv9oto4ffq0nnzySQ0bNkxhYWHO8uHDh6tJkyaKiorSN998owkTJmjXrl1uoz8l0tLSNHny5D+3IwB8zp532vn9w+371btlpKJtoT7sEYCqrsIjOJMmTXKb4Hv+Z9u2bZIki8Xitr1hGB7Lz3fmzBkNHTpUxcXFmjlzpsu6UaNGqXfv3oqPj9fQoUP10UcfafXq1frqq688tjVhwgQ5HA7nZ//+/RXdbQA+sjYrV08t+dq5vOobux7/cJfWfZ/rw14BqOoqPIIzduzYC96x1LhxY+3evVu//PKL27rDhw8rMjKy3O3PnDmjwYMHa9++ffriiy9cRm88ad++vYKCgrR37161b9/ebb3VapXVai23DQBVT47jlGZv+FGG8UdZ8bnvb63/Uc0jwxRlC/FN5wBUaRUOOOHh4QoPD79gvcTERDkcDn355Zfq1KmTJGnLli1yOBxKSkoqc7uScLN3716tWbNGDRo0uODv+vbbb3XmzBlFR0df/I4AqPLWZh2WRZLhYZ1F0pqsXN3ZqZGHtQCqO69NMm7ZsqVuvPFGjRo1Sps3b9bmzZs1atQo9e/f3+UOqhYtWmjJkiWSpMLCQt1xxx3atm2b5s+fr6KiItntdtntdhUUFEiS/vOf/2jKlCnatm2bfvrpJ61YsUKDBg1Su3bt1LVrV2/tDgAfOHwy32O4kc6GnsMn8y9ndwD4Ea8+B2f+/Plq06aNkpOTlZycrLZt2+r99993qZOVlSWHwyFJOnDggJYtW6YDBw7o2muvVXR0tPNTcudVcHCwPv/8c/Xt21fNmzfXI488ouTkZK1evVoBAQHe3B0Al1nD2laVNWPPcm49AHjitbuoJKl+/fqaN29euXWMUhfXGzdu7LLsSWxsrNatW1cp/QNQtfVs3lDLdx/yuM6Q1Ku5+52aACDxLioAVVi0LVQPdm8qi0WqYZHLzwe7N2WCMYAyeXUEBwAuVY+rI9Q8MkxrsnJ1+GS+Gta2qlfzCMINgHIRcABUeVG2EO6WAlAhXKICAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmE+jrDuDiNKhllTUwQJJUbBgqNiSj1E+jpLxYMmTIMM4ul/wsNiTp7M/i4rP1DcOHOwQAgBcRcPxEvVrBqlcruFLbNM4LSsXnEo/HAFUqKHkKUIahUnVKAlTJ9qXKSy2XhLI/2v9jGwAALgUBpxqzWCwKsEiSxdddcVMyynR+MCoqWS4+u66o1PqSAFZcbPzx/VyAKip2bavYMFRU7B7wGNUCAHMg4KBKqlHjbOgKuMzhyz0c/flQVexhlMvT6BjhCgAqHwEHKKVGDYtq+HBE6/ygJMktcJUORcWGIZ27vOfpMmDpQFV6nlbpwHWmqFhnikhXAMyFgANUIb4KWIVFxcovLPkUKf9Mqe+FxSokAAHwMwQcAAoMqKHAgBqqZfW8/kxJADpT5DEIFTEzHEAVQ8ABcEFBATUUFFBDta2e/8o4U1Ss06XDz3nfyT8ALjevPujv2LFjSklJkc1mk81mU0pKio4fP17uNvfcc48sFovLp0uXLi518vPz9de//lXh4eGqVauWbr31Vh04cMCLewKgPEEBNVQnJEjhta26om6omjasrZbRYbo2tq46N22ghLh6ir8iTP8VUVux9UMVEWaVLTRIIUE1ZKl6N/EBMAGvjuAMGzZMBw4c0KpVqyRJDzzwgFJSUrR8+fJyt7vxxhv17rvvOpeDg12f/zJu3DgtX75cCxcuVIMGDfT444+rf//+2r59uwICAip/RwBckuDAGgoOrKE6Ie7rDMNQwblLYKfPuM//KSgs5g4zABXmtYCzZ88erVq1Sps3b1bnzp0lSW+//bYSExOVlZWl5s2bl7mt1WpVVFSUx3UOh0Nz5szR+++/r969e0uS5s2bp9jYWK1evVp9+/at/J0B4DUWi0XWwABZAwMUFhLktt4wjHInQBOAAHjitYCTmZkpm83mDDeS1KVLF9lsNm3atKncgLN27VpFRESobt266tGjh1544QVFRERIkrZv364zZ84oOTnZWT8mJkbx8fHatGmTx4CTn5+v/Px853JeXl5l7CKAy8BisSgkKEAhQQGSPAegAuck6D+CT8n3gsJi5gAB1ZDXAo7dbneGktIiIiJkt9vL3K5fv34aNGiQ4uLitG/fPk2cOFHXX3+9tm/fLqvVKrvdruDgYNWrV89lu8jIyDLbTUtL0+TJky9thwBUSaVHgOThEpgkFZQa8Sk9CbqgkLvAALOqcMCZNGnSBcPC1q1bJZ39i+d8hmF4LC8xZMgQ5/f4+Hh16NBBcXFx+uSTT/SXv/ylzO3Ka3fChAlKTU11Lufl5Sk2NrbcfQBgHs45QGWsL+s2+JIAxHOAAP9T4YAzduxYDR06tNw6jRs31u7du/XLL7+4rTt8+LAiIyMv+vdFR0crLi5Oe/fulSRFRUWpoKBAx44dcxnFyc3NVVJSksc2rFarrNYyHvABoNq70G3wnh6EWFD0x2UwngQNVD0VDjjh4eEKDw+/YL3ExEQ5HA59+eWX6tSpkyRpy5YtcjgcZQYRT44ePar9+/crOjpakpSQkKCgoCBlZGRo8ODBkqScnBx98803eumllyq6OwBwQRd6EGJRseEyAbqgsFhnX45R9ZVM0Dacy8Z5y86azuXz1xml1v1Rxzhv+7K3qejvLnlliSH39oESFsPw3n8e/fr106FDh/TWW29JOnubeFxcnMtt4i1atFBaWpoGDhyokydPatKkSbr99tsVHR2tn376SU899ZSys7O1Z88e1alzdoD5oYce0r///W+lp6erfv36euKJJ3T06NGLvk08Ly9PNptNDodDYWFh3tl5AMBlYZS8g02uwceQ4Ra6PNXTuXXFhvv2Kh2qzt/+Yto+W8MlnJ0rcb43rnQ/z2/vbN0Lt1k6HFaF0FfbGqg2V9oqvd2KnL+9+hyc+fPn65FHHnHe8XTrrbdqxowZLnWysrLkcDgkSQEBAfr66681d+5cHT9+XNHR0erVq5cWLVrkDDeS9M9//lOBgYEaPHiwTp06pRtuuEHp6ek8AwcAqqGzD4V1LvmyK1WGSwCT3IObyh5x8xiozgtxKqPNkkAYUMP3fw5eHcGpqhjBAQDA/1Tk/O3VVzUAAAD4AgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYjlcDzrFjx5SSkiKbzSabzaaUlBQdP3683G0sFovHz8svv+ys07NnT7f1Q4cO9eauAAAAPxLozcaHDRumAwcOaNWqVZKkBx54QCkpKVq+fHmZ2+Tk5Lgsr1y5UiNHjtTtt9/uUj5q1ChNmTLFuRwaGlqJPQcAAP7MawFnz549WrVqlTZv3qzOnTtLkt5++20lJiYqKytLzZs397hdVFSUy/LSpUvVq1cvNW3a1KW8Zs2abnUBAAAkL16iyszMlM1mc4YbSerSpYtsNps2bdp0UW388ssv+uSTTzRy5Ei3dfPnz1d4eLhat26tJ554QidOnCiznfz8fOXl5bl8AACAeXltBMdutysiIsKtPCIiQna7/aLaeO+991SnTh395S9/cSkfPny4mjRpoqioKH3zzTeaMGGCdu3apYyMDI/tpKWlafLkyRXfCQAA4JcqPIIzadKkMicCl3y2bdsm6eyE4fMZhuGx3JN33nlHw4cPV0hIiEv5qFGj1Lt3b8XHx2vo0KH66KOPtHr1an311Vce25kwYYIcDofzs3///gruNQAA8CcVHsEZO3bsBe9Yaty4sXbv3q1ffvnFbd3hw4cVGRl5wd+zYcMGZWVladGiRRes2759ewUFBWnv3r1q376923qr1Sqr1XrBdgAAgDlUOOCEh4crPDz8gvUSExPlcDj05ZdfqlOnTpKkLVu2yOFwKCkp6YLbz5kzRwkJCbrmmmsuWPfbb7/VmTNnFB0dfeEdAAAApue1ScYtW7bUjTfeqFGjRmnz5s3avHmzRo0apf79+7vcQdWiRQstWbLEZdu8vDx9+OGHuv/++93a/c9//qMpU6Zo27Zt+umnn7RixQoNGjRI7dq1U9euXb21OwAAwI949UF/8+fPV5s2bZScnKzk5GS1bdtW77//vkudrKwsORwOl7KFCxfKMAzdeeedbm0GBwfr888/V9++fdW8eXM98sgjSk5O1urVqxUQEODN3QEAAH7CYhiG4etOXG55eXmy2WxyOBwKCwvzdXcAAMBFqMj5m3dRAQAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0/FqwHnhhReUlJSkmjVrqm7duhe1jWEYmjRpkmJiYhQaGqqePXvq22+/damTn5+vv/71rwoPD1etWrV066236sCBA17YAwAA4I+8GnAKCgo0aNAgPfTQQxe9zUsvvaRXXnlFM2bM0NatWxUVFaU+ffroxIkTzjrjxo3TkiVLtHDhQm3cuFEnT55U//79VVRU5I3dAAAAfsZiGIbh7V+Snp6ucePG6fjx4+XWMwxDMTExGjdunMaPHy/p7GhNZGSkpk2bpgcffFAOh0MNGzbU+++/ryFDhkiSDh06pNjYWK1YsUJ9+/a9YH/y8vJks9nkcDgUFhZ2yfsHAAC8ryLn78DL1KeLsm/fPtntdiUnJzvLrFarevTooU2bNunBBx/U9u3bdebMGZc6MTExio+P16ZNmzwGnPz8fOXn5zuXHQ6HpLMHCgAA+IeS8/bFjM1UqYBjt9slSZGRkS7lkZGR+vnnn511goODVa9ePbc6JdufLy0tTZMnT3Yrj42NrYxuAwCAy+jEiROy2Wzl1qlwwJk0aZLHsFDa1q1b1aFDh4o27WSxWFyWDcNwKztfeXUmTJig1NRU53JxcbF+/fVXNWjQ4ILtVlReXp5iY2O1f/9+Ln9VIo6rd3BcvYPjWvk4pt7hb8fVMAydOHFCMTExF6xb4YAzduxYDR06tNw6jRs3rmizkqSoqChJZ0dpoqOjneW5ubnOUZ2oqCgVFBTo2LFjLqM4ubm5SkpK8tiu1WqV1Wp1KbvYu7r+rLCwML/4j8XfcFy9g+PqHRzXyscx9Q5/Oq4XGrkpUeGAEx4ervDw8Ap36GI0adJEUVFRysjIULt27SSdvRNr3bp1mjZtmiQpISFBQUFBysjI0ODBgyVJOTk5+uabb/TSSy95pV8AAMC/eHUOTnZ2tn799VdlZ2erqKhIO3fulCT913/9l2rXri1JatGihdLS0jRw4EBZLBaNGzdOU6dOVbNmzdSsWTNNnTpVNWvW1LBhwySdTW4jR47U448/rgYNGqh+/fp64okn1KZNG/Xu3dubuwMAAPyEVwPOs88+q/fee8+5XDIqs2bNGvXs2VOSlJWV5byrSZL+3//7fzp16pQefvhhHTt2TJ07d9Znn32mOnXqOOv885//VGBgoAYPHqxTp07phhtuUHp6ugICAry5OxfFarXqueeec7skhkvDcfUOjqt3cFwrH8fUO8x8XC/Lc3AAAAAuJ95FBQAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAU4lmzpypJk2aKCQkRAkJCdqwYYOvu+TX0tLS1LFjR9WpU0cREREaMGCAsrKyfN0t00lLS3M+gwqX5uDBg7rrrrvUoEED1axZU9dee622b9/u6275tcLCQj3zzDNq0qSJQkND1bRpU02ZMkXFxcW+7ppfWb9+vW655RbFxMTIYrHoX//6l8t6wzA0adIkxcTEKDQ0VD179tS3337rm85WEgJOJVm0aJHGjRunp59+Wjt27FC3bt3Ur18/ZWdn+7prfmvdunUaM2aMNm/erIyMDBUWFio5OVm//fabr7tmGlu3btXs2bPVtm1bX3fF7x07dkxdu3ZVUFCQVq5cqe+++07/+Mc/vP5aGLObNm2a3nzzTc2YMUN79uzRSy+9pJdfflmvv/66r7vmV3777Tddc801mjFjhsf1L730kl555RXNmDFDW7duVVRUlPr06aMTJ05c5p5WIgOVolOnTsbo0aNdylq0aGE8+eSTPuqR+eTm5hqSjHXr1vm6K6Zw4sQJo1mzZkZGRobRo0cP49FHH/V1l/za+PHjjeuuu87X3TCdm2++2bjvvvtcyv7yl78Yd911l4965P8kGUuWLHEuFxcXG1FRUcaLL77oLDt9+rRhs9mMN9980wc9rByM4FSCgoICbd++XcnJyS7lycnJ2rRpk496ZT4lT7yuX7++j3tiDmPGjNHNN9/MK04qybJly9ShQwcNGjRIERERateund5++21fd8vvXXfddfr888/1/fffS5J27dqljRs36qabbvJxz8xj3759stvtLucwq9WqHj16+PU5zKuvaqgujhw5oqKiIucbz0tERkbKbrf7qFfmYhiGUlNTdd111yk+Pt7X3fF7Cxcu1FdffaWtW7f6uium8eOPP2rWrFlKTU3VU089pS+//FKPPPKIrFar7r77bl93z2+NHz9eDodDLVq0UEBAgIqKivTCCy/ozjvv9HXXTKPkPOXpHPbzzz/7okuVgoBTiSwWi8uyYRhuZfhzxo4dq927d2vjxo2+7orf279/vx599FF99tlnCgkJ8XV3TKO4uFgdOnTQ1KlTJZ199963336rWbNmEXAuwaJFizRv3jx98MEHat26tXbu3Klx48YpJiZGI0aM8HX3TMVs5zACTiUIDw9XQECA22hNbm6uWyJGxf31r3/VsmXLtH79el155ZW+7o7f2759u3Jzc5WQkOAsKyoq0vr16zVjxgzl5+dXiRfX+pvo6Gi1atXKpaxly5ZavHixj3pkDv/93/+tJ598UkOHDpUktWnTRj///LPS0tIIOJUkKipK0tmRnOjoaGe5v5/DmINTCYKDg5WQkKCMjAyX8oyMDCUlJfmoV/7PMAyNHTtWH3/8sb744gs1adLE110yhRtuuEFff/21du7c6fx06NBBw4cP186dOwk3f1LXrl3dHmPw/fffKy4uzkc9Mofff/9dNWq4nqoCAgK4TbwSNWnSRFFRUS7nsIKCAq1bt86vz2GM4FSS1NRUpaSkqEOHDkpMTNTs2bOVnZ2t0aNH+7prfmvMmDH64IMPtHTpUtWpU8c5Qmaz2RQaGurj3vmvOnXquM1jqlWrlho0aMD8pkvw2GOPKSkpSVOnTtXgwYP15Zdfavbs2Zo9e7avu+bXbrnlFr3wwgtq1KiRWrdurR07duiVV17Rfffd5+uu+ZWTJ0/qhx9+cC7v27dPO3fuVP369dWoUSONGzdOU6dOVbNmzdSsWTNNnTpVNWvW1LBhw3zY60vk25u4zOWNN94w4uLijODgYKN9+/bcznyJJHn8vPvuu77umulwm3jlWL58uREfH29YrVajRYsWxuzZs33dJb+Xl5dnPProo0ajRo2MkJAQo2nTpsbTTz9t5Ofn+7prfmXNmjUe/z4dMWKEYRhnbxV/7rnnjKioKMNqtRrdu3c3vv76a992+hJZDMMwfJStAAAAvII5OAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHT+P3RAy5mtsttxAAAAAElFTkSuQmCC",
302
- "text/plain": [
303
- "<Figure size 640x480 with 1 Axes>"
304
- ]
305
- },
306
- "metadata": {},
307
- "output_type": "display_data"
308
- },
309
- {
310
- "data": {
311
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7FUlEQVR4nO3de1xUdeL/8feIMHiBSUVuGyK6indXMQXM1DS8t13VTLJdJc3MiNo1s7z1S1bb3C6mZqvRxVu7ZlqLFprXBfKuWS7ZpqIGoaaDt1Dx/P7wy2zjgIoywhxez8fjPGw+8zmf+XzOWPPunM/5HIthGIYAAABMpEp5dwAAAKCsEXAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHCAmyAlJUUWi8WxVa1aVbfeeqv+8Ic/6PDhw2X6WVOmTNEnn3ziUr527VpZLBatXbu21G1ez77Lly+XxWJRnTp1VFBQUOrP/LX09HRNnDhRJ06cuKF2PIXFYtHEiRNLvd+ZM2c0ceLEYr+nor+D+/fvv+H+AZ6AgAPcRO+++64yMjKUlpamhIQELVy4UJ06ddLp06fL7DNKCjht27ZVRkaG2rZtW2afdSVz586VJP3888/F9qc00tPTNWnSpEoTcK7XmTNnNGnSpGIDTp8+fZSRkaGQkJCb3zGgHBBwgJuoRYsWio6OVteuXTVhwgT9+c9/1r59+244AEjS2bNnr/i+v7+/oqOj5e/vf8OfdTW5ublKTU3VnXfeKV9fX0fYMbMzZ86U+N7VvpuboW7duoqOjpbVai3vrgA3BQEHKEfR0dGSpAMHDkiSJk2apA4dOqh27dry9/dX27ZtNXfuXF3+TNz69eurb9+++vjjj9WmTRv5+vpq0qRJslgsOn36tN577z3H5bAuXbpIKv4y05YtWzRw4EDVr19f1apVU/369fXQQw85+nO93nvvPV24cEFPP/207rvvPq1evdqlzf3798tisSglJcVl/19fopk4caL+9Kc/SZIiIiIc4yoax8WLFzVt2jQ1adJEVqtVgYGBeuSRR3To0CGXdleuXKlu3brJZrOpevXqatq0qZKTk53qLF++XDExMapevbr8/Px01113KSMjw6nOxIkTZbFYtG3bNj3wwAOqVauWGjZsKKnk70a6FPyGDx+uW2+9VT4+PoqIiNCkSZN04cKFKx7PI0eOaOTIkWrWrJlq1qypwMBA3XnnndqwYYPT8axbt64kOf4uWCwWPfroo5JKvkQ1b948tW7dWr6+vqpdu7buvfde7dmzx6nOo48+qpo1a+r7779X7969VbNmTYWFhemZZ5654cuPgLtULe8OAJXZ999/L0mOH6b9+/dr+PDhqlevniQpMzNTTz75pA4fPqzx48c77btt2zbt2bNHL7zwgiIiIlSjRg3dc889uvPOO9W1a1e9+OKLknTFMzb79+9XZGSkBg4cqNq1aysnJ0ezZs3Sbbfdpm+//VYBAQHXNa558+YpJCREvXr1UrVq1bRgwQKlpKRowoQJpW5r2LBh+vnnn/Xmm2/q448/dlxiadasmSTp8ccf15w5czRq1Cj17dtX+/fv14svvqi1a9dq27ZtjjHMnTtXCQkJ6ty5s2bPnq3AwEB999132r17t+OzFixYoIcfflhxcXFauHChCgoKNG3aNHXp0kWrV6/W7bff7tS3++67TwMHDtSIESOcLjMW993k5uaqffv2qlKlisaPH6+GDRsqIyND/+///T/t379f7777bonH4Oeff5YkTZgwQcHBwTp16pSWLl3q6FeXLl0UEhKilStXqmfPnho6dKiGDRsm6X9/t4qTnJys559/Xg899JCSk5N17NgxTZw4UTExMdq8ebMaNWrkqHv+/HndfffdGjp0qJ555hmtX79eL730kmw2m8vfTaBCMAC43bvvvmtIMjIzM43z588bJ0+eND777DOjbt26hp+fn5Gbm+uyT2FhoXH+/Hlj8uTJRp06dYyLFy863gsPDze8vLyMrKwsl/1q1KhhDBkyxKV8zZo1hiRjzZo1JfbzwoULxqlTp4waNWoYr7/+eqn2LbJ+/XpDkvHcc88ZhmEYFy9eNCIiIozw8HCnMezbt8+QZLz77rsubUgyJkyY4Hj9yiuvGJKMffv2OdXbs2ePIckYOXKkU/lXX31lSDKef/55wzAM4+TJk4a/v79x++23O/Xh1woLC43Q0FCjZcuWRmFhoaP85MmTRmBgoBEbG+somzBhgiHJGD9+vEs7JX03w4cPN2rWrGkcOHDAqfyvf/2rIcn45ptvShz/5S5cuGCcP3/e6Natm3Hvvfc6yo8cOVLivkV/B4uO4fHjx41q1aoZvXv3dqqXnZ1tWK1WY9CgQY6yIUOGGJKMjz76yKlu7969jcjIyBL7CZQnLlEBN1F0dLS8vb3l5+envn37Kjg4WCtWrFBQUJAk6csvv1T37t1ls9nk5eUlb29vjR8/XseOHVNeXp5TW61atVLjxo1vqD+nTp3SmDFj9Nvf/lZVq1ZV1apVVbNmTZ0+fdrlMsW1Kppv88c//lGSHJdJDhw4oNWrV99Qfy+3Zs0aSXJchinSvn17NW3a1PF56enpys/P18iRI2WxWIptKysrSz/++KPi4+NVpcr//tNYs2ZN3X///crMzHSZZ3P//fcX21Zx381nn32mrl27KjQ0VBcuXHBsvXr1kiStW7fuimOdPXu22rZtK19fX1WtWlXe3t5avXr1dX9PGRkZOnv2rMuxCwsL05133unyXVksFvXr189lnDd6ORNwFwIOcBO9//772rx5s7Zv364ff/xRu3btUseOHSVJmzZtUlxcnCTpnXfe0b///W9t3rxZ48aNk+Q6UbUs7oYZNGiQZsyYoWHDhunzzz/Xpk2btHnzZtWtW/e6JsaePHlS//jHP9S+fXvVrVtXJ06c0IkTJ3TvvffKYrGU+WTjY8eOSSr+WISGhjreP3LkiCTp1ltvve62Ll68qOPHjzuVl/QdFFf+008/6dNPP5W3t7fT1rx5c0nS0aNHS+zb9OnT9fjjj6tDhw5asmSJMjMztXnzZvXs2fO6JzBf67ErUr16dfn6+jqVWa1W/fLLL9f1+YC7MQcHuImaNm2qdu3aFfveokWL5O3trc8++8zph6SkO6xKOhNxrex2uz777DNNmDBBzz33nKO8oKDAMeejtBYuXKgzZ85o06ZNqlWrlsv7S5cu1fHjx1WrVi3HGC+fpHr5D+uV1KlTR5KUk5PjEl5+/PFHx/ybonkoxU08Lq6ty/3444+qUqWKy5hK+g6KKw8ICFCrVq308ssvF7tPaGhoiX378MMP1aVLF82aNcup/OTJkyXuczVXG+/1zr8CKgrO4AAVRNECgF5eXo6ys2fP6oMPPihVO1ar9Zr+r95iscgwDJfbhv/+97+rsLCwVJ9ZZO7cufLz89Pq1au1Zs0ap+2VV15RQUGB5s+fL0kKCgqSr6+vdu3a5dTGsmXLih2T5HoW684775R0KQD82ubNm7Vnzx5169ZNkhQbGyubzabZs2e73JFWJDIyUr/5zW+0YMECpzqnT5/WkiVLHHdWXa++fftq9+7datiwodq1a+eyXSngWCwWl+9p165dLnd3lXScihMTE6Nq1aq5HLtDhw7pyy+/dBw7wFNxBgeoIPr06aPp06dr0KBBeuyxx3Ts2DH99a9/LfW6JS1bttTatWv16aefKiQkRH5+foqMjHSp5+/vrzvuuEOvvPKKAgICVL9+fa1bt05z587VLbfcUur+7969W5s2bdLjjz/uCB6/1rFjR7366quaO3euRo0aJYvFosGDB2vevHlq2LChWrdurU2bNmnBggXFjkmSXn/9dQ0ZMkTe3t6KjIxUZGSkHnvsMb355puqUqWKevXq5biLKiwsTE8//bSkS/NoXn31VQ0bNkzdu3dXQkKCgoKC9P3332vnzp2aMWOGqlSpomnTpunhhx9W3759NXz4cBUUFOiVV17RiRMn9Je//KXUx+TXJk+erLS0NMXGxmr06NGKjIzUL7/8ov379ys1NVWzZ88u8RJa37599dJLL2nChAnq3LmzsrKyNHnyZEVERDjdYu7n56fw8HAtW7ZM3bp1U+3atR3f7eVuueUWvfjii3r++ef1yCOP6KGHHtKxY8c0adIk+fr6Xtcdb0CFUs6TnIFKoegOls2bN1+x3rx584zIyEjDarUaDRo0MJKTk425c+e63EEUHh5u9OnTp9g2duzYYXTs2NGoXr26Icno3LmzYRjF3wl16NAh4/777zdq1apl+Pn5GT179jR2795thIeHO92JdS13USUmJhqSjB07dpRY57nnnjMkGVu3bjUMwzDsdrsxbNgwIygoyKhRo4bRr18/Y//+/cXeCTR27FgjNDTUqFKlilNfCgsLjalTpxqNGzc2vL29jYCAAGPw4MHGwYMHXT4/NTXV6Ny5s1GjRg2jevXqRrNmzYypU6c61fnkk0+MDh06GL6+vkaNGjWMbt26Gf/+97+d6hTdRXXkyBGXz7jSd3PkyBFj9OjRRkREhOHt7W3Url3biIqKMsaNG2ecOnXKUe/y8RcUFBjPPvus8Zvf/Mbw9fU12rZta3zyySfGkCFDjPDwcKfPWLVqldGmTRvDarUakhzf4+V3URX5+9//brRq1crw8fExbDab8fvf/97pji7DuHQXVY0aNVzGU3QcgIrIYhglnK8FAADwUMzBAQAApkPAAQAApkPAAQAApuPWgLN+/Xr169dPoaGhslgs1/TE5HXr1ikqKkq+vr5q0KCBZs+e7VJnyZIlatasmaxWq5o1a6alS5e6ofcAAMBTuTXgnD59Wq1bt9aMGTOuqf6+ffvUu3dvderUSdu3b9fzzz+v0aNHa8mSJY46GRkZGjBggOLj47Vz507Fx8erf//++uqrr9w1DAAA4GFu2l1UFotFS5cu1T333FNinTFjxmj58uVOz1YZMWKEdu7c6VjQasCAAcrPz9eKFSscdXr27KlatWpp4cKFbus/AADwHBVqob+MjAzHs3iK9OjRQ3PnztX58+fl7e2tjIwMx+Jdv67z2muvldhuQUGB03LwFy9e1M8//6w6derc8HL3AADg5jAMQydPnlRoaKjTQ3GLU6ECTm5uruOpykWCgoJ04cIFHT16VCEhISXWyc3NLbHd5ORkTZo0yS19BgAAN9fBgwev+PBcqYIFHMn1IXVFV9B+XV5cnSudiRk7dqySkpIcr+12u+rVq6eDBw/K39//hvv8t7TvlJK+X4UXXa/2eVWx6NHY+nr6rsY3/DkAAFRm+fn5CgsLk5+f31XrVqiAExwc7HImJi8vT1WrVnU8+bakOpef1fk1q9Va7PN8/P39yyTgPNK5qd7b8pOqFDObyWKRhnRuKn//Gjf8OQAAwPVER3Eq1Do4MTExSktLcyr74osv1K5dO3l7e1+xTmxs7E3r5+UiAmpo6v2tVOVXx9vLYlEVizT1/laqH0C4AQDgZnLrGZxTp07p+++/d7zet2+fduzYodq1a6tevXoaO3asDh8+rPfff1/SpTumZsyYoaSkJCUkJCgjI0Nz5851ujvqqaee0h133KGpU6fq97//vZYtW6ZVq1Zp48aN7hzKVT3YLkwtfuOvXq9f6scfbq+vwR3CCTcAAJQDt57B2bJli9q0aaM2bdpIkpKSktSmTRuNHz9ekpSTk6Ps7GxH/YiICKWmpmrt2rX63e9+p5deeklvvPGG7r//fked2NhYLVq0SO+++65atWqllJQULV68WB06dHDnUK5JeJ3/hZmkuxoTbgAAKCeV8mni+fn5stlsstvtZTIHp8iZcxfUbPznkqRvJ/dQdZ8KNcUJAACPVprf7wo1BwcAAKAsEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDpEHAAAIDp3JSAM3PmTEVERMjX11dRUVHasGFDiXUfffRRWSwWl6158+aOOikpKcXW+eWXX27GcAAAQAXn9oCzePFiJSYmaty4cdq+fbs6deqkXr16KTs7u9j6r7/+unJychzbwYMHVbt2bT344INO9fz9/Z3q5eTkyNfX193DAQAAHsDtAWf69OkaOnSohg0bpqZNm+q1115TWFiYZs2aVWx9m82m4OBgx7ZlyxYdP35cf/jDH5zqWSwWp3rBwcHuHgoAAPAQbg04586d09atWxUXF+dUHhcXp/T09GtqY+7cuerevbvCw8Odyk+dOqXw8HDdeuut6tu3r7Zv315iGwUFBcrPz3faAACAebk14Bw9elSFhYUKCgpyKg8KClJubu5V98/JydGKFSs0bNgwp/ImTZooJSVFy5cv18KFC+Xr66uOHTtq7969xbaTnJwsm83m2MLCwq5/UAAAoMK7KZOMLRaL02vDMFzKipOSkqJbbrlF99xzj1N5dHS0Bg8erNatW6tTp0766KOP1LhxY7355pvFtjN27FjZ7XbHdvDgweseCwAAqPiqurPxgIAAeXl5uZytycvLczmrcznDMDRv3jzFx8fLx8fninWrVKmi2267rcQzOFarVVartXSdBwAAHsutZ3B8fHwUFRWltLQ0p/K0tDTFxsZecd9169bp+++/19ChQ6/6OYZhaMeOHQoJCbmh/gIAAHNw6xkcSUpKSlJ8fLzatWunmJgYzZkzR9nZ2RoxYoSkS5ePDh8+rPfff99pv7lz56pDhw5q0aKFS5uTJk1SdHS0GjVqpPz8fL3xxhvasWOH3nrrLXcPBwAAeAC3B5wBAwbo2LFjmjx5snJyctSiRQulpqY67orKyclxWRPHbrdryZIlev3114tt88SJE3rssceUm5srm82mNm3aaP369Wrfvr27hwMAADyAxTAMo7w7cbPl5+fLZrPJbrfL39+/zNo9c+6Cmo3/XJL07eQequ7j9vwIAEClUZrfb55FBQAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATOemBJyZM2cqIiJCvr6+ioqK0oYNG0qsu3btWlksFpftP//5j1O9JUuWqFmzZrJarWrWrJmWLl3q7mEAAAAP4faAs3jxYiUmJmrcuHHavn27OnXqpF69eik7O/uK+2VlZSknJ8exNWrUyPFeRkaGBgwYoPj4eO3cuVPx8fHq37+/vvrqK3cPBwAAeACLYRiGOz+gQ4cOatu2rWbNmuUoa9q0qe655x4lJye71F+7dq26du2q48eP65Zbbim2zQEDBig/P18rVqxwlPXs2VO1atXSwoULr9qn/Px82Ww22e12+fv7l35QJThz7oKajf9ckvTt5B6q7lO1zNoGAKCyK83vt1vP4Jw7d05bt25VXFycU3lcXJzS09OvuG+bNm0UEhKibt26ac2aNU7vZWRkuLTZo0ePEtssKChQfn6+0wYAAMzLrQHn6NGjKiwsVFBQkFN5UFCQcnNzi90nJCREc+bM0ZIlS/Txxx8rMjJS3bp10/r16x11cnNzS9VmcnKybDabYwsLC7vBkQEAgIrsplxDsVgsTq8Nw3ApKxIZGanIyEjH65iYGB08eFB//etfdccdd1xXm2PHjlVSUpLjdX5+PiEHAAATc+sZnICAAHl5ebmcWcnLy3M5A3Ml0dHR2rt3r+N1cHBwqdq0Wq3y9/d32gAAgHm5NeD4+PgoKipKaWlpTuVpaWmKjY295na2b9+ukJAQx+uYmBiXNr/44otStQkAAMzL7ZeokpKSFB8fr3bt2ikmJkZz5sxRdna2RowYIenS5aPDhw/r/ffflyS99tprql+/vpo3b65z587pww8/1JIlS7RkyRJHm0899ZTuuOMOTZ06Vb///e+1bNkyrVq1Shs3bnT3cAAAgAdwe8AZMGCAjh07psmTJysnJ0ctWrRQamqqwsPDJUk5OTlOa+KcO3dOzz77rA4fPqxq1aqpefPm+te//qXevXs76sTGxmrRokV64YUX9OKLL6phw4ZavHixOnTo4O7hAAAAD+D2dXAqItbBAQDA81SYdXAAAADKAwEHAACYDgEHAACYDgEHAACYDrNgPUTGf4+VdxcAALhmMQ3rlOvncwYHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYzk0JODNnzlRERIR8fX0VFRWlDRs2lFj3448/1l133aW6devK399fMTEx+vzzz53qpKSkyGKxuGy//PKLu4cCAAA8gNsDzuLFi5WYmKhx48Zp+/bt6tSpk3r16qXs7Oxi669fv1533XWXUlNTtXXrVnXt2lX9+vXT9u3bner5+/srJyfHafP19XX3cAAAgAeo6u4PmD59uoYOHaphw4ZJkl577TV9/vnnmjVrlpKTk13qv/baa06vp0yZomXLlunTTz9VmzZtHOUWi0XBwcFu7TsAAPBMbj2Dc+7cOW3dulVxcXFO5XFxcUpPT7+mNi5evKiTJ0+qdu3aTuWnTp1SeHi4br31VvXt29flDM+vFRQUKD8/32kDKrsc+1kt3JStN77cq4WbspVjP1veXQKAMuPWMzhHjx5VYWGhgoKCnMqDgoKUm5t7TW28+uqrOn36tPr37+8oa9KkiVJSUtSyZUvl5+fr9ddfV8eOHbVz5041atTIpY3k5GRNmjTpxgYDmMjarDzN2fCDLJIMSRZJn+76UcPvaKDOjQPLuXcAcONuyiRji8Xi9NowDJey4ixcuFATJ07U4sWLFRj4v//oRkdHa/DgwWrdurU6deqkjz76SI0bN9abb75ZbDtjx46V3W53bAcPHryxAQEeLMd+VnM2/CDDkC4acvrz7fU/KNfOZH0Ans+tAScgIEBeXl4uZ2vy8vJczupcbvHixRo6dKg++ugjde/e/Yp1q1Spottuu0179+4t9n2r1Sp/f3+nDais1mYdUUn/e2GRtCYr72Z2BwDcwq0Bx8fHR1FRUUpLS3MqT0tLU2xsbIn7LVy4UI8++qgWLFigPn36XPVzDMPQjh07FBIScsN9BszuyKkCGSW8Z/zf+wDg6dx+F1VSUpLi4+PVrl07xcTEaM6cOcrOztaIESMkXbp8dPjwYb3//vuSLoWbRx55RK+//rqio6MdZ3+qVasmm80mSZo0aZKio6PVqFEj5efn64033tCOHTv01ltvuXs4gMerW9PqmHtzOcv/vQ8Ans7tAWfAgAE6duyYJk+erJycHLVo0UKpqakKDw+XJOXk5DitifP222/rwoULeuKJJ/TEE084yocMGaKUlBRJ0okTJ/TYY48pNzdXNptNbdq00fr169W+fXt3DwfweF0i6+rTXT8W+54hqWskk4wBeD6LYRglna02rfz8fNlsNtnt9jKdj3Pm3AU1G39p1eVvJ/dQdZ+yy48Z/z1WZm0B677L09vrL000lqQqlkvhhruoAJSVmIZ1yrzN0vx+u/0MDoCKp3PjQNWvU0PPffy1JKlni2Dd1TRYwTZWAwdgDgQcoJIK8v9fmHkwKky+3l7l2BsAKFsEHACohHLsZ7U264iOnCpQ3ZpWdYmsqxBbtfLuFlBmCDgAUMmwkjUqg5uykjEAoGJgJWtUFgQcAKhEWMkalQUBBwAqEVayRmVBwAGASqRoJevisJI1zISAAwCVSJfIulc8g8NK1jALAg4AVCIhtmoafkcDWX51GqeKRbJYLq1kzWKPMAtuEweASoaVrFEZEHAAoBJiJWuYHZeoAACA6RBwAACA6XCJChUez8wBAJQWAQcVGs/MAQBcDy5RocLimTkAgOtFwEGFxTNzAADXi4CDCotn5gAArhcBBxUWz8wBAFwvAg4qLJ6ZAwC4XgQcVFg8MwcAcL24TRwVGs/MAQBcDwIOKjyemQMAKC0uUQEAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANMh4AAAANO5KQFn5syZioiIkK+vr6KiorRhw4Yr1l+3bp2ioqLk6+urBg0aaPbs2S51lixZombNmslqtapZs2ZaunSpu7oPAAA8jNufJr548WIlJiZq5syZ6tixo95++2316tVL3377rerVq+dSf9++ferdu7cSEhL04Ycf6t///rdGjhypunXr6v7775ckZWRkaMCAAXrppZd07733aunSperfv782btyoDh06XHPfzpy7oKrnLpTZWM/8qq0zZdiuJP1yvrBM2/MkBb8ae0ElPg5ljeNaufH9w93K+newtG1aDMMwyrwHv9KhQwe1bdtWs2bNcpQ1bdpU99xzj5KTk13qjxkzRsuXL9eePXscZSNGjNDOnTuVkZEhSRowYIDy8/O1YsUKR52ePXuqVq1aWrhwoUubBQUFKigocLzOz89XWFiYwhI/UhVr9TIZJwAAcK+LBWd08LX+stvt8vf3v2Jdt16iOnfunLZu3aq4uDin8ri4OKWnpxe7T0ZGhkv9Hj16aMuWLTp//vwV65TUZnJysmw2m2MLCwu73iEBAAAP4NZLVEePHlVhYaGCgoKcyoOCgpSbm1vsPrm5ucXWv3Dhgo4ePaqQkJAS65TU5tixY5WUlOR4XXQGZ9O4bldNgBXFVz/8XKbtFZwv1Ij52yRJsx9uK6u3V5m2X1lxXN3Dk46rJ/XVU3jSMaWv/9OhQe0ybU+69Psd8tq11XX7HBxJslgsTq8Nw3Apu1r9y8tL06bVapXVanUpr+5TVdV9bsohuGG+bvyXxOrt5db2KyuOq3t40nH1pL56Ck86ppW9r+74fb1QijbdeokqICBAXl5eLmdW8vLyXM7AFAkODi62ftWqVVWnTp0r1impTQAAULm4NeD4+PgoKipKaWlpTuVpaWmKjY0tdp+YmBiX+l988YXatWsnb2/vK9YpqU0AAG6G3PxfHP/8j60HlWM/W469qdzcvg5OUlKS/v73v2vevHnas2ePnn76aWVnZ2vEiBGSLs2PeeSRRxz1R4wYoQMHDigpKUl79uzRvHnzNHfuXD377LOOOk899ZS++OILTZ06Vf/5z380depUrVq1SomJie4eDgAAxVqblafnl37teL1yd66e+cdOrfsurxx7VXm5fQLKgAEDdOzYMU2ePFk5OTlq0aKFUlNTFR4eLknKyclRdna2o35ERIRSU1P19NNP66233lJoaKjeeOMNxxo4khQbG6tFixbphRde0IsvvqiGDRtq8eLFpVoDBwCAspJjP6s5G37Qrxdeufh///z2+h8UGeSvYJtv+XSukropM2xHjhypkSNHFvteSkqKS1nnzp21bdu2K7b5wAMP6IEHHiiL7gEAcEPWZh2RRVJxC8tZJK3JytND7V0Xt4X78CwqAABu0JFTBcWGG+lS6DlyqqCEd+EuBBwAAG5Q3ZpWlbT4ieX/3sfNRcABAOAGdYmse8UzOF0jA29mdyACDgAANyzEVk3D72ggi0WqYpHTn8PvaMAE43LgGcv4AgBQwXVuHKjIIH+tycrTkVMFqlvTqq6RgYSbckLAAQCgjATbfLlbqoLgEhVQhljFFAAqBgIOUEZYxRQSIReoKAg4QBkoaRVTw7i0immu/ZeSd4ZpEHKBioOAA5SBolVMi1O0iinMjZALVCwEHKAMsIopCLlAxULAAcoAq5iCkAtULAQcoAywiikIuUDFQsABygCrmIKQC1QsLPQHlBFWMa3cikLu2+t/kEWXQk3Rn4Rc4OYj4FRSl6/V0b1pkEJs1cqxR+bAKqaVGyEXqDgIOJXQ2qw8zdnwg+P1yt25WrE7V8PvaKDOjTmNDtwIQi5QMTAHp5JhrQ4AQGVAwKlkWKsDAFAZEHAqGdbqAABUBgScSoa1OgAAlQEBp5JhrQ4AQGVAwKlkWJAOAFAZcJt4JcRaHQAAs6+HRsCppFirAwAqr8qwHhqXqAAAqEQqy3poBBwAACqRyrIeGgEHAIBKpLKsh0bAAVDhXT4ZMsd+thx7A3i2yrIeGgEHQIW2NitPzy/92vF65e5cPfOPnVr3nTlOo+PqCLhlq7Ksh0bAAVBhVZbJkCgZAbfsVZb10LhNHECFVTQZsrj/2yyaDMlyB+ZVUsCVLgXcyCB/0/wY32yVYT00Ag6ACquyTIZE8Qi47mX29dC4RAWgwqoskyFRPAIubgQBB0CFVVkmQ6J4BFzcCLcGnOPHjys+Pl42m002m03x8fE6ceJEifXPnz+vMWPGqGXLlqpRo4ZCQ0P1yCOP6Mcff3Sq16VLF1ksFqdt4MCB7hwKgHJQWSZDongEXNwIt87BGTRokA4dOqSVK1dKkh577DHFx8fr008/Lbb+mTNntG3bNr344otq3bq1jh8/rsTERN19993asmWLU92EhARNnjzZ8bpaNfM8IAzA/1SGyZAoXlHAfXv9D465OEV/EnBxNW4LOHv27NHKlSuVmZmpDh06SJLeeecdxcTEKCsrS5GRkS772Gw2paWlOZW9+eabat++vbKzs1Wv3v8mQ1WvXl3BwcHu6j6ACsTskyFRMgIurpfbAk5GRoZsNpsj3EhSdHS0bDab0tPTiw04xbHb7bJYLLrlllucyufPn68PP/xQQUFB6tWrlyZMmCA/P79i2ygoKFBBwf8mo+Xn55d+QACAckHAxfVwW8DJzc