noshot 0.3.3__py3-none-any.whl → 0.3.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/data/balance-scale.csv +626 -626
- noshot/data/ML TS XAI/ML/data/balance-scale.txt +624 -624
- noshot/data/ML TS XAI/ML/data/machine-data.csv +210 -210
- noshot/data/ML TS XAI/ML/data/wine-dataset.csv +179 -179
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/1.ipynb +255 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/Question.txt +12 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/airfoil_self_noise.dat +1503 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/2.ipynb +399 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/Question.txt +12 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/pop_failures.dat +143 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/3.ipynb +276 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/Qu.txt +1 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/go_track_tracks.csv +164 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/4.ipynb +265 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/Wilt.csv +4340 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/qu.txt +1 -0
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +3650 -3650
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +365 -365
- noshot/data/ML TS XAI/TS/data/raw_sales.csv +29580 -29580
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +36 -36
- noshot/main.py +18 -18
- noshot/utils/__init__.py +2 -2
- noshot/utils/shell_utils.py +56 -56
- {noshot-0.3.3.dist-info → noshot-0.3.5.dist-info}/LICENSE.txt +20 -20
- {noshot-0.3.3.dist-info → noshot-0.3.5.dist-info}/METADATA +55 -55
- noshot-0.3.5.dist-info/RECORD +42 -0
- {noshot-0.3.3.dist-info → noshot-0.3.5.dist-info}/WHEEL +1 -1
- noshot-0.3.3.dist-info/RECORD +0 -30
- {noshot-0.3.3.dist-info → noshot-0.3.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,265 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 1,
|
6
|
+
"id": "8b01d639-7417-4a71-a735-d519043691ac",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import pandas as pd\n",
|
11
|
+
"import numpy as np\n",
|
12
|
+
"import matplotlib.pyplot as plt\n",
|
13
|
+
"from sklearn.decomposition import PCA\n",
|
14
|
+
"from sklearn.neighbors import KNeighborsClassifier\n",
|
15
|
+
"from sklearn.model_selection import train_test_split\n",
|
16
|
+
"from sklearn.preprocessing import StandardScaler, LabelEncoder\n",
|
17
|
+
"from sklearn.metrics import accuracy_score"
|
18
|
+
]
|
19
|
+
},
|
20
|
+
{
|
21
|
+
"cell_type": "code",
|
22
|
+
"execution_count": 2,
|
23
|
+
"id": "03cbb0a7-0a95-4e08-94a9-028c664ecbe1",
|
24
|
+
"metadata": {},
|
25
|
+
"outputs": [
|
26
|
+
{
|
27
|
+
"data": {
|
28
|
+
"text/html": [
|
29
|
+
"<div>\n",
|
30
|
+
"<style scoped>\n",
|
31
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
32
|
+
" vertical-align: middle;\n",
|
33
|
+
" }\n",
|
34
|
+
"\n",
|
35
|
+
" .dataframe tbody tr th {\n",
|
36
|
+
" vertical-align: top;\n",
|
37
|
+
" }\n",
|
38
|
+
"\n",
|
39
|
+
" .dataframe thead th {\n",
|
40
|
+
" text-align: right;\n",
|
41
|
+
" }\n",
|
42
|
+
"</style>\n",
|
43
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
44
|
+
" <thead>\n",
|
45
|
+
" <tr style=\"text-align: right;\">\n",
|
46
|
+
" <th></th>\n",
|
47
|
+
" <th>class</th>\n",
|
48
|
+
" <th>GLCM_pan</th>\n",
|
49
|
+
" <th>Mean_Green</th>\n",
|
50
|
+
" <th>Mean_Red</th>\n",
|
51
|
+
" <th>Mean_NIR</th>\n",
|
52
|
+
" <th>SD_pan</th>\n",
|
53
|
+
" </tr>\n",
|
54
|
+
" </thead>\n",
|
55
|
+
" <tbody>\n",
|
56
|
+
" <tr>\n",
|
57
|
+
" <th>0</th>\n",
|
58
|
+
" <td>w</td>\n",
|
59
|
+
" <td>120.362774</td>\n",
|
60
|
+
" <td>205.500000</td>\n",
|
61
|
+
" <td>119.395349</td>\n",
|
62
|
+
" <td>416.581395</td>\n",
|
63
|
+
" <td>20.676318</td>\n",
|
64
|
+
" </tr>\n",
|
65
|
+
" <tr>\n",
|
66
|
+
" <th>1</th>\n",
|
67
|
+
" <td>w</td>\n",
|
68
|
+
" <td>124.739583</td>\n",
|
69
|
+
" <td>202.800000</td>\n",
|
70
|
+
" <td>115.333333</td>\n",
|
71
|
+
" <td>354.333333</td>\n",
|
72
|
+
" <td>16.707151</td>\n",
|
73
|
+
" </tr>\n",
|
74
|
+
" <tr>\n",
|
75
|
+
" <th>2</th>\n",
|
76
|
+
" <td>w</td>\n",
|
77
|
+
" <td>134.691964</td>\n",
|
78
|
+
" <td>199.285714</td>\n",
|
79
|
+
" <td>116.857143</td>\n",
|
80
|
+
" <td>477.857143</td>\n",
|
81
|
+
" <td>22.496712</td>\n",
|
82
|
+
" </tr>\n",
|
83
|
+
" <tr>\n",
|
84
|
+
" <th>3</th>\n",
|
85
|
+
" <td>w</td>\n",
|
86
|
+
" <td>127.946309</td>\n",
|
87
|
+
" <td>178.368421</td>\n",
|
88
|
+
" <td>92.368421</td>\n",
|
89
|
+
" <td>278.473684</td>\n",
|
90
|
+
" <td>14.977453</td>\n",
|
91
|
+
" </tr>\n",
|
92
|
+
" <tr>\n",
|
93
|
+
" <th>4</th>\n",
|
94
|
+
" <td>w</td>\n",
|
95
|
+
" <td>135.431548</td>\n",
|
96
|
+
" <td>197.000000</td>\n",
|
97
|
+
" <td>112.690476</td>\n",
|
98
|
+
" <td>532.952381</td>\n",
|
99
|
+
" <td>17.604193</td>\n",
|
100
|
+
" </tr>\n",
|
101
|
+
" </tbody>\n",
|
102
|
+
"</table>\n",
|
103
|
+
"</div>"
|
104
|
+
],
|
105
|
+
"text/plain": [
|
106
|
+
" class GLCM_pan Mean_Green Mean_Red Mean_NIR SD_pan\n",
|
107
|
+
"0 w 120.362774 205.500000 119.395349 416.581395 20.676318\n",
|
108
|
+
"1 w 124.739583 202.800000 115.333333 354.333333 16.707151\n",
|
109
|
+
"2 w 134.691964 199.285714 116.857143 477.857143 22.496712\n",
|
110
|
+
"3 w 127.946309 178.368421 92.368421 278.473684 14.977453\n",
|
111
|
+
"4 w 135.431548 197.000000 112.690476 532.952381 17.604193"
|
112
|
+
]
|
113
|
+
},
|
114
|
+
"execution_count": 2,
|
115
|
+
"metadata": {},
|
116
|
+
"output_type": "execute_result"
|
117
|
+
}
|
118
|
+
],
|
119
|
+
"source": [
|
120
|
+
"file_path = \"Wilt.csv\"\n",
|
121
|
+
"df = pd.read_csv(file_path)\n",
|
122
|
+
"df.head()"
|
123
|
+
]
|
124
|
+
},
|
125
|
+
{
|
126
|
+
"cell_type": "code",
|
127
|
+
"execution_count": 3,
|
128
|
+
"id": "0a4961c3-0fea-401b-a7f0-5f6fd0eb9e69",
|
129
|
+
"metadata": {},
|
130
|
+
"outputs": [],
|
131
|
+
"source": [
|
132
|
+
"y = df.iloc[:, 0]\n",
|
133
|
+
"X = df.iloc[:, 1:]"
|
134
|
+
]
|
135
|
+
},
|
136
|
+
{
|
137
|
+
"cell_type": "code",
|
138
|
+
"execution_count": 4,
|
139
|
+
"id": "d6699a1a-5436-40d7-84b9-f2c3d5e87850",
|
140
|
+
"metadata": {},
|
141
|
+
"outputs": [],
|
142
|
+
"source": [
|
143
|
+
"if y.dtype == 'object':\n",
|
144
|
+
" class_mapping = {label: idx for idx, label in enumerate(y.unique())}\n",
|
145
|
+
" y = y.map(class_mapping)\n",
|
146
|
+
"\n",
|
147
|
+
"scaler = StandardScaler()\n",
|
148
|
+
"X_scaled = scaler.fit_transform(X)\n",
|
149
|
+
"\n",
|
150
|
+
"pca = PCA(n_components=2)\n",
|
151
|
+
"X_pca = pca.fit_transform(X_scaled)\n",
|
152
|
+
"\n",
|
153
|
+
"X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
|
154
|
+
"X_pca_train, X_pca_test, _, _ = train_test_split(X_pca, y, test_size=0.2, random_state=42)"
|
155
|
+
]
|
156
|
+
},
|
157
|
+
{
|
158
|
+
"cell_type": "code",
|
159
|
+
"execution_count": 5,
|
160
|
+
"id": "0c6c271e-3725-4472-b082-a96aa9850ec6",
|
161
|
+
"metadata": {},
|
162
|
+
"outputs": [
|
163
|
+
{
|
164
|
+
"name": "stdout",
|
165
|
+
"output_type": "stream",
|
166
|
+
"text": [
|
167
|
+
"Accuracy without PCA: 0.9838709677419355\n",
|
168
|
+
"Accuracy with PCA: 0.978110599078341\n"
|
169
|
+
]
|
170
|
+
}
|
171
|
+
],
|
172
|
+
"source": [
|
173
|
+
"knn_original = KNeighborsClassifier(n_neighbors=5)\n",
|
174
|
+
"knn_original.fit(X_train, y_train)\n",
|
175
|
+
"y_pred_original = knn_original.predict(X_test)\n",
|
176
|
+
"accuracy_original = accuracy_score(y_test, y_pred_original)\n",
|
177
|
+
"\n",
|
178
|
+
"knn_pca = KNeighborsClassifier(n_neighbors=5)\n",
|
179
|
+
"knn_pca.fit(X_pca_train, y_train)\n",
|
180
|
+
"y_pred_pca = knn_pca.predict(X_pca_test)\n",
|
181
|
+
"accuracy_pca = accuracy_score(y_test, y_pred_pca)\n",
|
182
|
+
"\n",
|
183
|
+
"print(\"Accuracy without PCA:\", accuracy_original)\n",
|
184
|
+
"print(\"Accuracy with PCA:\", accuracy_pca)"
|
185
|
+
]
|
186
|
+
},
|
187
|
+
{
|
188
|
+
"cell_type": "code",
|
189
|
+
"execution_count": 6,
|
190
|
+
"id": "5b129aaa-8fba-4dac-a4be-e94c277d40ae",
|
191
|
+
"metadata": {},
|
192
|
+
"outputs": [
|
193
|
+
{
|
194
|
+
"data": {
|
195
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGHCAYAAAAKvNDsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV1f348ddn3Jl7szcJEPbeggoKqHWi1do6arVa7VeL1ipdWlt3a6vVn221traKtWprHbgXIkMFBNl7BrL3uLn73s/n/P64IRqSQG5ICIHz7OM+Kp957s1N7vue8z7vowghBJIkSZIkSV2k9nYDJEmSJEnq22QwIUmSJEnSEZHBhCRJkiRJR0QGE5IkSZIkHREZTEiSJEmSdERkMCFJkiRJ0hGRwYQkSZIkSUdEBhOSJEmSJB0RGUxIkiRJknREZDDRRz333HMoitLy0HWdvLw8rrvuOkpLS9scv3fvXm655RaGDRuGw+HA6XQyevRofv3rX7d7PMC3vvUtFEXhlltu6VSb3nzzTRRF4W9/+1uHxyxcuBBFUXjssccAUBSFe++9t1PX70mzZs1i1qxZrbb1ZNvKysq49957Wb9+fZt99957L4qi9Mh9u0s4HOamm24iJycHTdOYMGFCu8fdcsstKIpCRUVFq+11dXWoqorFYsHr9bbaV1JSgqIozJs3D2j/9Tj45+X3+7n33ntZsmRJp9q/b9++Vr8/FouFtLQ0TjrpJG6//Xa2bNnSqeu0J9629LRDvdckqdsIqU+aP3++AMT8+fPFihUrxCeffCLuvfdeYbPZREFBgfB6vS3Hvv322yIhIUEMGDBAPPLII+Ljjz8WixYtEo8//rgYN26cmDBhQpvrV1ZWCovFIgCRnJwsAoHAYdsUiUREdna2OOmkkzo85sorrxQWi0VUVVUJIYRYsWKFKC4u7sIr0L1mzpwpZs6c2WpbT7Zt9erVLT+/gxUXF4sVK1b0yH27y+OPPy4A8Ze//EUsX75cbNy4sd3jXn31VQGI//znP622v/7668JisQiLxSLef//9Vvuef/55AYi33npLCNH+63Hwz6u6uloA4p577ulU+wsLCwUgfvzjH4sVK1aIzz//XLz77rviwQcfFIMGDRKapomHH364U9c6WLxt6WmHeq9JUnfReyuIkbrHmDFjmDJlCgCzZ8/GMAweeOAB3njjDa666ioKCwu54oorGDZsGIsXLyYpKanl3DPOOINbb72VBQsWtLnu888/TyQS4YILLuDdd9/l9ddf57vf/e4h26LrOtdccw0PP/wwmzdvZsyYMa32NzQ0sGDBAi666CIyMjIAOPnkk4/0JegxvdW2vLw88vLyeuXenbV582YcDsdhe61mzZqFoigsWbKEK664omX7kiVLOOmkkxBCsHjxYs4999xW+1RV5fTTTwd69vXo379/q5/z+eefz7x58/jWt77FL37xC8aMGcN5553XI/eWpONKb0czUtcc6JlYvXp1q+3vvvuuAMRvf/tbIYQQt9xyiwDi/qY7cuRIkZWVJWpqaoTD4RBnnnlmp87bsWOHAMS8efPa7PvrX/8qAPHuu++2bOOgb3A+n0/89Kc/FQMHDhQ2m02kpKSIyZMni5deeqnlmPZ6EYQQ4vvf/74YMGBAq2333nuvmDp1qkhJSRFut1tMnDhR/POf/xSmabY6rr1rHty2AQMGCKDdx+LFi4UQQuzatUtce+21YsiQIcLhcIjc3FwxZ86cVt/cFy9e3O41DtzrnnvuEQf/ahqGIf7whz+I4cOHC6vVKjIyMsTVV1/dpudk5syZYvTo0WLVqlVixowZwuFwiIKCAvHQQw8JwzDavGYHCwQC4o477hADBw4UFotF5Obmirlz54r6+vpWr8vBj0N96x03bpwYPnx4m22/+tWvxB133NGmJ2vQoEFiypQpLf9u7/X4+s/rQC/DwY/vf//7HbbpwDmPPPJIu/tLS0uFxWIRs2fPbtlWVVUlfvSjH4mRI0eKhIQEkZGRIWbPni2WLVvW5rodtaUz7w8hYj/vBx54QAwbNkzY7XaRlJQkxo4dKx5//PFWx+3cuVNceeWVIiMjQ1itVjFixAjxxBNPtOw/3HtNkrqL7Jk4zuzevRug5Zv/Rx99RFZWVlzfspcvX862bdv4+c9/TlpaGpdeeikvvvgihYWFFBQUHPLcYcOGMWPGDF544QV+//vfY7FYWvbNnz+ffv36cc4553R4/rx58/j3v//Ngw8+yMSJE/H5fGzevJna2tpOt//r9u3bx4033kj//v0BWLlyJT/+8Y8pLS3l7rvvjutaCxYsIBQKtfzbNE1uuukm9u7d23L9srIy0tLS+P3vf09GRgZ1dXX861//Ytq0aaxbt47hw4czadIk5s+fz3XXXcevf/1rLrjgAoBDfvv+0Y9+xNNPP80tt9zCnDlz2LdvH7/5zW9YsmQJa9euJT09veXYiooKrrrqKn76059yzz33sGDBAu68805yc3O55pprOryHEIKLL76YRYsWceedd3LaaaexceNG7rnnHlasWMGKFSuw2WysWLGCBx54gMWLF/PJJ58AMHjw4A6vO3v2bP70pz9RXl5OTk4OtbW1bNq0iUceeQTTNHnkkUfweDwkJiZSXFzM3r17ufTSSzv3QwFycnL44IMPOPfcc7n++uu54YYbgK9+B7oiNzeXyZMns3z5cqLRKLquU1dXB8A999xDdnY2Xq+XBQsWMGvWLBYtWsSsWbMO25bOvD8AHn74Ye69915+/etfc/rppxOJRNi+fTsNDQ0tbdy6dSunnnoq/fv359FHHyU7O5sPP/yQW2+9lZqaGu65554uvdckqUt6O5qRuuZAz8TKlStFJBIRTU1N4p133hEZGRnC7XaLiooKIYQQdrtdnHzyyXFd+wc/+IEAxLZt24QQX327+c1vfhNX215//fWWbZs3bxaAuOuuu1ody0HfksaMGSMuvvjiQ14/np6JrzMMQ0QiEXH//feLtLS0Vr0TnemZONgtt9widF0X7733XofHRKNREQ6HxdChQ8Xtt9/esv1Q49gHfxPftm2bAMTcuXNbHffFF18IQPzqV79q9TwA8cUXX7Q6dtSoUeKcc87psJ1CCPHBBx8IoE2uwMsvvywA8fTTT7ds+/73vy8SEhIOeb0D3njjDQG09C699tprQtd10dTUJDwej9A0TbzzzjtCCCH+9a9/CaDVa3q4ngkhup4z0VHPhBBCXH755QIQlZWV7e6PRqMiEomIM888U1xyySVdaktH7485c+a0m8v0deecc47Iy8sTjY2Nrbbfcsstwm63i7q6OiGEzJmQjg45m6OPO/nkk7FYLLjdbubMmUN2djbvv/8+WVlZXbqe1+vlf//7H6eeeiojRowAYObMmQwePJjnnnsO0zQPe43LLrsMt9vNs88+27Lt2WefRVEUrrvuukOeO3XqVN5//33uuOMOlixZQiAQ6NLzOOCTTz7hrLPOIikpCU3TsFgs3H333dTW1lJVVdXl6/7+97/niSee4G9/+1urMfVoNMrvfvc7Ro0ahdVqRdd1rFYru3btYtu2bV261+LFiwG49tprW22fOnUqI0eOZNGiRa22Z2dnM3Xq1Fbbxo0bx/79+w95nwO9DAff5zvf+Q4JCQlt7tNZM2fORFXVltkNS5YsYcqUKbhcLtxuN5MmTWp5jkuWLEHXdWbMmNGle3UnIUSbbX/729+YNGkSdrsdXdexWCwsWrSo0z/bzr4/pk6dyoYNG5g7dy4ffvghHo+n1XWCwSCLFi3ikksuwel0Eo1GWx7nn38+wWCQlStXHtkLIElxkMFEH/f888+zevVq1q1bR1lZGRs3bmT69Okt+/v3709hYWGnr/fyyy/j9Xq57LLLaGhooKGhgcbGRi677DKKi4tZuHDhYa/hdDq54oor+OCDD6ioqCAajfLCCy+0BCWH8uc//5lf/vKXvPHGG8yePZvU1FQuvvhidu3a1enncMCqVas4++yzAfjHP/7B559/zurVq7nrrrsAuhyovPDCC/zqV7/i7rvv5vrrr2+1b968efzmN7/h4osv5u233+aLL75g9erVjB8/vsv3OzDEk5OT02Zfbm5umyGgtLS0NsfZbLbD3r+2thZd19sMDyiKQnZ2dpeHmpKTk5kwYUJLwLB48WJmzpzZsn/mzJktgcbixYuZMmUKbre7S/fqTvv378dms5GamgrAY489xo9+9COmTZvGa6+9xsqVK1m9ejXnnntup3+2nX1/3Hnnnfzxj39k5cqVnHfeeaSlpXHmmWfy5ZdfArGfVTQa5S9/+QsWi6XV4/zzzwegpqamm18RSeqYzJno40aOHNkym6M955xzDn/5y19YuXJlp/ImnnnmGQBuu+02brvttnb3Hyrn4YDrr7+ef/zjHzz//PMMGzaMqqoqHn300cOel5CQwH333cd9991HZWVlSy/FhRdeyPbt2wGw2+00Nja2OffgP57//e9/sVgsvPPOO9jt9pbtb7zxxmHb0ZGFCxfygx/8gGuvvZb77ruvzf4XXniBa665ht/97ndt2pacnNylex4IDsrLy9uMdZeVlbXKlzgSaWlpRKNRqqurWwUUQggqKio46aSTunzt2bNn8+ijj7Jx40a2bNnCww8/3LJv5syZPPbYY2zcuJF9+/Zx5ZVXHtHz6A6lpaWsWbOGmTNnouuxP5MvvPACs2bN4qmnnmp1bFNTU6ev29n3h67rzJs3j3nz5tHQ0MDHH3/Mr371K8455xyKi4tJSUlB0zSuvvpqbr755nbvdbj8JknqTrJn4jh3++23k5CQwNy5c9v9ABZCtEwN3bZtGytWrODSSy9l8eLFbR5nnnkmb775Zqe+oU6bNo0xY8Ywf/585s+fT1JSUlxJdQBZWVlce+21XHnllezYsQO/3w/AwIED2blzZ6tkyNraWpYvX97q/APFvDRNa9kWCAT497//HVc7Dli/fj2XXnopZ5xxBk8//XS7xyiKgs1ma7Xt3XffbVMY7MAxnflGe8YZZwCxD6KvW716Ndu2bePMM8/s9HM4lAPXOfg+r732Gj6f74juM3v2bADuu+8+VFVtNYxx4L8PBGcHjo1HPK/n4QQCAW644Qai0Si/+MUvWra397PduHEjK1as6HRbOvv++Lrk5GS+/e1vc/PNN1NXV8e+fftwOp3Mnj2bdevWMW7cOKZMmdLmcSAI7c7XRpI6InsmjnMFBQX897//5fLLL2fChAnccsstTJw4EYhlgz/77LMIIbjkkktaeiV+8YtftBlzh9g3sEWLFvHCCy/wk5/85LD3/sEPfsC8efPYsWMHN954Iw6H47DnTJs2jTlz5jBu3DhSUlLYtm0b//73vznllFNwOp0AXH311fz973/ne9/7Hj/84Q+pra3l4YcfJjExsdW1LrjgAh577DG++93v8n//93/U1tbyxz/+sc0f887weDycf/75OBwOfvazn7V0Nx8watQoEhMTmTNnDs899xwjRoxg3LhxrFmzhkceeaRNj8LgwYNxOBy8+OKLjBw5EpfLRW5uLrm5uW3uPXz4cP7v//6Pv/zlL6iqynnnndcymyM/P5/bb7897ufTnm984xucc845/PKXv8Tj8TB9+vSW2RwTJ07k6quv7vK1Tz/9dDRNY8GCBW2GMZKTkxk/fjwLFizAYrG0GqbrLLfbzYABA3jzzTc588wzSU1NJT09nYEDBx7yvKKiIlauXIlpmjQ2NrJu3TqeffZZ9u/fz6OPPtoyTAYwZ84cHnjgAe655x5mzpzJjh07uP/++ykoKCAajXaqLZ19f1x44YUtNWQyMjLYv38/jz/+OAMGDGDo0KEA/OlPf2LGjBmcdtpp/OhHP2LgwIE0NTWxe/du3n777VYzbTr7XpOkLuvd/E+pqzqqM9GRPXv2iLlz54ohQ4YIm80mHA6HGDVqlJg3b54oLCwU4XBYZGZmHjKDPBqNiry8PDF27NhO3bO6ulpYrVYBiFWrVrV7DAdlvd9xxx1iypQpIiUlRdhsNjFo0CBx++23i5qamlbn/etf/xIjR44UdrtdjBo1Srz88svtzuZ49tlnxfDhw1uu9dBDD4lnnnlGAKKwsLDluMPN5uiofsCBx4E6E/X19eL6668XmZmZwul0ihkzZohPP/203ev/5z//ESNGjGipNNqZOhPDhg0TFotFpKeni+9973sd1pk42OFmuhwQCATEL3/5SzFgwABhsVhETk6O+NGPftSqzsSB63V2NscBU6dOFYD42c9+1mbfbbfdJgAxffr0Nvs6M5tDCCE+/vhjMXHiRGGz2TpdZ+LAQ9O0lpomt912m9iyZUubc0KhkPjZz34m+vXrJ+x2u5g0aZJ444032n1tO2pLZ98fjz76qDj11FNFenq6sFqton///uL6668X+/bta/M8fvCDH4h+/foJi8UiMjIyxKmnnioefPDBVsd19F6TpO6iCNFOyrIkSZIkSVInyZwJSZIkSZKOiAwmJEmSJEk6IjKYkCRJkiTpiMhgQpIkSZJ60bJly7jwwgvJzc1FUZRO1cJZunQpkydPxm63M2jQIP72t7/1fEMPQQYTkiRJktSLfD4f48eP54knnujU8YWFhZx//vmcdtpprFu3jl/96lfceuutvPbaaz3c0o7J2RySJEmSdIxQFIUFCxZw8cUXd3jML3/5S956661W67ncdNNNbNiwoU0RtaPlhCpaZZomZWVluN1uFEXp7eZIkiRJXSSEoKmpidzcXFS1+zvZg8Eg4XC4S+cKIdp8xthsti4VzGvPihUrWhVUg9jSCc888wyRSASLxdIt94nHCRVMlJWVkZ+f39vNkCRJkrpJcXFxmwqiRyoYDNI/I4tqr+fwB7fD5XLh9Xpbbbvnnnu49957u6F1UFFR0WZl6KysLKLRKDU1Ne0uCtjTTqhg4kAJ3+Li4jallyVJkqS+w+PxkJ+f3yMrzIbDYaq9Hpb+7D5cNvvhT/gabyjIzD/e0+Zzprt6JQ44uOfjQMZCb/W6n1DBxIEXOTExUQYTkiRJx4Ge/PB0Oxy47IdfU+jrFLXnP2eys7OpqKhota2qqgpd11sWeDvaTqhgQpIkSZI6TVNQtDiDlXiP74JTTjmFt99+u9W2jz76iClTpvRKvgTIqaGSJEmS1Ku8Xi/r169n/fr1QGzq5/r16ykqKgLgzjvv5Jprrmk5/qabbmL//v3MmzePbdu28eyzz/LMM8/ws5/9rDeaD8ieCUmSJElql6LGHvGeE68vv/yS2bNnt/x73rx5AHz/+9/nueeeo7y8vCWwACgoKOC9997j9ttv58knnyQ3N5c///nPXHrppfHfvJvIYEKSJEmS2qMqsUe858Rp1qxZHKrk03PPPddm28yZM1m7dm3c9+opMpiQJEmSpHYcrZ6J40GfetqlpaV873vfIy0tDafTyYQJE1izZk1vN0s6ysxolEiDB8Mf6O2mSJJ0HFOaEzDjfZyI+kzPRH19PdOnT2f27Nm8//77ZGZmsmfPHpKTk3u7adJRYgSC1C5bRe3SVYRr6lEtOkmTRpM++xScg2QxMkmSupeidKFn4sSMJfpOMPGHP/yB/Px85s+f37Jt4MCBvdcg6agyAkH2//0/1C1fg+50oicnIsJhqj5YRuParQy48QoSx43o7WZKkiSdkPrMMMdbb73FlClT+M53