noshot 0.2.4__py3-none-any.whl → 0.2.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. noshot/main.py +18 -18
  2. noshot/utils/__init__.py +2 -2
  3. noshot/utils/shell_utils.py +56 -56
  4. {noshot-0.2.4.dist-info → noshot-0.2.6.dist-info}/LICENSE.txt +20 -20
  5. {noshot-0.2.4.dist-info → noshot-0.2.6.dist-info}/METADATA +55 -55
  6. noshot-0.2.6.dist-info/RECORD +9 -0
  7. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +0 -207
  8. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +0 -626
  9. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +0 -625
  10. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +0 -287
  11. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
  12. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
  13. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +0 -83
  14. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
  15. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -625
  16. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +0 -117
  17. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +0 -210
  18. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +0 -137
  19. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +0 -179
  20. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +0 -87
  21. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -179
  22. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +0 -247
  23. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +0 -29581
  24. noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +0 -183
  25. noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +0 -172
  26. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +0 -146
  27. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +0 -37
  28. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +0 -173
  29. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +0 -3651
  30. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +0 -366
  31. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +0 -77
  32. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
  33. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -12676
  34. noshot-0.2.4.dist-info/RECORD +0 -36
  35. {noshot-0.2.4.dist-info → noshot-0.2.6.dist-info}/WHEEL +0 -0
  36. {noshot-0.2.4.dist-info → noshot-0.2.6.dist-info}/top_level.txt +0 -0
@@ -1,625 +0,0 @@
1
- B,1,1,1,1
2
- R,1,1,1,2
3
- R,1,1,1,3
4
- R,1,1,1,4
5
- R,1,1,1,5
6
- R,1,1,2,1
7
- R,1,1,2,2
8
- R,1,1,2,3
9
- R,1,1,2,4
10
- R,1,1,2,5
11
- R,1,1,3,1
12
- R,1,1,3,2
13
- R,1,1,3,3
14
- R,1,1,3,4
15
- R,1,1,3,5
16
- R,1,1,4,1
17
- R,1,1,4,2
18
- R,1,1,4,3
19
- R,1,1,4,4
20
- R,1,1,4,5
21
- R,1,1,5,1
22
- R,1,1,5,2
23
- R,1,1,5,3
24
- R,1,1,5,4
25
- R,1,1,5,5
26
- L,1,2,1,1
27
- B,1,2,1,2
28
- R,1,2,1,3
29
- R,1,2,1,4
30
- R,1,2,1,5
31
- B,1,2,2,1
32
- R,1,2,2,2
33
- R,1,2,2,3