1VYKDr9dHAwEDl5uZeUxu//PKLnnvuOQ0aNEj+/v6O8ocfflgREREKDg7W7t27NXbsWO3cudPl7E+R5ORkTZo06foGAgAAPE6pJxlPnDjRZYLv5VvRfBmLxXX+u2EYxZZf7vz58xo4cKAuXryomTNnOr2XkJCg7t27q0WLFho4cKD++c9/atWqVdq2bVuxbY0dO1Z2u92xHTx4sLTDBgAAHqTUZ3BGjRp11TuW6tevr127dumnn35yee/IkSMKCgq64v7nz59X//79tW/fPn355ZdOZ2+K07ZtW3l7e2vv3r1q27aty/tWq1VWK7cTAgBQWZQ64AQEBCggIOCq9WJiYmS327Vp0ya1b99ekvTVV1/JbrcrNja2xP2Kws3evXu1Zs0a1alT56qf9c033+j8+fMKCQm59oEAAADTcts6OE2bNlXPnj2VkJCgzMxMZWZmKiEhQX379nWaYNykSRMtXbpUknThwgU98MAD2rJli+bPn6/CwkLl5uYqNzdX586dkyT997//1eTJk7Vlyxbt379fqampevDBB9WmTRt17NjRXcMBAAAexK0L/c2fP18tW7ZUXFyc4uLi1KpVK33wwQdOdbKysmS32yVJhw4d0vLly3Xo0CH97ne/U0hIiGNLT0+XJPn4+Gj16tXq0aOHIiMjNXr0aMXFxWnVqlXy8vJy53AAAICHsBiGUdJCkaaVn58vm80mu91+1fk9FUXGf4+VdxcAALhmMQ2vPsWktErz+82zqAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOlULe8O4NrENKxT3l0AAMBjcAYHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYjlsDzvHjxxUfHy+bzSabzab4+HidOHHiivs8+uijslgsTlt0dLRTnYKCAj355JMKCAhQjRo1dPfdd+vQoUNuHAkAAPAkbg04gwYN0o4dO7Ry5UqtXLlSO3bsUHx8/FX369mzp3Jychxbamqq0/uJiYlaunSpFi1apI0bN+rUqVPq27evCgsL3TUUAADgQdy2kvGePXu0cuVKZWZmqkOHDpKkd955RzExMcrKylJkZGSJ+1qtVgUHBxf7nt1u19y5c/XBBx+oe/fukqQPP/xQYWFhWrVqlXr06FH2gwEAAB7FbWdwMjIyZLPZHOFGkqKjo2Wz2ZSenn7FfdeuXavAwEA1btxYCQkJysvLc7y3detWnT9/XnFxcY6y0NBQtWjRosR2CwoKlJ+f77QBAADzclvAyc3NVWBgoEt5YGCgcnNzS9yvV69emj9/vr788ku9+uqr2rx5s+68804VFBQ42vXx8VGtWrWc9gsKCiqx3eTkZMc8IJvNprCwsBsYGQAAqOhKHXAmTpzoMgn48m3Lli2SJIvF4rK/YRjFlhcZMGCA+vTpoxYtWqhfv35asWKFvvvuO/3rX/+6Yr+u1O7YsWNlt9sd28GDB0sxYgAA4GlKPQdn1KhRGjhw4BXr1K9fX7t27dJPP/3k8t6RI0cUFBR0zZ8XEhKi8PBw7d27V5IUHBysc+fO6fjx405ncfLy8hQbG1tsG1arVVar9Zo/EwAAeLZSB5yAgAAFBARctV5MTIzsdrs2bdqk9u3bS5K++uor2e32EoNIcY4dO6aDBw8qJCREkhQVFSVvb2+lpaWpf//+kqScnBzt3r1b06ZNK+1wAACACbltDk7Tpk3Vs2dPJSQkKDMzU5mZmUpISFDfvn2d7qBq0qSJli5dKkk6deqUnn32WWVkZGj//v1au3at+vXrp4CAAN17772SJJvNpqFDh+qZZ57R6tWrtX37dg0ePFgtW7Z03FUFAAAqN7fdJi5J8+fP1+jRox13PN19992aMWOGU52srCzZ7XZJkpeXl77++mu9//77OnHihEJCQtS1a1ctXrxYfn5+jn3+9re/qWrVqurfv7/Onj2rbt26KSUlRV5eXu4cDgAA8BAWwzCM8u7EzZafny+bzSa73S5/f//y7g4AALgGpfn95llUAADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdNwacI4fP674+HjZbDbZbDbFx8frxIkTV9zHYrEUu73yyiuOOl26dHF5f+DAge4cCgAA8CBV3dn4oEGDdOjQIa1cuVKS9Nhjjyk+Pl6ffvppifvk5OQ4vV6xYoWGDh2q+++/36k8ISFBkydPdryuVq1aGfYcAAB4MrcFnD179mjlypXKzMxUhw4dJEnvvPOOYmJilJWVpcjIyGL3Cw4Odnq9bNkyde3aVQ0aNHAqr169uktdAAAAyY2XqDIyMmSz2RzhRpKio6Nls9mUnp5+TW389NNP+te//qWhQ4e6vDd//nwFBASoefPmevbZZ3Xy5MkS2ykoKFB+fr7TBgAAzMttZ3Byc3MVGBjoUh4YGKjc3NxrauO9996Tn5+f7rvvPqfyhx9+WBEREQoODtbu3bs1duxY7dy5U2lpacW2k5ycrEmTJpV+EAAAwCOV+gzOxIkTS5wIXLRt2bJF0qUJw5czDKPY8uLMmzdPDz/8sHx9fZ3KExIS1L17d7Vo0UIDBw7UP//5T61atUrbtm0rtp2xY8fKbrc7toMHD5Zy1AAAwJOU+gzOqFGjrnrHUv369bVr1y799NNPLu8dOXJEQUFBV/2cDRs2KCsrS4sXL75q3bZt28rb21t79+5V27ZtXd63Wq2yWq1XbQcAAJhDqQNOQECAAgICrlovJiZGdrtdmzZtUvv27SVJX331lex2u2JjY6+6/9y5cxUVFaXWrVtfte4333yj8+fPKyQk5OoDAAAApue2ScZNmzZVz549lZCQoMzMTGVmZiohIUF9+/Z1uoOqSZMmWrp0qdO++fn5+sc//qFhw4a5tPvf//5XkydP1pYtW7R//36lpqbqwQcfVJs2bdSxY0d3DQcAAHgQty70N3/+fLVs2VJxcXGKi4tTq1at9MEHHzjVycrKkt1udypbtGiRDMPQQw895NKmj4+PVq9erR49eigyMlKjR49WXFycVq1aJS8vL3cOBwAAeAiLYRhGeXfiZsvPz5fNZpPdbpe/v395dwcAAFyD0vx+8ywqAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOgQcAABgOm4NOC+//LJiY2NVvXp13XLLLde0j2EYmjhxokJDQ1WtWjV16dJF33zzjVOdgoICPfnkkwoICFCNGjV0991369ChQ24YAQAA8ERuDTjnzp3Tgw8+qMcff/ya95k2bZqmT5+uGTNmaPPmzQoODtZdd92lkydPOuokJiZq6dKlWrRokTZu3KhTp06pb9++KiwsdMcwAACAh7EYhmG4+0NSUlKUmJioEydOXLGeYRgKDQ1VYmKixowZI+nS2ZqgoCBNnTpVw4cPl91uV926dfXBBx9owIABkqQff/xRYWFhSk1NVY8ePa7an/z8fNlsNtntdvn7+9/w+AAAgPuV5ve76k3q0zXZt2+fcnNzFRcX5yizWq3q3Lmz0tPTNXz4cG3dulXnz593qhMaGqoWLVooPT292IBTUFCggoICx2u73S7p0oECAACeoeh3+1rOzVSogJObmytJCgoKcioPCgrSgQMHHHV8fHxUq1YtlzpF+18uOTlZkyZNcikPCwsri24DAICb6OTJk7LZbFesU+qAM3HixGLDwq9t3rxZ7dq1K23TDhaLxem1YRguZZe7Up2xY8cqKSnJ8frixYv6+eefVadOnau2W1r5+fkKCwvTwYMHufxVhjiu7sFxdQ+Oa9njmLqHpx1XwzB08uRJhYaGXrVuqQPOqFGjNHDgwCvWqV+/fmmblSQFBwdLunSWJiQkxFGel5fnOKsTHBysc+fO6fjx405ncfLy8hQbG1tsu1arVVar1ansWu/qul7+/v4e8ZfF03Bc3YPj6h4c17LHMXUPTzquVztzU6TUAScgIEABAQGl7tC1iIiIUHBwsNLS0tSmTRtJl+7EWrdunaZOnSpJioqKkre3t9LS0tS/f39JUk5Ojnbv3q1p06a5pV8AAMCzuHUOTnZ2tn7++WdlZ2ersLBQO3bskCT99re/Vc2aNSVJTZo0UXJysu69915ZLBYlJiZqypQpatSokRo1aqQpU6aoevXqGjRokKRLyW3o0KF65plnVKdOHdWuXVvPPvusWrZsqe7du7tzOAAAwEO4NeCMHz9e7733nuN10VmZNWvWqEuXLpKkrKwsx11NkvTnP/9ZZ8+e1ciRI3X8+HF16NBBX3zxhfz8/Bx1/va3v6lq1arq37+/zp49q27duiklJUVeXl7uHM41sVqtmjBhgsslMdwYjqt7cFzdg+Na9jim7mHm43pT1sEBAAC4mXgWFQAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CThmaOXOmIiIi5Ovrq6ioKG3YsKG8u+TRkpOTddttt8nPz0+BgYG65557lJWVVd7dMp3k5GTHGlS4MYcPH9bgwYNVp04dVa9eXb/73e+0devW8u6WR7tw4YJeeOEFRUREqFq1amrQoIEmT56sixcvlnfXPMr69evVr18/hYaGymKx6JNPPnF63zAMTZw4UaGhoapWrZq6dOmib775pnw6W0YIOGVk8eLFSkxM1Lhx47R9+3Z16tRJvXr1UnZ2dnl3zWOtW7dOTzzxhDIzM5WWlqYLFy4oLi5Op0+fLu+umcbmzZs1Z84ctWrVqry74vGOHz+ujh07ytvbWytWrNC3336rV1991e2PhTG7qVOnavbs2ZoxY4b27NmjadOm6ZVXXtGbb75Z3l3zKKdPn1br1q01Y8aMYt+fNm2apk+frhkzZmjz5s0KDg7WXXfdpZMnT97knpYhA2Wiffv2xogRI5zKmjRpYjz33HPl1CPzycvLMyQZ69atK++umMLJkyeNRo0aGWlpaUbnzp2Np556qry75NHGjBlj3H777eXdDdPp06eP8cc//tGp7L777jMGDx5cTj3yfJKMpUuXOl5fvHjRCA