vkNmZiYTJ07kH//4xyHPCYVCeDyeVg+pb6pdtoq65WtIGNQf56B8rKlJ2LIzcI8ZRqS+gdKX3sYIhnq7mZIkHU8UpWuPE1CfCSb27t3LU089xdChQ/nwww+56aabuPXWW3n++ec7POehhx4iKSmp5SHX5eibzGiU2mWr0Z1ONGfranSKouAsyCewv4SmTTt6qYWSJB2PDiRgxvs4EfWZp22aJpMmTeJ3v/sdEydO5MYbb+SHP/whTz31VIfn3HnnnTQ2NrY8iouLj2KLpe5i+AJEaurRk9uvwa/arAhTEK6tP8otkyTpeKYoSpceJ6I+kzORk5PDqFGjWm0bOXIkr732WofndOeSr1LvUS06iq4hwpF29wshEKaJarUe5ZZJknRc68qwxQkaTPSZnonp06ezY0frbuydO3cyYMCAXmqRdLRoTgdJk0YTqq5rt7BLuLoOS0oSrpGDe6F1kiQdr+QwR+f1mad9++23s3LlSn73u9+xe/duXnrpJZ5++mluvvnm3m6adBSkzz4FW2Y6vh17MUJhINYjEaqqJVxVS9rpJ2HPyezlVkqSJJ2Y+kwwcdJJJ7FgwQL+85//MGbMGB544AEef/xxrrrqqt5umnQUOAflM+CmK3H070dgbxFNm3fStHknZjhC1kVnkvOd83u7iZIkHWdkzkTn9ZmcCYA5c+YwZ86c3m6G1EsSxw4n4b6f0LRpB+GaOlSrFdfIwbJHQpKkHiFTJjqvTwUTkqTZrCRPGdvbzZAk6URwlBb6Oh7IYEKSJEmS2tGVYQs5zCFJkiRJ0leU5ke855yA+kwCpiRJkiRJxybZMyFJkiRJ7ZDDHJ0ngwlJkiRJaoeczdF5MpiQjkmRBg+N67cSqW1AtVlxjxqKoyDvhI36JUnqBTKa6DQZTEjHnLrP11D28ruEKqpjyUymQHM5SZk+mbyrvonmsPd2EyVJOgEodGGY4wTNwJTBhHRMadq8k+L5ryKiBq6Rg1E0DSEEkXoPNR9+iqrr5F97aW8387CEEIQqa4h6vGhOB/Z+WbJXRZL6mK6stXGirs0hgwnpmCGEoPqT5USbfLhGDWn58FUUBWtqEsIwqFu+loxzTjumq17695dS+fYneDZswwgEY8M0IweTNecMXCPkYmSSJB1/TtAYSjoWRRub8G7djS0rvd1v8db0FKINHnw7C3uhdZ3j319K4Z+eo3bpF2hOB84B/bAkuWlYvZHCPz9P0+advd1ESZI660DORLyPE5DsmZCOGSIaRRgmiq61u19p/kUVUeMot6xzhBBUvv0JgaIy3GOGoaixWF21WdGT3Pi276F8wUctwzeSJB3b5NTQzpM9E9IxQ09yY81MI1LX2O7+qC8AqoowDPx7izH8gaPcwkMLV9Xi2bAtlh+htv7VUhQFe34uvl378O0p6qUWSpIUF6WLjxOQ7JmQjhmqxULa6SdR/MwrRL0+dFdCyz4zGqVh1QaEYVD8whsoKFjTU0ibOY2Mc05Ds9t6seUxUY8XIxDEmpnW7n4twYEZCBL1eI9yyyRJ6grZM9F5MpiQjilps07Gv6eI2mWrUXQNS5IbIxiiacsuoh4v7lFDsOdkoigK4doGSl54g2BpBf1/eDmqxdKrbdcSHGh2G6Y/gGazttlvBoIoNitagrMXWidJUtzk2hydJoc5pGOKZrPS/4bLGDj3KtwjBoOioKCgJThIOWUiieNGoCc40ZwOHPk5OAfmUffZlzSu3drbTceWk4lr1BCCpZUIIdrsDxRXkDAon4ShA3qhdZIkST1H9kxIxxzVaiXt9KmknnYSIhql/M2Pibz8Lo7+uW2O1d0JIAQNX6wnZdr4XmjtVxRFIeuC2fj3FOPdthtHfi6ay4kZCBIoLkdz2Mm68ExUXf7aSVJfIIc5Ok/+VZOOWYqioFgsRGvrUS16h7+kWoKTUGXNUW5d+1zDBzHw5u9RseBDvDv3YewvRbVZSRjcn6yLziJ5ytjebqIkSZ2ldCE4ODFjCRlMSMc+PcmNGYl2uN8IhrCkJB3FFh2ae9QQXCMG4d9TFKuAmeDAOWSA7JGQpL5G5kx0mvzrJh3zEseNpOrdJUQam7AkuVvtM4IhRDhKci8PcRxMUVUShg7s7WZIknQE5DBH58kETOmY5xpeQOqMKQSLygiWVyEMAyEE4eo6fDsKSZo0iuTJY3q7mZIkHW9kBcxOkz0T0jFP0TTyvv8t9EQXdZ+twbt9LwiBnpxIxjmnkXvZ+WhOR283U5Ik6YQlgwmpT9DsNvpdeSGZ556Of28xwjSx52Uf0wt+SZLUt3Wlo+EE7ZiQwYTUt1hSkkiafOwkW0qSdByT0USnyWBCkiRJktohEzA7TwYTkiRJktQe2TPRaTKYkCRJkqT2yDoTnSanhkqSJEmSdERkz4QkSZIktUPmTHSeDCYkSZIkqV1dKUIlgwlJkiRJkprJ/MvOk8GEJEmSJLVHRhOdJoMJSZIkSWqHzJnoPDmbQ5IkSZKkIyJ7JiRJkiSpPbLORKfJYEKSJEmS2iNzJjpNBhOSJEmS1A6l+X/xnnMiksGEJEmSJLVH9kx0mkzAlCRJkqR2HIgl4n10xV//+lcKCgqw2+1MnjyZTz/99JDHv/jii4wfPx6n00lOTg7XXXcdtbW1Xbt5N5DBhCRJkiT1opdffpnbbruNu+66i3Xr1nHaaadx3nnnUVRU1O7xn332Gddccw3XX389W7Zs4ZVXXmH16tXccMMNR7nlX5HBhCRJkiS15yh1TTz22GNcf/313HDDDYwcOZLHH3+c/Px8nnrqqXaPX7lyJQMHDuTWW2+loKCAGTNmcOONN/Lll18e6TPuMhlMSJIkSVJ7jiCY8Hg8rR6hUKjdW4TDYdasWcPZZ5/davvZZ5/N8uXL2z3n1FNPpaSkhPfeew8hBJWVlbz66qtccMEF3fv84yCDCUmSJElqx4EKmPE+APLz80lKSmp5PPTQQ+3eo6amBsMwyMrKarU9KyuLioqKds859dRTefHFF7n88suxWq1kZ2eTnJzMX/7yl+59AeLQZ4OJhx56CEVRuO2223q7KZIkSdLxSOniAyguLqaxsbHlceeddx76VgcNjwghOizNvXXrVm699Vbuvvtu1qxZwwcffEBhYSE33XRTV5/pEeuTU0NXr17N008/zbhx43q7KZIkSdLx6gimhiYmJpKYmHjYw9PT09E0rU0vRFVVVZveigMeeughpk+fzs9//nMAxo0bR0JCAqeddhoPPvggOTk58bW5G/S5ngmv18tVV13FP/7xD1JSUnq7OZIkSZLUZVarlcmTJ7Nw4cJW2xcuXMipp57a7jl+vx9Vbf3xrWkaEOvR6A19Lpi4+eabueCCCzjrrLMOe2woFGqTBCNJkiRJnXEkORPxmDdvHv/85z959tln2bZtG7fffjtFRUUtwxZ33nkn11xzTcvxF154Ia+//jpPPfUUe/fu5fPPP+fWW29l6tSp5Obmdtvzj0efGub473//y9q1a1m9enWnjn/ooYe47777erhVkiRJ0vHp6Kz0dfnll1NbW8v9999PeXk5Y8aM4b333mPAgAEAlJeXt6o5ce2119LU1MQTTzzBT3/6U5KTkznjjDP4wx/+EPe9u4sieqtPJE7FxcVMmTKFjz76iPHjxwMwa9YsJkyYwOOPP97uOaFQqNV0HI/HQ35+Po2NjZ0ay5IkSZKOTR6Ph6SkpB75e37g2pUfvUpigjO+c31+ss7+9gn3OdNneibWrFlDVVUVkydPbtlmGAbLli3jiSeeIBQKtYwZHWCz2bDZbEe7qZIkSdLxQKELCZg90pJjXp8JJs4880w2bdrUatt1113HiBEj+OUvf9kmkJAkSZIk6ejoM8GE2+1mzJgxrbYlJCSQlpbWZrskSZIkHamuJFR2JQHzeNBngglJkiRJOqrkEuSd1qeDiSVLlvR2EyRJkqTj2YkZG8StTwcTkiRJktRzjs7U0OOBDCYkSZIkqT1ymKPT+lwFTEmSJEmSji2yZ0KSJEmS2iFnc3Re3D0TJSUleL3eNtsjkQjLli3rlkZJkiRJUq87giXITzSdDibKy8uZOnUqAwYMIDk5me9///utgoq6ujpmz57dI42UJEmSpKPuQM5EvI8TUKeDiTvuuANN0/jiiy/44IMP2Lp1K7NmzaK+vr7lmD6yzIckSZIkdYLsmuisTudMfPzxxyxYsIApU6YAcNppp3H55ZdzxhlnsGjRIuDEHSs60YSqaqn/Yj2NazZjhsI4hwwgddoEXKOHyveAJEnHDzmbo9M63TPR2NhISkpKy79tNhuvvvoqAwcOZPbs2VRVVfVIA6Vji2/XPnb/4e+U/GsBgX2lhKvrqPnwU/b88Z9Uvvmx7J2SJEk6AXU6mBg0aBAbN25stU3XdV555RUGDRrEnDlzur1x0rHFCAQpevYVgqUVuMcMxTkoH0f/XNxjhqElOCh//UM867f1djMlSZK6hxzl6LROBxPnnXceTz/9dJvtBwKKCRMmdGe7pGOQZ8N2AoUlJAwZgKK2fuvYstIxw2HqPv+yl1onSZLUvQ5MDY33cSLqdM7Eb3/7W/x+f/sX0XVef/11SkpKuq1h0rEnWFqBME1Uq7Xd/ZaUJLw7ChGGgSKXhJckqc+T5bQ7q9PBhK7rJCYmdrhf0zQGDBjQLY2SjlGqChwiJ8IUKJp6wiYgSZJ0nJEJmJ0my2lLnZYwqD+KxYLhD7TZJ4QgXNdA0sRRbYZAJEmS+iRZZ6LT5F/944gZDhMsqyRYUY0wjG6/vmv0EBLHDMO3ez9GMNSyXZgm/sJirKnJpE6f0u33lSRJko5tcm2O44AZDlOzeCW1S74gVFmDoqo4BvYjffYppJw6qdsSglRdJ//6yxCmSdPmnQjDBFVFGAb27Az6XfVNEobIoS5Jko4TMmWi0+IOJoqKisjPz2/zASWEoLi4mP79+3db46TDM6NRiv+1gJqPP0dz2rGmpSBME+/2vfh27CVc10DWnDNafl7CMGjasovGNZsJ19ajpySRPGkM7rHDUPXDvx1smWkM+tkPadq4He/2PZjhCPa8bJInj8GantrTT1eSJOkoktFEZ8UdTBQUFFBeXk5mZmar7XV1dRQUFGD0QPe61DHP2q3ULlmJPS8bS5K7ZbslOZFgeRWVby0iacIoHPk5mOEwxc8voHbJF5jhCJrdhhkKUfvJClKnTyb/um+jOeyHvadms5J80jiSTxrXk09NkiSpd8kEzE6LO5gQQrTbbe71erHbD/9BJHWv+pXrwDRbBRIH2LIzaNq0g8a1W3Dk51D1/jJqPvoMe35Oq+OjTV5qPlmBNS2Z3Mtl8TFJkiRABhNx6HQwMW/ePCBWxOM3v/kNTqezZZ9hGHzxxReycFUvCJZVobkS2t2nKAqKRSdUU0fU56d2yUr0JHebwEN3u7Cmp1D76ZdknDuz3cBEkiTpxCOHOTqr08HEunXrgFjPxKZNm7B+rXCR1Wpl/Pjx/OxnP+v+FkqHpCcmECyt6HC/iBroCQ6CJRWEqutw9M9t9zhrZhq+XfsI7C/FMm4EZjRK06adNKzdTKS2AWt6CsmTx+IeM1QWpJIkSZJa6XQwsXjxYgCuu+46/vSnPx2ygJV09KRMm0Dj+q2Y4Qiq1dJqX9TjRbXbSBw74quNHXbBKS31qIxAkOL5r1L3+RpE1EC1WzGDIWo+WUHa6VPJ+/630GztV8GUJEk6bsiOiU6LO2di/vz5PdEOqYuSp47D/dmXNG3egSM/Fz3JDUIQrqknVFFN2uyTcY0YhBEIYk1NIlhchjUzHYRAtVpaEi7D1bVY01Nw9M+l8u1FVH/0GbacDCxJblSHHUVRiHi8VC/8DGtGKjmXnN3Lz1ySJKmHyZyJTos7mPD5fPz+979n0aJFVFVVYZpmq/179+7ttsZJh6e7XQz80VWUvvgmnk07CJbEhjz05ESyLphNzmXnY/gD1Cz+Au+ufXjWbkGYAi3BgSXRjWNgP2zZGUTqGsi59FwiTT6K5r9GqKySQHEZiqpizUjDnp+NNS0FPdlN3dIvyPjGdPSv5WoYoXCsJ8RmxZLo6q2XQ5IkqZudmMFBvOIOJm644QaWLl3K1VdfTU5Ozgm7QtqxxJaZRsFt1xHYV0KwtBIUBefg/tizM4g2edn35AvUffYlwdJKhKIgjCjRhiaiTX5CNXVYEt3kXnYe6bNPZtfvnsK7dRfW9BRUh51oYxON67fQ8OUmLCmJWLPS0BwOAsXluEcOIer1UfPJSuo+XU2kvhFF10mcMJL0M07BNaygt18aSZKkrpM9E50WdzDx/vvv8+677zJ9+vSeaI/URYqi4CzIx1mQ32p79aIVNHy5CdMUiEgEW04mIhjECIYxg2H0RBf2/CwUq4W6FWvxbtuD5kpAc7uI1DUQLK+Olc42DKIeL4GSChRVZfcf/s6I3/+C0n+/QcOqDVgSXejJiZihMDWfLMezYRsDbvwuSRNG9tIrIkmSdIRkzkSnxR1MpKSkkJoqKx32BUYwRN2nq1GtVnwbtmN4fYAHhIKiEEvYNAX23Gy8O/bi31eKLSeDSJOXcEU1gbIqRDgMpgDRnJ0pTISiUvnGQgL7y9DdTtyjh7UqdmXNSMW3s5Cy/76Na8QgNLutd14ASZIk6aiIe6GvBx54gLvvvhu/398T7ZG6UdTjJdrYRKiqlkhdA6gqqsOBlmBHsVkxwxHCdQ1EPF6MRi+R2nosacnoCU4CJRWIYPCrQEJtDreFQLFbEYpC49otBMurUQ8KFhRFwTkwD//+Upo27Tj6T1ySJKlbKF18nHji7pl49NFH2bNnD1lZWQwcOBCLpfV0xLVr13Zb46TOi3h9VL+/lJpPVmD4gzgH5pF+5qmYUYNgWSyPQoQjRAJBiEZBUUFTIGIQLC7HUZAHpknj6k0ESisQkUjzVNHmHgmz+f9VFaIGWC0II0qkvrGlDsXXqTYrGCaR+saj+jpIkiR1G5kz0WlxBxMXX3xxDzRDOhL+faVs/sn9NG3agTBNhGliBkLs//tLqA47kboGTMOESKT5jAO/IAJMgXfbbgRmLLGysDhWMt1uQwRCXw1vfI2IRBCGgYKCGQgR9XjbBBOieZaPKutRSJLUZ3UhmJA9E51zzz339EQ7pC4ShsG2nz9E47ot2HMyMA2TcGUNqApGKEyksQkMI/YLIQBNjf131IgFCoqCMAwiDU2Ey2PnmYEQiqLSJoxQFRRNQxxYzE2BqNffZnowQLiqFktqEq5RQ3v6JZAkSeohMgOzs+LOmQBoaGjgn//8J3feeSd1dXVAbHijtLS0WxsnHV7tp1/SuGE7tow0FF0nVFqJGQiiqCqa0xELIBTlq2EKIWLDHELE3vOqipbgRBGgJboQKJihCGYw2LZXwhSIaBQMExRQHXZQIFhUjhEIxi5vmgTLqwjXNpB+5qnYMmSyriRJfZRMmei0uHsmNm7cyFlnnUVSUhL79u3jhz/8IampqSxYsID9+/fz/PPP90Q7pQ40rFqPGQyhZqbi31tM1ONF0VQIR2NDDQd6DXQNVAXVakWEI7HcByW2doeW4CDa5EXRNcxQBFQFzenANAyEP9j6hi1BCYhIFEtaMpYUN4GiMkQkCoAlLZmc75xH9jfP6vTzEEIQ2F9KqLIWVddwDh0oi19JkiT1EXEHE/PmzePaa6/l4Ycfxu3+anXJ8847j+9+97vd2jjp8ETUAASh8moMrx80FeVAUmw0imgeykABTDAjUUDEhgGbZ2oYXj8iGkVEDYQCiq5jCoEIhg5xY4FpGESbfNj7ZZN/3beJNnhQbVZcIwZhTe98j0SwrJKyl9/Fs2lH7DkoCrasdNLPPJXMC2ah6nG/TSVJko6cTMDstLj/Sq9evZq///3vbbb369ePioqOV6+UeoZr5BCEYRINNKFYLV8lWQoRm7ER+0dzjgQQpblHIjZUoagaiqahOR1EGjyxfaFw83nNSZrtUCw6qsOO4fFS9sp7hKtq6X/jFSROHIWe4Gz3nPaEa+vZ9+QLeHcW4sjPwTGgH8IwCVVUU/rSW5jBILmXz+niqyNJknQkZM5EZ8WdM2G32/F4PG2279ixg4yMjG5plNR5meedjp7owgyGUXQNETUwAkEMnx/T11wLRPBVTNASaQswTIQwUTQVLckVW1o8HInlRBhfGyI5mKIgIlFMrx8UFUXXaFi7mT2P/IN9f/5XLCjppNpPv8S7Yy+ukUOwJCeiKAqqruHIy8aankL1x8tjJcIlSZKOtgN/L+N9nIDiDia++c1vcv/99xNp/gasKApFRUXccccdXHrppd3eQOkrwjTx7dpHw5ebaNq2BzMSQbPbST97BprdRrSxKZYPEYl+ldvwdQeCbCFa9ivNb37TF8A8UO3ysA1pDkRME81hw5KciOawo1gsNKzZTPnrH3b6+dR/via2MqmutdlvzUwj0uDBs/nYK3wVbfISrq3HbJluK0nS8UdmYHZW3MMcf/zjHzn//PPJzMwkEAgwc+ZMKioqOOWUU/jtb3/bE22UgKZte6h47QO8uwpjUzetFpwFeaTNnNZcoVKNTQE9BMVui/VQmGZsVoYpEJEokZr6r3or4iFoDigc0Fzbwtk/l4ZVG8i68MzDzuQwI1EMfyA2K6S99ioKiqJgHJwE2ou8O/ZSs3glng3bEFEDa3oKaadPJW3WtFYlxSVJ6vuEEnvEe86JKO5gIjExkc8++4xPPvmEtWvXYpomkyZN4qyzOp+5L8XHu7OQfU/+m3BNHY78XDSXEzMYwrujkKr3lqLaLBj+wOFjAcNET3QRqfe07YFopzjVYZkmIhxB0VXMQATVasGanoJ3x15CZVWHDSZUqwVLahKBonJsmWlt9gsjVgvDkuRu5+yYqN9PuLYRa0piqyXRe0Lj2i3sf/o/hOsasWWmoTnshCpqKHr2Fbw79jLgxitlQCFJ0gmpy2nyZ5xxBmeccUZ3tkVqhxCCqncXE66qwTV6WMuS75rDjmrRCdfWoycntlScPOS1whEitQ1dCxw6umbUIFBUjiXJjT03E2GYKKoam556GIqikHbaSez/x8sYwVCbBcGCpZVYM9JIbGflUf/+Uvb97SVqFy0n6gug2W2kzZxK/xsuw90DhbIMf4DSl94i6g3gHj205edgSU7E8AeoX74W9+ihZHxjRrffW5Kk3iITMDurS8HEokWLWLRoEVVVVW2qHz777LPd0jApJlRRTdOWXdhys1s+wCA2vBAoKsOSnEi4pj628UDyz6ECi24MJA5cL9rgQUtwYM1OJ1RZgy0rPbbWRyekTJ9M47qtNKzaiDU9BUtqEmYkSqi8GkVXyb1iDtbU5FbneHftY+ONd+HftR81wYHmsGMEgpS98j71K9Yx5ol7SZ48plufpmfDdgIlFSQMHdDq5wCgOR2oDju1y1aRfsYpsURWSZL6Pjk1tNPiDibuu+8+7r//fqZMmUJOTk6bP6xS9zJ8AcxQGOtBwwBmJIoZCqM57JjhMJrdhhGJgKYdOpjoAcI0iXi8+AtLIGqQddGZnZ4eqic4GTj3KqoK8qj7bA3B0koUXcM1YhAZ35hB8rTxbc7Z8/DT+HbtxzmwX2wZ9WZmRiqBwmJ2PfgEk1/7K6rapQKv7QrXNYAQqActbHeAJdlNuLoewx9Ad8tiW5J0XJDBRKfFHUz87W9/47nnnuPqq6/uifZ06KGHHuL1119n+/btOBwOTj31VP7whz8wfPjwo9qOo01PdMXqOXj9rYYBVD1WHyLiaQIUdHcChs8fm8lxtBkmRqMX/+79FPz4GjLPmxnX6brbRe5lF5B5/izC1XUoFgv2nIx2v+H7C4upX7EOS3Jiq0ACYq+JNSONpq17aFy1gZSTJx7R02p1bZs1liMiRLsBtBkKo1qtKFa5sJkkSSeeuL+6hcNhTj311J5oyyEtXbqUm2++mZUrV7Jw4UKi0Shnn302Pp/vqLflaLJlppE0cRTBssqWvAghBIGSCiKeJoLF5ZjRKFGfv8NZET1OjX246hlpZH/73C538+uuBJwF+Tjysju8hm93EUYggN5BqW0t0YUZDOLfU9SlNnTEPXIIepL7qyGlrxFCEK6tJ+mkcWhylVRJOn7IOhOdFnfPxA033MBLL73Eb37zm55oT4c++OCDVv+eP38+mZmZrFmzhtNPP/2otqUnRZu8NK7bSqCkAlXTcA7uT8Y3ZuDbvT+WO5GTSai8msb1W5rX4dBQLDoiasSKSPUGIQAT/7bdbLntt1iTE0mdMZmUUye1yXc4UqrDhqJqiEgE7O18cEcjKKra7YGVvV8WqTOnUvX2J2CaWDNSUVQVIxAkUFiMPSeL9JlTu/WekiRJfUXcwUQwGOTpp5/m448/Zty4cVgOGkN+7LHHuq1xh9LY2AhAamrH0w9DoRCh0FfrS7RXufNY0rRlF8XPvUpgf1nzLE+Bqmm4Rg0h94o5NK7aQO3na6hb/iVmMIxqs6KnODH8AaKHWkejpwlACIKVNTSsWIeemEDj2i3UrVhLwS3XYM/J7LZbpUwdh6N/Dv7CEnR326mgoao6rBmppM2a1m33PCD3sgtQVJW6Zavxbt0NKCgWDeeQgeR975s4+ud2+z0lSeo9AgUR5+yMeI8/XnRp1dAJEyYAsHnz5lb7jlYyphCCefPmMWPGDMaM6Thr/6GHHuK+++47Km06UsHyKvY//V/C1bUkjBjUsriVEQzh2bADBAz+5Y0EK2uoW7YKe14OltREDG+AqL+d5cJ7g2kSKCpF0XUsqUmEqmrQExIYcudN3fbeUK1W+n33Inb9/m8ESiqwZWeg6hpm1CBcXYeIRMm69Jxu7xEB0GxW8q76JhlnTce7fQ9mOII1Iw336CEdJmZKktSHHcUEzL/+9a888sgjlJeXM3r0aB5//HFOO+20Do8PhULcf//9vPDCC1RUVJCXl8ddd93FD37wgy7d/0jFHUwsXry4J9oRl1tuuYWNGzfy2WefHfK4O++8k3nz5rX82+PxkJ+f39PN65L6lesJllbgHju81QevZreRMGwgTVt3UbdsFY3rtoKuY0lyESqrIlRViwiHIdoLiZcH0ZPcaA47IhjE8AcQhknFWx+Te8UFJAzq3233ybvu20SafJT863UC+0qIrU4m0BNd9Lv6Yob89IZuu1d7bFnp2LLSe/QekiQdC45OnYmXX36Z2267jb/+9a9Mnz6dv//975x33nls3bqV/v3b/9t52WWXUVlZyTPPPMOQIUOoqqoi2oufA4oQXf9KW1JSgqIo9OvXrzvbdEg//vGPeeONN1i2bBkFBQVxnevxeEhKSqKxsZHExMQeamHX7PjN/yNQWoFzYOv6DEIIgqUVNHyxHt3twr+vFCMURrNZMYKhWCChaZj+QOfW1ehB1ux0VKsVIQSmP4A1Iw3D62PkH35J7mXnd/v9AiUVVL69iFB1HZYkN1lzZpMweEC330eSpGNPT/49P3Dtqm1rSIxzqrenyUvmyMlxtWvatGlMmjSJp556qmXbyJEjufjii3nooYfaHP/BBx9wxRVXsHfv3kMO9R9Ncc/mME2T+++/n6SkJAYMGED//v1JTk7mgQceaFPAqjsJIbjlllt4/fXX+eSTT+IOJI51ZiTaZgaDEALv9r00rNpItNELqorqsCHCYSJ1DQjDQJgCYQp6veqarmEGY0uXxxYPo7l9JoHSnlma3pGXzcAfXcXwu3/MoJ9cKwMJSZK6WdcX+vJ4PK0eX8/f+7pwOMyaNWs4++yzW20/++yzWb58ebvnvPXWW0yZMoWHH36Yfv36MWzYMH72s58RCASO+Bl3VdzDHHfddRfPPPMMv//975k+fTpCCD7//HPuvfdegsFgjy32dfPNN/PSSy/x5ptv4na7qaiIfUAlJSXhcDh65J5HU8Kwgfg/KIL8nJZtkbpGfDv3ouga6Dqa3YZmsyFEbIEuEY0CCmjGUS9U1YYpMHx+FIseW59CNNdesFnbXXcDIOLx0rBqA/Ur1xP1NGHLyST1lEkkTR4ddw6CGYkgDBPVZu0wP0MIQdPmndSv2kCgsATVYSN58hiSp47vkRyLNm00TYhGUWUtCkk67h08pH7PPfdw7733tjmupqYGwzDIyspqtT0rK6vlc+5ge/fu5bPPPsNut7NgwQJqamqYO3cudXV1vVaFOu5g4l//+hf//Oc/ueiii1q2jR8/nn79+jF37tweCyYOdP/MmjWr1fb58+dz7bXX9sg9j6aUkydS9+lqguVVLbMfAqUVhOs9RL0+iBp4/AEiHi+Ewl8l+QgB0UOvFnpUCBOBiuH1I0wTpTm4sWWm4yxom6cSqqpl31Mv4t28E9VhR7XbCJZU0Lh6I6mnnUT+D75zyJoNseGfSuo++xLPhm0EK6rRHHacBfmkzZhC8rTxKF+rgClMk/LXPqDynU8wgyF0twszHMGzfhs1i79g4NyrcA7omeE6f2Exxf96neqFn2H4AljTU8g8fxb51156VIIYSZK6JrZqaJyzOZoPLy4ubjXMYbPZOjgj5uAvQR0VyIPYFxNFUXjxxRdJSkoCYjMpv/3tb/Pkk0/2yhfsuIOJuro6RowY0Wb7iBEjqKur65ZGtecIUjv6BNfIweR8+zzKX32fpi07sSQn4tu2h3BVbexNBRiB4FeBw7H2ejQ3x4xGEY1N6ClJWDNSSTllAkkHLdQlhKD0pbdo2rwD14jBrXohok1eahevxDGgH1nnz2r3VpHGJkr/8zZV7y+lacsuRDiC5nJizUwlXFWLZ8M2MguL6XfFnJaAomH1Jirf/Bg9JQnb14ZDhGHQtG0PxfNfZehdc7t9Vkbjxu1svuXelp4Q1WbFX1hC4Z+eo3bZKsY9/TvsHfTcSJLU27qegJmYmNipnIn09HQ0TWvTC1FVVdWmt+KAnJwc+vXr1xJIQCzHQghBSUkJQ4d2/2KHhxN3zsT48eN54okn2mx/4oknGD++7ToKUucoikLm+bMY/NMbSD9rBqrDTrTJhzBMMGJlnDGOgR6IQzFja1coVgv2vGySTxpH/rXfRnO2jpID+0vxbNyOIy+3zYe37nahuZzULvkCIxRucwsjFGb/0/+l6t3FBIrK0FxOHIP7Y0l2E6mpJ9rkw5Lkpvr9pXjWbQViwUvdp6sQptlmWXRF00gY3B/frn00bd7VvS+HabLz3j8R2FeCY1AejvwcbJlpOAf2w5abhWfNFvY88nS33lOSpL7FarUyefJkFi5c2Gr7woULO6w2PX36dMrKyvB6vS3bdu7ciaqq5OV1bpHF7hZ3z8TDDz/MBRdcwMcff8wpp5yCoigsX76c4uJi3nvvvZ5o43Ej4vHSuHYz3q27EYaBc1B/kqeMbZlmqCgK7jHDcI8ZhmfLLsoXLGwOIASYtHz7P+YogK6h6hbseVmIqEHW+bPof8PlOPKy2xweLK3E8PpxdDCsYE1LIVxdS7i6rs35nvXbaFy7Gd2VgIhEmytRKuCwo+g6ofIqHAP6YUaj1K1YS9LkMZjBEL69xVg6GFLQHHZEJEqwtIKkiaOO9NVoUb98LU1bdmHNSGupG3KA7rQTdTupXbSCYFWt7J2QpGOQUJQuDHPEnww/b948rr76aqZMmcIpp5zC008/TVFRETfddBMQK3NQWlrK888/D8B3v/tdHnjgAa677jruu+8+ampq+PnPf84PfvCDXsshjDuYmDlzJjt37uTJJ59k+/btCCH41re+xdy5c8nNlRUAO+IvLGb/3/+Lf29RbNaGplK7dDVV7y0h75pvkTJtPIHicupXbcC7bTeeDdsJV9c2n60ce8MaX6coqE4HFlcCieNGggI5l57bbiABNA89ND+ndn7xhGmCqqJobTvOPOu3gBCY0SgoxAKJZqpFRwCh8irsuVn49xa3tE9RlMNPne3GVUYBfDv2YgZDaLntd1XqSYmEa+rw7SyUwYQkHZOOTp2Jyy+/nNraWu6//37Ky8sZM2YM7733HgMGxIZky8vLKSr6ar0hl8vFwoUL+fGPf8yUKVNIS0vjsssu48EHH4z73t0l7mACIDc3t8cSLY9HUZ+f/f94GX9hUavqlsI0Y8l5818lUFpB+Svv4d9bjDBNQuXVsUJUguYqbBy7PRMCMExUu41QWSWpp0/FNXJwh4c7hwzAkppIuLqu3eJPocoaXMMHtTsLJOLxoVqtmCLc7uuhahpmKIwZiWCxJQOxwl/uMcOoXbISW3bb+0WbfKh2GwmDuregmWK1AEpspo3aduEyEY3G1hGRi4NJ0glv7ty5zJ07t919zz33XJttI0aMaDM00pu6FEzU19fzzDPPsG3bNhRFYeTIkVx33XXHTPGMY41n3Vb8e4pIGFbQqrtbUVWcg/pT/8UGdt77J4xAEEXXUS06xtfnCwsBmhr7Zn0s9lA09zBEfX4sqUn0u2JOm279r7NlpJIyfTKVby1CtduwJLmbLyMIVVSjKJB+xintrhxqy86gYdUGbJlpKJqKGY60WorcjEbREhxEPV6yLjyzZXvaaSfR8OUmAvtLsffPbcmSNgJB/IXFpJw8kYRh3Vu7JO30qS25HO0FMZG6BpwF+SSNb5vQLEnSMeAoltPu6+Lu1126dCkFBQX8+c9/pr6+nrq6Ov785z9TUFDA0qVLe6KNfd6B7vb2ZgooikKooorAvlJEJIrh9ROpa8Q0TPj6h6lhHpuBRDPT58cMhNASnATLqjDDbZMnvy732+eRfuaphKvr8GzaQdPW3TRt2oEwTHIuu4CUUye1e17ylLFoCQ5QFWw5mUTqGzGbEzWNQBBUFSMUxjGgHymnTGw5zz1mGPnXXIJitdC0aSfe7Xto2ryTwL4SkiePIf+6S1tNJT0SRjBEsKIa3Z1A+tkziHp9hGsbMJuHWUzTJFheDSjkXnaBrDshSceoAwt9xfs4EcXdM3HzzTdz2WWX8dRTT6E1f9gZhsHcuXO5+eab2yz+JYGg4x4FYZoEi8oxIxHMUBjFooMQiHDk2Kgf0VlmrM21S1biWbeVjHNOo+DW77cpD36A5rAz4P+uIH3WNDybdhL1+rClp5A4cXSHuRYAruEFZJ5zOpVvLcKS7MYMhQlV12L4AiAEttxMksaPIv+6S7FnZ7Q6N23mNBKGD6JxzWaCpZWodivuUUNJHDe8Wz7Qoz4/NR8vp3bZKiINnthMkSEDSD55Ip4N2wjv2R/rERECPdFN/+u/Q/4Nlx3xfSVJ6iFHJ2XiuBB3MLFnzx5ee+21lkACQNM05s2b15JpKrV24APVjEbbdP8HK6qJ+gMouh6bQilMIp7AMd0L0S4FhDBRrBaEaVK7bBWq1cKQX96IJSWp/VNUFdeIwbhGDEYIgX/3fhrXbqZ++Vqs6SkkTRzV5lxFVcm97HxsORnUfrICzenAmpqMYrXgHj2UjDNPJXHS6A4LXtmzM7BfMLvbn77hD7D/qZeoX7kOS3Ii1pQkzEiExjWb0d0JDPrZDYSKy4l6fFgzU8n+5lm4Rx39ueCSJMVDRhOdFXcwMWnSJLZt28bw4cNbbd+2bVvL0uRSa0kTR+EYmId/ZyEJIwa3dKcLIWjaujs2G8JqiZXJDkUQoUhs3E1Ve79MdmdZLCAgUtOAXtAPBDRt2UXDl5vI+MaMQ55q+AOU/PsN6lesI+rzNw85Ktiy0sm9/AJSZ0xpdbyiaaTPOpnUGVMIV9eBEFgz206/jFewrJJgSSWoCs5B+XFVp6z9dDUNX6wnYejAWDnxZpbUZPx7ivBt3c3wB25HT3AeURslSTp6ujJsIYc5OunWW