noshot 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. noshot/main.py +18 -18
  2. noshot/utils/__init__.py +2 -2
  3. noshot/utils/shell_utils.py +56 -56
  4. {noshot-0.2.5.dist-info → noshot-0.2.7.dist-info}/LICENSE.txt +20 -20
  5. {noshot-0.2.5.dist-info → noshot-0.2.7.dist-info}/METADATA +55 -55
  6. noshot-0.2.7.dist-info/RECORD +9 -0
  7. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +0 -207
  8. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +0 -626
  9. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +0 -625
  10. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +0 -287
  11. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
  12. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
  13. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +0 -83
  14. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
  15. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -625
  16. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +0 -117
  17. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +0 -210
  18. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +0 -137
  19. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +0 -179
  20. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +0 -87
  21. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -179
  22. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +0 -247
  23. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +0 -29581
  24. noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +0 -183
  25. noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +0 -172
  26. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +0 -146
  27. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +0 -37
  28. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +0 -173
  29. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +0 -3651
  30. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +0 -366
  31. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +0 -77
  32. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
  33. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -12676
  34. noshot-0.2.5.dist-info/RECORD +0 -36
  35. {noshot-0.2.5.dist-info → noshot-0.2.7.dist-info}/WHEEL +0 -0
  36. {noshot-0.2.5.dist-info → noshot-0.2.7.dist-info}/top_level.txt +0 -0
@@ -1,183 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "ac978750-0ac5-4371-a0fb-a54f8503fc64",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import numpy as np\n",
11
- "import pandas as pd\n",
12
- "import matplotlib.pyplot as plt"
13
- ]
14
- },
15
- {
16
- "cell_type": "code",
17
- "execution_count": null,
18
- "id": "1bc21b2b-ccd4-4ed9-888b-b022bd800d26",
19
- "metadata": {},
20
- "outputs": [],
21
- "source": [
22
- "np.random.seed(42)\n",
23
- "values = np.random.randn(100)\n",
24
- "values[:10]"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": null,
30
- "id": "b23f68f1-98f8-4d36-8fc8-d92eb82240ae",
31
- "metadata": {},
32
- "outputs": [],
33
- "source": [
34
- "dates = pd.date_range(start='2023-01-01',end='2023-04-10',freq='D')\n",
35
- "dates[:10]"
36
- ]
37
- },
38
- {
39
- "cell_type": "code",
40
- "execution_count": null,
41
- "id": "7c763c06-37fc-4070-b8ee-2241563a6ea4",
42
- "metadata": {},
43
- "outputs": [],
44
- "source": [
45
- "df = pd.DataFrame(values,index=dates,columns=['value'])\n",
46
- "df.head()"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "3a3555e2-1925-4a94-85a2-5ca3909a4c72",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "df['value'].plot(kind='hist',bins=20,title='value')\n",
57
- "plt.show()"
58
- ]
59
- },
60
- {
61
- "cell_type": "code",
62
- "execution_count": null,
63
- "id": "d6188560-d5ed-4093-b3b0-7da64bfa99b1",
64
- "metadata": {},
65
- "outputs": [],
66
- "source": [
67
- "df['value'].plot(kind='hist',bins=20,title='value')\n",