34
- R,1,2,2,4
35
- R,1,2,2,5
36
- R,1,2,3,1
37
- R,1,2,3,2
38
- R,1,2,3,3
39
- R,1,2,3,4
40
- R,1,2,3,5
41
- R,1,2,4,1
42
- R,1,2,4,2
43
- R,1,2,4,3
44
- R,1,2,4,4
45
- R,1,2,4,5
46
- R,1,2,5,1
47
- R,1,2,5,2
48
- R,1,2,5,3
49
- R,1,2,5,4
50
- R,1,2,5,5
51
- L,1,3,1,1
52
- L,1,3,1,2
53
- B,1,3,1,3
54
- R,1,3,1,4
55
- R,1,3,1,5
56
- L,1,3,2,1
57
- R,1,3,2,2
58
- R,1,3,2,3
59
- R,1,3,2,4
60
- R,1,3,2,5
61
- B,1,3,3,1
62
- R,1,3,3,2
63
- R,1,3,3,3
64
- R,1,3,3,4
65
- R,1,3,3,5
66
- R,1,3,4,1
67
- R,1,3,4,2
68
- R,1,3,4,3
69
- R,1,3,4,4
70
- R,1,3,4,5
71
- R,1,3,5,1
72
- R,1,3,5,2
73
- R,1,3,5,3
74
- R,1,3,5,4
75
- R,1,3,5,5
76
- L,1,4,1,1
77
- L,1,4,1,2
78
- L,1,4,1,3
79
- B,1,4,1,4
80
- R,1,4,1,5
81
- L,1,4,2,1
82
- B,1,4,2,2
83
- R,1,4,2,3
84
- R,1,4,2,4
85
- R,1,4,2,5
86
- L,1,4,3,1
87
- R,1,4,3,2
88
- R,1,4,3,3
89
- R,1,4,3,4
90
- R,1,4,3,5
91
- B,1,4,4,1
92
- R,1,4,4,2
93
- R,1,4,4,3
94
- R,1,4,4,4
95
- R,1,4,4,5
96
- R,1,4,5,1
97
- R,1,4,5,2
98
- R,1,4,5,3
99
- R,1,4,5,4
100
- R,1,4,5,5
101
- L,1,5,1,1
102
- L,1,5,1,2
103
- L,1,5,1,3
104
- L,1,5,1,4
105
- B,1,5,1,5
106
- L,1,5,2,1
107
- L,1,5,2,2
108
- R,1,5,2,3
109
- R,1,5,2,4
110
- R,1,5,2,5
111
- L,1,5,3,1
112
- R,1,5,3,2
113
- R,1,5,3,3
114
- R,1,5,3,4
115
- R,1,5,3,5
116
- L,1,5,4,1
117
- R,1,5,4,2
118
- R,1,5,4,3
119
- R,1,5,4,4
120
- R,1,5,4,5
121
- B,1,5,5,1
122
- R,1,5,5,2
123
- R,1,5,5,3
124
- R,1,5,5,4
125
- R,1,5,5,5
126
- L,2,1,1,1
127
- B,2,1,1,2
128
- R,2,1,1,3
129
- R,2,1,1,4
130
- R,2,1,1,5
131
- B,2,1,2,1
132
- R,2,1,2,2
133
- R,2,1,2,3
134
- R,2,1,2,4
135
- R,2,1,2,5
136
- R,2,1,3,1
137
- R,2,1,3,2
138
- R,2,1,3,3
139
- R,2,1,3,4
140
- R,2,1,3,5
141
- R,2,1,4,1
142
- R,2,1,4,2
143
- R,2,1,4,3
144
- R,2,1,4,4
145
- R,2,1,4,5
146
- R,2,1,5,1
147
- R,2,1,5,2
148
- R,2,1,5,3
149
- R,2,1,5,4
150
- R,2,1,5,5
151
- L,2,2,1,1
152
- L,2,2,1,2
153
- L,2,2,1,3
154
- B,2,2,1,4
155
- R,2,2,1,5
156
- L,2,2,2,1
157
- B,2,2,2,2
158
- R,2,2,2,3
159
- R,2,2,2,4
160
- R,2,2,2,5
161
- L,2,2,3,1
162
- R,2,2,3,2
163
- R,2,2,3,3
164
- R,2,2,3,4
165
- R,2,2,3,5
166
- B,2,2,4,1
167
- R,2,2,4,2
168
- R,2,2,4,3
169
- R,2,2,4,4
170
- R,2,2,4,5
171
- R,2,2,5,1
172
- R,2,2,5,2
173
- R,2,2,5,3
174
- R,2,2,5,4
175
- R,2,2,5,5
176
- L,2,3,1,1
177
- L,2,3,1,2
178
- L,2,3,1,3
179
- L,2,3,1,4
180
- L,2,3,1,5
181
- L,2,3,2,1
182
- L,2,3,2,2
183
- B,2,3,2,3
184
- R,2,3,2,4
185
- R,2,3,2,5
186
- L,2,3,3,1
187
- B,2,3,3,2
188
- R,2,3,3,3
189
- R,2,3,3,4
190
- R,2,3,3,5
191
- L,2,3,4,1
192
- R,2,3,4,2
193
- R,2,3,4,3
194
- R,2,3,4,4
195
- R,2,3,4,5
196
- L,2,3,5,1
197
- R,2,3,5,2
198
- R,2,3,5,3
199
- R,2,3,5,4
200
- R,2,3,5,5
201
- L,2,4,1,1
202
- L,2,4,1,2
203
- L,2,4,1,3
204
- L,2,4,1,4
205
- L,2,4,1,5
206
- L,2,4,2,1
207
- L,2,4,2,2
208
- L,2,4,2,3
209
- B,2,4,2,4
210
- R,2,4,2,5
211
- L,2,4,3,1
212
- L,2,4,3,2
213
- R,2,4,3,3
214