4ONv7yl784yn755RfDZrMZs2fPLocelg3O4JSBc+fOaevWrYqLi3Mqj4uLU3p6ejn1ynyKVryuXbt2OffEHJ544gn16dOHR5yUkeXLl6tdu3Z68MEHFRgYqDZt2uidd94p7255vNtvv12rV6/Wd999J0nauXOnNm7cqN69e5dzz8xj3759ys3NdfoNs1qt6ty5s0f/hrn1UQ2VxdGjR1VYWOh44nmRoKAg5ebmllOvzMUwDCUlJen2229XixYtyrs7Hm/RokXatm2bNm/eXN5dMY0ffvhBs2bNUlJSkp5//nlt2rRJo0ePltVq1SOPPFLe3fNYY8aMkd1uV5MmTeTl5aXCwkK9/PLLeuihh8q7a6ZR9DtV3G/YgQMHyqNLZYKAU4YsFovTa8MwXMpwfUaNGqVdu3Zp48aN5d0Vj3fw4EE99dRT+uKLL+Tr61ve3TGNixcvql27dpoyZYqkS8/e++abbzRr1iwCzg1YvHixPvzwQy1YsEDNmzfXjh07lJiYqNDQUA0ZMqS8u2cqZvsNI+CUgYCAAHl5ebmcrcnLy3NJxCi9J598UsuXL9f69et16623lnd3PN7WrVuVl5enqKgoR1lhYaHWr1+vGTNmqKCgoEI8uNbThISEqFmzZk5lTZs21ZIlS8qpR+bwpz/9Sc8995wGDhwoSWrZsqUOHDig5ORkAk4ZCQ4OlnTpTE5ISIij3NN/w5iDUwZ8fHwUFRWltLQ0p/K0tDTFxsaWU688n2EYGjVqlD7++GN9+eWXioiIKO8umUK3bt309ddfa8eOHY6tXbt2evjhh7Vjxw7CzXXq2LGjyzIG3333ncLDw8upR+Zw5swZVani/FPl5eXFbeJlKCIiQsHBwU6/YefOndO6des8+jeMMzhlJCkpSfHx8WrXrp1iYmI0Z84cZWdna8SIEeXdNY/1xBNPaMGCBVq2bJn8/PwcZ8hsNpuqVatWzr3zXH5+fi7zmGrUqKE6deowv+kGPP3004qNjdWUKVPUv39/bdq0SXPmzNGcOXPKu2serV+/fnr55ZdVr149NW/eXNu3b9f06dP1xz/+sby75lFOnTql77//3vF637592rFjh2rXrq169eopMTFRU6ZMUaNGjdSoUSNNmTJF1atX16BBg8qx1zeofG/iMpe33nrLCA8PN3x8fIy2bdtyO/MNklTs9u6775Z310yH28TLxqeffmq0aNHCsFqtRpMmTYw5c+aUd5c8Xn5+vvHUU08Z9erVM3x9fY0GDRoY48aNMwoKCsq7ax5lzZo1xf73dMiQIYZhXLpVfMKECUZwcLBhtVqNO+64w/j666/Lt9M3yGIYhlFO2QoAAMAtmIMDAABMh4ADAABMh4ADAABMh4ADAABMh4ADAABMh4ADAABMh4ADAABMh4ADAABMh4ADAABMh4ADAABMh4ADAABM5/8DAp6zkXPd/goAAAAASUVORK5CYII=",
312
- "text/plain": [
313
- "<Figure size 640x480 with 1 Axes>"
314
- ]
315
- },
316
- "metadata": {},
317
- "output_type": "display_data"
318
- }
319
- ],
320
- "source": [
321
- "plot_acf(bill_data['Bill Charge'])\n",
322
- "plt.show()\n",
323
- "\n",
324
- "plot_pacf(bill_data['Bill Charge'])\n",
325
- "plt.show()"
326
- ]
327
- },
328
- {
329
- "cell_type": "code",
330
- "execution_count": 20,
331
- "id": "728ec23f-b955-4aa8-887c-71a32f87df5a",
332
- "metadata": {},
333
- "outputs": [
334
- {
335
- "data": {
336
- "text/html": [
337
- "<div>\n",
338
- "<style scoped>\n",
339
- " .dataframe tbody tr th:only-of-type {\n",
340
- " vertical-align: middle;\n",
341
- " }\n",
342
- "\n",
343
- " .dataframe tbody tr th {\n",
344
- " vertical-align: top;\n",
345
- " }\n",
346
- "\n",
347
- " .dataframe thead th {\n",
348
- " text-align: right;\n",
349
- " }\n",
350
- "</style>\n",
351
- "<table border=\"1\" class=\"dataframe\">\n",
352
- " <thead>\n",
353
- " <tr style=\"text-align: right;\">\n",
354
- " <th></th>\n",
355
- " <th>Date</th>\n",
356
- " <th>Patient Name</th>\n",
357
- " <th>Age</th>\n",
358
- " <th>Bill Charge</th>\n",
359
- " <th>Year</th>\n",
360
- " <th>Month</th>\n",
361
- " <th>Rolling_Mean_3</th>\n",
362
- " <th>Expanding_Mean</th>\n",
363
- " </tr>\n",
364
- " </thead>\n",
365
- " <tbody>\n",
366
- " <tr>\n",
367
- " <th>0</th>\n",
368
- " <td>2023-01-01</td>\n",
369
- " <td>Bob</td>\n",
370
- " <td>33</td>\n",
371
- " <td>100.5</td>\n",
372
- " <td>2023</td>\n",
373
- " <td>1</td>\n",
374
- " <td>NaN</td>\n",
375
- " <td>100.500000</td>\n",
376
- " </tr>\n",
377
- " <tr>\n",
378
- " <th>1</th>\n",
379
- " <td>2023-01-04</td>\n",
380
- " <td>Bob</td>\n",
381
- " <td>24</td>\n",
382
- " <td>250.0</td>\n",
383
- " <td>2023</td>\n",
384
- " <td>1</td>\n",
385
- " <td>NaN</td>\n",
386
- " <td>175.250000</td>\n",
387
- " </tr>\n",
388
- " <tr>\n",
389
- " <th>2</th>\n",
390
- " <td>2023-01-07</td>\n",
391
- " <td>Bob</td>\n",
392
- " <td>56</td>\n",
393
- " <td>75.0</td>\n",
394
- " <td>2023</td>\n",
395
- " <td>1</td>\n",
396
- " <td>141.833333</td>\n",
397
- " <td>141.833333</td>\n",
398
- " </tr>\n",
399
- " <tr>\n",
400
- " <th>3</th>\n",
401
- " <td>2023-01-07</td>\n",
402
- " <td>Eve</td>\n",
403
- " <td>40</td>\n",
404
- " <td>300.0</td>\n",
405
- " <td>2023</td>\n",
406
- " <td>1</td>\n",
407
- " <td>208.333333</td>\n",
408
- " <td>181.375000</td>\n",
409
- " </tr>\n",
410
- " <tr>\n",
411
- " <th>4</th>\n",
412
- " <td>2023-01-09</td>\n",
413
- " <td>Charlie</td>\n",
414
- " <td>40</td>\n",
415
- " <td>150.5</td>\n",
416
- " <td>2023</td>\n",
417
- " <td>1</td>\n",
418
- " <td>175.166667</td>\n",
419
- " <td>175.200000</td>\n",
420
- " </tr>\n",
421
- " </tbody>\n",
422
- "</table>\n",
423
- "</div>"
424
- ],
425
- "text/plain": [
426
- " Date Patient Name Age Bill Charge Year Month Rolling_Mean_3 \\\n",
427
- "0 2023-01-01 Bob 33 100.5 2023 1 NaN \n",
428
- "1 2023-01-04 Bob 24 250.0 2023 1 NaN \n",
429
- "2 2023-01-07 Bob 56 75.0 2023 1 141.833333 \n",
430
- "3 2023-01-07 Eve 40 300.0 2023 1 208.333333 \n",
431
- "4 2023-01-09 Charlie 40 150.5 2023 1 175.166667 \n",
432
- "\n",
433
- " Expanding_Mean \n",
434
- "0 100.500000 \n",
435
- "1 175.250000 \n",
436
- "2 141.833333 \n",
437
- "3 181.375000 \n",
438
- "4 175.200000 "
439
- ]
440
- },
441
- "execution_count": 20,
442
- "metadata": {},
443
- "output_type": "execute_result"
444
- }
445
- ],
446
- "source": [
447
- "bill_data['Rolling_Mean_3'] = bill_data['Bill Charge'].rolling(window=3).mean()\n",
448
- "bill_data['Expanding_Mean'] = bill_data['Bill Charge'].expanding().mean()\n",