68
- "plt.show()"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "id": "42b76b42-0f4e-4f90-904e-ef286fa92464",
75
- "metadata": {},
76
- "outputs": [],
77
- "source": [
78
- "df['value'].plot(kind='line',figsize=(8,4),title='value')\n",
79
- "plt.show()"
80
- ]
81
- },
82
- {
83
- "cell_type": "code",
84
- "execution_count": null,
85
- "id": "e1975c05-f04e-445f-8ddb-30ea29f3e231",
86
- "metadata": {},
87
- "outputs": [],
88
- "source": [
89
- "plt.figure(figsize=(10,6))\n",
90
- "plt.plot(df['value'])\n",
91
- "plt.xlabel('Date')\n",
92
- "plt.ylabel('value')\n",
93
- "plt.title('Synthetic time series Dataset')\n",
94
- "plt.show()"
95
- ]
96
- },
97
- {
98
- "cell_type": "code",
99
- "execution_count": null,
100
- "id": "6c46e388-cba3-43ca-b5ef-b5dfd55d4418",
101
- "metadata": {},
102
- "outputs": [],
103
- "source": [
104
- "df['year'] = df.index.year\n",
105
- "df['month'] = df.index.month\n",
106
- "df['day'] = df.index.day\n",
107
- "df['weekday'] = df.index.weekday\n",
108
- "df.head()"
109
- ]
110
- },
111
- {
112
- "cell_type": "code",
113
- "execution_count": null,
114
- "id": "a09ab128-c1a1-40da-aa23-23862def187f",
115
- "metadata": {},
116
- "outputs": [],
117
- "source": [
118
- "df['lag_1']=df['value'].shift(1)\n",
119
- "df.head()"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "id": "30c06285-7362-48e2-80cb-89302f8a29e0",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": [
129
- "df['lag_2']=df['value'].shift(2)\n",
130
- "df.head()"
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "id": "9734d51b-898b-4c6b-a1cd-a30a5cdab71b",
137
- "metadata": {},
138
- "outputs": [],
139
- "source": [
140
- "df['rollling_mean_5'] = df['value'].rolling(5).mean()\n",
141
- "df['rollling_std_5'] = df['value'].rolling(5).std()\n",
142
- "df['rollling_min_5'] = df['value'].rolling(5).min()\n",
143
- "df['rollling_max_5'] = df['value'].rolling(5).max()\n",
144
- "df.head()"
145
- ]
146
- },
147
- {
148
- "cell_type": "code",
149
- "execution_count": null,
150
- "id": "44564c15-d51e-4dd8-bed9-0d5d3e340fac",
151
- "metadata": {},
152
- "outputs": [],
153
- "source": [
154
- "df['expanding_mean_5'] = df['value'].expanding(5).mean()\n",
155
- "df['expanding_std_5'] = df['value'].expanding(5).std()\n",
156
- "df['expanding_min_5'] = df['value'].expanding(5).min()\n",
157
- "df['expanding_max_5'] = df['value'].expanding(5).max()\n",
158
- "df.head()"
159
- ]
160
- }
161
- ],
162
- "metadata": {
163
- "kernelspec": {
164
- "display_name": "Python 3 (ipykernel)",
165
- "language": "python",
166
- "name": "python3"
167
- },
168
- "language_info": {
169
- "codemirror_mode": {
170
- "name": "ipython",
171
- "version": 3
172
- },
173
- "file_extension": ".py",
174
- "mimetype": "text/x-python",
175
- "name": "python",
176
- "nbconvert_exporter": "python",
177
- "pygments_lexer": "ipython3",
178
- "version": "3.12.4"
179
- }
180
- },
181
- "nbformat": 4,
182
- "nbformat_minor": 5
183
- }
@@ -1,172 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "8fba5290-f2d4-4a0e-8ee6-54eea00d0684",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import numpy as np\n",
11
- "import pandas as pd\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns"
14
- ]
15
- },
16
- {
17
- "cell_type": "code",
18
- "execution_count": null,
19
- "id": "2d6192e1-b823-40b9-bb03-0fcc1bc0ab07",
20
- "metadata": {},
21
- "outputs": [],
22
- "source": [
23
- "np.random.seed(42)\n",
24
- "dates = pd.date_range(start='2024-01-01',end='2024-04-09',freq='D')\n",
25
- "values = np.random.normal(loc=78,scale=16,size=len(dates)) #loc-Mean of Distribution, scale-Standard Deviation"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "db65f62d-4477-4f0f-bc49-852a55f4003a",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "df = pd.DataFrame(index=dates,data=values,columns=['Temperature'])\n",