2/lJz/5Cbt37+bkk08GYOXKlTz55JP8/ve/Z+PGjS3Hjhs3rvta2ofpbhf9r/8O+5/+L02bd8Y+bDQVw9vcNZ+RihEIIoIhjFA4NklBEAsmxDGadHkw0wSrFRGJYPiCKM5Y4lLj2s2HDSZKX36X6oWf4eifi6MgD0VREIZBoKicovmvoie6SBzXNklR1fWW0uNHIlzXQNn/3qPxy01EPV5QFCypyaSdfhLZl5yNZj90GVxhGNQuW42W4GwVSEAsJ8YxoB++nYV41m8jdfrkI26vJEnSsSbuYOLKK68E4Be/+EW7+xRFaakpbhzrFRuPItfwQQy98yYavtyEZ+MORDRKwrAC/PtKqXr3k5ZCTiIciX0wi+Yeib4QSAAIEOEwiqpi+Pzobieq1dKSHNmRYGkl9cvXYs/NwpL8VelZRdNwFuTRtHUXNYtX4h47vMM69Uci6vOz/6kXaVy3FXu/LOz5OWCahKpqKX/9Q6JNPvrfcNkhkzMNf4BIbQN6UvtLFauW2K9ZpMHT7e2XJKkHydkcnRZ3MFFYWNgT7TghWNNTyTx3JpnnzmzZ1vDlJhq/3IjuduEvLMEMRzCCIVCVrxIwlWO9aBUomoqIGqDECkpZkhIBgaOdRb6+zrurkGhjE/a8bIRpEq5twPAHUFQVa3oKtsx0vFt3E/V4W6aQHiCEIFBURuOaTQRKKtGcdhLHjiBx/IjD9iYc0LB6I57123ENH/RVvQdNw56TieawU/fZl6SdfhKuER3XzVBt1ljgFGw/cBJCgGl2uk2SJEl9TdzBxIGKXFL3SBw3nKQJo6hftZGkyWPw7y/Bt6MQMxjC8AditSV0DSLR3m5qxwTNgQQIw0SzWrGkJqMnukmZepj1WoxYD0yk3kPT5h2Ea+rBMBAoaA471qw0bJlpzcutf+2WQlD1/lIqFnxEpN6DarciolFqPl5O4rgRDPi/y7GmH77uScPK9Sg2S7uFoyzJiQSKy/Fs3HHoYMJqJXnaeCoWfIQtJ6NNL0a4qhY9JQnXaJlwKUl9icyZ6LwuZayVlpby+eefU1VVhXlQguCtt97aLQ07UahWK/3/7wpUm5XGDduwpqYQTW/Ev68E1elAhCOISKS3m3l4B94HCmjpyWguB9nfOuewhaBsWemYhkH98rWYgQB6cmIsGdU0MXwBvFt2oeo6+kG9Ep61Wyh7+R00hx332GFfFaEKhmhcu5nif1kZdPt1h60dEWloapPn8HWKrhHxNB326afPOpnGLzfh3b4Hx4A89ARHrJJpZQ2R2kayL/lGm6mqkiQd447jYY4PPvgAl8vFjBmxnLYnn3ySf/zjH4waNYonn3ySlJSUuK4XdzAxf/58brrpJqxWK2lpaa3GsRVFkcFEF1hTkyn4ybX4du/HX1hM3edrqXpvMardRtPmXYjD5B0cUxQFi91BziXnkHXB7MPmOSSMGISiqQTLKrGkpxCubQBVQXfYUSw6iqZhhsOEq+taki2FENQuW4UIR7APbt1TptltOAfm4dm0Hd/u/bgOF8xkpxEoKm13nxACMxgmUt9I1QdLUW1WXCOHtBsU2PtlMfDmqyl96S28OwtjuS/NiZw53zmX7Iu/cch2SJJ07DmeeyZ+/vOf84c//AGATZs28dOf/pR58+bxySefMG/ePObPnx/X9eIOJu6++27uvvtu7rzzTtRuXhjpRKaoKq5hBbiGFWB4/fh27MExMA/fzkJMP8fuuhxfp6ooFp1QZTXVCz/DPXLwIYcHgNiiXaEwIhIhuL80dg1FIWSaqDYr7jHDYkHVll0twYTh9eHdWdjhMIbmTsDYX0ZgX8lhg4mUkyfR8MVGol4fuiuh1T7v1t34C4sRhkHjl5vBNNFTkkiffTI5l57TptBVwpABDL1rLt7tewlV16JaLLhGDMKaFl+EL0mS1NMKCwsZNSq2SvJrr73GnDlz+N3vfsfatWs5//zz475e3MGE3+/niiuukIFED7KkJYOAQFF5bDZEXwgkiC1spTkdzetdlFDx5scMHj7okL0Tvj1F+PeWoCe5Uew2DI8XYZotMyBE1EBRFMxgqOUcIehwxVGI9ZDFclYP/8IlTRpF6ozJ1C75Aj3JjTU9BWGa+Hbto2nLLmw5GbjHDkOz2WIJotV1VLyxEBSFflfMaXtvTcM9eihuZH6EJEnHLqvVit/vB+Djjz/mmmuuASA1NRWPJ/6ZZ3FHBNdffz2vvPJK3DeSOi9pwihs2RkEyis7nCFwLBKGgaIqiKiBatXxbt9DoKjskOd41m9FGAZqggN7RirOQf1JGDIA58A87HnZhGvqiDZ6W00b1d0JOAvyCdfWt3vNqNeParPiyM89bJtVq5X86y+j3/cuRk9yEyyvIlxVhxmOYM/NIm32KWi22CwMRVWxZaVjTUuhdvFKQlW1h7m6JEl9mVCULj36ghkzZjBv3jweeOABVq1axQUXXADAzp07yctrfxmEQ4m7Z+Khhx5izpw5fPDBB4wdOxbLQYtXPfbYY3E3QmrNkpxI8qkTqXxvcd+pgAlgGEQam9DstlgPRTCE0eQ75CmN67bh6J9LsKQCMxJt7pGI/TIqmo7h9YNFI3HCyJZzFEUh7fSpeDZtJ1RV22qpcjMSwV9YTPKk0biGd24VUM1uI/ubZ5HxjemEKmuI+oMU/vlfqBa93R44a2YqTVt34d2+p91l0iVJOl4cv+W0n3jiCebOncurr77KU089Rb9+/QB4//33Offcc+O+XtzBxO9+9zs+/PDDlnLaBydgSl0TKC6n/ov1eNZvw7N1J97Nu4l6Dv1BfEw5kPUsBMI0ERED3e1Ecx2mfLRhYM+NJTQGS8pR7TY0uw1hmLHS2qpKytTxbfIZkqeNJ7v0bKreWYynqhY9wYnZPPPFPWoIedde2u4S5oeiOR1f9XiYZqulzVs9VVVFIbb8eTwODJMIw8CaniJXC5WkY5wg/lHmPjIqTf/+/XnnnXfabP9//+//del6cQcTjz32GM8++yzXXnttl24otVW3fC0lzy8gVFlNoKSCYEkFhi8QW2q7zxDE5oVqoGuEqmpJPmksjv6HHmpIGDGIwEefkTxlDP7UZPz7SzECsaJd9txMEJA+++Q25ymqSs6l5+IePYyGVesJ7C9DczpImjKG5Mlj0N1fVaMM19bj2bCdqMeL5nKSOHY4tqz0DtukuxOwpCYRrq5rNbxygBEMoehqpxMrhRA0fLGBmk+W499bjDBNbJnppM2aSvoZp8igQpKko27t2rVYLBbGjh0LwJtvvsn8+fMZNWoU9957L9Y4/y7FHUzYbDamT58e72lSBwJFZZQ8vwAzGEJLdBGpb8SMGoAgepghgmOKILZgmc2CZrGgOe1kXXTWYes8pJ4yifrP1xCubcA1YhDOIf0xm4OJYFE59twsEieObvdcRVFwjxyMe2T7M0aEEFR/9CkVb35MpLouVlXUFFhSk8k493SyLzqz3d4L1Wol7fSplDz3GkYg2KoOhRCCQGExzsH9cY8ectiXJer1Uf7aB1S+sxjVasGWlY6iqoQqayie/xr+faX0v/47qJb2e0GkzhOGQdPW3TSu3UykrhFLahJJk8bgHjUk7l4qSQKO6zoTN954I3fccQdjx45l7969XHHFFVxyySW88sor+P1+Hn/88biuF3cw8ZOf/IS//OUv/PnPf473VKkd9V+sJ1xTT8LwgVS89iGROg9mJIIwDYj0rbVNFIuOLT0V1WYl68IzWj7kQ5U1hCpqUDQV56D82FLrzVyjhpDznfMpf/V9mjbvRE9yIwyDqMeLPTeL/OsuxZLY/poXh1P/+RpKX3gT1WHDNXooiqq2FJIq/9+7aE47meec3u656bNPxrtjLw0r1qG5nOhJiZihMOGaOuzZGfT77jcP2aMQaWyi+oOlVH30GXWfr0FRFRz5uehJbuzZGeiJLqJNXuqWrSJpwihSTp7QpecoxRihMCXPL4jVHwmFUW1WzFCY6oWfkzZzGnnXXNLhsvSS1JHjuc7Ezp07W1b6fuWVVzj99NN56aWX+Pzzz7niiit6PphYtWoVn3zyCe+88w6jR49uk4D5+uuvx3vJE5p32x50txPv9r2E6xpQ7VbAxPCGj9p6HO3dJe5fB4tO+uxTsKYnIwyTzHNnEq6tp/y1D2n4chPRxiYUTcOWk0H6WdPJPHsGiqahKAqZ583EWZBP/Yq1+HbuQ7XoJF44mpSTJ3R5VVAzEqHqw2WgKDjycr56XqqKPScTfzhC9UefkXb61HYrYGpOBwNv+i61I4dQu2wVkbpGFF0j6/xZpM0+GefAjrOdIx4v+554nsa1WzECARRFQU9OjM0Uqa0naeJoHPk5zUMxldStWCuDiSNU9d5iqj/6FEf/3FZruEQam6j+6FOs6cnkXHJOL7ZQ6puO3wRMIURLBeuPP/6YOXNiU93z8/OpqamJ+3pxBxPJycl861vfivtGUgdUBSMYIlhcgeZwYITCmOForwYSB7bH8yuhJyUSqq4lUt9IyqmTUGwW9v31BTwbtmPPycQ+YhDCMAhV1FDyr9cxmrzkfOf85poQhx6u6IpgcQWBonJsOe2XsLbnZODfW4x/TxHuMcPaPUZzOsg8bybp35iO0Tzd9FCltw+oXfIFjeu24hoxiKZtu1EsOrrDju6wE65rpGnrLmxZaahWK7o7gVBZ1RE91xNd1OujdskqLClJbRaDsyS5iaYkUbtkFRnfmNEmkVeSDuV4TsCcMmUKDz74IGeddRZLly7lqaeeAmLFrLKysuK+XpfKaUvdxz1mOHXLVhMNBLCmJeMvKo2VYj4KDvem73RAoSqYgQD+3UUkFOTh372fLbfcS7jeQ+qMyV/VadA0HP1zCVXWUL3wc1KnT8HeL/amFaaJb/d+AvtLQQjseTm4RgzqMOciXFNH/aqNNK7ZjBkK4xyUT8rJE3GNHBwrchWJxOpXWNp/iyu6jogamJ1YQE3VddR2EjHbY0Yi1H22Gj3JHVtN1GKJLdbWzJLkJlzbQKiyFkd+DkYwhL1fdqeuLbUvUFROuLoOW24mvr1FhMqqMCNR9CQ3jn5ZWDNSCRSWECgqxz3q8HkukvSVLuRM9JGeiccff5yrrrqKN954g7vuuoshQ2K/G6+++iqnnnpq3Nfr0kJfANXV1ezYsQNFURg2bBgZGXIRo65ImTae8v+9i2/3fnAIDH+wx3sluvvqWkoiqqbjHjWUtNOmYEaiVL7zCdEmH8HyajSblUBxOZH6RhRNx5abieH107hhG/Z+WYRr6yn+1+t4Nm7H8AVj13RYcY8aSt61l2LPzkAIQbC4nIa1W/Bu203d8rWIUBhrVgaaVce3s5C6T1eTffHZZF10JrbMNHS3i0idB1t225kbkfpG9ERXl+tERH1+fLv2I8IRrOkpOAryUBQFwx8k2uhFd8e+Adsy0/DuLMQIhtDsNhQtFhyZwRBmJIrhD8ohjiMlBEYgQMMXG2LvMV1D0TTCNXUE9peSUJCPYrMctd4+SeoLxo0bx6ZNm9psf+SRR9C6kLAcdzDh8/n48Y9/zPPPP98y3qJpGtdccw1/+ctfcDoPU1dAasWek8mAm6+mbvla/HuLwOiZpMse+zNqs2JNdMcW2CqI5REomopitYCqULd8HbrNghACzWbFNEN4N+9ERCL4du3DCIbY//f/0rh2M46BeegFCSiKQtTro3HNZoxAkEE/vZ7aJauofHsR4Zp6fLsKiTb5sCQnotqsOCeMxGGxEKqoofy1D3D0zyVp4ihSTplA5ZuLsKQmtkqWNCNRgqWVpM8+GVtufDkZwjSp/ugzqj9cRrC8GkwDLcGJa9RQci87H1tWeiz5r7n8tyU9BUdeNv7CEoRhojpsCGFihMN4t+3GPWoIydMmdNuP40Rky80kVFlLqLIGR/+cVr1Zhj+IZ/NOEscNx56fc4irSFJbsWGOeBMw+za7/fBDue2Ju5z2vHnzWLp0KW+//TYNDQ00NDTw5ptvsnTpUn760592qREnuoTB/REtS3h3fxdZj725VQWiUSINHixpydiy0zGjBoH9pUSq6whX1xEqKiPS2IQl0YWe6MKSnIglIxUjGKJ+xToaVm3Es3E7CcMKsCS6Wgqf6a4EEkYMwrt1DyXPL6D8f++i6BqW9BRQVZwD89DdCfgLS2jasgsgdv9wmLrPvwQg+8IzSZw4Eu+OQvyFJYSqY99Uvdt24xo5hJxvnxd3obXKdxdT8vzrRD1eEoYOwDV6GJbUZBpXb2Tfk/8mUt9I8tRxBIrLCNXUE6lrRE9NQk9OjPXUFJUjQuFYMa6TJzJg7vfajPNL8QmVVaHoemzp+mjrYFzRY6vOKhYL+uEKqEnSCcQwDP74xz8ydepUsrOzSU1NbfWIV9w9E6+99hqvvvoqs2bNatl2/vnn43A4uOyyy1qSOKTOMcNhtt/1KJH65oVVzO796O/RKFlpjkUVBUXTEKaJZ902gkVloKqISBRhmhheP4Hicuy5mWhOB6bPjyUtGTMYouqjZYBAs9vaXF61WEDXqHx3Mda0FOw5mTRt2w1CxLqydQ3N5SBYXEHCkIHoLieWlGS8Owoxo1EsKUkU3Hot9Z+voXbZaqKNTVjSUsi66CxST5uCNTU5rqcbrmug6v2l6O6EVnkOliQ3ustJ05ZdFP8rFmgEisppWLMlVknTZkVzOhHhMCgKGefOZNBtP8A5KF9Wje0GgZJybBkp6IkJBIvLEUKg6jpmNIqiKDgL8tCcjlhvlgzcpLjEPzW0r+RM3Hffffzzn/9k3rx5/OY3v+Guu+5i3759vPHGG9x9991xX69Lq4a2l+mZmZnZsgKZ1Hnlr39E/cr1sW9UxrG1DschfyUUBS0xAT3BiZ7oIlhejWf9NvyFRWhOJ1annXB1bazHxaJjhiIEy6uxpCSBaeIaPRSiUcKVtSj6Id6GpiBcXYd71NDm27ZuleZ0EK6ui+VAuJwgTBRFaznOkugi87yZZJxzGmZz/YHDFdLqSNPmnURq6nG1M+tE0TSEYVL6wpu4Rw3Blp1BqLoOETWIRvyISBRbbhZ6khszFCv73ROBhBEK07h6I/Ur1hGqrMGSkkjKKZNInjruuJ3JoKgqiqqRNCk25TZYWtlSbMyem4mixgJdRe0bf+SlY8nxOzX0xRdf5B//+AcXXHAB9913H1deeSWDBw9m3LhxrFy5kltvvTWu68UdTJxyyincc889PP/88y1jK4FAgPvuu49TTjkl3sud0ELVddQuWRmrLWGax1yC2CFnc6hKLLExasQW6YoaBIvLQNXQHDZQFIRhotltqLqGGY5gNPmwJLpwjRyCa+hAmrbuwZqRim/nPoQQ7X64Rv1+NKej5YPAkpyEoqpfWxTsQGMFQggidY1knHNam4qHiqp2alpnuK4BMxBCT0xoVZIbwPAHYtdqJznJjEQJlJRjRiLY87Lx7y/DkZ+DqusYoTBGYxPOgf1IHD8S75ZdVH+8nITDLM8eL8MfYP/T/6V+5XoUTUV3OQlV1uDZsJ36FWsZ8KOr4u6N6QucBfloCQ4MXyA2Dfmg2iTebbtJnjoe7TgNpqSeczxPDa2oqGgppe1yuWhsbARgzpw5/OY3v4n7enEHE3/6058499xzycvLY/z48SiKwvr167Hb7Xz44YdxN+BE5tuxl0hdI/bcLLybdnb79bvjTd1RQKHY7ARLq7CmJqHYLAifH2EK0DUUNTbsoeixD11reipmKES4uo6oPxibAlpSju52kX7GKbHcivIq7Lmte7xCVbVYk5OwZ2cQrmlAd7uwZqZiy0wjWF6FJS0FEYmiWi1oLieBfSXoSW5STzup88/PMAgUleHfU0zDhq34d+7DDIfREpyknDyBjHNOx5YRGz/UE92gKG0DGSBcXUu03oMlI4VIQxOGP4A1PQVFVdCcdqKaSqi8GjF6KLbsDJo27SDa4In11HSTyveXUvfZlzgHD0D/2rouZihM47qtlL/yHgNu/G633e9Y4Rzcn8QJI6n77EvUoQNbgkYhBMHSShSblbSZ0+SQkiR9TV5eHuXl5fTv358hQ4bw0UcfMWnSJFavXo3N1nbY+XDiDibGjBnDrl27eOGFF9i+fTtCCK644gquuuoqHI6+tDDV0SeEIFhSQaS+Ec1hJxqITYNUFCX2id2NIW1PR8ciGARNxfBZY8GGoqBYtFiPRCSKJTUZS7KbwP5SAvtKoLneguawg6YRLK3EmhYmXN9A1sXfoPx/7+LdthtreiooSmzlTgWyLzkHzemg6O8v4TNNdHcCrjHDYq9lRTWGx4s1Iy2Wk5GVQb+rLsI17PBLjwshaFi1keoPl9G4bgvebXsxoxGcA/NwjRiMMAwq3liId/seCm69FltmGonjhmPLySRYXI5zUH6r60W9fsxwhISC/hx49b/era5YLZihMGY4gmq1EPX5MUJhumtFjqjXR92y1VhSk1sFEgCqzYo9N4uGLzeTdVFVl6uKHqsURSHvmkswQ2E867chTANF1zFDYSypyeR99yISJ47q7WZKfdLxO8xxySWXsGjRIqZNm8ZPfvITrrzySp555hmKioq4/fbb475el+pMOBwOfvjDH3bl1BOWf38pFQs+xLNpJ4YvgGLRMEIRPGu3EKqp69bEy6PSzWaaCKuOAIwGL6rdhiU1CdPrxyQ2PdSS5MZISyFQVIZiChSLhhmNoIRUXMMH4cjPofqDTxn6q7nYf/x9apeuwrdrHwhB4tjhpM2chmvUEMpee59IQxOeDdsR0JJoac9KRx9WQOr0KbhHDSFp0uhDrgb6dXXLVlE8/zXMcJhwdR1oKtakFEIV1QjDJOXkCVgzUvFu3U3VB0vJv+Zb6K4Ecr99LkXPvoJ3+x5sOZmoVguRBg/B0kr0JDe2vCxMXwBFbd2DIaIGiqahWnRCdbVYmme2dJdQZS2Rugbsee0XwLKkJRPasotgaeVxF0wAWFOTGXT7dXg27qBp8w6MQAhbTibJU8bi6OA1kaTDOZ6HOX7/+9+3/Pe3v/1t8vLyWL58OUOGDOGiiy6K+3qdDibWrFnDz372M958800SE1v/EWxsbOTiiy/m8ccfZ/z48XE34ngXKKmg8C/PE9hfiiMvG0tSIg1rNuErLCJSUdOneiRaCYYx8CJMA013YE1NJhSKoITCGMHwV+3RNfQEJ/b8bJwD87Cmp2DNiPVANG3eSeP6reReei5Jk8dgeH0IEVsG3AyG2PfkC9SvXIdrxGCcQwYSLC4nVFVNpL6BlFMmkXfNt3D0y8QxMK/T3djRJi/lr38EioI1PYWmrbuxpibFhkscdsLVdfj3leAeOQRbZhr1K9eTfdFZWJITSZ0xBc1hp+rDT/Ht3oeIRtET3fT77kU0fLmRaF0j9rxsLKnJRGrrsaSnAgLDFyBh2ECEiBXMyjxvZrszWLpK0dTYDBqz/SReYZgts26OV6rVSvKUsSRPGdvbTSHi8eLdsgsjGMSSlIhr9FC50FifdPz2TBzs5JNP5uSTT+7y+Z0OJh599FHOOOOMNoEEQFJSEt/4xjd45JFHeOGFF7rcmONV9YfLCOwrwT1mGCISpW75WiK1DSiK2ncDiQP3jERB01qSR205GbFaCuEw4aq62AJZikrCiEGkzpiMetDMDdVqIVwVW1RGUZRWSY8NX26iYfVGEr42Du7sn0OwvArP+q3UfrKCYGkFtsw0XCMGk/Otc0gYOvCwbfZs3EGoohrnsIGx0svRWN4FxD6UVbuVQFEZCUMLWmaqRBo8LT0JSZPHkDhxFMGyKkQ4giUtGUuSG+fAfpQ8/3qs6uKwAjwbggRLK8AU6EkuVJsV3469JE8eQ/pZ04/4tf86e78s7HnZBEsr0Af1b7M/XFWDLTMN5+C2+zoihMDw+UEINFeCzDnohANFzareW0KosqZlGrOjfy653zmfpMljeruJUhwE8efFH8s9E2+99Vanj423d6LTwcQXX3zBHXfc0eH+Cy+8kH/+859x3fxEEGlsouHLTdiy0lFUlUB5FeGaOqzpKfiLSrvtPj31Bj7kx4ce67Y3wxGiXj/BkopYt76uxSoR6hZEeSVoKiix4kL2flmtvh2bkSiaq/0lxhtWro/VkvjaLIxgWSUNX27CDEeb60w4Y0Wj1mwmWFpJwU+uJeEwH5iRBg/h2gYiqzcSLKsiUlULpsCSkhibfWK1IMKx6ZtGMIxq0dvMBFFUtU33efpZ01F0jar3lhIsrcCaloyqawhT4OifgyMvh9QZU0g/4+Q2M0WOlGqxkHHWqRT942VClTVYM9Nia5REo4Rr6gnX1NPvygs7tZy7EALP2i3ULluFd2chCIGzIJ+006eSPG18l6fWngiqP/6ckn8vQHM6SBg+CFXXMEJhAvvL2Pf3/zDoJ9fiHj20t5spddrx1TNx8cUXd+o4RVEw4qzG3OlgorS0FLe744IvLpeL8vLyuG5+IjC8fsxgKNatDwTLq2Lz3oVAhMK93LpDO+yvhGFiqmbztFaIeP1ouo6iq/j3FMWmYzqdIESsl6KmHkd1HkkTRqJoGlGvD9WikzRuRLuXD9fWozm/SiYUhoF32x5E1MCWkUKoui6WZJfkRk900bR5J1XvLWbgLdd0+C1aGAb1K9bi370fPTEB1WYFTSNcWYPh9cXKaxsmSnPBrFB5JSknT8TaiTU8FEUhffYppJwyCd/OQsxQGEXTMKNRhGHgHjUES1L35UkcLG3mNCL1jVS9t5TGtZsJ1zYSrqlDARwD+mGGw4Sqag+5HokQgqoPllH233cQ4XBLQqxn43Y8m7aTXXYOOd86R/ZStCPq81P9/lJUuw3H10p3azYrCUMHNOffLMM1aoh8/aReYXYwDNodOv0VIyMjgx07dnS4f/v27aSndy757USiuZyodjuGL1ajQESiKJqKGY4cc3Ulvq5Tf+qEgHDkq24RI4owopjhaGxtClUleeo4XMMLYsWkLBb8e4vx7iyk4ctNVL2/jGhjE57NO/DvLW5zeWtGakttByDWm9DQhJ7oir10ZqyOhRACYZjYcjLwbNxBuKq2wybXfvolnk070JNcKFYrlkRXLCHRasHwBwiWVRH1+rFmphLYW4wlJYmMc2fG9cf/wDol3h172f/Pl9n7/+az74l/s/P+J6h8dzHhhkaCpZWE6xo6fc3OUFSV7EvOoeAn16K7EhDhMI68bJJPnoCjfy7lr37I3seeIVBS0eE1AkVlVLz+IZrdhmvkEKwZqVjTU3ANH4QlOYmqtz/Bu21Pt7b7eOHbUUiwvAp7O+u9KIqCPTcT77bdh3x/SscW0cXHseyTTz5h1KhReDyeNvsaGxsZPXo0n376adzX7XTPxFlnncVvf/tbzj333Db7hBD87ne/46yzzoq7Acc7S5Kb5JPGUvXeEqwZqehJbkKVNeg2S2wdjmM4oDisg6azWlKTYwmMVbVoroSWtTaSp4zFs2kHoYoawvWN1Hy8HN3twpaTjp6cSMUbC6ld8gX9rryQ9DO+KnyWMm0CDas3YfgDaE4HIhJBmLFlxQ1/EEWLVdas/WQFRjCEosUKZgXKqtrM6ghWVFPzyQr2P/UioYpqFIsFw9OEGQ5jSUnCTgahihqi9Z5YjQxNwzkwj5zvnI+7nYqXhxL1B9jz2LM0frkJe78sEoYMQJgmgf2l7Prtk7HnnpuJZrWSOH4EGd+Y0alcj85QFIXGdVswg2Eyzj6tJRcEwJ6bSdPW3ZS/8h4Ft13XboDUuGYTkXoP7rHD2uyzZabRVFVLw6oNcinvdhjBEIjmMvDtUG1WzPrG2HFSH3F8DXNAbOnxH/7whx3mP95444089thjnHbaaXFdt9PBxK9//WsmT57MtGnT+OlPf8rw4cNRFIVt27bx6KOPsnPnTubPnx/XzU8Umeecjnf7Hpo270R3OWMfLKXVfTuQUNXY8MYBmorpj5Uw1hx2ME2MYChWU8PpIHnqeMK19dQs/JyoopBx3kzsWbHu9gP1N0pfegt7vyxcwwcBkDRlLCnTxlP3+Zrm2R+xjrRQTX1LD49vVyGq1YJitRBtbCJUWUPZf97GkZfdUmzqwGwa365CIg0eNJczVocgECTa2IQwYqWWbVnpGIlusr95BnlXXYxr5OAOPxjaI4Sg8ctNFD37CtULP0d3JxD1BXA2L1MeLK1sLv3twTGgH6rNSs3ilTRt2c3AuVd1y1h6pL6R+pXrsWWltQokIFa505GXg2fTDgJFZTgH9GtzfrC0EtVu7bAnRnM5CRSVHXE7j0fW1CRUm4Wo19/uomKRxiZ0V0K3FiqTetbxODV0w4YN/OEPf+hw/9lnn80f//jHuK/b6WGOwYMH8/HHH+Pz+bjiiiuYNGkSEydO5Morr8Tv97Nw4UKGDOn5byt//etfKSgowG63M3ny5C51xxxt9n5ZFPz4+6TNnEqk0Uuk3kO4sqpb33XdGQsf7lqK3RbLKfj6gaaJ4Q8QLq/GCEdA1zB8gZapioqiYPqDCMPAlpWONeWr/BtFUXDk5xDxeKlfsbZlu2a30f+Hl5Nz6bkomkakwQOKiohE0FMSwRRY01KwpCTFcisUcA0vwL+3iPLXPgBiH/Dlr76Pf89+XKOGoLsTUHUdS6ILx8B+aAlObFnpzYmRp5A4dhip06eQOG5EXIEEQNUHyyj8y/PUr1yPqseSNiP1DTR+uZmaJV8QqqzBlpuFoqkYTT6s6Sm4xwwjUldP2f/exYxG47pfe8I19USbfOgd1LDQk90YXn+stkY7VIcdcYh2mOFIqzwW6SsJQweSMKyAwP5SxEFfFMxIhHBVHSknT+hUEqx0bBDNC33F+ziWVVZWYjnE3zZd16muro77unEVrZoyZQqbN29m/fr17Nq1CyEEw4YNY8KECXHfuCtefvllbrvtNv76178yffp0/v73v3PeeeexdetW+vfv/JS33uDIzyH70nOp/nh5c89Z95a87K4rdTpXQojWNxXEEjLNMEQisW/7itKqMFO4wYMZCmPPTke1tp1zb0l207R5V6ttuiuBfldeSOb5swiWVeHbuZfyVz+g/ov1aAlOUBSMQJCox4ee5I5Vr4wasdkd5VWEKmqofGcxkUYPwdIKor4ghs+PmuBE1VT0RFds9kNaMoq1CdVhb+kZiUegpIKKBR+hOezoCU4MPTbkojlsRL1+AoUlWDNTUXUNRVUxQrGubkVRcAzoh29PEb7te3GPaTu8EA/FaonNIIlEoJ06Fgem8h7ca3FA4tgR1Hy8HCMYalMHw4xEEeEISZNHH1Ebe5MwDLzb9+LfVwJC4MjPxTV6SJspy12haBq5l13Avup6mjbtwJaVjuqwYzR5CdfU4x4znMzzZnbDs5CkruvXrx+bNm3q8Mv/xo0bycnJaXffoXTpN2jChAlHLYD4uscee4zrr7+eG264AYiN/Xz44Yc89dRTPPTQQ0e9PfGqen8pnnVbMPyh1kMEXdCdXWlxx9GahqLFyma3Gappnpgt/AGERSfS2IQZjiCESbCsMjalsiC/3csigA5WdrQkubEkuWP5C4qKZ/NOEIJIfSOKRcfRPxfXiEFYkhMRpkloWw2Na7dQ9r/38O3ciyU9FdHcqxH1ePHvLcKSmkSoOeEyUFyOooAjL4em7XvjDiga12wmUteAe+xw/IXFRJt8LfsUi45pGJihcCxZ1DTRvlb7XnM6EOForOflCDnysnEW5OPdUYhreNtvwMGySuy5mR3maCROGEniuBE0rt2MY2AeujtWXyLq9eMvLMY9cvAxURSqK0JVtRQ/+wqeLbswg2EUJfazcY0YRP513+mWSpmuYQUMuv06qhctp/HLzc2r2SaQe/kFpJ81/bhcaE3qW84//3zuvvtuzjvvvJbFOg8IBALcc889zJkzJ+7rHnk4fpSEw2HWrFnTptbF2WefzfLly9s9JxQKEQp9lezUXvbq0VTz8edEvf7YAlhHEA309picCIcRqnr4nA/TpGnTTny79semYJomwjDx7ytBtVqwJH011GGEQgRLK3CNHIIZDrfbc3GAe9QQEscMa8l90OzWVkWVRCQKqkLle0sIV9ViSUlCdzlRLTq624lqtxHYX0qkpj62NLWiotmssWEJTxM77noURQiyL/5Gp1+TUGUNqsUSy9rPzyFYXt1STltRVRRNwwiGMANBVJs1tuLqgZcpEgU1lqB3pBRNI+Oc0/HtLcK/rwR7Xk5zrQuTUHk1ZjBExjmndbiCqmazMuDGKyj+1+t4Nm4nsL8MRYm1LWniaPKvu7Tba2QcDUYgyP6/vYRn03acBf1bchoMf4CmTTvZ/9SLDP7F/7V6T3aVc2AeA66/jMh3zscMBNHdCXJoqI8SQkGI+L5uxXv80fbrX/+a119/nWHDhnHLLbe0yn988sknMQyDu+66K+7r9plgoqamBsMwyMpqvbJkVlYWFRXtT3V76KGHuO+++45G8zrFv7c49q3U6SC+ciBf6YlA4pBLjbcnakBnnoEAIxAg6vVhz84gadp4Arv307RhG+HqOpImjkIYBv79ZQT2l8Qy4R2rCVfXkn7mqaTPPrlN+WcjFEZ12LFmpRGuriNh8IA2tw1WVKPabERq6nGPGUrE68No8qGmxhLfLClJ+PeVIEyB6nSg2aw4BuTGeggE+PcWsfuPT2Pvl4UlORHnoPzDlqHWEhyYRizXwJ6bhT03k2BJRWxqsMOOYtVjwzFeP64Rg1vlNITKKrFnZ+CKc9ZIR5KnjiM/cCkVr3+Eb8fe5jeNwJKWQu6VF5JxmOqb1rQUBt12XWx1130lCCFw5OXgGjGoz5bjbly3laYtu3ANG9QqaNOcDhJGDMK7fQ+Naza3mk10pCyJLpD5EdIxJisri+XLl/OjH/2IO++8syW/R1EUzjnnHP7617+2+ZztjD4TTBxwcJa5EKLDzPM777yTefPmtfzb4/GQn99BF/tRoDkdYMZqIhxr4g4oOqM5LUSz2Yh4fTRt2I577DAUmxXf9j34dhYiTIGIRlHtVlwjh+Do349QRTXFz7xCpK6BnO+cD4BvZyEV73yCZ/02FEUh0thEqKIaMxSJfcipKkIIQhU1GP4ArhGDqV38RfPsiUYidQ1E/QFsWWmYoQhmKAyqEgsk8rLRE2LfVM1AAEUImjbtYuvPf4+jfy4JQwaQdeGZJB1i5Un36GFUvbekJZM/acpYNJeTYEkF4Zp6FBQsKUlY0pJjwUnzUuah8iqMYIicyy9AdyV0z8uuKKTPOpmkSWNo2ridSGMTWoKDxLHDsaaldO4aqoprWEGbFViFEASKymhcs4lgaRWa007i2BG4x484pteeaNq8E5T2e39UXUe1Wmlcu6Vbgwmp7+tKQuWxnoAJMGDAAN577z3q6+vZvXs3QgiGDh1KSkrn/j60p88EE+np6Wia1qYXoqqqqsMoymazdWld9p6SfNI4GtdtIdrU1NtNOToME2FGYmVZDZ1QeRURjxcEscJWkQigoDrtWBLdROsa8G3fQ9JJ44nUNVD14ac4hwykbukXlP7nbUIVNShWHUuSG2tmOug6TZt3Eq6p+2rZchRcIwbRsHoTvj37saYlozkdmKEwkbpGoh5v85CLQLXo2LLS0dyxD3HDHyRYWhnL8UBgSUvGlp2Bd/seAiUVDPzRVR0GFO4xQ0meMpa6z9fEFvpKSSJp/EjsuZn4du7DedpJ5HznPGoXr8S/twgRMUBVsGWnk/Od8w7bW9AVlkQXqTOmdNv1hBBUvb+UigUfEan3oNqtiEiUmo8/J3H8SPr/3xXHbE6AEQyhHCLJUrVYMILBln+Ha5tnxbgTOh2ASVJfk5KSwkknndQt1+pUMLFx48ZOX3DcuHFdbsyhWK1WJk+ezMKFC7nkkktati9cuJBvfvObPXLP7tbvyjmUvfoeodKq3m5Ku3qkd0IIME0UAeh6LMkwGkW122I5BlYLmsOG4Q+g6BqBkkrs+VXY+2XTuG4re/74DwL7y4g0eLAP7IeqqRheP6GSCpzDBmKmJxMqq0azWbEkJWLPycC/v5TAvlIEAtVqQXcnYHEnYGSFCZVXo7kTCNfUoye7saQmoSgKQgjCtfWY4ShYdNSIjp7gRHc5SRg+KNYz8uZC3GOHtZv5r+o6+ddfhuqw07B6I6Gy2M9YddhIP+MU8q65BHtOJmmnTcG7fW+s/obdjmvU4G7rkehpjWs2U/byO2gOe6yHqblH0AgEafhyE6rdRsFPrj0mS0U78nOoW7aqw55Mw+fDMSCPQFEZle8twbNuK0YwiGa3kzhxFJnnzWy3Lod0fDsecyZ6SqeCiQkTJrT8wW3PgX1dWRwkHvPmzePqq69mypQpnHLKKTz99NMUFRVx00039dg9u1PCyCG4hgwkdIhyxsel5j/eZiAIkQioWmyoRwhUTUW1WhGqRtTrx6KoBEsrceTlEG30ECwpR7VY0BNdaJbY21VPdGHoAQL7SrBmZRCuriVt5lQSBg/ACATx7d6PLTudUGUNwbJKHP37IQyjpTR3pK4BPcmNMEyEaC5EGo5g+AKx3AZfAEuSG8fAfs3NV7Dn5eDfU4R/T1GHMz0siS4G3HglWefPwre3CEwRq4A5dGDL4liqxULi2OE9/Yp3OyEEtUtXIcIR7AflqWgOO44B/fBs2IZ/TxEJQ9rmsfS25CljqXo/tgCbI6/1tLdQRQ2aKwFHvyz2Pj6fQFEZtpxM7CmJGL4ANR9/jm/HXgp+/H2cg3pvmFSSjmWdCiYKCwt7uh2dcvnll1NbW8v9999PeXk5Y8aM4b333mPAgGPvj1d7Sl98M1Y9sJNZlEd71kZPxdOKRY8teOXzxzaY0VhhJFVFRGPBp6JrEAphRiKYgdgMnFBVHZZkN2Yo0masW3XYiTR6CewrjiUFNgcsUa8/tvhXSiKKphGqrMG/ryS2VogQsYBYCBIG9yfi8RLYW4SenIgZDBH1+VumbSZNGo2IGkSafBihMCgKUX8Aw+s/9HNVFBz9c3H0z+3mV7F3RZt8+HYVYs1of5EwPdFFsLgcf2HxMRlMOPJzyL3sfEpffJOmrbtiQxeKQqS2HsWik/2tc2ncsI1AcTnuMcNagj/N6cCSlkzT1l2Uv/ERg27/wTHZ8yL1jOOxAmZP6VQwcSx9WM+dO5e5c+f2djPi5t1ZyL4nX8C///DLjh9vb0ZhmIhQOx/Cponh9aNaLc0VLJVYhUWXk3BdAwpgz8kkUFzeEnQcoCgKorl2g+a0t8wyUBQFFAVhCjSXE1EaW8vDkpKIomooqoIZNXAU5GPxeAnsKyWwvwwzGoGIAbqOarPi3bGXxjWbMQJBFIuOZrejWC00bthGYvOqpyeUA0XKOvgcVRSledLIsfvuTT/zVGyZadQuW413224wBclTx5N62klYs9KpfHsRjrzsNkusx5abz6Fpyy6CxeXHXaAoSd2hywmYW7dupaioiHC49TLaF1100RE36nhU/Owr+Hfvb55Weezpse9augaRdsozK6DY7YhQmEiDB0WPLdWtW62oVguhsioSRsSm8dlyMvDvLkJLcB7ogIgNqwEYJqrN1rIOh57sRne7YlUurVaMYAhHXg7W9GQAIg0erG4X7lFDqVn0OZrLQdqYk0FVCRaVEiytJOrzE2nwoFosqHYrRijWW2LNTKP6o8+wpCSSc8k5PfWKHZN0dwKOAf2++lZ/kKjXh2a3Ys8/dj9oFUUhcdwIEseNaF6US6DabSiKQtPmnRj+IPZ+7Reu0t0JBMuqiDR4ZDBxAjleZ3P0hLiDib1793LJJZewadOmVnkULclYPZgz0VeF6xqoXb4uNh3xMI7d73Vd9PX3Q6sK4kqsCqimQiRKuK4RRVHQszOxZaaTdsbJ6EmJFP/zZezZmYQqaojU1qMnuVEteqzCpKaiOmxYkhNbigKpuo5zUD6edVsI1jcCoCe5EEJg+AOISBTHqDzMcKSlSmXi6CGoViseILi/FAWBaRgImyVWdjoURggFzW5Dd7uoen8ZKSdPjC1dfoJQVJW0mVNp2rKLcE091vSvAgozEsG/t4TkKWNiy833AQeXCtecDlSrBTMYRG0nIdYIhFBtFll86kQjxzk6rdMLfR3wk5/8hIKCAiorK3E6nWzZsoVly5YxZcoUlixZ0gNN7NtMU7Bx+T5q9pRhmuYxu959t7Tp6wG5psUChQMXVtXY42vjzSISaQk2FCGw5WSQ890LGf7beeR++zzSZkwmedp4wjV1OPJz0NxOwrX1+PaWEKmuwzEgj35XfRNbZhqh6rqWwNZZkId9YB6GPwgIwlW1hKtqEVET18jBsXyJ2nrMcATVZovVuhCCcF0DenpqrFy4qiJCEcxwBN2dgLMgDzMaRRAr4d20aUd3vGJHhREMEW3yIo4w0E85ZSLZF51BpLGJps078e8rwbuzEN+OQtyjh5D3/W+1GSLoKxwDYvVEgsXtJ0cHS8pJGDwAZ0HeUW6Z1JuO5kJfXV3E8vPPP0fX9V5Z4uLr4u6ZWLFiBZ988gkZGRmoqoqqqsyYMYOHHnqIW2+9lXXr1vVEO/skIQSffVHD50urGO4N8PVR9gOfscdSh1iXpoYqylfj5IKWAEKxaF/N/mmeuYGmoSXYEFETMxiM3U3XwTRwTxxF0rgR+DbtwLN+K+mzT0Fz2Blw45U4+udSt2w1qtVCNNWHJclN8rTx5F4xB2tKEmWvvE/1R5/SVFGNarEQ9XgJ19RhzUghVF5NpMGDnpyIe1hsVUcAYZqY4TCWJDeqzYqIRDB8fixuJ9EmO4quowgRC2JczthMpUCsHPaBtSoOJ+LxIsJh9ETXIcuD95RAURk1S1bSsHoTIhLBmp5K2uknkXraSR2W0z4URVXJuewC3GOGU//FegLF5egJDpImjyFp8tg+vRqmomlkzTmDwP5SvDsLYz93hx0jGCJQVIbmdJB1wewTL1dGOiq6uohlY2Mj11xzDWeeeSaVlZVHscVtxR1MGIaByxX7o5Genk5ZWRnDhw9nwIAB7NjRd76tHQ2V1SFWLtxJ9uZP0aPBw5/Q11hiBaQiTT4IR5oDCYHqtKMlJhCtaQBNa5lBoVj0WB5fNLZypQKgKWiJiaSdNgXd6cTnD1L98XJSZ0yJTQlNcJL77fPIPPd0QpW1KJqKvV9Wq+XBcy+/oKUgmHfbbmqWrMIMhUDVULRYGWsjEKTqvRqsX6yPzUgQAhGOYslMjQ3XqVpsdolhoFl0osEQaoKzOU9DicVLQsSWQBcC3d1xbQjvjr3UfLICz4btiGgUS2oyaTOnkjZrWkulzZ7WtG0P+596kWBZJdaMVFSblUBJOUX//B9NW3cz4MYruxZQKAru0UNxjx7aA63uXUkTRzHgxispf2NhrIx4JIqi6zgG9iPn4rNJmjymt5soHWVHa5Sjq4tY3njjjXz3u99F0zTeeOONLty5+8QdTIwZM4aNGzcyaNAgpk2bxsMPP4zVauXpp59m0KD4l24+nm3fXEXSordILtqAYhjtfuvvkUJRR0s0SsTTFBvSONC73fzbp6oaSnNRKsPvh3AEEY4gRDjWU9F8KFEDEl1E6jzoTie2rHSCJRUESytxDvyqS1l3JXRY3ElRFOz9svBs2kHtsi/xbtuDGQmj6jrWtGTC9R6iniYwwgRLQ0Q9XhSLjqrrBPaV4Bo6EFXXcfTLwrujENXpRNR70N0uFPWrGhmq3RqbVSIETVt3492+B1t2BkmTxrSUyG5cu4X9T/+HcF1jrLqm0064tp7i517Du30vA3/03XbH3Q9VFv7g44LF5bFZQULEpqEO6NfqXDMcpvTFNwhX1+IeO7xlnzUtBcMfoH75WlzDB8nlsNuRfNI4EsePwLujsKUCpmt4Qa/0LEl928ELS3ZUkbkri1gCzJ8/nz179vDCCy/w4IMPdk+jj0DcwcSvf/1rfL5Y4tqDDz7InDlzOO2000hLS+Pll1/u9gb2ZY1rt5BcuAHVUwNGOzMajjFxBzUCCEeBA8/NiE3LFCboGkKYmJ7m0uGK+tVwR6ubKhgNTVR//DnZc86ILZgVidCwehM1i1fGEiYH5JI8eQzW9NR2m2GGwxQ98z+qP/qMYGkFiqagGLEcjXBtPcIwUHUd0zTBMDECIWyJ7tiskfJq6pavJWFgHlqCM1bcyufHkpGCMAwiTX4UIWIfLMlufDv3orsTqP98DYrVghkKU/XBMrLmzCbj7NMo/c9bRL0B3KOHtnyIW5ITY1UiV66jdvQQMs+NfYiHa+upX7GO+hXrMHwB7HlZpE6fQtKUMa16Xg6INHgoffFNGtZuwWhOHtVcTpImjqLfVd9sKWXdtGU3/r3FOAry2wQomtOBluCkdukq0s86td37nOhUq7VPFhaTut+RVMA8eB2oe+65h3vvvbfN8V1ZxHLXrl3ccccdfPrpp+iHKBN/NMXdinPO+WpK3KBBg9i6dSt1dXWkpKTIYi5f4yssRn/lBRwVRSii/V6JA/p070Q7hD9IqLiipZQ2AKrSbiCBVQdTEKqopu6L9biGDCCwt5jSl99BbU6ENCMRqt5dQt41l5A8ZWyb+zWu3Ur9Z19iy0rHv6cIETXR7DYUXSfqjWL4gqAqKLqGUFVUmxVLajIKomUKqSUpESMYJP3MU4nUN2L4A7GpgHUNgIIlMxXdlYAIhUmeOr5lCWshYgme5a9+QLi6gWBxBc4hA9p+iDvsaC4ntUtXk37WdELl1ez76wv4du1Hdyeg2iw0rttC49otpM0+hfzvX9Lq27ARCrP/6f/S8MUG7Pk5LdMTow1N1C5dRbTJz6Dbr0Nz2AnX1LW8Bu2xJCfG1p74/+y9d5hc53mffZ86vW3vWHSCKEQlCXZSLGIT1ShR1ZIlxZKlOI7y2TFjJ6IjJ06x/TnyF8mSZVNWo7qoLpEUxd6J3tsuttfp7fTvj3d2gCUW5AIEsAtgbl7gBcxOeefsmXmf85TfL5s/Jd8Jz/NET8Hew0IYrD5ObO2K89KSvEaNs01/fz/R6DF34DfyiZqtiaXjOLz//e/nL//yL1m2bNmZWewZ4E2FNP39/UiSREdHrcN5Cs/zGHn4UQ79j3+EHfuRvdl10E8FFNOmJ88wr/fcZyyYqTZdOjPfPoUsgSSL19VUJMMkv/8ITjaPlogRuWRRdTP1XJfikX76/vl76I11J3gkpF4UTb9aIgqyhOc6IIvHOpYtskKOhCeLng63bOAUivhaGlHyRczxSZZ97wvIuoakabimRX7XAYyJJG7JQEvEQJHp/5fvo0ZCqOEgrmVhjExgZ/MAWLk8k0+9gOu4Ypx0BtRYRLiXZvMMfOPHFA8dJbJyyXFNfc1Y2TwTjz1LsLudxluuqT42u20vma27CS3rntbroCWiyAEf2R37yGzZTd3VGyqv7+G57ozTFa5lIanqSdc5E07ZYPDbPyX57KuiTFQRB/O1NtH+vrtJXHHZrJ+rRo3zhTfTMxGNRqcFEyfjVE0sc7kcr7zyClu3buUzn/kMgJgU9DxUVeWRRx7hpptuOsVVv3lOOZiwbZu//Mu/5Atf+AL5vPgiDYfD/Nt/+2/53Oc+h3YRpk09zyOzZTfDP/w1yee3kN2+T2hK2Kde2jjbY6PnPAOiKEi6hmcY0wMKWZQ9PNMFyRYlELuEUzZovnrDtKtySZYJLOok+8pOhr77c1rfcRuB7vZqit4cS6KEgijBAP7WJozhMTzLxpMkKJvioMpSJVoTm6uVTKOGAsh+H26xTPFwP9HLLhFL9uknNNsln3kFO18gsKAdM5kms2UPVipTfU+e41A83EdgQfvJN3HDRNJUSn3D5PcdJrCw44TpAC0axvT7mHzyJepvvLJqKpbdtgc8b8amSVlTsQtFxn7zlBh9Xb4INR7FHE/ia26Ydl/P8zDGJmi46aoTMgrmZIr0SztIv7wDp2wQ7O4gceVaIquWMfTdnzP+qyfxtTUT6GoTFuq2Tal3kL5//h5qJETk0iUnOwtq1KhxEk7VxDIajbJz585pt33xi1/k8ccf5wc/+AELF86N1sspBxOf+cxn+PGPf8z/+l//i82bNwNiXPSBBx5gYmKCf/zHfzzji5zPeJ5H75e+zdEvfRMzlRVp8ZkUH2fzXGd2aXOPoojygoTICrhOJZo5ruQhyZUSCNWsQXl4jHDk2AfCzuXJ7T1M4dBRCj395HYdILCgnabbbyCxeR1aPErx6CCSJBFesZjikT6M8aTQipg6qp4LCDltJeAHScaYSKEEA6jxCK75+oJiQnFTwimWybyyEyuTR6+PVYMBO1/CGBkX5mLDYwReo6ToeR7meJLmu2/CSqZxy+ZJG0r1+jjGyDhWKltV9rRzhROaAKfKDoVDfRhDo5QHRjDHUyQ2ryW+aQ0Tjz4DkoTeKCZWXNOi2DuAXpeg4abN056r2DtA75e+TelIH3IwgKwJe/eh7/4cX3sL5YFh/M2NQpa8knqVVZXg4i7yew4y+bvna8FEjQuOc+Ua+kYmlvfffz+Dg4N8/etfR5ZlVq2afrHT1NSE3+8/4fZzySkHEw899BDf+c53uP3226u3rVmzhq6uLu67776LLpiYfOJFev/v1/EsR+gxHRdIzKfgYG56Mjxwvapx19RN4IEjRkXlgB9cV2RydA1Z1yns78Hf2oQaCWHni6Re3I6VzCBrKmokjL+tmVLvIEe//G1c0yR+xWWkX9mJUzbQ6+LU37iZ8UeexhidOC4bItLysq6hhAJ4gJPNowQDBDtapyk6zkSgowUlHKRwsAcrnUNvTEzLPrimSWBBK65pUzzch6wo6E31SLKMUypT6unH39ZM/Q1XUuodqJqOzVQT9RwHZBlJOfb8vtZG3Je2Tbtf4UAPuV0HkBQZSVMJdLYiSRKjP3mMyGUraLjlGtIvbSe/60A1aAt0ttD+vrcRXnYsWHMti/4Hf0ipt5/wpUtAlike6a9qdOT2HgbXw5xIYaYzxNavQqkYr0mShN5YT3bXAaxs/rzWmqhRY654IxPL4eFh+vr65niVr88pBxN+v5/u7u4Tbu/u7ka/CMenhr73C5xcAV97C6VtQ3O9nBmZs+bOSl39pJMsioxn2biOjSTL+FoaUFQNu1CkPDJOOBKi2NOPlUyjN9ZjTiRRI0FKAyNYyTSl/hFye/4HjbdcjRoOkt99AH9XO/62JhJXrWP8N8/gVizPsW1kTUXS1GOy5ooiBLA2rSZw3Biqa5pkt+8js2UXZjKD3lhHfMNqIiuX0f+1HyDJ0rRAwikZ4LiEFi/ALpTQ4lE81yW36wB2roDnOPjbW2i77y6CC9qRVRU1HsWaTM8YxJhjk8Q2rhG9GhXim9Yw8dizGONJfI112PkChYO9yD4dSVHwPAh0teFrqkdNRMnv3E/dlWtpvvMG8nsP4xgmel2c6JrlJ4ym5nYdpHCol+CiLiRFoTw8JhQ+FRl/Zyulo4M4pTJqLEK5bxhZUYhtWnMsQ6Fp2IYp9ENq1LiAOJdq2q9nYvm1r33tdR/7wAMPzDgpci455WDi05/+NJ///Od58MEHq92phmHw3/7bf6s2g1wsTPVKKKEg1mRqXpl4zYvpENuZJp/9WryyKfoaZAnJryErCq5p4hbLOMUyrmVRHhhBCQawc3nsXJHSwAj5vUew8wU810OSYEJV8TfV49kuxugE6Re2YUwk8VwXNRxEr0vgWlbV9lxWFDzXxTEsIquW0vaeO6sbo10o0vfP3yP9/DY8z0Xx+8lu38vk716ojKcmKB0dBiklzMlMC0lRCC7tJrCgncLBXqJrVxBbeylHv/IQVkqYmDmFIgNf/zHlgWFa3nEric3rGPvlE0gV4S8Qjabl/mFkv4+GmzZPy1qElnbTdMcNjDz8KFYqg1sqY2XzIpgAQssWoldKIopPRw4GmHz6ZRpuuQZ/24lNXMdTHhzBs2yUgB/P8yj2DODZNnqi8nyhgGg0dT0RUAyPEcrk0OKiucxMpfG3t6DWshI1LjS80zDCnU8p6XPIKQcTW7du5be//S0dHR1cdpno4N6+fTumafKWt7yFd77zndX7/uhHPzpzK52HmBNJIbFs2TiGMe1nF+T5NNtRk8rURPXP6+F5ICsoAb/ocfA87GKZUm8/sqZipjJInkjFT828uJaFGg4hqQpWJoeVTBO97BLMsaTIXkRDBBd3YaYylAdGkEMBvKyDGo8h+zSsbB43Wya8rJsFf/hBAl1tWNk8Tq7A6K+eIPnUywQXd01Tq7SyeZLPbyW8SoxiST4fWBZKOESgvQW9WahquoaF4vcx9J2fV8ZI14hN2nUxRicZ/sFvwPNoe++duIZJ6oWtlI4OVt+73lhH+723E127YvqhlyRa3/VWfC2NTP7uBSafegnPstHbmgh2d1SbIqdQw0GsVBbPtpHeqCm68togmkStZBrluPcu+XQkTcWaTKO1NOBm81ipDFo8ip0v4BbL1F+3qdosWqPGhcPUjN2pPubi45Q//fF4nHe9613TbnutOMeFjjE2ychPHyPz8k7cUhlzdAJXnl8n0Nnx/hBZhKleiGmoFXMsp5KNsN3ZP6uigOdhpbJodXHUqI2/s43gki6KPf3IuoaVziEHfFjJDEiSkOZ2PWRdE1f0fUNo9Qmy2/ZQf9Nmgl1tWJkcbsVOfOrqWrZ8OLkisk9D1jSO/M1XRUOmLOHki2S370NvrCPwmvFTLRrGjkdx8yUCXe0ofh/+9mNX/J7nUeodxNdUj50vUB4eI7JqWXWDl2QZf2sjkiQx8fgL1N9wJQv+4H003LSZ3O6DOGUDX0OC6LqV1abLE46TLFN/7SbqrlpPaNlCBr/1E6LrVyLP4BfhFEv4WpuQZrHBhxZ1ogT82Lk8kqpWezk8z8NO5zCGRiuBWxYrIzItRjKNZzu4pkXddZdTf8OVs/5916hR48LjlIOJBx988Gys47zBnEjS84Wvkd93REgpb1rN+CPPQL4w10ubkTMqiDWVaZCl6QZfuoqkaXhl0TuALIOmivuY1hs/rWHiaCqSbeMMjeDvaMVOZYivXUl42SL6/+X7lZKDD6MsMkBOqYRrWMi6hhaLYI6nhPun6+JVXlMYgq0lt/sghYO9lIfHkCQZf3sTsXUr8bU0knzmFczxSYKLuvAvaMM1TYyxSVIvbCVx+WXT+hb0xjpKfUM03HQlyWdeJbfrAFoihue52KksaiJG63tuZ/j7v0JvqJuxuVJvqiO/5xC5PQdpuHEz4eWLCC8/NRl6SVGov24TE799Dms8ha9l+vjnlL1623s2zUpILrRsIdHLVpB6fgvBxV1o0TDGRAovncEcm6zqSUiKjDE2iZMvYqVzxNevov76y0lsXo/i03HKBsWeAXAc9OaGkwZFNWqcL8wmuTrTYy5GannJU2Tidy+Q33uE8MolwvuhsY7ikX6yW3fP9dLOHcdnJVQFNRrByeQQLqBKpXfkFD5RnoebL1YnGJx8kWIqQ+9XHiKyepkY/TzSj637sPNFXNtG8lymwiRjdAI1FkEu+6umXOXhMcyJFK5hYqYyld4GGTUaRfb7yO89TH7fYVzbxtfWInoCbBfZ70Ori2FNpsntPUxi87pjG7LngSRRd80mElesI/ncFvK7D4IsUXftJuqu2oBeH2fw2z+b0X8DRHYBSTrWBHqa+NuaaXzrdYz84Nc4hoG/pbFaiigPjxFZvRxfaxPJZ19FUlVCSxdU5bZnWlPnR9+FZ1lkd+zDcz2s8RR2sYgSCOBva0KLR4TTatnE39pEaGEnHR9+B6GFnXiOw/ijzwg58+ExPMdBi0aIX76GlnfcetLXrVFjvnMuGzDPd2YVTKxfv57f/va3JBIJ1q1b97pXO1u2bDlji5tvOGWD5DOvojfEq/VhK5nGGB4TV+Pu/GnAPJ6zJtctAa6HnS8gqxqKX0P26aJWb5qn9qnyPPBcPAeM8UkUn45bNige6kOLhtAb6zBGx/EsSziT+v0oQT+oCm6+gO1VjKxMi9Rzr2KlMiINbztIMkiaKGto8XB1GqJ4uB+9qU6YceULuIaBGgjgFsuo0TDm+CT28Y2G40l8TfViTDQYILJyabXXYOoz4do2el0cY3QCvS52wtt0TVNoP9Qdm+KwC0XcsiFktadUPx2H/N7DZLbvxc7m0BvqCC3qQm9uQIuFUSNhWt9+C2ooyPijz4imSddBjUaIb1qDlc6y7y/+VsiFazqBhR003nwVLffcPKNplV4XZ9Fnf5/czgNkdx+g75++S+FQL1oiApKEmcyIHo36OLGNqykdHSK7dTehhZ2M/PQxhr/3S+SAX/RuqCpWMs3YL5+kPDzGon/3kZrk9nmC57qY40k820Grj59Ukr1Gjdcyq2DinnvuqU5uvP3tbz+b65nXOPkCTrGEGgnh2g5uuUz6lZ2YycwxD4qLCUURZY2yiSvLgCdcNRVZjGO+VlL7jXA9wMErOthlk8yOfWiRMIGuFvxdrRjjk/g727BTGVAVZJ8uejQUIUZVGhjBTmWwXE+sAcC2xdWFYYnyjOPiOQ5SxUrcLZYBT8hQyDL+rlbyew5VhKxsnLKBhjDZsjN5mu+5eXrWoSIcZecKqOEQge526q7bxMCDP8AplacpVnqeR7F3kMCCNiJrllPsHWDi8efJvLIL17LQ4lHqrt1E4srLGP7hb0g++yqeaeEaJqXBEZxCCV9zI+FLF5PYvJ6m266l6a3XUX/95RSP9Itjr8oc/Pz/JbNlt8j0qOLYGBNJSkf6cEplOj70jhkvCGRdKH/GNqyicKAXrT4OjouVySFrGv6OZvztLaLc5NOEQNfQKGO/egotEcPX0lh9Ll9TPVo8Qm77PlLPb6Xx1mtP7VyocU7xPI/Mq7uYeOxZCoeO4jkOekOCumsvp/GWq0/Lrv5C4FyJVl0IzCqY+NznPjfj3y82lGAASVXI7zuMnclTHBrFHB6rWmrD6aW4pk698y495jjHFu25eIhpAEzrdUdC3xBZFuWTYBCnWCK/v5dYMIAaDIAio8Yj2JmckLMG5IAPT5KxJ1MI/3MJSZFF78TxBUzXo9g3JJodmxuQNRXHMMWkiOth5Qq4ZQO7VMYYn0SSJIpH+rEmUsg+nca3XkvTbcc2xdzew4z+5FHhKVIqI/t9hJctpPGWa4hfsZbUi9tQo2G0eBTXEL0Yel2c9vvuptgzwNEvfpPy8JjQhoiEsJJpBr7+Iwa//VNcwyC4eAGeZZN+aTtOyUDSNYyxCdRIkNGxRynsO8zCP/o9fM0NRFYuBWD/f/0HUi9sRauLocWiSLKEazvYmRzlkXFGHn6M+uuvOMHf5LVosTBqODRN3Op4PNtGCQbI7tiHlcwQWX2i4ZCs68ihYyOqNSPA+cvkEy8w8K8/xjVNfM2NouE2lREeMkf6WPDJ91+UWYpamWP2nHLPxMsvv4zrulxxxRXTbn/xxRdRFIWNGzeescXNO2QZO18ku3M/nueJyYJKIHG6J9C5+Ho9a6/hTf+7Vy4fCyLeTBeS64IjNiw1GsaaTFMaGCG8tBslFKDUP4JasQtXwkH0pnrK/cNYkynkYBBZ17CzuWlBXhXLxhiZEH0Xuo5bKuFkC9ilMqWjg8i6ht6QwHRcMfJbKNJw42aa77yB8IrFVfns/L7D9P5/38CcSAoXz1AAp1giu2M/pb5huj52L+FLFjH51EtYyQySqtJw02YabtpMYEEb+/787ygODBNdvbxaMtPiUZRUhtGfPU5oaTdqJETy6Zex8wV8zQ1IElipDFY2T901G8nvO8zoL35H1+/fK95avsDYzx9H9unoxzWOyqqCVhfHGJukeKSP7M79aIkY+d0HsTJZjNFJkCVkVSXQ1UZs3aXENq4m/dJOXNM6wRDMLpSQVJXomhUUDvUKy/eTBApqMIiVzols0EU6Olo42EvyuVfJ7TwAskRk1TLqrtpAaMmCuV4aIDxZhr//ayRVIbxocfV2NRJCK5RIvbCV6NoVNNQmdmq8DqclWvWnf/qnJwQTg4OD/M//+T958cUXz9ji5hup57dgZ3LIgQDlowPVRsQ3E4leUFFsxV/jTVFN03i4pTJKQBdWHqZQVwwtW0T4ksVCsEqRqyOMuZ37xb9VBbkyNlr1/MCbfqAdB2t0EnQV2efDmEgiaxp6XQxJVSrW3HGi6y/FyRexCwVCyxdWAwnP8xj52eOYE5OEL11a3UjVSJjwisXk9x5m/JGnWXL/p2i89RqsTB5Z11CjYdIv7eDQ//oK4795GsWvYwyNEV6+iGDF9MstG0ieh5XOYY4nMSfTIsNQOS5KKIidy+OWyvhaGkm/tIOWt9+CXhensOcwViY3o3iUJInxVmN0golHn2XiN09T7B2geKRf9FUE/AQ6WtHqYgQXddJ2391EVi8ju3Mfga726nNayQzlwRESV60nsmqp6GNxTy4NbheLBDrbTjA0u1iYfOolBr7xMHYmixqPggdjP3+c5DOv0vnhd1B3zdxffGW37cUcnyRcyW4djxoKIGsayadfof76Ky6+7FItNTFrTjmY2LNnD+vXrz/h9nXr1rFnz54zsqj5iOd5JJ9+Bc+ysdKZE3UW5iHn/GM/NS56Kj7qU70NjluR3556rITnOJiTGdFAqimo8SjFnn5CSxYgq8fkrM3xJCDS6k6hhFMoCY+Uqec7WTuLZSOHQmixKK5hYGfyIIESDRO5ZDH+zlbRBHq4j9zuQ8QqQlLl/mHyew/h72g94ctVkoT/Rf5gL8WeAUKLu6ojksM/foTD//ufKPUNCbEnQ8NKZykPjBBds5xYpXHSMUzckTFye3045fL0Rk7pmCmaGg1THhzBTufQ6+I4loWi63gnM5pTZJxiifTL29GbGykPjeG5Dr6Olsq4Z5bA4i6KR/oZ/NbDdH3sPSjhILmd+yn3DwOgRsM03Hw17e9/G7KmEb1sBVoihjEygb+1cdrLuYaJWyhRf+3G096EPNelcOgoxSN9eK6Hv62ZyMolVcfY+Uypf5jBb/0UXJfwymOaI15HC6Wjgwx88ycEujsIdLS8wTOdXaxURbtlBqdbEEGyMTpxUWaXarHE7DnlM8Pn8zE6OsqiRdNn44eHh1Ev4BPNsyxK/UMUDh3Fyc1PTQmYSx8ORCbA5fWzE7IkAjFVEV+ukoTk08VoKEwL0oTXgwSaglMsi74M1yO/6wBafRxJEXVdDwl/ewv5zEHxmOM3rtcGfVMaGa6H3toAjosc8BFbtxLZp+GaFkrQj+L3Vy2/PcvGHJuoPoWdF9MXkq5jjCfBcVFCAdGYa1mYyQy53Qc5+uVvE79iLfGNq0GSOPw3X8UYHRfeHbaDHPSD4+AUy6S37cHOFbAyOexCEUmSKPUMYmVz1RFkSZJwiiWUUAAlHMIpFMWUil9MZ/gaEvhaGykNDONa1gkbrjmexC0bWOkcxnhSlIUCfrzKJIydzVHuGyS2cTX5vYcpHR1k0b//fYqH+ygNDCPJMsGFnfg7Wqobo7+1iabbr2P4+7+iWDbwtTRUR1SN0Qli6y4lsXndqZ5NgNjk+v/1R2S27REZomxe9Lu0NNL+3jtpuv36k47gzgdSL23HnEwTWb1sWjAlSRKBBe3kdu4n/fKOOQ8mZL9P6LOcJLvkGAZ6Q+KizC7VgonZc8q7/y233ML999/PT37yE2IxccWUTqf5T//pP3HLLbec8QXOFyRVpTw8LjaPeaxKctbGQGeD9JqUhKaCbU//dCkKaLLYsAMBzLEJpIp+wwkTMZXgVPH7ia27FM92USMhIquWkXp+K57rEF23krrN6+n5Pw9WphdUMZYKJ/6eZBnZp+E5LmgS/uZGzGQGY2SCyKVLKQ+Oig3XspEUGS0RI7S0Gzxv2hWZEvRjpbIUDj2La5h4noes6+h1MZxSWehbmBaFg70Uj/Qz/punkXWN0sCwcPaUZexsDs+0kH06ajiIMZ4kv+8IwaXdotEX0NsaccpljOFxZJ+O4vfhGibh5YuQVIXS4AihhZ2kX92F9+J2YeS1YSXGRFK4rPp9VSlvO1vAmkzhSZKY8LBs0SCpqNjpLK5hojckMMaSuIaJ4veR3b6XxluvJbRkwevW91vuuQU1Emb80Wco9Q/jOS5aLELTHTfQ+o5bT2ss1LUsjn71e6Rf3IbemKDUP4xVOa6l3gFyuw4w+eTLdH/6A6cs+nWuKB46ihL0z7hBS5KEEgxQPDz3TpCRVctQYxFhqFc/3XhONO/maXnbzRdfiQNq0cQpcMrBxN/+7d9y3XXXsWDBAtatE1cc27Zto7m5mW984xtnfIHzBUmWRW3Yso6NRJ6L1z3u77M9R+ckoPA4rswhxKskny50GFzvWKAgSSh+HamSqpdURUxvHP9FNfVXywZVIbRkAdFVy/HwGPnxo4z9+imcgshkZLfuIfPqTvIHepEqqVpPUcF9jfKmJIlMgOeB46KGwyihIEqxhFsqk3pxG4pPR42GUeMRPNvGSqVJPfcqwcULCC5ZQG7PIdKv7mLiiRfI7T2EZzsEujvEVEipTHbnPjzHQ6sXfQfRtZcCUB4cZfyxZ/Esq2rdrcajInAxTTFG67q4loVTLIneDVnGGplA8fswCyWKPQP4WhsJLerC395Cbu8hjKFxPMOicLiv8kUvoYQChBd3i1HSUhkrncWzHSRZQo1FcC0bX2Md5YEREXxpKoqq4BRLOPmiCD4q472uOTsXUEmWabz5auqu3USpdwDPdvA116M3nL4CZm7XQbLb9hDobie7dQ/m6ARaXbzSDyN8TrI79nL0yw+x5M8+ia+p/rRf62wh6ZXA9SR4toOsz302N7CgnfrrNjH2iydwTRtfcz1IEnauQOnoIKGl3dRdfWJp+2KgFkvMnlM+k9vb29mxYwff+ta32L59O4FAgI9+9KO8733vQzsP6pinS37f4Urd1j11/YQzxLwfIZ0KCNRKOtR2pgcSiI1HonJ1rAunUM+y0RoSqKEAxtgkbqk8dWfUWIT4xtVIqiJS6Yf7QJZRoyFAwhidoPTz3yEpCtE1K7Dzeax0rrI5Fo6VOSSqvQSy34evvQlJlnCKZZTKZAiKApKMnc7h2jae42Bn87imxfijz5B88iXsTI7cvsNCo8I0KfX04+9sBVeUYFzDBMcT2YPK8Qh0tAgBLePY5jxlPW6lMjiFgkgzOy5OoSSmJypNjZ7jokbDeI6Drz6B7NPJH+zFrNSw9ZYG/K1NSJKEa9sUewaQdJXmu2+icKQfO5cX+hcL2kk++SLGeFKogfp9kMlVU9uSpmKlskI4yyd6T0JLT23aQPHpZyxLkNt7CNeysLMFjPEkWn0CuXJeSbIsgjJZotQ3ROqFbbS87S1n5HXPJNHVy0k9t0X0GrymRODaDp5tE1m1fI5WdwxJkmi7725kn4/JJ18iv+cQAHLQT3zjato/cM+bCgxrXBycVlgcCoX4N//m35zptcxbCoeO0vt/vymuJPx+XMsE49iV76n0G54qc1q2OEW0+jhWOiuCiMpm/NqeBc+28TSVQHsLTrGIE/AhuR6yqiBJMmo4iKOqSLIkarmOw+QzryDJMsWefpBl0Z8QDonn8+uiOcyyMZIpgh0t6HVxsREVSpT6h3FzBaFLpWuoITFKqkUj2Lkinu3gb