noshot 0.3.0__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +87 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +247 -0
  17. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
  18. noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +183 -0
  19. noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +172 -0
  20. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +146 -0
  21. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
  22. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +173 -0
  23. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +77 -0
  26. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
  27. noshot/data/ML TS XAI/TS/AllinOne.ipynb +12676 -0
  28. noshot/main.py +18 -18
  29. noshot/utils/__init__.py +2 -2
  30. noshot/utils/shell_utils.py +56 -56
  31. {noshot-0.3.0.dist-info → noshot-0.3.2.dist-info}/LICENSE.txt +20 -20
  32. {noshot-0.3.0.dist-info → noshot-0.3.2.dist-info}/METADATA +55 -55
  33. noshot-0.3.2.dist-info/RECORD +36 -0
  34. noshot-0.3.0.dist-info/RECORD +0 -9
  35. {noshot-0.3.0.dist-info → noshot-0.3.2.dist-info}/WHEEL +0 -0
  36. {noshot-0.3.0.dist-info → noshot-0.3.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,625 @@
1
+ B,1,1,1,1
2
+ R,1,1,1,2
3
+ R,1,1,1,3
4
+ R,1,1,1,4
5
+ R,1,1,1,5
6
+ R,1,1,2,1
7
+ R,1,1,2,2
8
+ R,1,1,2,3
9
+ R,1,1,2,4
10
+ R,1,1,2,5
11
+ R,1,1,3,1
12
+ R,1,1,3,2
13
+ R,1,1,3,3
14
+ R,1,1,3,4
15
+ R,1,1,3,5
16
+ R,1,1,4,1
17
+ R,1,1,4,2
18
+ R,1,1,4,3
19
+ R,1,1,4,4
20
+ R,1,1,4,5
21
+ R,1,1,5,1
22
+ R,1,1,5,2
23
+ R,1,1,5,3
24
+ R,1,1,5,4
25
+ R,1,1,5,5
26
+ L,1,2,1,1
27
+ B,1,2,1,2
28
+ R,1,2,1,3
29
+ R,1,2,1,4
30
+ R,1,2,1,5
31
+ B,1,2,2,1
32
+ R,1,2,2,2
33
+ R,1,2,2,3
34
+ R,1,2,2,4
35
+ R,1,2,2,5
36
+ R,1,2,3,1
37
+ R,1,2,3,2
38
+ R,1,2,3,3
39
+ R,1,2,3,4
40
+ R,1,2,3,5
41
+ R,1,2,4,1
42
+ R,1,2,4,2
43
+ R,1,2,4,3
44
+ R,1,2,4,4
45
+ R,1,2,4,5
46
+ R,1,2,5,1
47
+ R,1,2,5,2
48
+ R,1,2,5,3
49
+ R,1,2,5,4
50
+ R,1,2,5,5
51
+ L,1,3,1,1
52
+ L,1,3,1,2
53
+ B,1,3,1,3
54
+ R,1,3,1,4
55
+ R,1,3,1,5
56
+ L,1,3,2,1
57
+ R,1,3,2,2
58
+ R,1,3,2,3
59
+ R,1,3,2,4
60
+ R,1,3,2,5
61
+ B,1,3,3,1
62
+ R,1,3,3,2
63
+ R,1,3,3,3
64
+ R,1,3,3,4
65
+ R,1,3,3,5
66
+ R,1,3,4,1
67
+ R,1,3,4,2
68
+ R,1,3,4,3
69
+ R,1,3,4,4
70
+ R,1,3,4,5
71
+ R,1,3,5,1
72
+ R,1,3,5,2
73
+ R,1,3,5,3
74
+ R,1,3,5,4
75
+ R,1,3,5,5
76
+ L,1,4,1,1
77