36
- "df.head()"
37
- ]
38
- },
39
- {
40
- "cell_type": "code",
41
- "execution_count": null,
42
- "id": "a0a6c6ab-e310-465c-93d4-4c0cd4f4be7c",
43
- "metadata": {},
44
- "outputs": [],
45
- "source": [
46
- "df.isnull().sum()"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "ddb04850-cfc2-4b3a-b52c-e6adca900e9d",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "df.describe().T"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "c25aee71-9dcd-478a-b3df-2423395b948c",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "df.plot(kind='hist',bins=20,figsize=(8,4))\n",
67
- "plt.show()"
68
- ]
69
- },
70
- {
71
- "cell_type": "code",
72
- "execution_count": null,
73
- "id": "5b14dc33-237b-4e11-886b-4294ded57d6c",
74
- "metadata": {},
75
- "outputs": [],
76
- "source": [
77
- "df.plot(kind='kde',figsize=(8,4))\n",
78
- "plt.show()"
79
- ]
80
- },
81
- {
82
- "cell_type": "code",
83
- "execution_count": null,
84
- "id": "50b9c442-24ba-4afd-a41d-4449957ab056",
85
- "metadata": {},
86
- "outputs": [],
87
- "source": [
88
- "df.plot(kind='box',figsize=(4,4))\n",
89
- "plt.show()"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": null,
95
- "id": "8b9f0eaa-7d81-4e43-a12f-22da8992390a",
96
- "metadata": {},
97
- "outputs": [],
98
- "source": [
99
- "df.plot(kind='line',figsize=(8,4))\n",
100
- "plt.show()"
101
- ]
102
- },
103
- {
104
- "cell_type": "code",
105
- "execution_count": null,
106
- "id": "ae4b74a2-ad44-4624-bd87-98f6feef4f17",
107
- "metadata": {},
108
- "outputs": [],
109
- "source": [
110
- "plt.figure(figsize=(8,4))\n",
111
- "plt.scatter(x=df.index,y=df['Temperature'])\n",
112
- "plt.xticks(rotation=45)\n",
113
- "plt.show()"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": null,
119
- "id": "b3e047ce-c749-44e7-b250-9749649e3c1c",
120
- "metadata": {},
121
- "outputs": [],
122
- "source": [
123
- "plt.figure(figsize=(8,4))\n",
124
- "pd.plotting.autocorrelation_plot(df['Temperature'])\n",
125
- "plt.show()"
126
- ]
127
- },
128
- {
129
- "cell_type": "code",
130
- "execution_count": null,
131
- "id": "dac6bf07-c177-46cc-9206-043b77abc8d3",
132
- "metadata": {},
133
- "outputs": [],
134
- "source": [
135
- "df.corr()"
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": null,
141
- "id": "25daff75-977a-49ab-b642-f7d74dc481fb",
142
- "metadata": {},
143
- "outputs": [],
144
- "source": [
145
- "plt.figure(figsize=(3,3))\n",
146
- "sns.heatmap(df)\n",
147
- "plt.show()"
148
- ]
149
- }
150
- ],
151
- "metadata": {
152
- "kernelspec": {
153
- "display_name": "Python 3 (ipykernel)",
154
- "language": "python",
155
- "name": "python3"
156
- },
157
- "language_info": {
158
- "codemirror_mode": {
159
- "name": "ipython",
160
- "version": 3
161
- },
162
- "file_extension": ".py",
163
- "mimetype": "text/x-python",
164
- "name": "python",
165
- "nbconvert_exporter": "python",
166
- "pygments_lexer": "ipython3",
167
- "version": "3.12.4"
168
- }
169
- },
170
- "nbformat": 4,
171
- "nbformat_minor": 5
172
- }
@@ -1,146 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "6bb9403b-263b-48e3-a516-a436a771ab3d",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "import random"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "id": "e62e553d-9abb-4f4a-bf47-48df2618e1ba",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "np.random.seed(42)\n",
25
- "dates=pd.date_range('2024-01-01','2024-12-31',freq='ME')\n",
26
- "data=pd.DataFrame(data=[random.randint(0,1000) for i in range(len(dates))], index=dates,columns=['Values'])\n",
27
- "data.head()"
28
- ]
29
- },
30
- {
31
- "cell_type": "code",
32
- "execution_count": null,
33
- "id": "00fc7ac6-e20b-4203-8e76-02fb6d7cc435",
34
- "metadata": {},
35
- "outputs": [],
36
- "source": [
37
- "data.plot(kind='line')\n",
38
- "plt.show()"
39
- ]
40
- },
41