449
- "bill_data.head()"
450
- ]
451
- },
452
- {
453
- "cell_type": "code",
454
- "execution_count": 21,
455
- "id": "65a31329-f845-4f31-84f5-7620bcd7913e",
456
- "metadata": {},
457
- "outputs": [
458
- {
459
- "name": "stdout",
460
- "output_type": "stream",
461
- "text": [
462
- "ADF Statistic: -4.69980894165687\n",
463
- "p-value: 8.422235044039989e-05\n"
464
- ]
465
- }
466
- ],
467
- "source": [
468
- "adf_result = adfuller(bill_data['Bill Charge'])\n",
469
- "print(\"ADF Statistic:\", adf_result[0])\n",
470
- "print(\"p-value:\", adf_result[1])"
471
- ]
472
- },
473
- {
474
- "cell_type": "code",
475
- "execution_count": 22,
476
- "id": "ea818bd6-58b8-4cbe-a1ae-311a5409c4d6",
477
- "metadata": {},
478
- "outputs": [],
479
- "source": [
480
- "bill_data['Date'] = pd.to_datetime(bill_data['Date'])\n",
481
- "\n",
482
- "bill_data.set_index('Date', inplace=True)\n",
483
- "\n",
484
- "bill_data['Bill Charge'] = pd.to_numeric(bill_data['Bill Charge'], errors='coerce')\n",
485
- "bill_data.dropna(subset=['Bill Charge'], inplace=True)\n"
486
- ]
487
- },
488
- {
489
- "cell_type": "code",
490
- "execution_count": 29,
491
- "id": "512a802a-2039-45c7-8306-d99a2a0add4f",
492
- "metadata": {},
493
- "outputs": [
494
- {
495
- "data": {
496
- "text/html": [
497
- "<div>\n",
498
- "<style scoped>\n",
499
- " .dataframe tbody tr th:only-of-type {\n",
500
- " vertical-align: middle;\n",
501
- " }\n",
502
- "\n",
503
- " .dataframe tbody tr th {\n",
504
- " vertical-align: top;\n",
505
- " }\n",
506
- "\n",
507
- " .dataframe thead th {\n",
508
- " text-align: right;\n",
509
- " }\n",
510
- "</style>\n",
511
- "<table border=\"1\" class=\"dataframe\">\n",
512
- " <thead>\n",
513
- " <tr style=\"text-align: right;\">\n",
514
- " <th></th>\n",
515
- " <th>Patient Name</th>\n",
516
- " <th>Age</th>\n",
517
- " <th>Bill Charge</th>\n",
518
- " <th>Year</th>\n",
519
- " <th>Month</th>\n",
520
- " <th>Rolling_Mean_3</th>\n",
521
- " <th>Expanding_Mean</th>\n",
522
- " </tr>\n",
523
- " <tr>\n",
524
- " <th>Date</th>\n",
525
- " <th></th>\n",
526
- " <th></th>\n",
527
- " <th></th>\n",
528
- " <th></th>\n",
529
- " <th></th>\n",
530
- " <th></th>\n",
531
- " <th></th>\n",
532
- " </tr>\n",
533
- " </thead>\n",
534
- " <tbody>\n",
535
- " <tr>\n",
536
- " <th>2023-01-01</th>\n",
537
- " <td>Bob</td>\n",
538
- " <td>33</td>\n",
539
- " <td>100.5</td>\n",
540
- " <td>2023</td>\n",
541
- " <td>1</td>\n",
542
- " <td>NaN</td>\n",
543
- " <td>100.500000</td>\n",
544
- " </tr>\n",
545
- " <tr>\n",
546
- " <th>2023-01-04</th>\n",
547
- " <td>Bob</td>\n",
548
- " <td>24</td>\n",
549
- " <td>250.0</td>\n",
550
- " <td>2023</td>\n",
551
- " <td>1</td>\n",
552
- " <td>NaN</td>\n",
553
- " <td>175.250000</td>\n",
554
- " </tr>\n",
555
- " <tr>\n",
556
- " <th>2023-01-07</th>\n",
557
- " <td>Bob</td>\n",
558
- " <td>56</td>\n",
559
- " <td>75.0</td>\n",
560
- " <td>2023</td>\n",
561
- " <td>1</td>\n",
562
- " <td>141.833333</td>\n",
563
- " <td>141.833333</td>\n",
564
- " </tr>\n",
565
- " <tr>\n",
566
- " <th>2023-01-07</th>\n",
567
- " <td>Eve</td>\n",
568
- " <td>40</td>\n",
569
- " <td>300.0</td>\n",
570
- " <td>2023</td>\n",
571
- " <td>1</td>\n",
572
- " <td>208.333333</td>\n",
573
- " <td>181.375000</td>\n",
574
- " </tr>\n",
575
- " <tr>\n",
576
- " <th>2023-01-09</th>\n",
577
- " <td>Charlie</td>\n",
578
- " <td>40</td>\n",
579
- " <td>150.5</td>\n",
580
- " <td>2023</td>\n",
581
- " <td>1</td>\n",
582
- " <td>175.166667</td>\n",
583
- " <td>175.200000</td>\n",
584
- " </tr>\n",
585
- " <tr>\n",
586
- " <th>2023-01-10</th>\n",
587
- " <td>Charlie</td>\n",
588
- " <td>24</td>\n",
589
- " <td>200.0</td>\n",
590
- " <td>2023</td>\n",
591
- " <td>1</td>\n",
592
- " <td>216.833333</td>\n",
593
- " <td>179.333333</td>\n",
594
- " </tr>\n",
595
- " <tr>\n",
596
- " <th>2023-01-11</th>\n",
597
- " <td>Bob</td>\n",
598
- " <td>40</td>\n",
599
- " <td>175.0</td>\n",
600
- " <td>2023</td>\n",
601
- " <td>1</td>\n",
602
- " <td>175.166667</td>\n",
603
- " <td>178.714286</td>\n",
604
- " </tr>\n",
605
- " <tr>\n",
606
- " <th>2023-01-11</th>\n",
607
- " <td>Eve</td>\n",
608
- " <td>40</td>\n",
609
- " <td>400.0</td>\n",
610
- " <td>2023</td>\n",
611
- " <td>1</td>\n",
612
- " <td>258.333333</td>\n",
613
- " <td>206.375000</td>\n",
614
- " </tr>\n",
615
- " <tr>\n",
616
- " <th>2023-01-11</th>\n",
617
- " <td>Bob</td>\n",
618
- " <td>40</td>\n",
619
- " <td>120.0</td>\n",
620
- " <td>2023</td>\n",
621
- " <td>1</td>\n",
622
- " <td>231.666667</td>\n",
623
- " <td>196.777778</td>\n",
624
- " </tr>\n",
625
- " <tr>\n",
626
- " <th>2023-01-12</th>\n",
627
- " <td>Charlie</td>\n",
628
- " <td>42</td>\n",
629
- " <td>180.0</td>\n",
630
- " <td>2023</td>\n",
631
- " <td>1</td>\n",
632
- " <td>233.333333</td>\n",
633
- " <td>195.100000</td>\n",
634
- " </tr>\n",
635
- " <tr>\n",
636
- " <th>2023-01-14</th>\n",
637
- " <td>Charlie</td>\n",
638
- " <td>24</td>\n",
639
- " <td>90.0</td>\n",
640
- " <td>2023</td>\n",
641
- " <td>1</td>\n",
642
- " <td>130.000000</td>\n",
643
- " <td>185.545455</td>\n",