+ L,1,4,1,2
78
+ L,1,4,1,3
79
+ B,1,4,1,4
80
+ R,1,4,1,5
81
+ L,1,4,2,1
82
+ B,1,4,2,2
83
+ R,1,4,2,3
84
+ R,1,4,2,4
85
+ R,1,4,2,5
86
+ L,1,4,3,1
87
+ R,1,4,3,2
88
+ R,1,4,3,3
89
+ R,1,4,3,4
90
+ R,1,4,3,5
91
+ B,1,4,4,1
92
+ R,1,4,4,2
93
+ R,1,4,4,3
94
+ R,1,4,4,4
95
+ R,1,4,4,5
96
+ R,1,4,5,1
97
+ R,1,4,5,2
98
+ R,1,4,5,3
99
+ R,1,4,5,4
100
+ R,1,4,5,5
101
+ L,1,5,1,1
102
+ L,1,5,1,2
103
+ L,1,5,1,3
104
+ L,1,5,1,4
105
+ B,1,5,1,5
106
+ L,1,5,2,1
107
+ L,1,5,2,2
108
+ R,1,5,2,3
109
+ R,1,5,2,4
110
+ R,1,5,2,5
111
+ L,1,5,3,1
112
+ R,1,5,3,2
113
+ R,1,5,3,3
114
+ R,1,5,3,4
115
+ R,1,5,3,5
116
+ L,1,5,4,1
117
+ R,1,5,4,2
118
+ R,1,5,4,3
119
+ R,1,5,4,4
120
+ R,1,5,4,5
121
+ B,1,5,5,1
122
+ R,1,5,5,2
123
+ R,1,5,5,3
124
+ R,1,5,5,4
125
+ R,1,5,5,5
126
+ L,2,1,1,1
127
+ B,2,1,1,2
128
+ R,2,1,1,3
129
+ R,2,1,1,4
130
+ R,2,1,1,5
131
+ B,2,1,2,1
132
+ R,2,1,2,2
133
+ R,2,1,2,3
134
+ R,2,1,2,4
135
+ R,2,1,2,5
136
+ R,2,1,3,1
137
+ R,2,1,3,2
138
+ R,2,1,3,3
139
+ R,2,1,3,4
140
+ R,2,1,3,5
141
+ R,2,1,4,1
142
+ R,2,1,4,2
143
+ R,2,1,4,3
144
+ R,2,1,4,4
145
+ R,2,1,4,5
146
+ R,2,1,5,1
147
+ R,2,1,5,2
148
+ R,2,1,5,3
149
+ R,2,1,5,4
150
+ R,2,1,5,5
151
+ L,2,2,1,1
152
+ L,2,2,1,2
153
+ L,2,2,1,3
154
+ B,2,2,1,4
155
+ R,2,2,1,5
156
+ L,2,2,2,1
157
+ B,2,2,2,2
158
+ R,2,2,2,3
159
+ R,2,2,2,4
160
+ R,2,2,2,5
161
+ L,2,2,3,1
162
+ R,2,2,3,2
163
+ R,2,2,3,3
164
+ R,2,2,3,4
165
+ R,2,2,3,5
166
+ B,2,2,4,1
167
+ R,2,2,4,2
168
+ R,2,2,4,3
169
+ R,2,2,4,4
170
+ R,2,2,4,5
171
+ R,2,2,5,1
172
+ R,2,2,5,2
173
+ R,2,2,5,3
174
+ R,2,2,5,4
175
+ R,2,2,5,5
176
+ L,2,3,1,1
177
+ L,2,3,1,2
178
+ L,2,3,1,3
179
+ L,2,3,1,4
180
+ L,2,3,1,5
181
+ L,2,3,2,1
182
+ L,2,3,2,2
183
+ B,2,3,2,3
184
+ R,2,3,2,4
185
+ R,2,3,2,5
186
+ L,2,3,3,1
187
+ B,2,3,3,2
188
+ R,2,3,3,3
189
+ R,2,3,3,4
190
+ R,2,3,3,5
191
+ L,2,3,4,1
192
+ R,2,3,4,2
193
+ R,2,3,4,3
194
+ R,2,3,4,4
195
+ R,2,3,4,5
196
+ L,2,3,5,1
197
+ R,2,3,5,2
198
+ R,2,3,5,3
199
+ R,2,3,5,4
200
+ R,2,3,5,5
201
+ L,2,4,1,1
202
+ L,2,4,1,2
203
+ L,2,4,1,3
204
+ L,2,4,1,4
205
+ L,2,4,1,5
206
+ L,2,4,2,1
207
+ L,2,4,2,2
208
+ L,2,4,2,3
209
+ B,2,4,2,4
210
+ R,2,4,2,5
211
+ L,2,4,3,1
212
+ L,2,4,3,2
213
+ R,2,4,3,3
214
+ R,2,4,3,4
215
+ R,2,4,3,5
216
+ L,2,4,4,1
217
+ B,2,4,4,2
218
+ R,2,4,4,3
219
+ R,2,4,4,4
220
+ R,2,4,4,5
221
+ L,2,4,5,1
222
+ R,2,4,5,2
223
+ R,2,4,5,3
224
+ R,2,4,5,4
225
