noshot 0.3.5__py3-none-any.whl → 0.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +133 -0
  2. noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +139 -0
  3. noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +130 -0
  4. noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +141 -0
  5. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +198 -0
  6. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +145 -0
  7. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +209 -0
  8. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +366 -0
  9. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +169 -0
  10. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +21 -0
  11. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +181 -0
  12. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +3651 -0
  13. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +213 -0
  14. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +37 -0
  15. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  16. {noshot-0.3.5.dist-info → noshot-0.3.7.dist-info}/METADATA +1 -1
  17. noshot-0.3.7.dist-info/RECORD +53 -0
  18. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/1.ipynb +0 -255
  19. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/2.ipynb +0 -399
  20. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/3.ipynb +0 -276
  21. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/4.ipynb +0 -265
  22. noshot-0.3.5.dist-info/RECORD +0 -42
  23. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/1/Question.txt +0 -0
  24. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/1/airfoil_self_noise.dat +0 -0
  25. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/2/Question.txt +0 -0
  26. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/2/pop_failures.dat +0 -0
  27. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/3/Qu.txt +0 -0
  28. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/3/go_track_tracks.csv +0 -0
  29. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/4/Wilt.csv +0 -0
  30. /noshot/data/ML TS XAI/{ML Lab CIA - Healthy directly upload file → ML Lab CIA}/4/qu.txt +0 -0
  31. {noshot-0.3.5.dist-info → noshot-0.3.7.dist-info}/LICENSE.txt +0 -0
  32. {noshot-0.3.5.dist-info → noshot-0.3.7.dist-info}/WHEEL +0 -0
  33. {noshot-0.3.5.dist-info → noshot-0.3.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,181 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "2c567c90-c151-45bc-ad51-a03c9f6c5a0c",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import seaborn as sns\n",
14
+ "from statsmodels.tsa.stattools import adfuller, kpss\n",
15
+ "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": null,
21
+ "id": "4a535f5e-3527-499c-b532-9bed43f58ef3",
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": [
25
+ "import warnings\n",
26
+ "warnings.filterwarnings('ignore')"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "id": "8f787d89-dc3e-437f-ad0e-8cbae432cd18",
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "file_path = \"daily-min-temperatures.csv\"\n",
37
+ "temp_data = pd.read_csv(file_path)\n",
38
+ "\n",
39
+ "temp_data['Date'] = pd.to_datetime(temp_data['Date'])\n",
40
+ "temp_data.set_index('Date', inplace=True)\n",
41
+ "temp_data.head()"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "id": "eaf1a6f5-c399-41c5-9a35-66893c12ae5d",
48
+ "metadata": {},
49
+ "outputs": [],
50
+ "source": [
51
+ "print(temp_data.info())\n",
52
+ "print(temp_data.describe())\n",
53
+ "\n",
54
+ "temp_data['Year'] = temp_data.index.year\n",
55
+ "temp_data['Month'] = temp_data.index.month\n",
56
+ "temp_data['Day'] = temp_data.index.dayofyear\n",
57
+ "\n",
58
+ "temp_data['Temp_Lag_1'] = temp_data['Temp'].shift(1)\n",
59
+ "temp_data['Temp_Lag_7'] = temp_data['Temp'].shift(7)\n",
60
+ "temp_data.head()"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": null,
66
+ "id": "666c1147-bc0a-435e-b35c-325b16292a00",
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "plt.figure(figsize=(8, 5))\n",
71
+ "sns.histplot(temp_data['Temp'], bins=20, kde=True, edgecolor='black')\n",
72
+ "plt.title(\"Histogram of Daily Minimum Temperatures\")\n",
73
+ "plt.show()"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "id": "b1ab5241-0a0a-4d56-9366-9bae7b537b21",
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "sns.kdeplot(temp_data['Temp'], fill=True)\n",
84
+ "plt.title(\"Density Plot of Daily Minimum Temperatures\")\n",
85
+ "plt.show()"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": null,
91
+ "id": "103a7d8d-0576-4923-a842-6e3f2a59cf24",
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "sns.pairplot(temp_data[['Temp', 'Temp_Lag_1', 'Temp_Lag_7']])\n",
96
+ "plt.show()"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "id": "d3befd1c-6221-4664-9ee3-123f765e9180",
103
+ "metadata": {},
104
+ "outputs": [],
105
+ "source": [
106
+ "plot_acf(temp_data['Temp'].dropna())\n",
107
+ "plt.show()"
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": null,
113
+ "id": "82cd23c3-6bac-470e-8c84-78faa2db4eec",
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": [
117
+ "plot_pacf(temp_data['Temp'].dropna())\n",
118
+ "plt.show()"
119
+ ]
120
+ },
121
+ {
122
+ "cell_type": "code",
123
+ "execution_count": null,
124
+ "id": "09a30d1c-79b4-4b24-8fbe-785ea2bbd2c4",
125
+ "metadata": {},
126
+ "outputs": [],
127
+ "source": [
128
+ "temp_data['Rolling_Mean_7'] = temp_data['Temp'].rolling(window=7).mean()\n",
129
+ "temp_data['Expanding_Mean'] = temp_data['Temp'].expanding().mean()\n",
130
+ "temp_data.head()"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "execution_count": null,
136
+ "id": "4400f982-a7b1-4cd6-8601-17737c701bb9",
137
+ "metadata": {},
138
+ "outputs": [],
139
+ "source": [
140
+ "def adf_test(series):\n",
141
+ " result = adfuller(series.dropna())\n",
142
+ " print(\"ADF Statistic:\", result[0])\n",
143
+ " print(\"p-value:\", result[1])\n",
144
+ " print(\"Stationary\" if result[1] < 0.05 else \"Non-Stationary\")\n",
145
+ "\n",
146
+ "print(\"\\nADF Test Results:\")\n",
147
+ "adf_test(temp_data['Temp'])\n",
148
+ "\n",
149
+ "def kpss_test(series):\n",
150
+ " result = kpss(series.dropna(), regression='c')\n",
151
+ " print(\"KPSS Statistic:\", result[0])\n",
152
+ " print(\"p-value:\", result[1])\n",
153
+ " print(\"Stationary\" if result[1] > 0.05 else \"Non-Stationary\")\n",
154
+ "\n",
155
+ "print(\"\\nKPSS Test Results:\")\n",
156
+ "kpss_test(temp_data['Temp'])"
157
+ ]
158
+ }
159
+ ],
160
+ "metadata": {
161
+ "kernelspec": {
162
+ "display_name": "Python 3 (ipykernel)",
163
+ "language": "python",
164
+ "name": "python3"
165
+ },
166
+ "language_info": {
167
+ "codemirror_mode": {
168
+ "name": "ipython",
169
+ "version": 3
170
+ },
171
+ "file_extension": ".py",
172
+ "mimetype": "text/x-python",
173
+ "name": "python",
174
+ "nbconvert_exporter": "python",
175
+ "pygments_lexer": "ipython3",
176
+ "version": "3.12.4"
177
+ }
178
+ },
179
+ "nbformat": 4,
180
+ "nbformat_minor": 5
181
+ }