644
- " </tr>\n",
645
- " <tr>\n",
646
- " <th>2023-01-17</th>\n",
647
- " <td>Alice</td>\n",
648
- " <td>33</td>\n",
649
- " <td>50.0</td>\n",
650
- " <td>2023</td>\n",
651
- " <td>1</td>\n",
652
- " <td>106.666667</td>\n",
653
- " <td>174.250000</td>\n",
654
- " </tr>\n",
655
- " <tr>\n",
656
- " <th>2023-01-18</th>\n",
657
- " <td>Eve</td>\n",
658
- " <td>24</td>\n",
659
- " <td>25.0</td>\n",
660
- " <td>2023</td>\n",
661
- " <td>1</td>\n",
662
- " <td>55.000000</td>\n",
663
- " <td>162.769231</td>\n",
664
- " </tr>\n",
665
- " <tr>\n",
666
- " <th>2023-01-18</th>\n",
667
- " <td>Diana</td>\n",
668
- " <td>24</td>\n",
669
- " <td>75.0</td>\n",
670
- " <td>2023</td>\n",
671
- " <td>1</td>\n",
672
- " <td>50.000000</td>\n",
673
- " <td>156.500000</td>\n",
674
- " </tr>\n",
675
- " <tr>\n",
676
- " <th>2023-01-20</th>\n",
677
- " <td>Eve</td>\n",
678
- " <td>40</td>\n",
679
- " <td>325.0</td>\n",
680
- " <td>2023</td>\n",
681
- " <td>1</td>\n",
682
- " <td>141.666667</td>\n",
683
- " <td>167.733333</td>\n",
684
- " </tr>\n",
685
- " <tr>\n",
686
- " <th>2023-01-21</th>\n",
687
- " <td>Bob</td>\n",
688
- " <td>24</td>\n",
689
- " <td>60.0</td>\n",
690
- " <td>2023</td>\n",
691
- " <td>1</td>\n",
692
- " <td>153.333333</td>\n",
693
- " <td>161.000000</td>\n",
694
- " </tr>\n",
695
- " <tr>\n",
696
- " <th>2023-01-21</th>\n",
697
- " <td>Diana</td>\n",
698
- " <td>56</td>\n",
699
- " <td>60.0</td>\n",
700
- " <td>2023</td>\n",
701
- " <td>1</td>\n",
702
- " <td>148.333333</td>\n",
703
- " <td>155.058824</td>\n",
704
- " </tr>\n",
705
- " <tr>\n",
706
- " <th>2023-01-26</th>\n",
707
- " <td>Bob</td>\n",
708
- " <td>42</td>\n",
709
- " <td>100.0</td>\n",
710
- " <td>2023</td>\n",
711
- " <td>1</td>\n",
712
- " <td>73.333333</td>\n",
713
- " <td>152.000000</td>\n",
714
- " </tr>\n",
715
- " <tr>\n",
716
- " <th>2023-01-29</th>\n",
717
- " <td>Diana</td>\n",
718
- " <td>40</td>\n",
719
- " <td>250.0</td>\n",
720
- " <td>2023</td>\n",
721
- " <td>1</td>\n",
722
- " <td>136.666667</td>\n",
723
- " <td>157.157895</td>\n",
724
- " </tr>\n",
725
- " <tr>\n",
726
- " <th>2023-01-30</th>\n",
727
- " <td>Alice</td>\n",
728
- " <td>33</td>\n",
729
- " <td>40.0</td>\n",
730
- " <td>2023</td>\n",
731
- " <td>1</td>\n",
732
- " <td>130.000000</td>\n",
733
- " <td>151.300000</td>\n",
734
- " </tr>\n",
735
- " </tbody>\n",
736
- "</table>\n",
737
- "</div>"
738
- ],
739
- "text/plain": [
740
- " Patient Name Age Bill Charge Year Month Rolling_Mean_3 \\\n",
741
- "Date \n",
742
- "2023-01-01 Bob 33 100.5 2023 1 NaN \n",
743
- "2023-01-04 Bob 24 250.0 2023 1 NaN \n",
744
- "2023-01-07 Bob 56 75.0 2023 1 141.833333 \n",
745
- "2023-01-07 Eve 40 300.0 2023 1 208.333333 \n",
746
- "2023-01-09 Charlie 40 150.5 2023 1 175.166667 \n",
747
- "2023-01-10 Charlie 24 200.0 2023 1 216.833333 \n",
748
- "2023-01-11 Bob 40 175.0 2023 1 175.166667 \n",
749
- "2023-01-11 Eve 40 400.0 2023 1 258.333333 \n",
750
- "2023-01-11 Bob 40 120.0 2023 1 231.666667 \n",
751
- "2023-01-12 Charlie 42 180.0 2023 1 233.333333 \n",
752
- "2023-01-14 Charlie 24 90.0 2023 1 130.000000 \n",
753
- "2023-01-17 Alice 33 50.0 2023 1 106.666667 \n",
754
- "2023-01-18 Eve 24 25.0 2023 1 55.000000 \n",
755
- "2023-01-18 Diana 24 75.0 2023 1 50.000000 \n",
756
- "2023-01-20 Eve 40 325.0 2023 1 141.666667 \n",
757
- "2023-01-21 Bob 24 60.0 2023 1 153.333333 \n",
758
- "2023-01-21 Diana 56 60.0 2023 1 148.333333 \n",
759
- "2023-01-26 Bob 42 100.0 2023 1 73.333333 \n",
760
- "2023-01-29 Diana 40 250.0 2023 1 136.666667 \n",
761
- "2023-01-30 Alice 33 40.0 2023 1 130.000000 \n",
762
- "\n",
763
- " Expanding_Mean \n",
764
- "Date \n",
765
- "2023-01-01 100.500000 \n",
766
- "2023-01-04 175.250000 \n",
767
- "2023-01-07 141.833333 \n",
768
- "2023-01-07 181.375000 \n",
769
- "2023-01-09 175.200000 \n",
770
- "2023-01-10 179.333333 \n",
771
- "2023-01-11 178.714286 \n",
772
- "2023-01-11 206.375000 \n",
773
- "2023-01-11 196.777778 \n",
774
- "2023-01-12 195.100000 \n",
775
- "2023-01-14 185.545455 \n",
776
- "2023-01-17 174.250000 \n",
777
- "2023-01-18 162.769231 \n",
778
- "2023-01-18 156.500000 \n",
779
- "2023-01-20 167.733333 \n",
780
- "2023-01-21 161.000000 \n",
781
- "2023-01-21 155.058824 \n",
782
- "2023-01-26 152.000000 \n",
783
- "2023-01-29 157.157895 \n",
784
- "2023-01-30 151.300000 "
785
- ]
786
- },
787
- "execution_count": 29,
788
- "metadata": {},
789
- "output_type": "execute_result"
790
- }
791
- ],
792
- "source": [
793
- "bill_data = bill_data.drop_duplicates(keep = 'first')\n",
794
- "bill_data"
795
- ]
796
- }
797
- ],
798
- "metadata": {
799
- "kernelspec": {
800
- "display_name": "Python 3 (ipykernel)",
801
- "language": "python",
802
- "name": "python3"
803
- },
804
- "language_info": {
805
- "codemirror_mode": {
806
- "name": "ipython",
807
- "version": 3
808
- },
809
- "file_extension": ".py",
810
- "mimetype": "text/x-python",
811
- "name": "python",
812
- "nbconvert_exporter": "python",
813
- "pygments_lexer": "ipython3",
814
- "version": "3.12.4"
815
- }
816
- },
817
- "nbformat": 4,
818
- "nbformat_minor": 5
819
- }