2/G19okPDz2HRbrBpBklHCA0tFBhr/7CzG5ocjIuoa/vRkrk6M8MIoxPIYkCxlxNRpCjQSrwcIUvtZGzIkkVr6EhIdn2eJ5OlrEhESxjBIOIvs0tJiQ/MbzcAol7GwOrS5G16c/SPaVnWR3HsAYGUPSNLKv7sbsmBRNibpOaMkC8rsP4muqp/vTH8ItlVEjIVLPbyW3Yz94QmFUjYawkhquYSL7dJBkXEtMiJjjSbREjPjll52T82Ym3FIZSVYwJ1NC8VR9Tb1ekfFsBzUcIrNl17wMJuIbVzP+6LPk9x0htLS7OmLrmhaFAz0EF3US27BqjlcpUHw67ffdReMtV1M40CuC1+YGgou7TtqYeTFQE62aPacVTBw4cIAnnniCsbEx3NfUuf/Lf/kvZ2Rh84nx3zxFeWSc8OplZF7cLlLTr+FkWYMzEWicHQfQM49XMpCmdDckGbwZUrwelRp+FqdQxskVkFTxJWvnCqKB0vWQ41Gh/miamBMp0fRqO6J8ohz7cvNsR/RmlE3MkQkC7S1IqoKiCltzJeAnf6AHADXgx9eYQFJkygPDuGWT6NoVKBU7c0lV0BoSyJqKpCgoQb+42j9wFCUUQK+LYY5P4rkuVjKDlckBHk6xjK+pDiTQm+pFlsJ2kPRj6wx2t1PY30PxUA+Sohz7gpZlkblRVTEOWzYo50eQVBUtFkGNhkS5Ipsn89IOSj0DKLqGEgyiNSZwSwaFgz24hkF80xokRUGrT5DZuof2D9yDVhnpVEJBJEUmtHwRTrGEnc6jxsJYyTRONo9r2SgBnyhLeR7t77+bYHfHWThLZoevtQnPdsTv97gSmFc5RnYmL0zYFBl3FmZyc4EWj9L9B++j76vfo3CwV3wePEBRCC3tpuvj70GLReZ6mdPQ6xPomxNvfMcaNV7DKQcT//RP/8SnPvUpGhoaaGlpOaFL+UILJszJFJnt+/C3NoEkkd99CDuXx6saWk3nbG748zpLoSo4liVKCVVXUSoLPuYwKmki61AeGAVZxrNdwEYK+tFiEWS/j+LRIex0Rph36TpqKIidyYnX8bzKlMcxZEnClSQ80xJp/UhIpP0tW4w7tjfT+p47SD23leKhXjzXRauL0/Khm2n/0Ds49NdfIrtjLxIQOM5WHMDNFfAQsttO2UBSFMzJNJ5tI8kKsk/FLZlYuaK4mtYUfE0NohfkOOxMHl9DgvL4ZLWO7nkeVBo4JVkWEyuyjKwquKWy0H9IiYBIUlXSL26j7pqNlPqHhRu8LCOHAsiaSnlwFGPBJP7WJmRNxTWtynESqoWRVUvxtzZipXMkNq+jcKQfY2hMHKeygVMqE750GW3vuo3E5vVz3tQY37CK0Z89TrG3v1rycfJFzMk0dr6AZ9lImoI5nqTtfXfN6Vpfj+CiTpb+xR+S2baXYu8AkiQR7O4QQexFKlF9PlFzDZ09pxxM/NVf/RX/7b/9N/7jf/yPZ2M98w6nUBJd94kYaihAoL0ZazKFqzh4dmlWz3GmyyBv9HznPOCQZREYlM1KMyWVT1QliDhOE8LzPJxSxapcF02REsJW287mUWUZNeTHSudwiwaeayNpalW/QtI0PNsVQYsEjmmKRkHPw5NEdsMtiU1ZkkRJouEtV9H+njtRI2GS4SCuYeBrrMfX1oSiq4QXdzHx6DPoLdN1EjzPw8kVRFOi42KMjJPfdwQnmxcjrYpSzVL5GuKYw+MYI5NEV19SzTx4nocxMoExOoHk0wktXoA5lhSjmz4dvT6OZzsUDonsh1Tpk5hq+LXTWbRYWBxfx0EJ+FHDQfFz2xEiXbqG53mUh8fxtzZhpTKEKlMhU6jhEC3vuJW+f/k+5niyan1uJVOYE2nCyxex6N9/FF/zdDvzucLX3ED7fXdy9CvfoXi4n2LPAE6pjGdaSJqKr7UJWRPnTH73IYo9/QQXdp70+YyxSdKv7KTYO4CsqoRXLCa27tJquexsogQD1F21nrqrLs4mxvOZWgPm7DnlYCKVSnHvvfeejbXMS9RYBDnox8zkyBgyBT0C0RhSIY9XmF0wcTY4WUBxzgIJVRGCU2YlE+G64mrZp4srb8fFo9Iz4bgiCHDdilS2K4ID0wZFQYlFxCahqmJk0nFBVnDKZWRFwS2bYjLEtMR7dmxxdWo7oswmiSOhhAJIsowajxJc2Ckmb2SJ+MY19PzD1zHHJgm0NaME/di5AuO/epLCgV7qrlmPEgxgpzJIRMXmbDvY2QJy0I/Pr2NlcuR2H6J0dECsxXHw8MARDab2ZBolHMDzPMzxFPn9Pciaip0vYE6mhfZDyRDHzvMqY6o6vtZGyoOjyLqGEvSjxaLY2XzF+8KHpMdBVnHL5erYnt7UIKZBUhkx/z8V2BgGVjaPa9vUX3/5CbXuums3IWsaY796gmLvIK5lo4aDwk30HbfOm0Biivrrr0CvT9D3L99n4Fs/wS2bYtomEkKSJZBl4leuxSmWGfv1U3R/6gMzPk/6pR0MfOPHlIfHxPnpukw89hyhpQtY8AfvI9DVdo7fWY3zBk8Sf071MRchpxxM3HvvvTzyyCN88pOfPBvrmXdosQjW4ks48p1HSMZc1LxCrOiiGS6qMntnzLMxiTGnp+zxvTKecOmUKloRkiwhaTquaeM5NtiO0H6Y0qE4TsXRNSwx3REKVlL7JVzLBtdFjYQJLetG9ukYqQzFPYegbOBJ4FgVQauKCJa4yk+A51EeGkXWNIILO2i6/Xpyew9jTSQJrzwmfa0E/Oj1cXK7DhLobCFxxWXk9h3BNUycQglJUdCb6wkvXUhpeBTzpR2Y45PCgMznq4pNuaaJpApRreji5cgBP3XXbED2+3BLZaxMDmM8hWuYog8jHBRTJGUTO5MjW3H3VCPiClkNB9ES0WmjtqWBEbRYBCUgShayqhBbc4lwrB2bRA74q6JOxuAoDTddRWKGq2BJkkhsXkds02pKPQO4holWH8ff2oQxNsn4o89gZ/MooQDRNZfgb2s+4TnONZFVy+j86LvJH+gRvTbpHHgeekOCQFcbelM91mSazNY9GOPJqtroFMWjg/Q9+H2cYonIqmXVAMu1bPL7D3P0K99h6Z//Ya3kUKPGm+SUg4klS5bwn//zf+aFF15g9erVJ4yD/tEf/dEZW9x8YHC4xJPWYiKRFuoygxCLIwd0pHQJ13U41T7nNwoAzpsUmeuBQkW3wUNSFDHpUiwJe3BVxSuWpk9zTBUTjy8qei7GZAotEUPWNVxTBdcVplML2lD8laZA0xKqj7n8cR4gHniScPS843q0WBRjZJzy0Ch6Yx1L/uyTeK7L6M9+i7+r/UTpa0XB19pIbucBEtduwkxn8bc1i7KLpqLGIniOS3l0HL25ATuZxjNtPMkRUx0+DTUeQW+sE+WQSAhZVYhvWkPjzVdjF4rs/4u/A89FkhUk7VjjpeL34XgermUL+/G6BFo0RLF3QJRwFAVF18TUguPSeOs1lPqGsNJZtHgUvbGOxNUbKPUNUjzUh6QqxC9fS9u7biN+xWWvKzctq6oQ40KUYUZ/+QSjP/0t1mQKZEloZSSiNN52La3vuHXOlQ+dQgk1GCCyapk4F2Da71IJBYQMeb4ArwkmUs9vxZxIiUDiuMfImkp42UKKh46S3bb3tFU6a1zY1Mocs+eUg4mvfOUrhMNhnnzySZ588slpP5Mk6YILJl7elmLCDRF/172YO17Gt2crslFGwq2WGi6YpNapOn7aTjUz4FkWjiSJTI3rYZsnce2cYmqKwRWBgjU+iVSRrpYAOaCJ+wBu2cRO5yrTFZY46K5QpVQiQdSAH1nTCHS0EOhowRhvx3McAp2tZHfsF2USTSW//wj5Az04xTJqOEBoSTe+jhbM4THiG1ZijifJvLwDOeBDDYco9w1hZXKEL1lMsKuNYs8ApYFhygMjqLGI0GTw+7BTGYyxSczJFHp9gmLvAOZkivLgaFU8SktEMCfSuIYFVIIvVcVxHTzLwS2V8CLBav+JWzYqzqceaiyMWhcl5PeR23kAK50V8tqyjBoKElzaTeNbr6Pzw+9APsWNP/n0ywx9+6cooaDI3MiyKNWMTTL8g1+jBAM033HDKT3nmUaNhJAqwmAzZRCmxLamsjvHk922Fy0WmVG9UdZ1PNehcKSvFkzUmJFaA+bsOeVgoqen52ysY15SLNocOJwjEdfx4mHK196CMjqInM/h+YOowwPgOkgzjUCeJq/XXHlGg5aTvdCpfBI8xEijVBHysm2kUBDJ83ALJRGcyNKxoEJVqgqUJ4yNut6xHhRVRQn68QwTo1TGqfyZ6lGQNBVJk5D9frBsbDNPbu9hQku7hYtopblRUivjnY7D2C+foDwwgue6SBIYQy7Fw/34WhqIXHYJxZ4B1GgIf0cLxvgkTtlAr0/Q/LabqbtmA0Pf/QXl4THqr7+C1HNbhC+GolA4eBSn0r8hKTKWLHP4f3yZiUeeoeXtt+AaFp7t4JRMMeo4Ne0COJXfg1CdtHELJYKLurBTGcoj48h4eI7orxj/xVP425uJXrYcK5sXDZ1I+FqbaL/pSupvvPKUAwnXshh/5BmQZfzHTbFIkoSvuQHXMJl49Bnqr78cNRQ8pec+k4SWdRNc1CmM0yq/4yk816U8PEbDzVfPKKzkee50ddXXIskX77d/jRpnkLnXcp3HGJaL7XiEfOJLWh3qR50cw+5ciByKoCbHRFe+daLuxJvhnGQ6JNHAVu35mPrClWWx2c0w9joTajyCWyzjGgZ4oCiK2LB9esU4S/Q/eI6L7NeFaJVrnfwLXJbwXAcrVyDQ3YGvqZ7crgNCIdJ28FxX6EBIkhAy8uk4+QLm8BhOoYgSCmJOpmh+2y2ib2JpN8bwGMUjfSjBAGogVO3dcEoGhZ5BMZJpO0z1YHi2jRaL0vaeO4RJFxC//DKSz7yCJEnEN60mu3M/2Z0HcPJFkAFFRgmLDdecTDL+yNPkDvagBPxYk2mcQkEcK9PCM0w8x62IY0loiRiK3weKjDE0WhFqElfOsk/HKZUpHunDSmcwRsdZ/vnP4m9tFJt+SwOyrp/WKVDuH6HUP4TvNW6fU/haGikc7qN4uI/omktO6zXOBLKm0fr2W+n98kPk9x0h0NEs+kRyBUoDIwS62mi6/foZHxu5dAmjP/8dgc7WE37mVnxjAgvaz/ZbqHGeUstMzJ5ZBROf/exn+fznP08oFOKzn/3s69737/7u787IwuYDoaBKOKSSy9uEQypyJolk23g+P05jC3ZdE14qhepY1d6Ac5JVeLNMjVq6Lvj0aj+kLMuo0QhaIkapb1BkF94Ar1wWQlCBAHYyjRIJ4mQL4LoogQBKEJFZyBcrUuTezFmRKcVL18NzHFzLpnR0CL2pvnrblO+H5Hp4roNt2SjBgJAmNm0mn92CHo8QXNhJ/XWbADCGRrFyBdGrIElCotq2cUplMV1h2xhjk8iBAKFFYrTQc12Kh/vof/AH+JrqCXS1EV27grrrLmfi8efQohEC3R1kt+9D1rVKpkQcU1nXkYOBirFWBjdQxspkkVRVlCWCAbyAH2wbu2Qgy6JxNbCwk9DiLtKv7BBlmGgIJ18Sa/QQI6iSRGHfEQ7/r6+w5kv/9U1PXwjJcPekttKSpoJTEY6aY2IbVtH9hx9k7BePUzh4FNc0xcjl1RtoefstBE8SECQ2ryf59CuU+oenuZ16rkvxYC+BBW3E1l16Lt9KjfOIWs/E7JlVMLF161YsS6jMbdmy5aTucReaq5yuyaxdGeNXj49imi66LIsTxfPwFIVsXQdRx0FRbJxs/nVPovnSW6EkojTefA3m+CS53Ydw8nlQFYIdrXi2g5XOUh4cmW5QdHwvhTRl4S3Sx57tYaazqLZDcMkCQku6MMeT5PccFo2J+SJeNELZHsExzGpPxTQkIXWNoiB5TkVLwsLK5Um/vBO1csXvucI1VI2ERB9FroCZykDF+6Cw7zBOaxORNZeg1wlH28KBXtxiGV9bc0WaOo9bNkQjn1QJMGyb1HOvovh10YApywS6O8i8uovhhx9lwb+5D8Xvo/Oj78bf1szkky8K11LbQY1HUYNCF0MO+KvqnIpPwy0bhJYvxBydxAPsbF4EFVLF5ElT0RsTKIFAJRsSQQ0G0euFHLhrGMjBSh+JIqPFo+C6FA72MPyDX7HgDz/4pj5zvqZ6tFgUK5lGaW064edWMo0aDeNrmR8jo7G1K4iuWU7pqMgmafEovram1z0G4WULaX//2xh86Gfkdh1ADYfwXDGJE+hspetj954TrYkaNS50ZhVM/O53v6v+/Yknnjhba5mXbLwsQW9/iX0Hs8SVBjpVP3YyTV4JEWhto74zgLV3rxAyOg9wcgUmf/us2JTDARS/jpnMYI5OYheLYqOvbLBVqkEE0/N+soTk13ByBdyyAa5LuW9IjD/qmvDpADHHL0uYkymsybTQhZhyGPUAWUFWtWOy4bomxJh8Ok42Jzboyv2dYrkqseyaVkUCuw5JVQh0thLbuJriwV4GvvVTFvzB+0Q2BEQTYziIXSiKTILn4dqO6N2QZOH6uX0fajSMMTJBsWdAmIh99buUB4ZpuHEzDTdfRXzTalzDJL/vsHjtWLgq53y8zPfUsdIiIZRoCK0hgWdY2OksnuehNUQJLezE19qElckhSZIINjQVz7Irf9eQZBnXttESddWYTkvExCjk8NibGt/U4lESm9cy8uNH0eriVUdTEP0U5cFRGm68Et8MgcZcIcny64pTzUTDTZsJdneQemk7hQNHkDSN6GUriG9ac8Io6fmOlc1jjIwjKQqBzpbTLoHVqFBLTcyaU+qZsG0bv9/Ptm3bWLVqfhjUnG2CQZV339XGK9sDbNvlI9OxjOj+LbR3B2hbXE800oi1pJUjX3oIaQbPjuOZ8+yEIgtxI8fBnEgBoDXW4xkGlil0ECRdxTOtE7MHry0EShKoKl7ZEM2TjotTCSisVEZkGRQFWVeRNeEzYaWzKKEQIEoNbtkEXGGAJEtg24Bw3vS1NqD6/RjD48iaiq+xvmLZbeGYx3ouJJ+G3tKIZxiElixAT8TA88i8spPyHTcQvWwFWjSMnckJoSmjIhwlTQUogOTh2Q7GeJLkc1uwM3mx7qBfWIBPpOh/8IdMPvMKVjJdXQcelAZGhBPqa+Sz3bKJEgrg72pF2X0I1e+n8W03V2SuhXKl4vdROHSU6MolqLEoqee2iLJNRZZc9us4xZKQFI9FRLnHdgh2d2LnChhjyTetBdF891so9w+T2bIbORgQRmulMnY2T2TlMlrvveOCyDgGF3USXHRqQcj5hJ0vMPrz35F85hWsdBap0lTbePPV1N945UVt1vVmqPVMzJ5TCiZUVWXBggU4c2TBPVcEgyrXbW7kyo31ZO/8PSa/G6e4dSdOz2FylYZDp20BSu/BeVHKmBFZEle6koQaCuJ5HtZkGmMyWZFs8JB8SrU5ELli1DVDSWIqKlJ0DSUcqpYOJFlGCQVxXRcnl8dzwNfcSvzyNSgBP45pkd9zmNSL27BSGWRZxjVMXMcByxKlE0/U6mVNozwyAZ6Hv7UJM5WF8aTQPPBpQrq7ktwoHx0guKC9egWtJWIYQ2MUDh+l4cbN1N+0maHv/1JIo7sukq4L1UjXEW9F18ADO5PFNU0CHS0oAT/G2CT+1kaC3R0Ujw4y/INfEblkMdH1K3HLBsbwGOWRcRFYmKaYeJDAKRl4rkt4+WJ8Ff0I17Jwy8Y0iWtzPIlnWdTftJnY+lVImkLqpe1i4KVQEvLZoRC+lgbhCTKRRKuLozclMIbGT3TSPA20WITuf/thUs9vZfKpl7FSGXxNDbS++3bqrlovSis15jVOqczRf3yI1AtbhZjXgnZwHIyRcfq++l3MdJbWd952QQSF55paYmL2nPI0x1/8xV9w//33881vfpO6unOTIuzt7eXzn/88jz/+OCMjI7S1tfHBD36QP//zP0c/h2k8XZNpaItT/+8+ROFAD7k9h3DKBr6GBOOHTMp/8h9QzdJJA4rT/ihPlRheu7GfCq6HZ5igqRWHSL9QaTSt6nSDW654Zsgykizh2TM9kQSaihLQUSMh9IZ6MakQDSGpQgsASUL2+VAjIXztTYSWLqT9PmHG5DoOoz/9LYPf/inZHfswhsdxDfOYxHQkSKBd9De4xTJyQMfzXOxsTkyDWI6YCAEhbqXIwio8FBRW2hzXu1M5Xkv/06co9gww/uun8FwHzxOvJ0kSkq6h+H3Ifh1zoiDEogJ+7GweWderUwAiYCrjSeL5lYCf2KY1uM+8gjmZximWMJNpkd2pmDnFNq3GTGYILu7C39lK6eiQmEbRNVzDQAkFaXn7LdRfuwlJUVj4mQ/TdOgoyWdf5cj/+y9Yk2nUUACnUMQtltEb6oituxQrmcHf3kRwcdcJvx3PdSkcOoo5nkTWNELLF76hM6UaDtF4yzU03Hw1nmVVg84LDXMiSf44e+3QkgUXxBV7+qXtpF/eIfxYjtPhCC7sxBidYPxXT5K4/LIZJ1pqzIKLNTo4RU45mPjCF77AoUOHaGtrY8GCBYRC05uXtmzZcsYWN8W+fftwXZcvf/nLLFmyhF27dvGJT3yCQqHA3/zN35zx13sjJFkmfMliwpcsrt62amWRJ790KbF9W3jDs+9UxaGmegtOhk+vGEQ5MwtFVYSlpl7bKRTFaGVlU9PiESRdE1mCYhk54MMplABH6Egc9+KyT0f2+8B1cQplbH8BXI/AglaUSEjIRlfen2taaOEwmVd30vbeO8XtjoO/pZHoZSvwKjLYpaNDSLqOEvKLq3tHNFq6lhijLPcN4xTLKBWtA7dcxk3b4ErojXVo8Sh2oYiTL6JGQtj5ArJfr2Yq9PoEK/7Xn5LdtZ/ywEjFyFRCiYTQ4lGcYkmYgzkOkueJ6Q6fTmTVUrSKH4YxOoHs9+EUytVjEezuQPHp5PYdIbdjX6VHIkxoxSLCyxZSHhzBLZs03XEDbe+5g9yug2S27cHO5vG3NBLbuHqaboIky4SXLSS8bCHBhR0c+d9fxbUt1HgMPRFDb0xgTqRwS2UabrnmBAGnYu8AQ9/5Obm9h8X7kSR8TfU0vOUqmu66EfkkUxtTiODqwquxO4bJyI9+w+STL2ElMwDIAR+RFYtp/8A9836TdU0Tp2yiBHwzKpsmn9uCpKkzCnrpTfXkdu4nu23PvH+fNc5vTjmYuOeee875Vctb3/pW3vrWt1b/vWjRIvbv38+XvvSlOQkmZqKjLUDb++8h9/ldyJaoyx9/lKYdMQlhFuW6YFjHbp9ShXw9pOr/qsGI7PchK3LFVbEiijQ1+lm54kfm2Piq62LnCqJUEQoSXCRq8E7JwJEkkWHIF6d5aajBAI5pVkY0RaDgOS7eZFooJibTKKUyajSMHAzg5AvImlrRlhBlMadUpu+r3yP13BY8CfS6GEVFEV35TfXoDQlQFfR4FCUSJvXCFqx0TqgyWhZuZVJVkiQRBJTKKMEAcsCHnS0IaWrbodgzQGzdpYSXL6weNmN4DFkRfQpI0rGAKJtHDgfFxKpPRwkGCS1bRKCjBa0uduxc98Bz3Ko/xtQ6/G3N+FqbUCMhggvaUMMhjLFJ7FwBf3sLDTdeSf0NVyCrKvGNq6u6FW9E/fVX4BomIz95DGs8iZVKC4XNujit77mTxpuvnnb/8vAYvf/3mxSPDop1RMK4toM5Os7gd36Oa1m03XvHrF77QsLzPIa+8zPGfvEEekOC8KWLkWQZO5sns2U3VjrLov/w8XnZiGmMTTL55Iskn92CWy6jRsLUXbOR+usvn1Z+Kh0dws7mKRzsRfb78DXXVxsvJUlCkmWsTG6u3sZ5Ta3MMXtOOZh44IEHzsIyTp1MJvOGZRbDMDCmGu6AbDZ71tYjSRIb37aeF7+zkPKBw0j2sSBhKpCQggFhSqXKaA11eKqCOTAsAgClosT3erFENdjwQFeRfX7h++A4QmvBdpA0pTpqqMajmGOT4rV1Dc8QplSSJOFaFkogQNNdN+FvbmDsl0/gmmZFd+A4D41KD0M1uyFXghZbjCtKlWDFs2yschYrkxObsAfBZd1YyQzRtSuQJImxXz3B5FMvEVzUWVVUzO09JLIlpRKS3kR8w6rKS3vo9QmsZIbAos5q86g8NeVh2bjFUsUafAJJUSgPj8HgCKFlC+n48DurnhJ2vsDIjx8V2Q7bxjOtqqy1a9u4k2n05gbiG1aKCY1EDDuXx84X0OtiqJEwWjxCqX8QX8uJAk+e7aAG/LTfdzfxK9dijopjrjfVva5HxhudT023XUd842qyO/ZhZwtVAy5fU/0J908+9RLFnv5pZlayquBvb0FSxpl47Dnqr7t83jmDnm1KRweZfOplfK2NVddVADUaJrxiMbndB0k++yqtb79lDld5IuXBUXr+4V8pHDyKVh9DCQSwkmkGvvFjstv30v2ZD6HFIoz89DEyW3ZjjE0eM4uLhohcupRAZ6vQVamY5tU4DTyv6gdzKo+5GJl1MFEsFvmTP/kTHn74YSzL4uabb+YLX/gCDQ3n/svp8OHD/MM//AN/+7d/+7r3++u//mv+8i//8hytSszt+/0qNMZxTAs3VwConoyebaP4dGKbVhNY2Ik5OkE5GhbmTrYjNntFwfU8kXLXVHFV706NUroi6BBWVKhBP3pDAr25HrdQpnDoKHI4gC8Rw0xl8bU14Rom1mRKyDhPneQ+HWQFf1cr3X/wPiGdXCoz/ugzlDN5rGKpos4ozLAkWRFlD1lCi4RwLAsnZyH7fGj1cax0Fte2RfNluYwxOIoaj1LY3yOaCIN+DpVNUs9vQZJlZN+xq3u1ksVQwyHKQ6PYyxeihkOi72BRF8XDfXiuh7+tCXMyjVoXxy0UkTyP+BVrUQI+Mi/vRG+uJ3rpEuJXXEbiirVoiVj1NbLb9lIeGCW+aQ3pl3fglMpIiiKOOZ7ITvh9NN9zC6M/foSJx55FVtVKSUcXPQeKjL+tWdigV/otADzHoXCwh+DCTqLrLkVW1WnS1G8WvT5Bw42bX/c+rmmSfH4ren18xh4Avame3O6D5HYfvOiCidzug9iZ3Iw245KioMYipJ7fQss9N8+bPhHP8xj63i8oHO4jsmrpMaO1+jg+0yK7fR+jP38cLR5j+Lu/xNfSgFMsCm0VScLK5Mhs3Y2siRFrNRomumb53L6pGhc8sw4mPve5z/G1r32ND3zgA/j9fh566CE+9alP8f3vf/+0X/yBBx54w83+5ZdfZuPGjdV/Dw0N8da3vpV7772Xj3/846/72Pvvv3+aYmc2m6Wz88yNh3mOQ3bnAdIv78AYHcdO50Q6MhQk0BXHKZQwJ1JiVLLSL6A1JohcspTJJ56jPDQuRiRtu5ox0Brr8Cr6Cf62JsqDYxij4yIjoarIqnCRVMMh/G3NlAdHQJLQ6uJIiizUJxvrUYJ+rPGkaDRUVWEB7iE2Q8tG8vvo+NA7iG9agyRJLP/8v6f57psYfOjn1RFIzxJrc8tGtSbrVCy6ZVW4airBAFo0QrFvELsyEupatpjW0DX8HS3kD/Qw+eRLOMUSelMdxugEoWULCXS14e9spTw8LhpDC0XsbKEqIiRrKpGVS/E11VMeGsMtG5R6+tHiUULLFqLGwpgjEzTccg2L/t1HTrqJGyPjgIdWFyO4sJP8wV7RU6DISJKMWimzFPYfQVIVwisWY02ksItC5MpKZ6m7ch1tf/w2Rn/yGLmdB1BCgcqoqUlgQTtdH3/PnPlXuIaJWzanBWnHI8kykizjFN9Y0fR8YUoATQ74XzcIcEtl0VB8kvsoPl91cuZkSqDnmlLfENldBwh0tJ7g2CrrGr7meiafehlJkVGiIYJLunCKJYyRcdRwCDUexRqfJL11N4HOVprvfguB7o45ejfnN7XR0Nkz60/Pj370I/75n/+Z++67D4APfvCDXH311TiOg3KaFsWf+cxnqs93Mrq7u6t/Hxoa4sYbb2Tz5s185StfecPn9/l8+E7yBftmcS2LgW88zPhjz2KOJ7GzecpDY9i5AlosDHhImtAHsAtFZFlGDvrRYlHGH3saY2gMOeBHDgeRSmUkWRJqkZaFv7MFt2SgBPzCtlpRQEG4ZAb9eLaDVhfDKRvY2Tx2oYReLIGm4RaK5HcfrIofyRXPB0lRQVVEr4ZhIKsK2W17MEYn8Lc0ooZDNNx0FQ03XUV5cJSRnz/OwL/+iPy+w3gVGWo7X0DyPPFcsoRbKmM5Dg23XEN07SWUBkcp7D2C6Tho8Six9asoHunDLZvozfWUegZwbQc7XySzZTcA/rZm/O3NlPqHcE0RvDilMsboBG6xTMeH3k7j7deT23mA/N5DZHfsw0pVylW2Q+Nbr6P59hteNxvgSRKlkXFKgyOiV2RKyCoQILikC1nXsfOi5hxZtQxZVbELJexMVhRAFRknXyC4sJOlf/FpUi9tp3iwF0lTia5eTmzjavS6+Fk5z2aDEgygJaIYIxOi7+Q1uBUBsgthzDN/oIfJp14iu20vnuMS6Gyl/rpNJDavm9EqXauLV5uTZ/q5ncsTWrZwzm3Wj8eaSOHkCjNmUwDURIzi1t0gScQ2rK7a3uf2HsYYHMGeSAlzuXyR5jtvpP2+O+dN1uV8oxZMzJ5ZBxP9/f1ce+211X9ffvnlqKrK0NDQaV/tNzQ0zLpMMjg4yI033siGDRt48MEHked4pGvi8ecZ++WT2NlctS9B9ulQKGBl8iBJhDpaRZOl6+BaDlo0jJMrUB6bRA0FkH0+XMNE0XWx+bseTqGEky+JWp3rVWvukiIjV8YYnbKBpGuYY5Mi5e55+OoTlfHGEGalAdCzHVzLQkJC9uvIAb8YpwyL++a272P8kafp/PA7p703f3sz3X/wPhquv5wdn36AUk8/VjorRI3q4siKjFnRfLCzecp9g9RdvRGt0qOhRivW3OksTqGE3lQPnocRDOBk8wRam3AKJQr7e/C3NRPfuArPdjDHJ7GzOTzDxNfWROPNV9Nw02YkRaHuqvXUXbW+ao/tFEqosfC0OvjJMMcmMQZGxChrXUxYfBumWHv/MGoihuzTUcPB6sSDGgqgho5pQmR3JsnvPkDru2+fd13xkqJQf93l9P3L93HKhmgyPY5y3zC+lkail82dWdeZIP3SDvr++XtYqQxafQJZVcjtOUhu1wEKR/ro+MA9JwQF0bUr0JvqKQ2MnODfYRdKuKZF3bUb59VmK2kqKIrIIOon9tx4FZ+Wqtkdwnk2vn4l9rKF2LkCrmHgmhYNN20+7b6dGjVOhVkHE47jnKDpoKoqtj2jGMEZZWhoiBtuuIGuri7+5m/+hvHx8erPWlpazvrrvxbHMJl4/HnsfIHy8DhqNITi9yHpGk6hCIosPtCVD7MxMk76pR2i3IHY/CVdwzVNXNNEDYdwHRfPsvEkCTuXx9/egjmRrHyxyCKl7nnYxRJKOIhbKos+BklCDvqrZRK9IYEaDJA/1ItTKItU6NTPFQU1EUVLxIS2g+OSemEbLffcMqMWgb+zldCiDszRCbR4BDUWqabLzck0kiz0L4zRSTxH+B24FXVKLR7FmEiiRkJiKESS8DUkKPUNYWXzaPEIdiqLOZFC8fvQElE6PnQPiSvWIikK/q62afLOU0zZY88WM5kmt3M/enNDRUjLrU51SKpKqXeQUDAgPDlepw9bvO/ySX8+19Rdu5Hs9r2kX96JVh9HS0TxTJvyyBhKMEDbvbef1014VjrLwLceximVCa9cWt389cY6rFSG8d88Q3j5YhJXXDbtcXpdnNZ7b2fgX39Ebu9h/C0NSKqKlUxjZ/Mkrt5A4sp1c/GWTkpoyQJR4hwem9HArDw0TmjxAsxkBjtXqDZeAqjhIGo4SHlwRDQO18VOeHyN2VOb5pg9sw4mPM/jIx/5yLSyQblc5pOf/OQ0rYkf/ehHZ3aFwCOPPMKhQ4c4dOgQHR3Ta3+n3Gl7BjBHJzCGx4WwkaZUrwTVUBAl4BObjixjjIxjJdP4WhrxtzeLZshMVrhWFkqiKVKSsAsl8Fw8w8J1HBxNJXrZJeT3HaE8PCamQWRFuFIqCrKiiit4hHumBBWxKD+yqqKEAqixCNiiDhxevghgmuyzWzgWlNjZ/IzBhBoK4m9rxs7mCSzqPDYlEPCjhkNYybQw5XIc7Gy+MpUhekZ8rY0ie+E/doop4aB4HcfFmsxg5/IU9h/G39lG023X0nbf3TMGEG+G3O6DmBMp6q/dVBHJGhMKn5URWy0RxddYR2hJF9mte2Z8Ds8VduH6PBwfnEINh1jwhx8k+MjTJJ9+BXN0EklViK1bSeMt15z3zpiZrbspD40RuXTJCVkELRHDGBkn9dyrJwQTIMZstUiY8d8+R+FAD57rotfHaX77LTTefPUJmZy5RgkGaLztWga+9kPKg6P4WhsrHi0O5YFhJE2h7X13Mfm7F8hu20v40iXTGm8dw8ScTNP23jvnrI/ngqEWTcyaWQcTv/d7v3fCbR/84AfP6GJOxkc+8hE+8pGPnJPXmhWSJIRkCkWU8LEPq6TI+FqaKA+N4qSzOLkC+QM9qOEQvuYGFnzivQz/5DHGfv44kqbiep7oi6ik1h1dw51I4xRKlAdH8bc3VcsbkiwRvmQxTr5E4fBRnErzH56HVSknqNEQWiKGXp8QqU1FwfNEf4B8XLrUc11cy0b16ZiTaTLb9wJMs2ieIrZ+FYMP/QwrmUZLxKppVTUSxM4VkDUFJ18kf/Aosk9Di0bQGxP425rJ7zmMaxhCV0OWcfJFAgvaia5dQal/mPLgKE133kTzXTcK8aazULpyiiVcyxa/k0Jx6gig1wvZYTUijLpia1eS3boHK5NDjYaFAqdpIusaZiqL3pAgOs83ZC0apu3dt9N0+/VYyQySpuJrbphXKfzTxRxLCiHYk/Q2qPEoxZ6BaZM2U0iSRGzDKqLrVwoJc9sWxmbzLIg4nsabr8Y1TMZ++ST5PYcQHyLwNTfQ8s5bSVy5Dn9zI+ZkmtyuA+gNCVFazOaxs3li61fReNt1c/02znu80xgNnYsL3PnArIOJBx988Gyu47zC19KAr7WZzNY9KMfV1QGUgA+9oU6MFWoqga42Gm/aTPzyywgu7MTf2UbquS0Yw2MokdD0DnJPKPPpFRfMyKVLaXv3HYRXLGbsl08w8dvnyGzZjV0siTLFcfLaruNg50uiT6Iim63Xx7AzBcxkurqpuKYlVBQti8KhXvyN9Qx+/WFGo48S27ia9ve/DS16LB0ev3wN0TWXUDw6KBwvK82Lst9H4qp14Lq4ZYPmO28g2N2Ba1kMf/9XlAdGQIbi4QFhHmY7KAE/4RVL0BIxzLFJGm+5moV/9OGzWtP1XI/CISGhrAT8yAE/nmlhTqSRVBV/q4feVE/8qnUkn9/KyI9+jTmRrGh2qMiqit5UT/cffhD/DBoT8xE1FLzgrkin/FNOhmdayNHXL+NIFUXQ8wFJlmm5+y3UXbWe7M79OIUSWixCZM0l1c9ncFEniz/7MSaffJHUC9twSwZ6Yx2t77yN+usvP6/LWvOFWmJi9syPWajzDFnTaL7jepJPvICVzKC0H5OxdU0Lt1wm0NlGcGEHyz/3R9OcHaNrllN3/eUMfftn2Lkiil8XmQ5DjG4GF3cRW7cSRddY9McfrUrkBhd1kt2xD9eykAM+JEnC8+m4JaMqoT3VV2FOpPC3NxNaswJF10i/spNS7wByICDGR0tlPMvC19JI4uoNaIkYVjLDxGPP4hRLLPy3xzZ4f2sTjbdcw9hvnkKLx4RYlaqgN9SBJFE8fJTO37+X+usuB0CtiwESh//nlykPjOI5Dm7eFM2pnkd+/2HsTJZAVxtt777jrDeH5Q/04JoWSsB/bJohFMCzHcqDo9jZPIvfeSvJp14mu30P1mQapyiyKZgWBMXoYfqVnSQ2ryO8bOHrvt7pUh4cJbNtD1YyjRIKElq2sPq797c2TjMImw94nlcdNVWCgbOe/QgvXySuvHP5EzZJz3WxMjka77jhgsjCHI9en6DhhitP+nN/ezPt738bLe+8TTRzB/21hsszSS2amDW1YOI0abhpMy3veisD//ojir2DotzhukiyjN7cgBoOkti87gSLaEmWab7jRvI79mNlcpgTKTzXRYtHCV+yiOj6lTjZPK5hCkMrTxhwOYZBZtte9LoEyGAlsyhBP7ZawC4UwbbxHBe30hehBAN0fugdNN51I6M/foThH/4Gc2wCK5XFNS38rU1EL7sELSEko/X6OLLfR+bVXeR2HZxWY2+993bMiSTZ7fuQfTqSqlIeHMGzHfxtTWS27WH8N08DolSCJKHVx2lYskDMv49OCLMqx8HJ5vGaGuj+9IeIrj67Qjrl4THyuw6IzMqRfszxFEokKITBDEP0rCCu5Acf+pmY049FCCzpAtvBQ8LOZPFkifLACCMPP8riP/nEGd2wPM9j9OePM/qzx7GSadFrMzqOlcoKie7uDnzNDdRddzlNb71uzlPznueReXUXk0+9ROHgUQDCy7qpv+5youtXnrXNPLx8IbENq0g+8wqBrjbRDCxJOIZJ8XAfgc5W6q5af1Ze+3xA8fvm/NyocXFTCyZOE0lRWPKfPoW/rYnBb/8UcyIlRiejYXzNDSQ2r6PtvXfO+Fh/cz2+1kZiV16GLAsLcyUSEpbctk3hUB96fYyBb/+U8uAo5kQKO5nBGBlHb6irCPFIwjMjGhZBRb6IWzbwtTSgNzdQd8Vamt/2FiRJou3dt9N467X0ffkhBr7xsGjmMkyy2/dhjIwTWbVcXNGoirh9x95pwYReF2fhv/sI6Zd3kHpuC1YqS2jpAtyyQW7XAeRUVjQnShKFA71ktu7G19ZEbMMqsbmsXo5TLOGUTSG7ncmek7l+Y3QSO5snsnIpekOCwqGjQozL9VB0nfCqZciqQuaVnVgTKdyyKcZaZRn0SrNpfQJjZBxDURj8zs8p9Q8TX7+S+JXrCF+y6E1vnqlnX2X4u79ACQcJr1pGfvdBrGQWvEqTakMdSrDA4Ld+gjE0Stcn3jtnV55Tgc/w93+JZ9lVE7T0S9vJbN1D63vuoPnOG89KQCEpCp2/fy+SIpPZsptS/7CYZFJkQou76Pi9d+KvGLvVqHGmqOlMzJ5aMPEmkGWZrt+/l6bbryezdQ/mRBLF7yeyahnh5ScK4bimSfKZV5l4/HmKPf1kd+wjtHwRoYWdSJJEqX9YbPCjEyh+ncmnXkYNhwhfskgYaxkmxsgYajQ87YyVVBU1HMQG4pvW4Fk2oeM2Os/zGP7Br0i9tB3Jp6E31aPFo7hlg2LvAOXBMZRwAM+yxahZNEzjzddME4JSwyEabtxclXbO7z/Cof/xj2iN9agBv2hW1DR8bY1I22WM0UnMiVTVQEkJBqqpenM8iTmRPJu/GkAoaEqVeX1/axO+lkYhWlVRTsR1KQ+NUuwdRPb78GwbOTLdBdctG5iTKaxcHkXXKQ+MMDY6weTTL9Pyztve1ObpOQ7jjz0LFcMwM5mmeLgPNSyOlZ0rYgyPE7l0CVo8SvKZV4hvWkN805ozcXhOmeLhPkYefhQlFMLfeqx/xNdUT3l4jNGHHyWyYgmhGazRzwRaNEz3Zz5M8XAfhYMVK/GWRiKrl5/xKaAaNaBW5TgVasHEGcDf2nTSq6Ly8Bjpl3dSONhD+pVdGKPj+JobiKxcSnbHPrLb9lI83Ie/rYni0UFwXOG1USrjr4/jlAyKPf0EF3Wh1seFzHNeWIh7tiNGPT0hdqUE/KjRMHYmR2LjsQ2neLiP5NMv429vwTUtSkf6kSSQdRXPtCkNj6M11KHXJ3BNi/y+Ixz+26/S/ekPnXRjSL+8A2NsApCEzkSll0KLR0GW8EyL8tDoCW6MnuOARNXV8GwSXNSJv72J8sg4wQXtQq78uCa9wuGj+Dvb8Bynmi0RBmZ6Za0u5ZFxcRVeF0cJ+Al0taHXxykPjzP8g18R7Gw7bTEoY2SCUt8QekU3wxgexzUt1LgY01VCAcyJJFYyIwI7zyP14razFkx4nkepbwhzPImsa4SWLJjWq5F+eYfI9KxadsJjfS2N5HYJafmzFUyAaKIMLVlAaMmCs/YaNWpUqUUTs6YWTJxFUs9vZeAbD2OMTWLlchT296D4fXiOS3zDKhpuvobi0UHyuw+S230IvTFBbMMqiof7wLZRAn6UgB9zIo05nsTf0ohrmDj5Aqgqdr4AsoQkyXgS+DtbMMeTNLzlKsIrl1TXkdt1ADtfJNDdQcBspnR0EKdUxs4XhUS2TwfXAddFS0SJX76G8uAog9/6CUv//A9nLEnk9hyk2DsovC2iIeRQANeyRH9EvohrO0IJ9DUYIxPojXWEL1l0Vo89CFXAhpuvFvP6w+P4WsREi+e6GMPjeI5D063XYIwnKRzsRauPY4wKSWpJkrDzRZxiWUwSuC56XQwtIZo4/a2N5PYcJPncq6cdTHiOg+e6SIooqTilknBincp0TGWWKhM0SjCAMTLxJo/KzJQGRhj+/i/F5EBOnF/+tiYab7uWxpuvRpJlSn1DQgBthkyMJEkoQb8oP9Q4L/Ach9LRIZyygVYXO2+mlc4lXuW/U33MxUgtmDhLFI/00/+1H+IaJuFVS0k9+ypaPIqWiGKOJZl88kXCK5agx6PUXb2B8ceeJbJyGf7KFZ58XDOVGg1hZXJELl0ifCssG72lUXhjZHIim1FfR2zNJTS+9Tqa7rixKgsNQjZYqsjv6k31hBZ3kd/fUy01SJKEkyviRsJEVi4VehI+nfzBXvL7e4hcumTae/M8j8Khozj5IsHFXdXNRVEVZL+PsmHh5IvY2RyuaSHrmtjARyewMjna77vrnPlENN58NU6xxPivnya/6wBUfEb0+gTt73sbddddTnlwlMknXqRoCF0JazKNGgvjlMq4hvBIUSNh4eFwnBaGloiR33tIBASnoZGhN4pskDWZRg0FkXW9GjiAKLHIul5VOJz60j/TGGOT9P5/X6dwuI9ARyuBBe14lk15eIyByjnccvdbhC+MdXLFW9eyUYL+k/68xvwh/fIOxn71JIUjfXimjRIKEFu/kpZ7bj6hafxiptYzMXtqwcRZIvncq5jJFJFVy8F1sbN5JF3DzhWwc3ns4SJ2Jlcd13RLZeEeWnGyPH5TkVQVr2KeFb9iLelnXsHX2igspzWN4KJO6q+/gtjaFVXHzePRElE8V4ivSLJMZPVyJFVj8umXhAeIbaMlYsQ3rakKV6mhIJ5hztjbYAyN4RqW0Gyo6DFU1ypJwoSsWMLf0kTx0NHqe9Hq4rS953aa7rrxLBzxmZEUhdZ33EZi83pyO/Zh54vCkvmyFdUSTKCjhQWfuI/+r/1AlGeGxyj1D+MWykiyTHBRJ9E1l5xYynJdJFmpZhBOFSXgp/66yxn85sPY+SK+lkYRpJUNZE3DzuYIdLWjxiI4ZQPPdkhcfqLC45tl8skXKRw8Os3uWtI1ggvaKQ+OMvbLJ6m7aj3RtZeSfPrVaoB4PK5pgu0Qu2zFGV9fjTNL8rkt9P3z93BLBv72ZjFym8kx8dvnKR0dZOEff7SWpahxytSCiTeJMTpBbs9B3LKJVhcnumY5SsBPdud+tFhUpNVlWZhiZbLY6ZzY1DUV2e9Hb4hjTqZxSgbG8Bix1cvxtTRQ7Bmozu+7lStmOeDHNUxim9bQ/YcfRItFUOMR9Lo4di5P+pWd5HYdwDUtggs7iW9cTaCzldi6Sxmtj2MMjwkPClkmuLCdwuEmXNvBMy0Sm9dNM7DyHAeQZrRltjI5lICPQEeLGKeMhpH94orUrTiZ6vVxFv8/H0f26VjpDIrfV5mqmBtJan9L4+t+QUYvu4Rln/sjMlt2Uzw6gDmRxi2WSb24lcjq5aihIE7ZwBgawxibxLMd7Hye1nff/qamFxpvu5ZS3xCp57bgIZoMS/3DoCj4O1oIr1yCOZHCGB4jvmkNsQ2rTvu1ZsI1TZLPbkGrj89YzvK1NpLfc4jszv3EN60hvHIJuZ37RQ9PRf3VzhcpHukjsnr5vFcJvdhxSmVGfvQbPMueVmrUGxJoiSi53QcYf/RZOj/09pM+h2uJvio7m0cJBQlfsuiUx1KnVCLnvS7IOeyZ+OIXv8j//t//m+HhYVauXMnf//3fTzPXPJ4f/ehHfOlLX2Lbtm0YhsHKlSt54IEHuO22207vxc8AtWDiNHEti+Ef/obJ370gDLwkMaoZ6Gyh/b67Ra6r8kGRJAl/ezPFI/0gidq3kHYWmQI1HEL265T6hki+sA1rIoWVyeKWy+jNjdjZvLAlNy3MkXGa7rxx2uhmqW+Io19+iMLBXiRFQVIVUs9tYfzXT9H+/rupv/4Kmt/2Foa+83PyB3rwtTSCLCFrGuZ4kvDKpfjbpxumGWOT6I2JGXsb1HAQJRggfEkdit9HeWRcTEkgGiv97c3o9Qn8rY2Elnaftd/BmUaLR2m4aXP1365lceh/fpnstr3ozQ3kduzHSmdAlnEKJSTPI/3yTiafeqkq2nWqKH4fC/7gPmLrV5J6bgvFpnr0lkYhla4olI8OoSViNN5+PW3vvr0qZHWmcMombrl80ucV5RtJyLWHgiz4g/cx8LUfktt9kFLZAIQaanzjajo/+u4LTnnzQiO3+yClwZEZm2QlRUFvrCf94jZa33HLjFnOzJbdDP/w1xR7B4SrqaLg72yl5Z6bSVy1/nWDA8/zyO3YT/K5Vykc6BHeMRtWU3fV+pParc8156rM8d3vfpc//uM/5otf/CJXX301X/7yl7n99tvZs2cPXV0n/q6eeuopbrnlFv77f//vxONxHnzwQe6++25efPFF1q2bG+O6WjBxmow8/CgjP3pEbLgVox3XtCgeHeToV75DoLuDUu8AVK72tUS0ais+ddUv+4QpmJXNo9fFKY+Mk926By0RFRv9ZAZzIiXktWUFp1AUm8p9d1XX4Rgmff/8fQoHewktX4RcKTl4nke5b4iBbzyMr6WRpjtuQItFxFhq7wCe6wqVxUgIPRGrfgKmLL6tyQyt77kdvS5+wnv3d7YSXr6IzNbdRDeuJpQrYKWzAKjRMObIBOEViwkuOj1r+vmCrGl0ffy99P7fbzLyo99g5wuokQg4Dr6GBOHVy5Fcl4Gv/xhfS+Npq2PKuk7d1Ruou3pD9TYrlRFeE65LoLP1lJxSTwUl4EONhIVgVn38hJ+7tpi+mTKC87c0svhPPkF+3xFKfUMABBa0zzgKXWP+YecL4LgnnaZSQ0HMVMWN9DXBRHbHPnr/8ds4xRKBrjaUSqa0NDBM31e/iyTLJDbPvJF5nie+Mx9+RGRxE1E8x2X4h78m+fQrdH3ivcTWzr8S2blqwPy7v/s7Pvaxj/Hxj38cgL//+7/nN7/5DV/60pf467/+6xPu//d///fT/v3f//t/5yc/+Qk/+9nPasHE+YQ5kWTi8efR6mPTvuSnxunyuw+itzSixiKU+obwd7ai+P1oiRh2qST6JzS14vQJWjyClcqi18cJdLXj5It4lS95t2wQXX8pHR96B5FLlxDoapsW/ed27KNw4AjBpd3VQAJENiSwoJ3crgMkn32V8PJF1F2zkcTmdZQrkwy+pnqy2/cx9L1fUDjQIx7ouqiJGC3vvJWWe26e8f1LkkTzXTdR7BmgsP8Igc42Al1tOMUy5YFhlEiI5rvfckFsLv6WRhpuvprUC9sIBHQkSUaLhfG1NqOGAuJqa9cBUs+9ekaltrVEjFji7NtHy5pG3TUbGfjGj/HN0AtRHhgWo8xrjk2sSIpCZOVSIiuXnvX1nQ/YuTzloTGRmexqm9dKlGooWL3wee3vGoQxnuLzVUtYU3iuy9gvn8DO5gmvWFz9DpJ9OqHFCygc7GXk548T27hqRlG13M79jDz8qDA9XHxsrNff0ULh4FEG/vWHBBf+uxndi+eSN5OZyGaz0273+XzTXLenME2TV199lT/7sz+bdvutt97Kc889N6vXdF2XXC5HXd3cORvXgonTIL/vCNZkmvBrphygYibU3IA5Ok7L229l9Ke/JbfzAKgynueiaBr6gnaC3aKxTkvEyGzZDbKEFosSW7tCCCiZFpKu4ZYNrHSWyCWLCC5oP+H1SkcHcR3npKI9WiJGbsf+qpuipCgEOo6VNBJXriWyainZ7fuw0lkUv0+UPd6gASuycindn/4gIz9+RDQNlsoofh+hpd20vO3m17W8dk2T3M4D5PYcxDFM/G3NxDesOmtX328WY3gMPR4hMoP8tyQJG/PszgMzOlaeD9RffznZ7XvJbt+Hr7keNR7FsyzKQ2NImkrLO2+dps9RQ+AUS4z+/HGSz7yKmUwL8bGWRupv2kzjLVdPm6iaL0RWLsXX3kx5YOSEzKHnuhhjkzTffdMJ/iflgRHyB3rwtzfPeI77O1ooHR2kcKiPyIrFJ/w89fxWodD7mvKKJEmEFneS33uYzNbdr+tDMie8iZ6Jzs7px/dzn/scDzzwwAl3n5iYwHEcmpunT9E0NzczMjIyq5f827/9WwqFAu95z3tOcbFnjvl3tp8HuJYFcNJxQEnX8Epl4pvWEFm1jPRL2ykc7IWKvkH8yrVolQ+rmO4o4FkOvs76qucAlasb2SdUF0sDIwQXnlg2eEO7W+mN025qODQtxT5boquXE7l0CYXDfTi5Ako4SHBx1+t+iZqTKfr+6btkt+/Dc2xhk245jP7scdrfd9dp9x6cdd4gRpDe6A7zGC0epfszH2L054+Ten4bpf5hZFUhfMliGm+9lvjlc6O4OZ9xDJOjX/0uyadertrZU9mMB772Q6zJFO0fuGfeBZdKMEDLPTfT9y+iNHpsmiNPeWCYYHcHjTdfc8LjnFK5Ypg3c9ZF9vuEyWHF/O215A/0oMVnzjpMZTDLg6On+a7mJ/39/USjx0bgZ8pKHM9rz5XZXpw89NBDPPDAA/zkJz+hqWnuJOVrwcRpoNcnRJmiWJrRzdFOZ9HqYqixCL6m+mpGwRibpOcLXyO/9whOQxwlFMScTGOns+j1ld6Lk5w8J7s90NWOJAtPDXmG7ISVzNBw6zVn7UtNUpRZp/c916X/wR+SfmUnoaXd1aY/z3UpHu6j94vfQlJkEldtmFdfwsEFlWNsmifUmj3Pw05nqbt6fq35VNHr4nR++J203P0WzIkUkq4R6Gi5IEpVZ4Pslt2kn99GcPEC1NCx74DggnbMiRQTv32OxJXr5qVSZ921m5BUlbFfPkHx6CCeaaGEgySuWk/LO2+bJqM/hZaICYn3bAG94cTvGTtXQA0G0E5SmpM1Fdt2Tromz/NmnByba97MMEc0Gp0WTJyMhoYGFEU5IQsxNjZ2QrbitXz3u9/lYx/7GN///ve5+eaZy9Lnivn32zsPCK9YLHoj9vdMqx9OOXxa2TzN99xyQunB11TPoj/+KBO/e4HkM6+KD2AkRGzDKuEcOkO9UAgoRU7azBi97BJCSxZQONhDaPliZFWprqU8MIISCVF39cYzfAROj8KBHrI79hFc2FENJJxiicLhPkr9w5hjk+z9s1Fa730rTbdeS/iSE9Olc0F07QqCS7oqTa7Tj3Gpbwg1FqXuqlPP7MxHtETspBvChYZjmFipDLKmotXFTykYTL20DU9iWiAxhVYfpzw8Rmbr7nkZTEiSRN1V64lvWk3xSH+1IdLf2XrSY+Brqie27lImfvscWiI6LcicavaObVhFoPvEUixAbONqhr7zc/wzXG07pTKyphKeh5Nfnue9cfZ3hsecCrqus2HDBh599FHe8Y53VG9/9NFHueeee076uIceeojf//3f56GHHuLOO2c2lTyX1IKJ00DWNNrf/zZ6v/gtcjv3AxLmZBJzPIXnOMQ3XUZk5Yn9FAB6Qx1t995B891vwckXUIIBMlt20/uP3xKuoM0N1Q+bnS9SHhql8bbrTqpKp/h9dH38PRz9x2+T33sIWdeRVAWnWEJLxOj4wD0z1jDngsKRfpySUa3HOsUSqRe3Y45NooQCaPEodi5H8smXyO85TPenPnDaUtVnEiXgp+vj7+XoPz5EYd9hJFWtHmO9IUH7B+45r0ZgL3acUpmJx59n8skXMSfToqF0xWIa3nIV0TWzO9/MsSTqDFlJEJu1rKliQmYeI2sa4eWzl7VvedvNFHsGyO0+iK+5ASUcwi2WKA+P4W9vofVdbz1p6bdu83qST71M4UDPtFKoUypTONhLbP1KIqvmYUPvOdKZ+OxnP8uHPvQhNm7cyObNm/nKV75CX18fn/zkJwG4//77GRwc5Otf/zogAokPf/jD/J//83+48sorq1mNQCBALDY3FwO1YOI0CS9fxKJ//1EO/c+vMPnE83i2ixoJoTc2Y2dz9P7D11nwyfef9Opa8fuqXd+Jq9ZjTKQY+/nj5HYeQPZpuJaNrKnUXbuJ9vfdNeNzTBHs7mDJn32SzKu7yOzYh2eYBBd3Ed+0hmB3xxl/76eN6yLJx65KCkf6Mccm0RvrkBRZyH57KqEVSyj19DP0vV8QXrHonJiCvRHB7g6W3C+OcW7XflzTJriok/jll01raK0xv3HKBke/8h1Sz7yCEg2jJWJ4lk3qxW1kdx2g66Pvpu6aN87kafVxir0DJ/25Z9uo50gy/lzhb29m0R9/hLFfPyWM/kbHUXw+Gm6+mqbbrp2xp+v4xy74N/fR/+APKezrAVzwRH9ZbP1Kuj7+3nnxOX8t50pn4r3vfS+Tk5P81//6XxkeHmbVqlX88pe/ZMECkdkaHh6mr6+vev8vf/nL2LbNpz/9aT796U9Xb/+93/s9vva1r536As4AkneqOZnzmGw2SywWI5PJzKqW9UakXtxOzz/8q1CijEWQdQ1JFlLYhf1HCCzoYNnn/u2shIY8z6N0dJDMlt3CgjwcIrbmEsIrl5zTrvDy8BiFAz14toOvuUGUcc5Q3TyzZTeH//arYrxVUZj47XN4jlP1njAnUvhaG0lsXi/m148OsuRP/2BeZCdqnB84ZYPcrgNYyTSyTyd86dJpzrUTjz/P0S8/RKC744QSRbGnHzUSZvnn//0bjigmn3mFnn/4OsFFnSd8vq1UFjOZYun9n5o3pbozjVXRolBCAfT6xKwfZ+cLZLbuoTw4iqTIhJZ0E1m1dMZx0jfiTH+fz/TcP3x8nFD41J67kM/yrpsaz8q65jO1zMRp4nkeyadfBtc9YaRRkmWCi7soHuoju30fiSvXvuHzSZJEsLtjzjIJTqnM0Hd/QfLZV7EzecBD0jXCyxbS8aG3v+5Vx2yJrF5GaEk3+X2HKnbo5rTeCTGnL6zCFb8Pz3aE4mSNGrMgs20vQ9/5GaWjg3iuuKTU6mI0vOUqWt5+C5KqMvnUS8i6NmOvQ6Crjfzew2S37aH++ite97ViG1YR27ia9Ivb8DU3oDck8FwPc2wCK5Wl8bZrCZ1B3ZH5xun21qjhEPXXbjoLK6ox19SCidPEsyyKvQMn716uOEAaI+PneGWnjud5DHzzJ4w/8rTwsKiYfdmFErndB+j94rdY/P98/E3rQMiaRudH30Xvl75NYd9hnEIJxzCRJBlJVQgvX1jtJHdtGySp6vlRo8brkT/Qw9Evfxs7mye4qAvZV/n8jU4y/INfI8kyTXfdhDmeRD1J1mEqA2cm3ziAVQJ+FvzB+/A11pF6YRv5fUdAlvA11tP2vrtovvPG03KSrTHPOIfeHOc7tWDidJFlJFnCNU9uyQwgKfP/C6V4pJ/Uc68S6GiZFhypoQDhSxaT232Q5HNbaH3HrW/6tYLdHSz500+QfmkHvV/6FoVDRwks6SDY2YreVF9tPjWGxvA11RO59MJME9c4s0z89jnMyTSRlUur55Aky/hbGwGP8ceepe7ajUJTIZuf8Tm8itz9bBUstWiYzo+8i+a7bqQ8OAayJMToIjWBrwsFj9OY5rhIo4n5v9PNU2RVJbZ+JeZkWmgN5PLkD/SQfnUX2R37KBzpQ/JpBJd0z/VS35D8noPYueKMDWOSoqDFo8LV8gy11+j1CZpuv56V/+9f0HDTZrSgHzUSEg6plk3p6CBOqUzTHTfUvphrvCFWJldR72yYcbTR19yANZmmcKCXxOZ1WKlMxR/nNc8zmUaNhU9ZJlxvqCN62SVEVy+vna8XIN4p/rlYqWUm3gR1115O8oVtJJ95BSuZxTXKQtzIsnCKJaLrLsXXMj8loo/HKRtIsnTSGXNZ13HKBrgunEERo9DiLrr/8IPCG+TQUTzTAllIEre+5w4abzlRia9GjdfiGiaebaPM0AcBFaVaScI1Lequ2Uj6xe3k9h4m2N2BGg7iuS7mWBJzIknTnTfgr5jzzUecUrn6WdEaEid49dQ4w9TKHLOmFky8CUKLu6i/eiOpZ17BKRsoAT+e6yL7dHytjeB4DH37pyz4ww/O6w+83pAQ6TzHmXFyw8rmRPr4LKghRi5dwtK/+DSF/T1CQMjvI3zJohntj2vUmAk1FkGNR4Xy7Az9EE6pjKQq6PUJ/C2NdH/6gwx882EK+3soGSYAWl2M5rffIrQS5uFn1XNdxn/7HOO/fkqYijkOSjhIdPVyWu+9ozaefJY4F6JVFwq1YOJN4Hkextgk4eWLUKMR7HwBSVHQ6+PojXXYmRzpLbtpOjo4v/QeXkNs7aX4mxsp9Q0TXDh9nXaugGc7s5q9P11kVa05UNY4bRSfTv21mxj4xo/Rm+qn9Tx4nkepd4DgkgWEK/03we4Olt7/KfL7ezDHJ5EUhdDyRdNGSOcbY796ksFv/7Ti0tmJpGnY6RzJ57ZgjE6w6LMfw9dUP9fLrHERUwsm3gR2Nk/hQA/+9hb0hhNnrdV4lPLgKMUj/ajRMNkd+4QhViREdPXyU5rPPptoiRht772Tvgd/QG7PQXxNDUiqgpXM4JTK1N9wBYkrLpvrZdaocVIa3rKZ/L7DpF/ZiRoNo0UjuIaJMT6Jv6WR9ve9bZqWgaQoRC5dAsysVDufMCdTjP7id6jhIP72YxkILRFFjYbI7T7I5JMv0nbvHXO4yguTcyVadSFQCybeDK4rUloncw+VJDzPI/XiNoZ/8GuMiUkkSRbz7/UJmu+6kabbr58XI2R112xEjUWYePx58nsO4ZVcfO3NNFx/OXXXXzEv1elq1JhCDYfo/vQHmXziRSafehkrnUXWVJpuv56GG688Izopc0Vu1wHMiSSRFScGPpKioNXFST77Ki333Fz7nJ5patHErKkFE28CNRom0NFC4WAvet2JehN2voCdy5N6fiu+5gYiK5YgKYqYfx8eY/DbP0UJ+mm4cfNZXaddKApnwEjoddU0o6uXE1m1DDuTE3LAschpKdPVqDEXqOEQzXfdRONt12LnCsg+HTUUnOtlvWnsQgkJ+aQ9S0rAj1sycEpGLZg4w9T6L2dPLZh4E0iKQv31l5PfexgzmZkWULi2TeFwH55hoTY1EDiuQ1ySZfztLRSP9DP+m2dIXLXhBIfRM0Hh0FEmfvcC2a17cG0bvSFB/fWXU3/d5SeV+JYkCe0C8xSocXEhaxp6XfyUH2cXiuR27BdZjYCP6Kpl6A1z30ehRcO4lkX+QC/m+ASe7aAlYvjbm9Hq4jgFMdatBGsCb2eaWmJi9tSCiTdJ3TUbKfYNM/HI0xgjY6iRMK5h4pbK+FoakSSJQFvTjI/1tTZS6h+m1NN/xjX8M9v20veV72COT6I31aOGAhhDY/T98/fI7zvCgn9z36w8Q2rUuBhIPb+Voe//kvLgqLjB89Dq4jTedg0tb7v5rEwyzRY1EaM8MII5mUKNhpFkGWN0kmKPaCz1bJvmu98yJ1lEz/Mo9Q2R27kfp1BCjYaJrl2Bv3Xm77zzjlo0MWtqwcSbRFIUOt5/N9FVy0i9sJVS/zBKKEBi0xrUaJieL/wr0kk+5LKu4dkOrvX6KpqnilMqM/jQT7GyOcKrllVH3bREDLtQIvXsq0QuXVLTcahRA8hu30ffP38P17IILVuIrKkVKe4Jhr/7SyRFpeVtb5mTtbmmyfB3f4EaDuJaFngeStCPEglhJdOkX9pO01uvo/76y8/92myboe/9konfPoedyVVMDoUfSvNdN9F8V01S/GKiFkycASRFIbbuUmLrLp12uzGeRI2EsdLZGcfOrFS2Ylt+ZlOp2R37KR8dIrik64SZeTUUQA74mXzyJRpu2jynV1w1asw1nucx/ujTOIUi4eMaHIUUdxMlx2HisWepv+EKtOi5V7fM7TxA4WAvsSvXYk2mKR4+ipXK4rkuSiCAEgoSXNA+J6XJsV88wehPHkNvqq+KZ3mehzEyztB3f44WC7+hYdp8p5aYmD21YOIs4musI7ZpNeO/fgotPr2Z0bVtykOjNNx8Nf6WxjP6uuZkCs/1TtqMpcUjmBNJ7EJpTr4ga9SYL5hjk+T3HcF3ks+gr6WJwoEeCvuPEN+05hyvDkr9w3iOjRrwo3a04G9rws7m8RwXJejHzuQoDYzgWtY5LXPY+QITjz+PGgtPu1CSJAl/axOFYonxR58lcdX687qJ26v8d6qPuRipBRNnmZZ7bqHcP0Ju9wG0WAQlFMQplrDSWcIrltD6ztvO+GvKugaeGFudSc3PNS0kVRX3q1HjIsY1LTzbQTrJZ0FWFfA8XNM6xyur8JrPryTL07IQVjorPuPnWLWzeLgfY3SC0NLuGX/uaxH9YOX+EYKLzt+x3No4x+ypBRNnGV9jHYv++CNMPvUyyWdfwc4V0OJRmu66ifrrNp1S17mVzZPZsovCwaPgeYQWdxHbsOqEFGdkxRLUeBRzInVCecXzPMzxFM133zhrd8QaNS5UtLoYajSMnc7NOEZq5wrIfn1GUbpzQbC7A0nTcIollOCJ3iNWMk3DTVe97sj32cBzHDzXRVJnLpNOjcDPZKh2PlGT0549tWDiHKAlYrTcczNNd96AWzaQ/b5T/vDnD/TQ99XvUeoZAEUGCcYfe4ZAZxtdH3tPRc1P4G9vpu66TYz97HHwPPTGOiRJwikblHoH8Lc2nve1zBo1zgRqKEjdNRsY+t4v0RsSyMeNaHuuS6lvkOhll570CvxsE165hMjKpWS27Ca8fFF1fZ7nUe4bQo2Eqbt20zlfl6+lAS0WwZpMzxhoWck0ejyK3jz/jQ5fj1rPxOypBRPnEFlVkcOnfsitdJa+f/oOpf4RQisWi9Qr4uqgcLCXvn/6Dkv//A+nzcS3vedOJEli8qmXye86AJKEpMgEF3bR/oG3zWuvkBo1ziWNt11H4dBRMlt2C9OwSAi3bGBOpAgsaKf9vrvmbCpBVlU6f/9ePNsht+cQ4CGpKm7ZQG+oo/19d027kDhX+Nuaia1fycRvn0ONhqeVTJ1SGXM8Reu9t9d6si4iasHEeUD6lZ0UeweJXLpk2vSFpCiEli0kv/sg6Zd30nT79dWfKT6djg++nYa3XEV+32Fc08LXUEd41bKzIpBVo8b5ihaL0P2ZD5N86iUmn3oJO5NH9um0vvM26q+/An9785yuz9/SyOI/+QSZrXvI7T6IWzYIdLUR37h6TtfWdu/tGGOT5HYdQAkFUAJ+nHwR17SIX7mW5jtvmLO1nTFqqYlZUwsmzgPyew8ha9qMY5ySLCP7fWR37p8WTEzhb226cARkaswLPM+j3D9Mfv8RXMvG11hHZPXy87oHR4uGq1LcTqGE7PfNq/ejBPzUXbWeuqvWz8nrW9k8mVd2ktmyG6dUJrCgjcTll7Hwjz9K+oWtJJ95FTuTxb9sIXXXbCBxxdoZezzON2r9l7OnFkycB3iOC/LrdGvLErjuuVtQjYsWp1Rm4Ns/Jf38VqxMDkmSkRSJQHcHHR98+3lvJS9rGnK8NuV0POXBUXr/8Vvk9x1B9unImkZu5z4mf/cCzW+7mZa330LTbdeJhswLTKSq1oA5e86737xhGKxduxZJkti2bdtcL+ecEFrajVs28WYIGDzPwymUCC1fNAcrq3Ex4XkeA9/6CeO/fgolFCCyahmRVUsJLOqidHSQo//4bUp9Q3O9zBpnENe26Xvw++T3HSG8YjHhZQsJLuwgsmo5SjDAyI9/Q+aVnQAXXCABHEtNnOqfi5Dz7rf/p3/6p7S1tc31Ms4p8U1r8Lc2UjzcNy3q9TyPYk8/emM9icsvm8MV1rgYKPUNkXp+K/62ZvT6RFXDRPHphJYvojwyxuRTL83xKmucSfJ7DpHfe5jQ4q4TJtB8zQ14ls3kUy9fsFfjU5mJU/1zMXJeBRO/+tWveOSRR/ibv/mbuV7KOcXXVE/nR96FGo2Q27mfYk8/xZ4BcjsPoPj9dP7eO+e8SazGhU9+7yHsbB7tOHfcKSRJQq9PkH55h/CQqHFBUOofxrPsk/Y/aPUJCoeP4pbK53hlNeYb503PxOjoKJ/4xCd4+OGHCQZPFJeZCcMwMAyj+u9sNnu2lnfWiW1YxdKWRlIvbiO7cz8AkUuXkLhiLYGuiytTU2NucE0LSZZmVFUF0W/gWjaeZcN5LKFc4zgk6fWHEzwPiXOvwHnOqE1zzJrzIpjwPI+PfOQjfPKTn2Tjxo309vbO6nF//dd/zV/+5V+e3cWdQ/ztzbS+87azIsFdo8YbIXRMpJP6QFjpLKGl3cjzaAqixpsj2N2B4tex8wXUcOiEn5uTKequ3nDB/s5rscTsmdMyxwMPPIAkSa/755VXXuEf/uEfyGaz3H///af0/Pfffz+ZTKb6p7+//yy9kxo1Lnxia1cQ6Gql2DNwQl3YzhVwTYu66zZdmI14Fynh5QuJrFpGsacfxzCrt3ueR2lgBCXgp/66K06arTrf8U7zv4uROc1MfOYzn+G+++573ft0d3fzV3/1V7zwwgv4fNOj340bN/KBD3yAf/3Xf53xsT6f74TH1KhR4/RQggHa338Pff/0HXK7DuBrrEPSVKxUFtc0qb/hijnTQahxdpAUhc7fvxfXssjvOgh4UFHg1OritL//bUTWLJ/rZZ49akITs0byzoPW076+vmn9DkNDQ9x222384Ac/4IorrqCjY3bS0NlsllgsRiaTIRqNvvEDaszIydxIa1wcFA4dZfLJF8ls2Y3nOPhaGqm/7nISV2+oqateoDhlg+zWPWR37scpGwQ6W4lvXE2gs3XO1nQ2v8+nnvtfftBDMHhqz10sZvn9dy+86PaZ86Jnoqura9q/w2Gh97548eJZBxI13hx2Lk/q+a0kn9uClcygN9ZRd/UGEldeGEp3NWZPaMkCQksW4Ly/jGeLTv+Z1FlrXDgofh+JzetIbF4310upMU85L4KJGnNLbt9hjvzdv1A81IuWiKE11lM40ENu537Sr+yk+1PvR43UDH0uNpSAf66XUKPGWUU0YJ6qAuZZWsw857wMJrq7uy9aYZBziV0oMvz9X9H3L9+n1DuAEglhZXL4SmUiqy9BUmTSL21ntLOV9vfdPdfLrVGjRo0zS61nYtbU2q5rzIjnOPQ/+EOGfvArrFQGX1sTvuZGZL+PUt8QmVd2CKGixjqSz76KlcnN9ZJr1KhR44xSU8CcPbVgosaM5PceJvXiNvS6OCCJurgkaqd6Qx