+ R,2,4,5,5
226
+ L,2,5,1,1
227
+ L,2,5,1,2
228
+ L,2,5,1,3
229
+ L,2,5,1,4
230
+ L,2,5,1,5
231
+ L,2,5,2,1
232
+ L,2,5,2,2
233
+ L,2,5,2,3
234
+ L,2,5,2,4
235
+ B,2,5,2,5
236
+ L,2,5,3,1
237
+ L,2,5,3,2
238
+ L,2,5,3,3
239
+ R,2,5,3,4
240
+ R,2,5,3,5
241
+ L,2,5,4,1
242
+ L,2,5,4,2
243
+ R,2,5,4,3
244
+ R,2,5,4,4
245
+ R,2,5,4,5
246
+ L,2,5,5,1
247
+ B,2,5,5,2
248
+ R,2,5,5,3
249
+ R,2,5,5,4
250
+ R,2,5,5,5
251
+ L,3,1,1,1
252
+ L,3,1,1,2
253
+ B,3,1,1,3
254
+ R,3,1,1,4
255
+ R,3,1,1,5
256
+ L,3,1,2,1
257
+ R,3,1,2,2
258
+ R,3,1,2,3
259
+ R,3,1,2,4
260
+ R,3,1,2,5
261
+ B,3,1,3,1
262
+ R,3,1,3,2
263
+ R,3,1,3,3
264
+ R,3,1,3,4
265
+ R,3,1,3,5
266
+ R,3,1,4,1
267
+ R,3,1,4,2
268
+ R,3,1,4,3
269
+ R,3,1,4,4
270
+ R,3,1,4,5
271
+ R,3,1,5,1
272
+ R,3,1,5,2
273
+ R,3,1,5,3
274
+ R,3,1,5,4
275
+ R,3,1,5,5
276
+ L,3,2,1,1
277
+ L,3,2,1,2
278
+ L,3,2,1,3
279
+ L,3,2,1,4
280
+ L,3,2,1,5
281
+ L,3,2,2,1
282
+ L,3,2,2,2
283
+ B,3,2,2,3
284
+ R,3,2,2,4
285
+ R,3,2,2,5
286
+ L,3,2,3,1
287
+ B,3,2,3,2
288
+ R,3,2,3,3
289
+ R,3,2,3,4
290
+ R,3,2,3,5
291
+ L,3,2,4,1
292
+ R,3,2,4,2
293
+ R,3,2,4,3
294
+ R,3,2,4,4
295
+ R,3,2,4,5
296
+ L,3,2,5,1
297
+ R,3,2,5,2
298
+ R,3,2,5,3
299
+ R,3,2,5,4
300
+ R,3,2,5,5
301
+ L,3,3,1,1
302
+ L,3,3,1,2
303
+ L,3,3,1,3
304
+ L,3,3,1,4
305
+ L,3,3,1,5
306
+ L,3,3,2,1
307
+ L,3,3,2,2
308
+ L,3,3,2,3
309
+ L,3,3,2,4
310
+ R,3,3,2,5
311
+ L,3,3,3,1
312
+ L,3,3,3,2
313
+ B,3,3,3,3
314
+ R,3,3,3,4
315
+ R,3,3,3,5
316
+ L,3,3,4,1
317
+ L,3,3,4,2
318
+ R,3,3,4,3
319
+ R,3,3,4,4
320
+ R,3,3,4,5
321
+ L,3,3,5,1
322
+ R,3,3,5,2
323
+ R,3,3,5,3
324
+ R,3,3,5,4
325
+ R,3,3,5,5
326
+ L,3,4,1,1
327
+ L,3,4,1,2
328
+ L,3,4,1,3
329
+ L,3,4,1,4
330
+ L,3,4,1,5
331
+ L,3,4,2,1
332
+ L,3,4,2,2
333
+ L,3,4,2,3
334
+ L,3,4,2,4
335
+ L,3,4,2,5
336
+ L,3,4,3,1
337
+ L,3,4,3,2
338
+ L,3,4,3,3
339
+ B,3,4,3,4
340
+ R,3,4,3,5
341
+ L,3,4,4,1
342
+ L,3,4,4,2
343
+ B,3,4,4,3
344
+ R,3,4,4,4
345
+ R,3,4,4,5
346
+ L,3,4,5,1
347
+ L,3,4,5,2
348
+ R,3,4,5,3
349
+ R,3,4,5,4
350
+ R,3,4,5,5
351
+ L,3,5,1,1
352
+ L,3,5,1,2
353
+ L,3,5,1,3
354
+ L,3,5,1,4
355
+ L,3,5,1,5
356
+ L,3,5,2,1
357
+ L,3,5,2,2
358
+ L,3,5,2,3
359
+ L,3,5,2,4
360
+ L,3,5,2,5
361
+ L,3,5,3,1
362
+ L,3,5,3,2
363
+ L,3,5,3,3
364
+ L,3,5,3,4
365
+ B,3,5,3,5
366
+ L,3,5,4,1
367
+ L,3,5,4,2
368
+ L,3,5,4,3
369
+ R,3,5,4,4
370
+ R,3,5,4,5
371
+ L,3,5,5,1