- {
42
- "cell_type": "markdown",
43
- "id": "90d4394d-e513-49d1-9f0c-17540946e676",
44
- "metadata": {},
45
- "source": [
46
- "**Up Sampling and Interpolation**"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "a5b59623-5abc-4f47-86de-f5992dd95d4b",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "upsample=data.resample('h')\n",
57
- "interpolated=upsample.interpolate(method='linear')\n",
58
- "interpolated"
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": null,
64
- "id": "b5fd4bf6-b5fd-4144-8efa-3d42d52abc72",
65
- "metadata": {},
66
- "outputs": [],
67
- "source": [
68
- "interpolated.plot(kind='line')"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "id": "fd729d40-2b9f-4cfa-8fcb-8ab950d5051a",
75
- "metadata": {},
76
- "outputs": [],
77
- "source": [
78
- "upsample=data.resample('h')\n",
79
- "interpolated=upsample.interpolate(method='spline',order=3)\n",
80
- "interpolated"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": null,
86
- "id": "453062ab-4042-4bcd-a465-ecc4375e9cbf",
87
- "metadata": {},
88
- "outputs": [],
89
- "source": [
90
- "interpolated.plot(kind='line')\n",
91
- "plt.show()"
92
- ]
93
- },
94
- {
95
- "cell_type": "markdown",
96
- "id": "6f6e70bf-15c7-4dfb-b9b1-3deae9a4226e",
97
- "metadata": {},
98
- "source": [
99
- "**Down Sampling and Interpolation**"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "bd57a941-82c1-40c8-911c-6cca58ea549b",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "downsample=interpolated.resample('QE')\n",
110
- "interpolated=downsample.mean()\n",
111
- "interpolated"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "f3427633-7ca0-4377-98d1-95099c064159",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "interpolated.plot(kind='line')"
122
- ]
123
- }
124
- ],
125
- "metadata": {
126
- "kernelspec": {
127
- "display_name": "Python 3 (ipykernel)",
128
- "language": "python",
129
- "name": "python3"
130
- },
131
- "language_info": {
132
- "codemirror_mode": {
133
- "name": "ipython",
134
- "version": 3
135
- },
136
- "file_extension": ".py",
137
- "mimetype": "text/x-python",
138
- "name": "python",
139
- "nbconvert_exporter": "python",
140
- "pygments_lexer": "ipython3",
141
- "version": "3.12.4"
142
- }
143
- },
144
- "nbformat": 4,
145
- "nbformat_minor": 5
146
- }
@@ -1,37 +0,0 @@
1
- Month,Sales
2
- 01-01,266
3
- 01-02,145.9
4
- 01-03,183.1
5
- 01-04,119.3
6
- 01-05,180.3
7
- 01-06,168.5
8
- 01-07,231.8
9
- 01-08,224.5
10
- 01-09,192.8
11
- 1-10,122.9
12
- 1-11,336.5
13
- 1-12,185.9
14
- 02-01,194.3
15
- 02-02,149.5
16
- 02-03,210.1
17
- 02-04,273.3
18
- 02-05,191.4
19
- 02-06,287
20
- 02-07,226
21
- 02-08,303.6
22
- 02-09,289.9
23
- 2-10,421.6
24
- 2-11,264.5
25
- 2-12,342.3
26
- 03-01,339.7
27
- 03-02,440.4
28
- 03-03,315.9
29
- 03-04,439.3
30
- 03-05,401.3
31
- 03-06,437.4
32
- 03-07,575.5
33
- 03-08,407.6
34
- 03-09,682
35
- 3-10,475.3
36
- 3-11,581.3
37
- 3-12,646.9
@@ -1,173 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "f01bfd82-b491-4e4c-ab74-0eb7709b20b1",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from statsmodels.tsa.stattools import kpss\n",
14
- "from statsmodels.tsa.seasonal import seasonal_decompose\n",
15
- "import warnings\n",
16
- "warnings.filterwarnings(\"ignore\")"
17
- ]
18
- },
19
- {
20
- "cell_type": "code",
21
- "execution_count": null,
22
- "id": "04a57fe7-20ae-4202-b5fd-7d4f60161871",
23
- "metadata": {},
24
- "outputs": [],
25
- "source": [
26
- "df = pd.read_csv(\"daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
27
- "print(f\"Shape: {df.shape}\")\n",
28
- "df.head()"
29
- ]
30
- },
31
- {
32
- "cell_type": "code",
33
- "execution_count": null,
34
- "id": "8ae68a42-dc21-4fdc-a69d-3c28ae65f146",
35
- "metadata": {},
36
- "outputs": [],
37
- "source": [
38
- "df.plot()\n",
39
- "plt.show()"
40