3G2CTloVH0ujhWOosxMj7XS65Ro0aNGnNELZioMSPZnftxCiUkvSJOdJzJmKTISIpCeXAUz3GQZBlJPS8rZjVq1KhxUmqZidlT2wFqnECpf5jxx54lt/sASiiIlc7gGgb+1iYkVXTtS6qKUzYwRibwd7QQ6GyZ41XXqFGjRo25ohZM1JhG4WAvvV/8Jvm9h8FxkH06sk/HHE/iGiaBBe3ImoprGChBP65p0njz1ch6TV+gRo0aFxank2m4WDMTtTJHjSqe4zD40M8oD40Rv+Iy1HgMXIdAVxt6axN2vkDp6CDlwTHsXAG9Pk7rvXdQf8MVc730GjVq1DjzTJlznOqfi5BaZqJGlfy+I+QP9hLo7kAJ+gkt6ya/5xCukUGLRwAPt1hGjUVovPUaFv2HjxFc0D7Xy65Ro0aNs8PpxAYXZyxRCyZqHMOcTOEZFmpIKFqGly9CDQYo9gxgpbPIqooSj7Do3/0ere9+a620UaNGjQubmm3orKkFEzWqyJoGkih3SIqCJEkEutrwd7TgFEqYyTQg0XjrNbVAokaNGhc8p+MCerG6htZ6JmpUCa9YjN5YhzEyMe12SZZRwkGcfJHo6mVo9Yk5WmGNGjVq1JiP1IKJGlW0eJSGt1yFlclRHh7Dq2hLuKZF8dBR0StxyzU1x9AaNWpcFNT6L2dPrcxRYxrNd98Ensv4I8+Q///bu/egqK47DuDfRRaQZwCBZQWXFSOIEMIrcUVBQ6v4tmkDmJbgi5ZETBQxUmtnN2mcoo3GxgdoSkgy6Zg0BYyjpEYFNBUlqIsaQHwAShSGEV+AUdD99Q+HW1eWZYGFxfj7ODuze+855/7uud67P87e3VNx4eFCMzMM9ZBAGjsDdmOfNW2AjDE2UPieCYNxMsG0mJmbw/3laDhNfAHN5eeguXsP4mccYP+cD081zhh7qvDvTBiOkwmmk6WLEywnjTN1GIwxZjo8MmEwvmeCMcYYY33CIxOMMcaYDjwwYThOJhhjjDEd+J4Jw3EywRhjjOnCQxMG43smGGOMMR2ol/96Y9u2bZDL5bCyskJISAi+++47veUPHTqEkJAQWFlZYeTIkcjMzOzVdo2FkwnGGGNMF+rlo4e+/PJLLFu2DH/605+gVqsxceJETJs2DZcvX9ZZvqamBtOnT8fEiROhVquxevVqvPnmm8jJyen5xo2EkwnGGGPMhDZu3IhFixZh8eLFR3YEMwAAFRRJREFUGDNmDDZt2gRPT09kZGToLJ+ZmYkRI0Zg06ZNGDNmDBYvXoyFCxfi/fffH+DI/++pumei48aY27dvmzgSxhhjfdFxHe/PGx7v3Gnucfs//dQCoPP7jKWlJSwtLTuVb2trw4kTJ5CWlqa1fMqUKSguLta5jaNHj2LKlClay6ZOnYqsrCy0t7dDLBb3KGZjeKqSiebmZgCAp6eniSNhjDFmDM3NzXBwcDBqmxYWFpBIJHj7zfG9qm9ra9vpfUapVEKlUnUqe+3aNTx48ABubm5ay93c3NDQ0KCz/YaGBp3l79+/j2vXrsHd3b1XcffFU5VMSKVS1NXVwc7OrkeTVd2+fRuenp6oq6uDvb19P0bYP570+IEnfx84ftPi+E3P2PtARGhuboZUKjVCdNqsrKxQU1ODtra2XtUnok7vMbpGJR71eHldbXRXXtfygfJUJRNmZmbw8PDodX17e/sn9kQGnvz4gSd/Hzh+0+L4Tc+Y+2DsEYlHWVlZwcrKqt/a7zBs2DAMGTKk0yhEY2Njp9GHDhKJRGd5c3NzODs791us+vANmIwxxpiJWFhYICQkBPv379davn//fowfr/tjFoVC0an8t99+i9DQUJPcLwFwMsEYY4yZVEpKCv7xj3/g448/RmVlJZYvX47Lly8jKSkJAPDHP/4Rr732mlA+KSkJly5dQkpKCiorK/Hxxx8jKysLqampptqFp+tjjt6ytLSEUqns9jOvwepJjx948veB4zctjt/0fg770F9iY2PR1NSEd999F/X19fD390d+fj5kMhkAoL6+Xus3J+RyOfLz87F8+XJs3boVUqkUH374IX7961+bahcgoqf1h8QZY4wxZhT8MQdjjDHG+oSTCcYYY4z1CScTjDHGGOsTTiYYY4wx1iecTOhQW1uLRYsWQS6XY+jQofD29oZSqez219Dmz58PkUik9Rg3btyAxPwkT1/717/+FWFhYbCzs4Orqyvmzp2LqqoqvXWKioo69bVIJMLZs2cHKOr/U6lUneKQSCR66wym/vfy8tLZl0uWLNFZ3tR9f/jwYcyaNQtSqRQikQi7du3SWk9EUKlUkEqlGDp0KCZNmoTy8vJu283JyYGfnx8sLS3h5+eHvLy8AY+/vb0dq1atQkBAAGxsbCCVSvHaa6/h6tWretv85JNPdB6Tu3fvDvg+AL2/Fg7UMWDGx8mEDmfPnoVGo8H27dtRXl6ODz74AJmZmVi9enW3daOjo1FfXy888vPz+z3eJ3362kOHDmHJkiU4duwY9u/fj/v372PKlClobW3ttm5VVZVWfz/77LMDEHFnY8eO1YrjzJkzXZYdbP1fWlqqFXvHj+G88soreuuZqu9bW1sRGBiILVu26Fy/fv16bNy4EVu2bEFpaSkkEgl++ctfCnPz6HL06FHExsYiPj4ep06dQnx8PGJiYlBSUjKg8d+5cwcnT57En//8Z5w8eRK5ubk4d+4cZs+e3W279vb2Wsejvr6+337BsbtjAPT8WjiQx4D1A2IGWb9+Pcnlcr1lEhISaM6cOQMT0CNeeOEFSkpK0lrm6+tLaWlpOsu//fbb5Ovrq7XsD3/4A40bN67fYuyJxsZGAkCHDh3qskxhYSEBoBs3bgxcYF1QKpUUGBhocPnB3v9vvfUWeXt7k0aj0bl+MPU9AMrLyxNeazQakkgklJ6eLiy7e/cuOTg4UGZmZpftxMTEUHR0tNayqVOnUlxcnNFjftTj8evy/fffEwC6dOlSl2Wys7PJwcHBuMEZSNc+9OZaaKpjwIyDRyYMdOvWLTg5OXVbrqioCK6urhg9ejQSExPR2NjYr3F1TF/7+HS0vZm+9vjx42hvb++3WA1169YtADCov4OCguDu7o6oqCgUFhb2d2hdOn/+PKRSKeRyOeLi4lBdXd1l2cHc/21tbfj888+xcOHCbicMGix9/6iamho0NDRo9a+lpSUiIyO7PB+Aro+JvjoD5datWxCJRHjmmWf0lmtpaYFMJoOHhwdmzpwJtVo9MAF2oafXwsF8DFj3OJkwwMWLF7F582bhp027Mm3aNPzzn/9EQUEBNmzYgNLSUrz00ku4d+9ev8XWH9PXmhIRISUlBRMmTIC/v3+X5dzd3bFjxw7k5OQgNzcXPj4+iIqKwuHDhwcw2odefPFFfPbZZ9i3bx8++ugjNDQ0YPz48WhqatJZfjD3/65du3Dz5k3Mnz+/yzKDqe8f1/F/vifnQ0e9ntYZCHfv3kVaWhpeffVVvZNj+fr64pNPPsHu3buxc+dOWFlZITw8HOfPnx/AaP+vN9fCwXoMmGGeqp/TVqlUeOedd/SWKS0tRWhoqPD66tWriI6OxiuvvILFixfrrRsbGys89/f3R2hoKGQyGfbu3YuXX365b8F340mfvrZDcnIyTp8+jf/+9796y/n4+MDHx0d4rVAoUFdXh/fffx8RERH9HaaWadOmCc8DAgKgUCjg7e2NTz/9FCkpKTrrDNb+z8rKwrRp0/RO6zyY+r4rPT0felunP7W3tyMuLg4ajQbbtm3TW3bcuHFaNziGh4cjODgYmzdvxocfftjfoXbS22vhYDsGzHBPVTKRnJyMuLg4vWW8vLyE51evXsXkyZOhUCiwY8eOHm/P3d0dMpmsX/86+LlMXwsAS5cuxe7du3H48OFeTRU/btw4fP755/0QWc/Y2NggICCgy+M+WPv/0qVLOHDgAHJzc3tcd7D0fce3aBoaGuDu7i4s13c+dNTryTnU39rb2xETE4OamhoUFBT0eMpuMzMzhIWFmWxk4nGGXAsH2zFgPfNUfcwxbNgw+Pr66n103P185coVTJo0CcHBwcjOzoaZWc+7qqmpCXV1dVoXNWP7OUxfS0RITk5Gbm4uCgoKIJfLe9WOWq3u17421L1791BZWdllLIOt/ztkZ2fD1dUVM2bM6HHdwdL3crkcEolEq3/b2tpw6NChLs8HoOtjoq9Of+lIJM6fP48DBw70KsEkIpSVlQ2KYwIYdi0cTMeA9YLJbv0cxK5cuUKjRo2il156iX788Ueqr68XHo/y8fGh3NxcIiJqbm6mFStWUHFxMdXU1FBhYSEpFAoaPnw43b59u1/j/eKLL0gsFlNWVhZVVFTQsmXLyMbGhmpra4mIKC0tjeLj44Xy1dXVZG1tTcuXL6eKigrKysoisVhM//73v/s1zq68/vrr5ODgQEVFRVp9fefOHaHM4/vwwQcfUF5eHp07d45++OEHSktLIwCUk5Mz4PGvWLGCioqKqLq6mo4dO0YzZ84kOzu7J6b/iYgePHhAI0aMoFWrVnVaN9j6vrm5mdRqNanVagJAGzduJLVaLXzbIT09nRwcHCg3N5fOnDlD8+bNI3d3d63zMD4+XuvbTkeOHKEhQ4ZQeno6VVZWUnp6Opmbm9OxY8cGNP729naaPXs2eXh4UFlZmdb5cO/evS7jV6lU9J///IcuXrxIarWaFixYQObm5lRSUmL0+LvbB0OvhaY8Bsz4OJnQITs7mwDofDwKAGVnZxMR0Z07d2jKlCnk4uJCYrGYRowYQQkJCXT58uUBiXnr1q0kk8nIwsKCgoODtb5WmZCQQJGRkVrli4qKKCgoiCwsLMjLy4syMjIGJE5duurrjr4l6rwP69atI29vb7KysiJHR0eaMGEC7d27d+CDJ6LY2Fhyd3cnsVhMUqmUXn75ZSovLxfWD/b+JyLat28fAaCqqqpO6wZb33d8NfXxR0JCAhE9/HqoUqkkiURClpaWFBERQWfOnNFqIzIyUijf4auvviIfHx8Si8Xk6+vbb8mRvvhramq6PB8KCwu7jH/ZsmU0YsQIsrCwIBcXF5oyZQoVFxf3S/zd7YOh10JTHgNmfDwFOWOMMcb65Km6Z4IxxhhjxsfJBGOMMcb6hJMJxhhjjPUJJxOMMcYY6xNOJhhjjDHWJ5xMMMYYY6xPOJlgjDHGWJ9wMsEYY4yxPuFkgv0sTZo0CcuWLTNaeyqVCs8//7zR2gOA2tpaiEQilJWVGbVdxhgbaJxMsEFt/vz5EIlEEIlEEIvFGDlyJFJTU9Ha2qq3Xm5uLv7yl78YLY7U1FQcPHjQaO31xIULF7BgwQJ4eHjA0tIScrkc8+bNw/Hjx00Sz2BlaAKZm5uLqVOnYtiwYZzMMWYknEywQS86Ohr19fWorq7Ge++9h23btiE1NVVn2fb2dgCAk5MT7OzsjBaDra2tSaYHP378OEJCQnDu3Dls374dFRUVyMvLg6+vL1asWDHg8fwctLa2Ijw8HOnp6aYOhbGfD1NPDsKYPgkJCTRnzhytZYsXLyaJREJEREqlkgIDAykrK4vkcjmJRCLSaDQUGRlJb731llBHJpPR2rVracGCBWRra0uenp60fft2rXbr6uooNjaWHB0dydramkJCQoQZCzu283hcKpWKXFxcyM7Ojn7/+99rzez4zTffUHh4ODk4OJCTkxPNmDGDLly4IKzvmNRJrVbr3HeNRkNjx46lkJAQevDgQaf1N27cEJ6fPn2aJk+eTFZWVuTk5ESJiYnU3NzcKd61a9eSq6srOTg4kEqlovb2dkpNTSVHR0caPnw4ZWVldYpv586dpFAoyNLSkvz8/LQmnCJ6OGlZWFgYWVhYkEQioVWrVlF7e7uwPjIykpYuXUorV64kR0dHcnNzI6VSqdXGzZs3KTExUejLyZMnU1lZmbC+o/8/++wzkslkZG9vT7GxscIslAkJCZ0mnaqpqdHZr4b2P2PMcDwywZ44Q4cOFUYggIcfA/zrX/9CTk6O3iHrDRs2IDQ0FGq1Gm+88QZef/11nD17FgDQ0tKCyMhIXL16Fbt378apU6fw9ttvQ6PRdNnewYMHUVlZicLCQuzcuRN5eXl45513hPWtra1ISUlBaWkpDh48CDMzM/zqV7/S2+ajysrKUF5ejhUrVsDMrPOp+swzzwAA7ty5g+joaDg6OqK0tBRfffUVDhw4gOTkZK3yBQUFuHr1Kg4fPoyNGzdCpVJh5syZcHR0RElJCZKSkpCUlIS6ujqteitXrsSKFSugVqsxfvx4zJ49G01NTQCAK1euYPr06QgLC8OpU6eQkZGBrKwsvPfee1ptfPrpp7CxsUFJSQnWr1+Pd999F/v37wcAEBFmzJiBhoYG5Ofn48SJEwgODkZUVBSuX78utHHx4kXs2rULe/bswZ49e3Do0CFhdOHvf/87FAoFEhMTUV9fj/r6enh6ehrUz4wxIzB1NsOYPo+PTJSUlJCzszPFxMQQ0cO/WMViMTU2NmrV0zUy8bvf/U54rdFoyNXVVZj6e/v27WRnZ0dNTU0649A1MuHk5EStra3CsoyMDLK1tdU5ikBE1NjYSACE6bC7+8v4yy+/JAB08uRJnes77NixgxwdHamlpUVYtnfvXjIzM6OGhgYhXplMphWbj48PTZw4UXh9//59srGxoZ07d2rFl56eLpRpb28nDw8PWrduHRERrV69mnx8fEij0Qhltm7dqtUPkZGRNGHCBK2Yw8LCaNWqVUREdPDgQbK3t6e7d+9qlfH29hZGj5RKJVlbWwsjEUREK1eupBdffFF4/fgx7w6PTDBmPDwywQa9PXv2wNbWFlZWVlAoFIiIiMDmzZuF9TKZDC4uLt2289xzzwnPRSIRJBIJGhsbATwcBQgKCoKTk5PBcQUGBsLa2lp4rVAo0NLSIvxlf/HiRbz66qsYOXIk7O3tIZfLAQCXL182qH0iEmLVp7KyEoGBgbCxsRGWhYeHQ6PRoKqqSlg2duxYrREONzc3BAQECK+HDBkCZ2dnoU8e3a8O5ubmCA0NRWVlpbBthUKhFWN4eDhaWlrw448/Csse7XsAcHd3F7Zz4sQJtLS0wNnZGba2tsKjpqYGFy9eFOp4eXlp3QfzaBuMMdMyN3UAjHVn8uTJyMjIgFgshlQqhVgs1lr/6JuoPo/XE4lEwkcOQ4cONU6w+P+b/6xZs+Dp6YmPPvoIUqkUGo0G/v7+aGtrM6id0aNHA3j4hq3va6lE1GXC8ehyXfuvr0/06WhX17Z1JUH6tqPRaODu7o6ioqJO2+n4KKe7NhhjpsUjE2zQs7GxwahRoyCTyTq9oRjLc889h7KyMq3P6Ltz6tQp/PTTT8LrY8eOwdbWFh4eHmhqakJlZSXWrFmDqKgojBkzBjdu3OhRTM8//zz8/PywYcMGnW+aN2/eBAD4+fmhrKxM6+uyR44cgZmZmZCQ9MWxY8eE5/fv38eJEyfg6+srbLu4uFhIIACguLgYdnZ2GD58uEHtBwcHo6GhAebm5hg1apTWY9iwYQbHaWFhgQcPHhhcnjFmPJxMMAZg3rx5kEgkmDt3Lo4cOYLq6mrk5OTg6NGjXdZpa2vDokWLUFFRgW+++QZKpRLJyckwMzODo6MjnJ2dsWPHDly4cAEFBQVISUnpUUwikQjZ2dk4d+4cIiIikJ+fj+rqapw+fRpr167FnDlzAAC//e1vYWVlhYSEBPzwww8oLCzE0qVLER8fDzc3tz71CwBs3boVeXl5OHv2LJYsWYIbN25g4cKFAIA33ngDdXV1WLp0Kc6ePYuvv/4aSqUSKSkpOm8a1eUXv/gFFAoF5s6di3379qG2thbFxcVYs2ZNj35Lw8vLCyUlJaitrcW1a9e6HLW4fv06ysrKUFFRAQCoqqpCWVkZGhoaDN4WY0wbJxOM4eFftd9++y1cXV0xffp0BAQEID09HUOGDOmyTlRUFJ599llEREQgJiYGs2bNgkqlAgCYmZnhiy++wIkTJ+Dv74/ly5fjb3/7W4/jeuGFF3D8+HF4e3sjMTERY8aMwezZs1FeXo5NmzYBAKytrbFv3z5cv34dYWFh+M1vfoOoqChs2bKlN13RSXp6OtatW4fAwEB89913+Prrr4URg+HDhyM/Px/ff/89AgMDkZSUhEWLFmHNmjUGty8SiZCfn4+IiAgsXLgQo0ePRlxcHGpra3uUDKWmpmLIkCHw8/ODi4tLl/em7N69G0FBQZgxYwYAIC4uDkFBQcjMzDR4W4wxbSJ6dHySMWaQ+fPn4+bNm9i1a5epQ+k3tbW1kMvlUKvVRv8pccbYzwuPTDDGGGOsTziZYIwxxlif8MccjDHGGOsTHplgjDHGWJ9wMsEYY4yxPuFkgjHGGGN9wskEY4wxxvqEkwnGGGOM9QknE4wxxhjrE04mGGOMMdYnnEwwxhhjrE/+B2HxmgvZFadkAAAAAElFTkSuQmCC",
|
196
|
+
"text/plain": [
|
197
|
+
"<Figure size 600x400 with 2 Axes>"
|
198
|
+
]
|
199
|
+
},
|
200
|
+
"metadata": {},
|
201
|
+
"output_type": "display_data"
|
202
|
+
}
|
203
|
+
],
|
204
|
+
"source": [
|
205
|
+
"plt.figure(figsize=(6, 4))\n",
|
206
|
+
"plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='coolwarm', alpha=0.5)\n",
|
207
|
+
"plt.xlabel(\"Principal Component 1\")\n",
|
208
|
+
"plt.ylabel(\"Principal Component 2\")\n",
|
209
|
+
"plt.title(\"PCA Visualization of Wilt Dataset\")\n",
|
210
|
+
"plt.colorbar(label=\"Class\")\n",
|
211
|
+
"plt.show()"
|
212
|
+
]
|
213
|
+
},
|
214
|
+
{
|
215
|
+
"cell_type": "code",
|
216
|
+
"execution_count": 7,
|
217
|
+
"id": "a4b9dcf0-d091-4ece-9651-e84932fb1eba",
|
218
|
+
"metadata": {},
|
219
|
+
"outputs": [
|
220
|
+
{
|
221
|
+
"data": {
|
222
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGHCAYAAADyXCsbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/WElEQVR4nO3deXxMZ///8fdk3yRFJISI2KnSWmsroZZQpcvdoIjiblNbVVuqbmtVVO+2au/dWltL6qZuVFuppShaS4KWbpRoGzsJqS3J9fvDN/PrmCQSDpH29Xw85vEw11znnM+ZzJl5O9dZbMYYIwAAAAu5FHQBAADgr4eAAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoDxNzV37lzZbDbt2LHDof3kyZOqW7eu/Pz8FB8fL0kaPXq0bDabgoKCdO7cOad5lStXTg899JBDm81mk81m04QJE/K87JwcPHhQ/fv3V+XKleXt7S0fHx/dfffd+te//qXffvvN3q9nz54qV65cnuZ5Kxw6dEg2m01z5851aI+Li9Pdd98tb29v2Ww2JSYm2t/TW2XLli0aPXq0zp496/Ra8+bN1bx581u27LzYu3evbDab3N3dlZycXKC1FEaXLl3S1KlT1aRJExUtWlQeHh4qXbq0nnjiCX355ZcFXd4tl9O2hjsLAQN2v/76q5o2baqDBw/qiy++UKtWrRxeP3HihCZOnJiveU6YMEGnT5++4ZpWrVqlmjVratWqVXr66ae1atUq+79XrlzpFGwKUqlSpbR161a1b9/e3nbixAl1795dFSpU0GeffaatW7eqcuXK6tOnj7Zu3XrLatmyZYvGjBmTbcCYPn26pk+ffsuWnRfvv/++JCk9PV3z588v0FoKm5MnT6px48YaPHiwatSooblz52rt2rV688035erqqpYtW2r37t0FXeYtld22hjuQwd/SnDlzjCSzfft2Y4wxP/74oylbtqwpVaqU2bNnj0PfUaNGGUmmbdu2xtfX1yQnJzu8HhYWZtq3b+/QJsk8+OCDxs3NzQwePDjXZefk4MGDxtfX19x3333m7NmzTq9nZmaapUuX2p9HR0ebsLCw66777bR582YjycTFxd3W5b7xxhtGkvnll19u63Lz4uLFi6Z48eKmVq1apnTp0qZy5coFXVKO/vjjD5OZmVnQZTiIjIw0bm5uZu3atdm+/s0335jDhw/f5qpuj/T0dHPx4sWCLgN5xB4MKDExUU2aNJGbm5s2b96se+65J9t+48aNU3p6ukaPHp2n+VapUkW9e/fWtGnTdPjw4XzX9dZbbyktLU3Tp09XQECA0+s2m02PPvporvOYNm2aHnjgAQUFBcnX11f33HOPJk6cqCtXrjj0S0hI0EMPPaSgoCB5enoqJCRE7du316+//mrvs2TJEjVo0EABAQHy8fFR+fLl1atXL/vr1+627dmzp5o0aSJJioqKks1msw9N5DREsnDhQjVs2FB+fn7y8/PTvffeq1mzZtlfj4+PV8eOHVWmTBl5eXmpYsWKeuaZZ3Ty5El7n9GjR+ull16SJIWHh9uHqzZs2CAp+yGS06dPq2/fvipdurQ8PDxUvnx5DR8+XJcuXXJ6z/v3768PPvhA1apVk4+Pj2rVqqVVq1bl+nf4s+XLl+vUqVPq06ePoqOj9eOPP2rz5s1O/S5duqSxY8eqWrVq8vLyUvHixRUREaEtW7bY+2RmZmrKlCm699575e3trbvuukv333+/VqxY4VBzdp/ZcuXKqWfPnvbnWUN3a9asUa9evVSiRAn5+Pjo0qVL+vnnn/XUU0+pUqVK8vHxUenSpdWhQwft3bvXab5nz57VCy+8oPLly8vT01NBQUFq166dvv/+exljVKlSJbVp08ZpuvPnzysgIED9+vXL8b3buXOnPv30U/Xu3VstWrTItk+9evVUtmxZ+/Nvv/1WHTt2VNGiReXl5aV7771X8+bNc5hmw4YNstlsWrhwoYYOHapSpUrJz89PHTp00LFjx3Tu3Dk9/fTTCgwMVGBgoJ566imdP3/eYR5Zn413331XlStXlqenp6pXr67Fixc79Dtx4oT69u2r6tWry8/PT0FBQWrRooU2bdrk0C9re5o4caLGjRun8PBweXp6av369dkOkZw4cUJPP/20QkND5enpqRIlSqhx48b64osvHOY7e/Zs1apVS15eXipWrJgeeeQR7d+/36FPz5495efnp59//lnt2rWTn5+fQkND9cILLzhtE8iZW0EXgIK1efNmjR49WqGhoVqzZo1KlSqVY9+wsDD17dtXU6ZM0eDBg1W5cuXrzn/06NH64IMPNGLEiHzvCl+zZo2Cg4N1//3352u6Pztw4IC6du2q8PBweXh4aPfu3Xrttdf0/fffa/bs2ZKktLQ0tWrVSuHh4Zo2bZqCg4N19OhRrV+/3n7MydatWxUVFaWoqCiNHj1aXl5eOnz4sNatW5fjskeMGKH69eurX79+Gj9+vCIiIuTv759j/5EjR+rVV1/Vo48+qhdeeEEBAQH69ttvHcLZgQMH1LBhQ/Xp00cBAQE6dOiQ3nrrLTVp0kR79+6Vu7u7+vTpo9OnT2vKlClatmyZ/W9avXr1bJd78eJFRURE6MCBAxozZoxq1qypTZs2KTY2VomJifrkk08c+n/yySfavn27xo4dKz8/P02cOFGPPPKIfvjhB5UvX/66f5NZs2bJ09NTTz75pE6fPq3Y2FjNmjXLHsakq0MnkZGR2rRpkwYNGqQWLVooPT1d27ZtU1JSkho1aiTp6g/Bhx9+qN69e2vs2LHy8PDQrl27dOjQoevWkZNevXqpffv2+uCDD5SWliZ3d3f9/vvvKl68uCZMmKASJUro9OnTmjdvnho0aKCEhARVqVJFknTu3Dk1adJEhw4d0tChQ9WgQQOdP39eGzduVHJysqpWraoBAwZo0KBB+umnn1SpUiX7cufPn6/U1NRcA8aaNWskSZ06dcrTuvzwww9q1KiRgoKCNHnyZBUvXlwffvihevbsqWPHjmnIkCEO/V955RVFRERo7ty5OnTokF588UV16dJFbm5uqlWrlhYtWqSEhAS98sorKlKkiCZPnuww/YoVK7R+/XqNHTtWvr6+mj59un36xx9/XJLsQ6ajRo1SyZIldf78eX388cdq3ry51q5d6xR+J0+erMqVK+vf//63/P39Hd6zP+vevbt27dql1157TZUrV9bZs2e1a9cunTp1yt4nNjZWr7zyirp06aLY2FidOnVKo0ePVsOGDbV9+3aHeV+5ckUPP/ywevfurRdeeEEbN27Uq6++qoCAAI0cOTJP7//fXkHvQkHByBqmkGQCAgLM8ePHc+ybNURy4sQJc/LkSRMQEGAee+wx++s5DZH069fPGGPM8OHDjYuLi9m9e7fDsq83ROLl5WXuv//+PK/T9YZIMjIyzJUrV8z8+fONq6urOX36tDHGmB07dhhJZvny5TlO++9//9tIynaoJssvv/xiJJk5c+bY29avX28kmSVLljj0zXpPsxw8eNC4urqaJ5988jpr+f9lZmaaK1eumMOHDxtJ5n//+5/9tdyGSJo1a2aaNWtmfz5z5kwjyXz00UcO/V5//XUjyaxZs8beJskEBweb1NRUe9vRo0eNi4uLiY2NvW7Nhw4dMi4uLqZz584O9fj6+jrMc/78+UaSee+993Kc18aNG40kM3z48FyXKcmMGjXKqT0sLMxER0fbn2d9Lnv06HHd9UhPTzeXL182lSpVMs8//7y9fezYsUaSiY+Pz3Ha1NRUU6RIEfPcc885tFevXt1ERETkutyYmBgjyXz//ffXrdEYYzp37mw8PT1NUlKSQ3tkZKTx8fGxf56zPqcdOnRw6Ddo0CAjyQwcONChvVOnTqZYsWIObZKMt7e3OXr0qL0tPT3dVK1a1VSsWDHHGtPT082VK1dMy5YtzSOPPGJvz9qeKlSoYC5fvuwwTXbbmp+fnxk0aFCOyzlz5ozx9vY27dq1c2hPSkoynp6epmvXrva26OjobLeJdu3amSpVquS4DDhiiORv7uGHH1ZKSooGDRqkjIyM6/YvXry4hg4dqqVLl+rrr7/O0zKGDBmiYsWKaejQoTdbbr4lJCTo4YcfVvHixeXq6ip3d3f16NFDGRkZ+vHHHyVJFStWVNGiRTV06FDNnDlT+/btc5pPvXr1JElPPPGEPvroI4ezV6wQHx+vjIyMXP/3KknHjx9XTEyMQkND5ebmJnd3d4WFhUmS027evFq3bp18fX3t/8PMkjV8sHbtWof2iIgIFSlSxP48ODhYQUFBeRoGmzNnjjIzMx2Glnr16qW0tDTFxcXZ2z799FN5eXk59LvWp59+KknXfc/y67HHHnNqS09P1/jx41W9enV5eHjIzc1NHh4e+umnnxze908//VSVK1fWgw8+mOP8ixQpoqeeekpz585VWlqapKt/g3379ql///6Wrsu6devUsmVLhYaGOrT37NlTf/zxh9OBxtceNF2tWjVJcjqYslq1ajp9+rTTMEnLli0VHBxsf+7q6qqoqCj9/PPPDsONM2fOVO3ateXl5WX/HK9duzbbz/DDDz8sd3f3665r/fr1NXfuXI0bN07btm1zGgbdunWrLly44DAsJkmhoaFq0aKF0+fcZrOpQ4cODm01a9a8oeHevysCxt/ciBEjNHLkSC1cuFDdunXLU8gYNGiQQkJCnHav5sTf31//+te/9Nlnn2n9+vV5rq1s2bL65Zdf8tz/WklJSWratKl+++03vfPOO9q0aZO2b9+uadOmSZIuXLggSQoICNCXX36pe++9V6+88oruvvtuhYSEaNSoUfYvqQceeEDLly9Xenq6evTooTJlyqhGjRpatGjRDdf3ZydOnJAklSlTJsc+mZmZat26tZYtW6YhQ4Zo7dq1+uabb7Rt2zaH9cmvU6dOqWTJkk7HhAQFBcnNzc1hF7N0NWRey9PT87rLz8zM1Ny5cxUSEqI6dero7NmzOnv2rB588EH5+vo6HGty4sQJhYSEyMUl56+oEydOyNXVVSVLlszLauZZdsOEgwcP1ogRI9SpUyetXLlSX3/9tbZv365atWo5rPeJEydy/RtmGTBggM6dO6cFCxZIkqZOnaoyZcqoY8eOuU6XdWxFXreLU6dOZbs+ISEh9tf/rFixYg7PPTw8cm2/ePGiQ3t2f4ustqxlvfXWW3r22WfVoEEDLV26VNu2bdP27dvVtm3bbD9DuQ3b/llcXJyio6P1/vvvq2HDhipWrJh69Oiho0ePOiw/p/fj2vfCx8dHXl5eDm2enp5O64ycETCgMWPGaNSoUVq8eLG6du2q9PT0XPt7e3tr9OjR2rhxo9P4fE6effZZhYeHa+jQoTLG5GmaNm3a6NixY/Yf0Pxavny50tLStGzZMnXr1k1NmjRR3bp17V+Of3bPPfdo8eLFOnXqlBITExUVFaWxY8fqzTfftPfp2LGj1q5dq5SUFG3YsEFlypRR165dLTndtESJEpLk8L+8a3377bfavXu33njjDQ0YMEDNmzdXvXr1sv3Bz4/ixYvr2LFjTn+X48ePKz09XYGBgTc1/yxffPGFDh8+bD+eoWjRoipatKhKly6ttLQ0bdu2zb73qESJEvr999+VmZmZ4/xKlCihjIwM+w9ITjw9PbM9MO/aH5Qs2R18++GHH6pHjx4aP3682rRpo/r166tu3boOB9dm1ZTb3zBLxYoVFRkZqWnTpunIkSNasWKFYmJi5Orqmut0WQeHLl++/LrLkK7+bbO7zsjvv/8uSZb9bbNk97fIasv6nH744Ydq3ry5ZsyYofbt26tBgwaqW7duttfYkbL/e2QnMDBQkyZN0qFDh3T48GHFxsZq2bJl9j0WWcvP6f2w+r0AAQP/Z/To0RozZow++uijPIWMXr16qVq1anr55Zdz/RHI4uHhoXHjxmn79u1asmRJnmp6/vnn5evrq759+yolJcXpdWOMPv744xynz/pi8vT0dJjmvffey3WaWrVq6e2339Zdd92lXbt2OfXx9PRUs2bN9Prrr0u6Ogxzs1q3bi1XV1fNmDEj19qylv9n7777brY1Snnbq9GyZUudP3/e6Ucr66Dcli1bXnceeTFr1iy5uLho+fLlWr9+vcPjgw8+kCT7gbeRkZG6ePFirhdSioyMlKRc3zPp6tkie/bscWhbt26d0+793NhsNqf3/ZNPPnEaKouMjNSPP/6Y68G/WZ577jnt2bNH0dHRcnV11T//+c/rTlO7dm1FRkZq1qxZOS5jx44dSkpKknT1b7du3Tp7oMgyf/58+fj43NQB1NlZu3atjh07Zn+ekZGhuLg4VahQwb5nJ7v3cs+ePZZeF6Zs2bLq37+/WrVqZd+GGzZsKG9vb3344YcOfX/99Vf7UBKsxVkksBs5cqRcXFw0YsQIGWO0aNEiubll/xFxdXXV+PHj9cgjj0i6OjZ5PV26dNG///1v+9j59