372
+ L,3,5,5,2
373
+ B,3,5,5,3
374
+ R,3,5,5,4
375
+ R,3,5,5,5
376
+ L,4,1,1,1
377
+ L,4,1,1,2
378
+ L,4,1,1,3
379
+ B,4,1,1,4
380
+ R,4,1,1,5
381
+ L,4,1,2,1
382
+ B,4,1,2,2
383
+ R,4,1,2,3
384
+ R,4,1,2,4
385
+ R,4,1,2,5
386
+ L,4,1,3,1
387
+ R,4,1,3,2
388
+ R,4,1,3,3
389
+ R,4,1,3,4
390
+ R,4,1,3,5
391
+ B,4,1,4,1
392
+ R,4,1,4,2
393
+ R,4,1,4,3
394
+ R,4,1,4,4
395
+ R,4,1,4,5
396
+ R,4,1,5,1
397
+ R,4,1,5,2
398
+ R,4,1,5,3
399
+ R,4,1,5,4
400
+ R,4,1,5,5
401
+ L,4,2,1,1
402
+ L,4,2,1,2
403
+ L,4,2,1,3
404
+ L,4,2,1,4
405
+ L,4,2,1,5
406
+ L,4,2,2,1
407
+ L,4,2,2,2
408
+ L,4,2,2,3
409
+ B,4,2,2,4
410
+ R,4,2,2,5
411
+ L,4,2,3,1
412
+ L,4,2,3,2
413
+ R,4,2,3,3
414
+ R,4,2,3,4
415
+ R,4,2,3,5
416
+ L,4,2,4,1
417
+ B,4,2,4,2
418
+ R,4,2,4,3
419
+ R,4,2,4,4
420
+ R,4,2,4,5
421
+ L,4,2,5,1
422
+ R,4,2,5,2
423
+ R,4,2,5,3
424
+ R,4,2,5,4
425
+ R,4,2,5,5
426
+ L,4,3,1,1
427
+ L,4,3,1,2
428
+ L,4,3,1,3
429
+ L,4,3,1,4
430
+ L,4,3,1,5
431
+ L,4,3,2,1
432
+ L,4,3,2,2
433
+ L,4,3,2,3
434
+ L,4,3,2,4
435
+ L,4,3,2,5
436
+ L,4,3,3,1
437
+ L,4,3,3,2
438
+ L,4,3,3,3
439
+ B,4,3,3,4
440
+ R,4,3,3,5
441
+ L,4,3,4,1
442
+ L,4,3,4,2
443
+ B,4,3,4,3
444
+ R,4,3,4,4
445
+ R,4,3,4,5
446
+ L,4,3,5,1
447
+ L,4,3,5,2
448
+ R,4,3,5,3
449
+ R,4,3,5,4
450
+ R,4,3,5,5
451
+ L,4,4,1,1
452
+ L,4,4,1,2
453
+ L,4,4,1,3
454
+ L,4,4,1,4
455
+ L,4,4,1,5
456
+ L,4,4,2,1
457
+ L,4,4,2,2
458
+ L,4,4,2,3
459
+ L,4,4,2,4
460
+ L,4,4,2,5
461
+ L,4,4,3,1
462
+ L,4,4,3,2
463
+ L,4,4,3,3
464
+ L,4,4,3,4
465
+ L,4,4,3,5
466
+ L,4,4,4,1
467
+ L,4,4,4,2
468
+ L,4,4,4,3
469
+ B,4,4,4,4
470
+ R,4,4,4,5
471
+ L,4,4,5,1
472
+ L,4,4,5,2
473
+ L,4,4,5,3
474
+ R,4,4,5,4
475
+ R,4,4,5,5
476
+ L,4,5,1,1
477
+ L,4,5,1,2
478
+ L,4,5,1,3
479
+ L,4,5,1,4
480
+ L,4,5,1,5
481
+ L,4,5,2,1
482
+ L,4,5,2,2
483
+ L,4,5,2,3
484
+ L,4,5,2,4
485
+ L,4,5,2,5
486
+ L,4,5,3,1
487
+ L,4,5,3,2
488
+ L,4,5,3,3
489
+ L,4,5,3,4
490
+ L,4,5,3,5
491
+ L,4,5,4,1
492
+ L,4,5,4,2
493
+ L,4,5,4,3
494
+ L,4,5,4,4
495
+ B,4,5,4,5
496
+ L,4,5,5,1
497
+ L,4,5,5,2
498
+ L,4,5,5,3
499
+ B,4,5,5,4
500
+ R,4,5,5,5
501
+ L,5,1,1,1
502
+ L,5,1,1,2
503
+ L,5,1,1,3
504
+ L,5,1,1,4
505
+ B,5,1,1,5
506
+ L,5,1,2,1
507
+ L,5,1,2,2
508
+ R,5,1,2,3
509
+ R,5,1,2,4
510
+ R,5,1,2,5
511
+ L,5,1,3,1
512
+ R,5,1,3,2
513
+ R,5,1,3,3
514
+ R,5,1,3,4
515
+ R,5,1,3,5
516
+ L,5,1,4,1
517
+ R,5,1,4,2
518
+ R,5,1,4,3