- ]
41
- },
42
- {
43
- "cell_type": "code",
44
- "execution_count": null,
45
- "id": "99bc55d6-f608-4ab3-84f0-f0b9b6e39aa8",
46
- "metadata": {},
47
- "outputs": [],
48
- "source": [
49
- "x = np.linspace(0, 12, num=200)\n",
50
- "seasonality = 1.2 * np.sin(2 * np.pi * x / 4)\n",
51
- "\n",
52
- "plt.figure(figsize=(10,6))\n",
53
- "plt.plot(x, seasonality, label = \"Seasonal Component\", color = \"g\")\n",
54
- "plt.xlabel(\"Time\")\n",
55
- "plt.ylabel(\"Value\")\n",
56
- "plt.title(\"Seasonal Signal\")\n",
57
- "plt.legend()\n",
58
- "plt.show()"
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": null,
64
- "id": "ea5377ec-67f4-4fc3-b20b-7792b937eb72",
65
- "metadata": {},
66
- "outputs": [],
67
- "source": [
68
- "df2 = pd.read_csv(\"daily-min-temperatures.csv\", parse_dates = ['Date'], index_col='Date')\n",
69
- "df2.head()"
70
- ]
71
- },
72
- {
73
- "cell_type": "code",
74
- "execution_count": null,
75
- "id": "a0d10a57-006c-4a59-b7c7-ff0c63bb6e99",
76
- "metadata": {},
77
- "outputs": [],
78
- "source": [
79
- "df2.plot(title = \"Daily Minimun Temperature\", figsize = (14, 8), legend = None)\n",
80
- "plt.xlabel(\"Date\")\n",
81
- "plt.ylabel(\"Temperature in °C\")\n",
82
- "plt.show()"
83
- ]
84
- },
85
- {
86
- "cell_type": "code",
87
- "execution_count": null,
88
- "id": "1c99e75f-5e45-4485-b54c-3b848fd428ca",
89
- "metadata": {},
90
- "outputs": [],
91
- "source": [
92
- "def kpss_test(series):\n",
93
- " statistic, p_value, n_lags, critical_values = kpss(series)\n",
94
- " print(f\"KPSS Statistic: {statistic:.4f}\")\n",
95
- " print(f\"p-value: {p_value:.4f}\")\n",
96
- " print(f\"Number of Lags: {n_lags}\")\n",
97
- " print(\"Critical Values:\")\n",
98
- " print(\"\\n\".join([f\"{key} : {value:.4f}\" for key, value in critical_values.items()]))\n",
99
- " print(f\"Result: The Series is {'not' if p_value < 0.05 else ''} Stationary\")"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "67290889-aaf5-464c-8748-7f2e3f797d0c",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "kpss_test(df)"
110
- ]
111
- },
112
- {
113
- "cell_type": "code",
114
- "execution_count": null,
115
- "id": "421d972b-3f8a-4c54-884b-4b270bf2adfb",
116
- "metadata": {},
117
- "outputs": [],
118
- "source": [
119
- "kpss_test(df2)"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "id": "dd286b94-3867-4045-b3ff-0b5693b0feab",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": [
129
- "decomposition = seasonal_decompose(df2['Temp'], model = 'additive', period = 365)\n",
130
- "\n",
131
- "trend = decomposition.trend\n",
132
- "seasonal = decomposition.seasonal\n",
133
- "residual = decomposition.resid\n",
134
- "\n",
135
- "plt.figure(figsize = (14,8))\n",
136
- "plt.subplot(411)\n",
137
- "plt.plot(df2['Temp'], label = \"Original\", color =\"g\")\n",
138
- "plt.legend(loc = \"upper left\")\n",
139
- "plt.subplot(412)\n",
140
- "plt.plot(trend, label=\"Trend\", color =\"r\")\n",
141
- "plt.legend(loc=\"upper left\")\n",
142
- "plt.subplot(413)\n",
143
- "plt.plot(seasonal, label = \"Seasonal\", color =\"y\")\n",
144
- "plt.legend(loc = \"upper left\")\n",
145
- "plt.subplot(414)\n",
146
- "plt.plot(residual, label=\"Residual\", color =\"lightblue\")\n",
147
- "plt.legend(loc=\"upper left\")\n",
148
- "plt.show()"
149
- ]
150
- }
151
- ],
152
- "metadata": {
153
- "kernelspec": {
154
- "display_name": "Python 3 (ipykernel)",
155
- "language": "python",
156
- "name": "python3"
157
- },
158
- "language_info": {
159
- "codemirror_mode": {
160
- "name": "ipython",
161
- "version": 3
162
- },
163
- "file_extension": ".py",
164
- "mimetype": "text/x-python",
165
- "name": "python",
166
- "nbconvert_exporter": "python",
167
- "pygments_lexer": "ipython3",
168
- "version": "3.12.4"
169
- }
170
- },
171
- "nbformat": 4,
172
- "nbformat_minor": 5
173
- }