YSHh2vx4sWKiorSvffeq/79++u+++6TJO3bt0+zZ8+WMcZew7VatWolDw8PdenSRUOGDNHFixc1Y8YMnTlzxqHfqlWrNH36dHXq1Enly5eXMUbLli3T2bNn7RcbGzlypH799Ve1bNlSZcqU0dmzZ/XOO+/I3d1dzZo1y9P65KZcuXJ65ZVX9Oqrr+rChQvq0qWLAgICtG/fPp08eVJjxoxR1apVVaFCBb388ssyxqhYsWJauXKl/Yqrf5Z1qvE777yj6Ohoubu7q0qVKg7HTmTp0aOHpk2bpujoaB06dEj33HOPNm/erPHjx6tdu3a5Hk+QV6dOndL//vc/tWnTJsdhgLffflvz589XbGysunTpojlz5igmJkY//PCDIiIilJmZqa+//lrVqlVT586d1bRpU3Xv3l3jxo3TsWPH9NBDD8nT01MJCQny8fHRgAEDJF09uyBrKLBZs2bat2+fpk6dmu2pzzl56KGHNHfuXFWtWlU1a9bUzp079cYbbzgNhwwaNEhxcXHq2LGjXn75ZdWvX18XLlzQl19+qYceekgRERH2vq1atVL16tW1fv16devWTUFBQXmqZf78+Wrbtq0iIyPVq1cvRUZGqmjRokpOTtbKlSu1aNEi7dy5U2XLltWoUaO0atUqRUREaOTIkSpWrJgWLFigTz75RBMnTszXe5AXgYGBatGihUaMGGE/i+T77793OFX1oYce0quvvqpRo0apWbNm+uGHHzR27FiFh4df9z82OUlJSVFERIS6du2qqlWrqkiRItq+fbs+++wz+6nsd911l0aMGKFXXnlFPXr0UJcuXXTq1CmNGTNGXl5eGjVqlCXvAf6k4I4vRUHK7UyO1157zUgyjz76qLl8+bLDWSTXatSokZGU61kkf7ZmzRr72SvXO4sky4EDB0zfvn1NxYoVjaenp/H29jbVq1c3gwcPdjhLIruzSFauXGlq1aplvLy8TOnSpc1LL71kPv30UyPJrF+/3hhjzPfff2+6dOliKlSoYLy9vU1AQICpX7++mTt3rn0+q1atMpGRkaZ06dLGw8PDBAUFmXbt2plNmzbZ+9zMWSRZ5s+fb+rVq2e8vLyMn5+fue+++xzmt2/fPtOqVStTpEgRU7RoUfOPf/zDJCUlZXumxLBhw0xISIhxcXFxWN9rzyIxxphTp06ZmJgYU6pUKePm5mbCwsLMsGHDnC5qlNPf9dozMq41adKk656pk3U2S9bF0y5cuGBGjhxpKlWqZDw8PEzx4sVNixYtzJYtW+zTZGRkmLffftvUqFHDeHh4mICAANOwYUOzcuVKe59Lly6ZIUOGmNDQUOPt7W2aNWtmEhMTczyLJLvP5ZkzZ0zv3r1NUFCQ8fHxMU2aNDGbNm3K9r08c+aMee6550zZsmWNu7u7CQoKMu3bt8/2zI/Ro0cbSWbbtm05vi/ZuXDhgpk8ebJp2LCh8ff3N25ubiYkJMQ8+uij5pNPPnHou3fvXtOhQwcTEBBgPDw8TK1atRw+U8bk/DnN6T3J7jsh67Mxffp0U6FCBePu7m6qVq1qFixY4DDtpUuXzIsvvmhKly5tvLy8TO3atc3y5cudtt+s7emNN95wWv9rt7WLFy+amJgYU7NmTePv72+8vb1NlSpVzKhRo0xaWprDtO+//76pWbOm/fPSsWNH89133zn0iY6ONr6+vk7LzWm7RfZsxuRxQBwAYKm6devKZrNp+/btBV3KTbPZbOrXr5+mTp1a0KXgDsEQCQDcRqmpqfr222+1atUq7dy5M9fjiIDCjIABALfRrl27FBERoeLFi2vUqFF5vionUNgwRAIAACxXoKepbty4UR06dFBISIhsNluezu3+8ssvVadOHXl5eal8+fKaOXPmrS8UAADkS4EGjLS0NNWqVSvPBwX98ssvateunZo2bWq/4c7AgQO1dOnSW1wpAADIjztmiMRms+njjz/OdTxy6NChWrFihcP16mNiYrR7925LL9ICAABuTqE6yHPr1q1q3bq1Q1ubNm00a9YsXblyJdsb4ly6dMnhMsGZmZk6ffq0ihcvnudL0AIAgKtXQz537tx17xUkFbKAcfToUYc79UlX7+SYnp6ukydPZnsTm9jYWI0ZM+Z2lQgAwF/ekSNHrntjv0IVMCTnG99kjfDktDdi2LBhGjx4sP15SkqKypYtqyNHjsjf3//WFQoAwF9MamqqQkNDs73twLUKVcAoWbKk0936jh8/Ljc3txzvKOnp6el0Yx3p6i3ECRgAAORfXg4xKFR3U23YsKHTjZ3WrFmjunXrZnv8BQAAKBgFGjDOnz+vxMREJSYmSrp6GmpiYqL9VsPDhg1Tjx497P1jYmJ0+PBhDR48WPv379fs2bM1a9YsvfjiiwVRPgAAyEGBDpHs2LHD4fbFWcdKREdHa+7cuUpOTraHDenq7btXr16t559/XtOmTVNISIgmT56sxx577LbXnh1OSsHfxZ1xcjuAO9kdcx2M2yU1NVUBAQFKSUmx/BgMAgb+Lgr1t8ZCNlT8jXS1dmPNz29ooToGAwAAFA4EDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGAAAwHIEDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGAAAwHIEDAAAYLkCDxjTp09XeHi4vLy8VKdOHW3atCnX/gsWLFCtWrXk4+OjUqVK6amnntKpU6duU7UAACAvCjRgxMXFadCgQRo+fLgSEhLUtGlTRUZGKikpKdv+mzdvVo8ePdS7d2999913WrJkibZv364+ffrc5soBAEBuCjRgvPXWW+rdu7f69OmjatWqadKkSQoNDdWMGTOy7b9t2zaVK1dOAwcOVHh4uJo0aaJnnnlGO3bsuM2VAwCA3BRYwLh8+bJ27typ1q1bO7S3bt1aW7ZsyXaaRo0a6ddff9Xq1atljNGxY8f03//+V+3bt89xOZcuXVJqaqrDAwAA3FoFFjBOnjypjIwMBQcHO7QHBwfr6NGj2U7TqFEjLViwQFFRUfLw8FDJkiV11113acqUKTkuJzY2VgEBAfZHaGiopesBAACcFfhBnjabzeG5McapLcu+ffs0cOBAjRw5Ujt37tRnn32mX375RTExMTnOf9iwYUpJSbE/jhw5Ymn9AADAmVtBLTgwMFCurq5OeyuOHz/utFcjS2xsrBo3bqyXXnpJklSzZk35+vqqadOmGjdunEqVKuU0jaenpzw9Pa1fAQAAkKMC24Ph4eGhOnXqKD4+3qE9Pj5ejRo1ynaaP/74Qy4ujiW7urpKurrnAwAA3BkKdIhk8ODBev/99zV79mzt379fzz//vJKSkuxDHsOGDVOPHj3s/Tt06KBly5ZpxowZOnjwoL766isNHDhQ9evXV0hISEGtBgAAuEaBDZFIUlRUlE6dOqWxY8cqOTlZNWrU0OrVqxUWFiZJSk5OdrgmRs+ePXXu3DlNnTpVL7zwgu666y61aNFCr7/+ekGtAgAAyIbN/M3GFlJTUxUQEKCUlBT5+/tbOu8cjk0F/nIK9bfGQjZU/I10tXZjzc9vaIGfRQIAAP56CBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGAAAwHIEDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGAAAwHIEDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGC5Ag8Y06dPV3h4uLy8vFSnTh1t2rQp1/6XLl3S8OHDFRYWJk9PT1WoUEGzZ8++TdUCAIC8cCvIhcfFxWnQoEGaPn26GjdurHfffVeRkZHat2+fypYtm+00TzzxhI4dO6ZZs2apYsWKOn78uNLT029z5QAAIDc2Y4wpqIU3aNBAtWvX1owZM+xt1apVU6dOnRQbG+vU/7PPPlPnzp118OBBFStW7IaWmZqaqoCAAKWkpMjf3/+Ga8+OzWbp7IA7VsF9a1hgIRsq/ka6Wrux5uc3tMCGSC5fvqydO3eqdevWDu2tW7fWli1bsp1mxYoVqlu3riZOnKjSpUurcuXKevHFF3XhwoUcl3Pp0iWlpqY6PAAAwK1VYEMkJ0+eVEZGhoKDgx3ag4ODdfTo0WynOXjwoDZv3iwvLy99/PHHOnnypPr27avTp0/neBxGbGysxowZY3n9AAAgZwV+kKftmnEFY4xTW5bMzEzZbDYtWLBA9evXV7t27fTWW29p7ty5Oe7FGDZsmFJSUuyPI0eOWL4OAADAUb4DRrly5TR27FglJSXd1IIDAwPl6urqtLfi+PHjTns1spQqVUqlS5dWQECAva1atWoyxujXX3/NdhpPT0/5+/s7PAAAwK2V74Dxwgsv6H//+5/Kly+vVq1aafHixbp06VK+F+zh4aE6deooPj7eoT0+Pl6NGjXKdprGjRvr999/1/nz5+1tP/74o1xcXFSmTJl81wAAAG6NfAeMAQMGaOfOndq5c6eqV6+ugQMHqlSpUurfv7927dqVr3kNHjxY77//vmbPnq39+/fr+eefV1JSkmJiYiRdHd7o0aOHvX/Xrl1VvHhxPfXUU9q3b582btyol156Sb169ZK3t3d+VwUAANwiN3wMRq1atfTOO+/ot99+06hRo/T++++rXr16qlWrlmbPnq28nP0aFRWlSZMmaezYsbr33nu1ceNGrV69WmFhYZKk5ORkh6EYPz8/xcfH6+zZs6pbt66efPJJdejQQZMnT77R1QAAALfADV8H48qVK/r44481Z84cxcfH6/7771fv3r31+++/a+rUqYqIiNDChQutrvemcR0M4OZxHQygkCjA62Dk+zTVXbt2ac6cOVq0aJFcXV3VvXt3vf3226pataq9T+vWrfXAAw/kv3IAAPCXkO+AUa9ePbVq1UozZsxQp06d5O7u7tSnevXq6ty5syUFAgCAwiffAePgwYP2YyRy4uvrqzlz5txwUQAAoHDL90Gex48f19dff+3U/vXXX2vHjh2WFAUAAAq3fAeMfv36ZXs1zN9++039+vWzpCgAAFC45Ttg7Nu3T7Vr13Zqv++++7Rv3z5LigIAAIVbvgOGp6enjh075tSenJwsN7cCu3caAAC4g+Q7YLRq1cp+A7EsZ8+e1SuvvKJWrVpZWhwAACic8r3L4c0339QDDzygsLAw3XfffZKkxMREBQcH64MPPrC8QAAAUPjkO2CULl1ae/bs0YIFC7R79255e3vrqaeeUpcuXbK9JgYAAPj7uaGDJnx9ffX0009bXQsAAPiLuOGjMvft26ekpCRdvnzZof3hhx++6aIAAEDhdkNX8nzkkUe0d+9e2Ww2+11Tbf93p6+MjAxrKwQAAIVOvs8iee655xQeHq5jx47Jx8dH3333nTZu3Ki6detqw4YNt6BEAABQ2OR7D8bWrVu1bt06lShRQi4uLnJxcVGTJk0UGxurgQMHKiEh4VbUCQAACpF878HIyMiQn5+fJCkwMFC///67JCksLEw//PCDtdUBAIBCKd97MGrUqKE9e/aofPnyatCggSZOnCgPDw/95z//Ufny5W9FjQAAoJDJd8D417/+pbS0NEnSuHHj9NBDD6lp06YqXry44uLiLC8QAAAUPvkOGG3atLH/u3z58tq3b59Onz6tokWL2s8kAQAAf2/5OgYjPT1dbm5u+vbbbx3aixUrRrgAAAB2+QoYbm5uCgsL41oXAAAgV/k+i+Rf//qXhg0bptOnT9+KegAAwF9Avo/BmDx5sn7++WeFhIQoLCxMvr6+Dq/v2rXLsuIAAEDhlO+A0alTp1tQBgAA+CvJd8AYNWrUragDAAD8heT7GAwAAIDryfceDBcXl1xPSeUMEwAAkO+A8fHHHzs8v3LlihISEjRv3jyNGTPGssIAAEDhle+A0bFjR6e2xx9/XHfffbfi4uLUu3dvSwoDAACFl2XHYDRo0EBffPGFVbMDAACFmCUB48KFC5oyZYrKlCljxewAAEAhl+8hkmtvamaM0blz5+Tj46MPP/zQ0uIAAEDhlO+A8fbbbzsEDBcXF5UoUUINGjRQ0aJFLS0OAAAUTvkOGD179rwFZQAAgL+SfB+DMWfOHC1ZssSpfcmSJZo3b54lRQEAgMIt3wFjwoQJCgwMdGoPCgrS+PHjLSkKAAAUbvkOGIcPH1Z4eLhTe1hYmJKSkiwpCgAAFG75DhhBQUHas2ePU/vu3btVvHhxS4oCAACFW74DRufOnTVw4ECtX79eGRkZysjI0Lp16/Tcc8+pc+fOt6JGAABQyOT7LJJx48bp8OHDatmypdzcrk6emZmpHj16cAwGAACQJNmMMeZGJvzpp5+UmJgob29v3XPPPQoLC7O6tlsiNTVVAQEBSklJkb+/v6XzzuUms8Bfyo19a9whFrKh4m+kq7Uba35+Q/O9ByNLpUqVVKlSpRudHAAA/IXl+xiMxx9/XBMmTHBqf+ONN/SPf/zDkqIAAEDhlu+A8eWXX6p9+/ZO7W3bttXGjRstKQoAABRu+Q4Y58+fl4eHh1O7u7u7UlNTLSkKAAAUbvkOGDVq1FBcXJxT++LFi1W9enVLigIAAIVbvg/yHDFihB577DEdOHBALVq0kCStXbtWCxcu1H//+1/LCwQAAIVPvgPGww8/rOXLl2v8+PH673//K29vb9WqVUvr1q2z/LRPAABQON3Qaart27e3H+h59uxZLViwQIMGDdLu3buVkZFhaYEAAKDwyfcxGFnWrVunbt26KSQkRFOnTlW7du20Y8cOK2sDAACFVL72YPz666+aO3euZs+erbS0ND3xxBO6cuWKli5dygGeAADALs97MNq1a6fq1atr3759mjJlin7//XdNmTLlpguYPn26wsPD5eXlpTp16mjTpk15mu6rr76Sm5ub7r333puuAQAAWCvPAWPNmjXq06ePxowZo/bt28vV1fWmFx4XF6dBgwZp+PDhSkhIUNOmTRUZGamkpKRcp0tJSVGPHj3UsmXLm64BAABYL88BY9OmTTp37pzq1q2rBg0aaOrUqTpx4sRNLfytt95S79691adPH1WrVk2TJk1SaGioZsyYket0zzzzjLp27aqGDRve1PIBAMCtkeeA0bBhQ7333ntKTk7WM888o8WLF6t06dLKzMxUfHy8zp07l68FX758WTt37lTr1q0d2lu3bq0tW7bkON2cOXN04MABjRo1Kk/LuXTpklJTUx0eAADg1sr3WSQ+Pj7q1auXNm/erL179+qFF17QhAkTFBQUpIcffjjP8zl58qQyMjIUHBzs0B4cHKyjR49mO81PP/2kl19+WQsWLJCbW96OT42NjVVAQID9ERoamucaAQDAjbnh01QlqUqVKpo4caJ+/fVXLVq06IbmYbPZHJ4bY5zaJCkjI0Ndu3bVmDFjVLly5TzPf9iwYUpJSbE/jhw5ckN1AgCAvLuhC21dy9XVVZ06dVKnTp3yPE1gYKBcXV2d9lYcP37caa+GJJ07d047duxQQkKC+vfvL0nKzMyUMUZubm5as2aN/dLlf+bp6SlPT8/8rRAAALgpN7UH42Z4eHioTp06io+Pd2iPj49Xo0aNnPr7+/tr7969SkxMtD9iYmJUpUoVJSYmqkGDBrerdAAAcB2W7MG4UYMHD1b37t1Vt25dNWzYUP/5z3+UlJSkmJgYSVeHN3777TfNnz9fLi4uqlGjhsP0QUFB8vLycmoHAAAFq0ADRlRUlE6dOqWxY8cqOTlZNWrU0OrVqxUWFiZJSk5Ovu41MQAAwJ3HZowxBV3E7ZSamqqAgAClpKRYfvfXbI5NBf6SCvW3xkI2VPyNdLV2Y83Pb2iBHYMBAAD+uggYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGAAAwHIEDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGAAAwHIEDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgUeMKZPn67w8HB5eXmpTp062rRpU459ly1bplatWqlEiRLy9/dXw4YN9fnnn9/GagEAQF4UaMCIi4vToEGDNHz4cCUkJKhp06aKjIxUUlJStv03btyoVq1aafXq1dq5c6ciIiLUoUMHJSQk3ObKAQBAbmzGGFNQC2/QoIFq166tGTNm2NuqVaumTp06KTY2Nk/zuPvuuxUVFaWRI0fmqX9qaqoCAgKUkpIif3//G6o7JzabpbMD7lgF961hgYVsqPgb6Wrtxpqf39AC24Nx+fJl7dy5U61bt3Zob926tbZs2ZKneWRmZurcuXMqVqxYjn0uXbqk1NRUhwcAALi1CixgnDx5UhkZGQoODnZoDw4O1tGjR/M0jzfffFNpaWl64okncuwTGxurgIAA+yM0NPSm6gYAANdX4Ad52q4ZVzDGOLVlZ9GiRRo9erTi4uIUFBSUY79hw4YpJSXF/jhy5MhN1wwAAHLnVlALDgwMlKurq9PeiuPHjzvt1bhWXFycevfurSVLlujBBx/Mta+np6c8PT1vul4AAJB3BbYHw8PDQ3Xq1FF8fLxDe3x8vBo1apTjdIsWLVLPnj21cOFCtW/f/laXCQAAbkCB7cGQpMGDB6t79+6qW7euGjZsqP/85z9KSkpSTEyMpKvDG7/99pvmz58v6Wq46NGjh9555x3df//99r0f3t7eCggIKLD1AAAAjgo0YERFRenUqVMaO3askpOTVaNGDa1evVphYWGSpOTkZIdrYrz77rtKT09Xv3791K9fP3t7dHS05s6de7vLBwAAOSjQ62AUBK6DAdy8Qv2twXUw8Hfyd7wOBgAA+OsiYAAAAMsRMAAAgOUIGAAAwHIEDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGAAAwHIEDAAAYDkCBgAAsBwBAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFiOgAEAACxHwAAAAJYjYAAAAMsRMAAAgOUKPGBMnz5d4eHh8vLyUp06dbRp06Zc+3/55ZeqU6eOvLy8VL58ec2cOfM2VQoAAPKqQANGXFycBg0apOHDhyshIUFNmzZVZGSkkpKSsu3/yy+/qF27dmratKkSEhL0yiuvaODAgVq6dOltrhwAAOTGZowxBbXwBg0aqHbt2poxY4a9rVq1aurUqZNiY2Od+g8dOlQrVqzQ/v377W0xMTHavXu3tm7dmqdlpqamKiAgQCkpKfL397/5lfgTm83S2QF3rIL71rDAQjZU/I10tXZjzc9vqJulS86Hy5cva+fOnXr55Zcd2lu3bq0tW7ZkO83WrVvVunVrh7Y2bdpo1qxZunLlitzd3Z2muXTpki5dumR/npKSIunqmwTgxhTqzeePgi4AuI0s3lizfjvzsm+iwALGyZMnlZGRoeDgYIf24OBgHT16NNtpjh49mm3/9PR0nTx5UqVKlXKaJjY2VmPGjHFqDw0NvYnqgb+3gICCrgBAnvzz1mys586dU8B1vggKLGBksV0zrmCMcWq7Xv/s2rMMGzZMgwcPtj/PzMzU6dOnVbx48VyXgztfamqqQkNDdeTIEcuHuwBYh231r8MYo3PnzikkJOS6fQssYAQGBsrV1dVpb8Xx48ed9lJkKVmyZLb93dzcVLx48Wyn8fT0lKenp0PbXXfddeOF447j7+/PlxZQCLCt/jVcb89FlgI7i8TDw0N16tRRfHy8Q3t8fLwaNWqU7TQNGzZ06r9mzRrVrVs32+MvAABAwSjQ01QHDx6s999/X7Nnz9b+/fv1/PPPKykpSTExMZKuDm/06NHD3j8mJkaHDx/W4MGDtX//fs2ePVuzZs3Siy++WFCrAAAAslGgx2BERUXp1KlTGjt2rJKTk1WjRg2tXr1aYWFhkqTk5GSHa2KEh4dr9erVev755zVt2jSFhIRo8uTJeuyxxwpqFVCAPD09NWrUKKchMAB3FrbVv6cCvQ4GAAD4ayrwS4UDAIC/HgIGAACwHAEDAABYjoABy2zYsEE2m01nz57NtV+5cuU0adKk21ITgJvDdo0bRcCAk5kzZ6pIkSJKT0+3t50/f17u7u5q2rSpQ99NmzbJZrPpxx9/VKNGjZScnGy/CMvcuXML9KJmef3CK1eunGw2m2w2m3x8fFSjRg29++67Dn0uX76siRMnqlatWvLx8VFgYKAaN26sOXPm6MqVKw59t2zZIldXV7Vt29bK1QFuyp24Xffs2dO+7bm7u6t8+fJ68cUXlZaW5tBv6dKlat68uQICAuTn56eaNWtq7NixOn36tEO/CxcuqGjRoipWrJguXLhgSY24cQQMOImIiND58+e1Y8cOe9umTZtUsmRJbd++XX/88f/vFrVhwwaFhISocuXK8vDwUMmSJQvlJdizTpXes2ePOnXqpJiYGMXFxUm6Gi7atGmjCRMm6Omnn9aWLVv0zTffqF+/fpoyZYq+++47h3nNnj1bAwYM0ObNmx1OswYK0p26Xbdt21bJyck6ePCgxo0bp+nTpztc22j48OGKiopSvXr19Omnn+rbb7/Vm2++qd27d+uDDz5wmNfSpUtVo0YNVa9eXcuWLbsl9SIfDJCNkJAQExsba38+ZMgQ069fP1O9enUTHx9vb2/RooV58sknjTHGrF+/3kgyZ86csf/7z49Ro0YZY4wJCwszr732mnnqqaeMn5+fCQ0NNe+++67D8vfs2WMiIiKMl5eXKVasmPnnP/9pzp07Z3+9WbNm5rnnnnOYpmPHjiY6Otr++rXLz0lYWJh5++23HdoqVapkOnfubIwx5vXXXzcuLi5m165dTtNevnzZnD9/3v78/PnzpkiRIub77783UVFRZsyYMTkuF7jdCnq7vlZ0dLTp2LGjQ1ufPn1MyZIljTHGfP3110aSmTRpUrbTnzlzxuF58+bNzcyZM82MGTNMREREXt4S3ELswUC2mjdvrvXr19ufr1+/Xs2bN1ezZs3s7ZcvX9bWrVsVERHhNH2jRo00adIk+fv7Kzk5WcnJyQ7/K3nzzTdVt25dJSQkqG/fvnr22Wf1/fffS5L++OMPtW3bVkWLFtX27du1ZMkSffHFF+rfv3+e61+2bJnKlClj3zORnJycr/X38vKyD30sWLBADz74oO677z6nfu7u7vL19bU/j4uLU5UqVVSlShV169ZNc+bMydNtjYHboSC367zy9vZ22Pb8/PzUt2/fbPv+eajmwIED2rp1q5544gk98cQT2rJliw4ePJivZcNaBAxkq3nz5vrqq6+Unp6uc+fOKSEhQQ888ICaNWumDRs2SJK2bdumCxcuZPtF5OHhoYCAANlsNpUsWVIlS5aUn5+f/fV27dqpb9++qlixooYOHarAwED7fBcsWKALFy5o/vz5qlGjhlq0aKGpU6fqgw8+0LFjx/JUf7FixeTq6qoiRYrYl58X6enpmjt3rvbu3auWLVtKkn766SdVrVo1T9PPmjVL3bp1k3R11+/58+e1du3aPE0L3GoFuV3nxTfffKOFCxc6bHvly5fP072mZs+ercjISPsxGG3bttXs2bPzvGxYj4CBbEVERCgtLU3bt2/Xpk2bVLlyZQUFBalZs2bavn270tLStGHDBpUtW1bly5fP9/xr1qxp/3fWl9Xx48clSfv371etWrUc9gw0btxYmZmZ+uGHH25+5bIxdOhQ+fn5ydvbW/369dNLL72kZ555RtLV2xPnZfz5hx9+0DfffKPOnTtLktzc3BQVFcWXHO4YBbld52TVqlXy8/OTl5eXGjZsqAceeEBTpkyRlPdtLyMjQ/PmzbOHe0nq1q2b5s2bp4yMjHyvB6xRoPciwZ2rYsWKKlOmjNavX68zZ86oWbNmkqSSJUsqPDxcX331ldavX68WLVrc0Pyv/R+JzWZTZmampNy/VLLaXVxcnIYerj2bIz9eeukl9ezZUz4+PipVqpTD8itXrqz9+/dfdx6zZs1Senq6SpcubW8zxsjd3V1nzpxR0aJFb7g+wAoFuV3nJCIiQjNmzJC7u7tCQkIc5lG5cmVt3rxZV65cyXUvxueff67ffvtNUVFRDu0ZGRlas2aNIiMjb2BtcLPYg4EcRUREaMOGDdqwYYOaN29ub2/WrJk+//xzbdu2LdvdqFk8PDxu6H8P1atXV2JiosOpal999ZVcXFxUuXJlSVKJEiUcjqvIyMjQt99+e8PLDwwMVMWKFRUSEuIUbrp27aovvvhCCQkJTtOlp6crLS1N6enpmj9/vt58800lJibaH7t371ZYWJgWLFiQ5/UHbqWC2q5z4uvrq4oVKyosLMwpRHTt2lXnz5/X9OnTs50269ocs2bNUufOnR22vcTERD355JOaNWuWZbUifwgYyFFERIQ2b96sxMRE+/90pKtfRO+9954uXryY6xdRuXLl7McgnDx50uE0uNw8+eST8vLyUnR0tL799lutX79eAwYMUPfu3RUcHCxJatGihT755BN98skn+v7779W3b1+nCwGVK1dOGzdu1G+//aaTJ0/m/w34P4MGDVLjxo3VsmVLTZs2Tbt379bBgwf10UcfqUGDBvrpp5+0atUqnTlzRr1791aNGjUcHo8//jhfcrhjFNR2fSMaNGigIUOG6IUXXtCQIUO0detWHT58WGvXrtU//vEPzZs3TydOnNDKlSsVHR3ttO1FR0drxYoVOnHixC2rETkjYCBHERERunDhgipWrGj/YZeufhGdO3dOFSpUUGhoaI7TN2rUSDExMYqKilKJEiU0ceLEPC3Xx8dHn3/+uU6fPq169erp8ccfV8uWLTV16lR7n169eik6Olo9evRQs2bNFB4e7vSlOHbsWB06dEgVKlRQiRIl8rn2/5+np6fi4+M1ZMgQvfvuu7r//vtVr149TZ48WQMHDlSNGjU0a9YsPfjgg/aLEf3ZY489psTERO3ateuGawCsUlDb9Y16/fXXtXDhQn399ddq06aN7r77bg0ePFg1a9ZUdHS05s+fL19fX/uBoX8WERGhIkWKOF0vA7cHt2sHAACWYw8GAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgaAO96GDRtks9mcLgefm3LlymnSpEm3rCYAuSNgALhpPXv2lM1mU0xMjNNrffv2lc1mU8+ePW9/YQAKDAEDgCVCQ0O1ePFiXbhwwd528eJFLVq0SGXLli3AygAUBAIGAEvUrl1bZcuW1bJly+xty5YtU2hoqO677z5726VLlzRw4EAFBQXJy8tLTZo00fbt2x3mtXr1alWuXFne3t6KiIjQoUOHnJa3ZcsWPfDAA/L29lZoaKgGDhyotLS0W7Z+APKHgAHAMk899ZTmzJljfz579mz16tXLoc+QIUO0dOlSzZs3T7t27VLFihXVpk0bnT59WpJ05MgRPfroo2rXrp0SExPVp08fvfzyyw7z2Lt3r9q0aaNHH31Ue/bsUVxcnDZv3qz+/fvf+pUEkCcEDACW6d69uzZv3qxDhw7p8OHD+uqrr9StWzf762lpaZoxY4beeOMNRUZGqnr16nrvvffk7e2tWbNmSZJmzJih8uXL6+2331aVKlX05JNPOh2/8cYbb6hr164aNGiQKlWqpEaNGmny5MmaP3++Ll68eDtXGUAO3Aq6AAB/HYGBgWrfvr3mzZsnY4zat2+vwMBA++sHDhzQlStX1LhxY3ubu7u76tevr/3790uS9u/fr/vvv182m83ep2HDhg7L2blzp37++WctWLDA3maMUWZmpn755RdVq1btVq0igDwiYACwVK9evexDFdOmTXN4zRgjSQ7hIas9qy2rT24yMzP1zDPPaODAgU6vcUApcGdgiASApdq2bavLly/r8uXLatOmjcNrFStWlIeHhzZv3mxvu3Llinbs2GHf61C9enVt27bNYbprn9euXVvfffedKlas6PTw8PC4RWsGID8IGAAs5erqqv3792v//v1ydXV1eM3X11fPPvusXnrpJX322Wfat2+f/vnPf+qPP/5Q7969JUkxMTE6cOCABg8erB9++EELFy7U3LlzHeYzdOhQbd26Vf369VNiYqJ++uknrVixQgMGDLhdqwngOggYACzn7+8vf3//bF+bMGGCHnvsMXXv3l21a9fWzz//rM8//1xFixaVdHWIY+nSpVq5cqVq1aqlmTNnavz48Q7zqFmzpr788kv99NNPatq0qe677z6NGDFCpUqVuuXrBiBvbCYvA54AAAD5wB4MAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADLETAAAIDlCBgAAMByBAwAAGA5AgYAALAcAQMAAFju/wFK2W498zKvpwAAAABJRU5ErkJggg==",
|
223
|
+
"text/plain": [
|
224
|
+
"<Figure size 600x400 with 1 Axes>"
|
225
|
+
]
|
226
|
+
},
|
227
|
+
"metadata": {},
|
228
|
+
"output_type": "display_data"
|
229
|
+
}
|
230
|
+
],
|
231
|
+
"source": [
|
232
|
+
"labels = ['Without PCA', 'With PCA']\n",
|
233
|
+
"accuracies = [accuracy_original, accuracy_pca]\n",
|
234
|
+
"plt.figure(figsize=(6, 4))\n",
|
235
|
+
"plt.bar(labels, accuracies, color=['blue', 'orange'])\n",
|
236
|
+
"plt.xlabel(\"Model\")\n",
|
237
|
+
"plt.ylabel(\"Accuracy\")\n",
|
238
|
+
"plt.title(\"KNN Classification Accuracy Comparison\")\n",
|
239
|
+
"plt.ylim(0, 1)\n",
|
240
|
+
"plt.show()"
|
241
|
+
]
|
242
|
+
}
|
243
|
+
],
|
244
|
+
"metadata": {
|
245
|
+
"kernelspec": {
|
246
|
+
"display_name": "Python 3 (ipykernel)",
|
247
|
+
"language": "python",
|
248
|
+
"name": "python3"
|
249
|
+
},
|
250
|
+
"language_info": {
|
251
|
+
"codemirror_mode": {
|
252
|
+
"name": "ipython",
|
253
|
+
"version": 3
|
254
|
+
},
|
255
|
+
"file_extension": ".py",
|
256
|
+
"mimetype": "text/x-python",
|
257
|
+
"name": "python",
|
258
|
+
"nbconvert_exporter": "python",
|
259
|
+
"pygments_lexer": "ipython3",
|
260
|
+
"version": "3.12.4"
|
261
|
+
}
|
262
|
+
},
|
263
|
+
"nbformat": 4,
|
264
|
+
"nbformat_minor": 5
|
265
|
+
}
|