519
+ R,5,1,4,4
520
+ R,5,1,4,5
521
+ B,5,1,5,1
522
+ R,5,1,5,2
523
+ R,5,1,5,3
524
+ R,5,1,5,4
525
+ R,5,1,5,5
526
+ L,5,2,1,1
527
+ L,5,2,1,2
528
+ L,5,2,1,3
529
+ L,5,2,1,4
530
+ L,5,2,1,5
531
+ L,5,2,2,1
532
+ L,5,2,2,2
533
+ L,5,2,2,3
534
+ L,5,2,2,4
535
+ B,5,2,2,5
536
+ L,5,2,3,1
537
+ L,5,2,3,2
538
+ L,5,2,3,3
539
+ R,5,2,3,4
540
+ R,5,2,3,5
541
+ L,5,2,4,1
542
+ L,5,2,4,2
543
+ R,5,2,4,3
544
+ R,5,2,4,4
545
+ R,5,2,4,5
546
+ L,5,2,5,1
547
+ B,5,2,5,2
548
+ R,5,2,5,3
549
+ R,5,2,5,4
550
+ R,5,2,5,5
551
+ L,5,3,1,1
552
+ L,5,3,1,2
553
+ L,5,3,1,3
554
+ L,5,3,1,4
555
+ L,5,3,1,5
556
+ L,5,3,2,1
557
+ L,5,3,2,2
558
+ L,5,3,2,3
559
+ L,5,3,2,4
560
+ L,5,3,2,5
561
+ L,5,3,3,1
562
+ L,5,3,3,2
563
+ L,5,3,3,3
564
+ L,5,3,3,4
565
+ B,5,3,3,5
566
+ L,5,3,4,1
567
+ L,5,3,4,2
568
+ L,5,3,4,3
569
+ R,5,3,4,4
570
+ R,5,3,4,5
571
+ L,5,3,5,1
572
+ L,5,3,5,2
573
+ B,5,3,5,3
574
+ R,5,3,5,4
575
+ R,5,3,5,5
576
+ L,5,4,1,1
577
+ L,5,4,1,2
578
+ L,5,4,1,3
579
+ L,5,4,1,4
580
+ L,5,4,1,5
581
+ L,5,4,2,1
582
+ L,5,4,2,2
583
+ L,5,4,2,3
584
+ L,5,4,2,4
585
+ L,5,4,2,5
586
+ L,5,4,3,1
587
+ L,5,4,3,2
588
+ L,5,4,3,3
589
+ L,5,4,3,4
590
+ L,5,4,3,5
591
+ L,5,4,4,1
592
+ L,5,4,4,2
593
+ L,5,4,4,3
594
+ L,5,4,4,4
595
+ B,5,4,4,5
596
+ L,5,4,5,1
597
+ L,5,4,5,2
598
+ L,5,4,5,3
599
+ B,5,4,5,4
600
+ R,5,4,5,5
601
+ L,5,5,1,1
602
+ L,5,5,1,2
603
+ L,5,5,1,3
604
+ L,5,5,1,4
605
+ L,5,5,1,5
606
+ L,5,5,2,1
607
+ L,5,5,2,2
608
+ L,5,5,2,3
609
+ L,5,5,2,4
610
+ L,5,5,2,5
611
+ L,5,5,3,1
612
+ L,5,5,3,2
613
+ L,5,5,3,3
614
+ L,5,5,3,4
615
+ L,5,5,3,5
616
+ L,5,5,4,1
617
+ L,5,5,4,2
618
+ L,5,5,4,3
619
+ L,5,5,4,4
620
+ L,5,5,4,5
621
+ L,5,5,5,1
622
+ L,5,5,5,2
623
+ L,5,5,5,3
624
+ L,5,5,5,4
625
+ B,5,5,5,5
@@ -0,0 +1,117 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "2d42ca1a-531d-4d5b-aee4-a489d5033d1b",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.linear_model import LinearRegression\n",
14
+ "from sklearn.metrics import r2_score"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": null,
20
+ "id": "f81220bc-5415-4b02-b2fd-fd5a8ff8c97a",
21
+ "metadata": {},
22
+ "outputs": [],
23
+ "source": [
24
+ "df = pd.read_csv('machine-data.csv')\n",
25
+ "df.head()"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "id": "958f3a04-3ae7-442b-a6e7-9134b9c5aeb3",
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": [
35
+ "x=df.iloc[:,3:4].values\n",
36
+ "y=df.iloc[:,8].values\n",
37
+ "\n",
38
+ "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)\n",
39
+ "regressor = LinearRegression()\n",
40
+ "regressor.fit(X_train, y_train)\n",
41
+ "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None)"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "id": "5b15fa5c-5c78-436b-8f33-4f431c797788",
48
+ "metadata": {},
49
+ "outputs": [],
50
+ "source": [
51
+ "y_pred = regressor.predict(X_test)\n",
52
+ "y_pred_train = regressor.predict(X_train)\n",
53
+ "print(\"Model Score: \", regressor.score(X_test, y_test))\n",
54
+ "print(\"R_square score: \", r2_score(y_test,y_pred))"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": null,
60
+ "id": "b044ea95-014e-466b-b036-8ba9f96e3910",
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "plt.scatter(X_train, y_train, color = 'red')\n",
65
+ "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
66
+ "plt.title('Y vs X (Training set)')\n",
67
+ "plt.xlabel('X')\n",
68
+ "plt.ylabel('Y')\n",
69
+ "plt.show()\n",
70
+ "plt.scatter(X_test, y_test, color = 'red')\n",
71
+ "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
72
+ "plt.title('Y vs X (Test set)')\n",
73
+ "plt.xlabel('X')"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "id": "33c64414-d432-439e-a976-d28a9b4c3f2a",
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "plt.ylabel('Y')\n",
84
+ "X_future_expereince = [[2],[4]]\n",
85
+ "print (\"Prediction :\", regressor.predict(X_future_expereince))\n",
86
+ "plt.scatter(X_future_expereince, regressor.predict(X_future_expereince),\n",
87
+ "color = 'red')\n",
88
+ "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
89
+ "plt.title('Y vs X (Test set)')\n",
90
+ "plt.xlabel('X')\n",
91
+ "plt.ylabel('Y')\n",
92
+ "plt.show()"
93
+ ]
94
+ }
95
+ ],
96
+ "metadata": {
97
+ "kernelspec": {
98
+ "display_name": "Python 3 (ipykernel)",
99
+ "language": "python",
100
+ "name": "python3"
101
+ },
102
+ "language_info": {
103
+ "codemirror_mode": {
104
+ "name": "ipython",
105
+ "version": 3
106
+ },
107
+ "file_extension": ".py",
108
+ "mimetype": "text/x-python",
109
+ "name": "python",
110
+ "nbconvert_exporter": "python",
111
+ "pygments_lexer": "ipython3",
112
+ "version": "3.12.4"
113
+ }
114
+ },
115
+ "nbformat": 4,
116
+ "nbformat_minor": 5
117
+ }