- R,2,4,3,4
215
- R,2,4,3,5
216
- L,2,4,4,1
217
- B,2,4,4,2
218
- R,2,4,4,3
219
- R,2,4,4,4
220
- R,2,4,4,5
221
- L,2,4,5,1
222
- R,2,4,5,2
223
- R,2,4,5,3
224
- R,2,4,5,4
225
- R,2,4,5,5
226
- L,2,5,1,1
227
- L,2,5,1,2
228
- L,2,5,1,3
229
- L,2,5,1,4
230
- L,2,5,1,5
231
- L,2,5,2,1
232
- L,2,5,2,2
233
- L,2,5,2,3
234
- L,2,5,2,4
235
- B,2,5,2,5
236
- L,2,5,3,1
237
- L,2,5,3,2
238
- L,2,5,3,3
239
- R,2,5,3,4
240
- R,2,5,3,5
241
- L,2,5,4,1
242
- L,2,5,4,2
243
- R,2,5,4,3
244
- R,2,5,4,4
245
- R,2,5,4,5
246
- L,2,5,5,1
247
- B,2,5,5,2
248
- R,2,5,5,3
249
- R,2,5,5,4
250
- R,2,5,5,5
251
- L,3,1,1,1
252
- L,3,1,1,2
253
- B,3,1,1,3
254
- R,3,1,1,4
255
- R,3,1,1,5
256
- L,3,1,2,1
257
- R,3,1,2,2
258
- R,3,1,2,3
259
- R,3,1,2,4
260
- R,3,1,2,5
261
- B,3,1,3,1
262
- R,3,1,3,2
263
- R,3,1,3,3
264
- R,3,1,3,4
265
- R,3,1,3,5
266
- R,3,1,4,1
267
- R,3,1,4,2
268
- R,3,1,4,3
269
- R,3,1,4,4
270
- R,3,1,4,5
271
- R,3,1,5,1
272
- R,3,1,5,2
273
- R,3,1,5,3
274
- R,3,1,5,4
275
- R,3,1,5,5
276
- L,3,2,1,1
277
- L,3,2,1,2
278
- L,3,2,1,3
279
- L,3,2,1,4
280
- L,3,2,1,5
281
- L,3,2,2,1
282
- L,3,2,2,2
283
- B,3,2,2,3
284
- R,3,2,2,4
285
- R,3,2,2,5
286
- L,3,2,3,1
287
- B,3,2,3,2
288
- R,3,2,3,3
289
- R,3,2,3,4
290
- R,3,2,3,5
291
- L,3,2,4,1
292
- R,3,2,4,2
293
- R,3,2,4,3
294
- R,3,2,4,4
295
- R,3,2,4,5
296
- L,3,2,5,1
297
- R,3,2,5,2
298
- R,3,2,5,3
299
- R,3,2,5,4
300
- R,3,2,5,5
301
- L,3,3,1,1
302
- L,3,3,1,2
303
- L,3,3,1,3
304
- L,3,3,1,4
305
- L,3,3,1,5
306
- L,3,3,2,1
307
- L,3,3,2,2
308
- L,3,3,2,3
309
- L,3,3,2,4
310
- R,3,3,2,5
311
- L,3,3,3,1
312
- L,3,3,3,2
313
- B,3,3,3,3
314
- R,3,3,3,4
315
- R,3,3,3,5
316
- L,3,3,4,1
317
- L,3,3,4,2
318
- R,3,3,4,3
319
- R,3,3,4,4
320
- R,3,3,4,5
321
- L,3,3,5,1
322
- R,3,3,5,2
323
- R,3,3,5,3
324
- R,3,3,5,4
325
- R,3,3,5,5
326
- L,3,4,1,1
327
- L,3,4,1,2
328
- L,3,4,1,3
329
- L,3,4,1,4
330
- L,3,4,1,5
331
- L,3,4,2,1
332
- L,3,4,2,2
333
- L,3,4,2,3
334
- L,3,4,2,4
335
- L,3,4,2,5
336
- L,3,4,3,1
337
- L,3,4,3,2
338
- L,3,4,3,3
339
- B,3,4,3,4
340
- R,3,4,3,5
341
- L,3,4,4,1
342
- L,3,4,4,2
343
- B,3,4,4,3
344
- R,3,4,4,4
345
- R,3,4,4,5
346
- L,3,4,5,1
347
- L,3,4,5,2
348
- R,3,4,5,3
349
- R,3,4,5,4
350
- R,3,4,5,5
351
- L,3,5,1,1
352
- L,3,5,1,2
353
- L,3,5,1,3
354
- L,3,5,1,4
355
- L,3,5,1,5
356
- L,3,5,2,1
357
- L,3,5,2,2
358
- L,3,5,2,3
359
- L,3,5,2,4
360
- L,3,5,2,5
361
- L,3,5,3,1
362
- L,3,5,3,2
363
- L,3,5,3,3
364
- L,3,5,3,4
365
- B,3,5,3,5
366
- L,3,5,4,1
367
- L,3,5,4,2
368
- L,3,5,4,3
369
- R,3,5,4,4
370
- R,3,5,4,5
371
- L,3,5,5,1
372
- L,3,5,5,2
373
- B,3,5,5,3
374
- R,3,5,5,4
375
- R,3,5,5,5
376
- L,4,1,1,1
377
- L,4,1,1,2
378
- L,4,1,1,3
379
- B,4,1,1,4
380
- R,4,1,1,5
381
- L,4,1,2,1
382
- B,4,1,2,2
383
- R,4,1,2,3
384
- R,4,1,2,4
385
- R,4,1,2,5
386
- L,4,1,3,1
387
- R,4,1,3,2
388
- R,4,1,3,3
389
- R,4,1,3,4
390
- R,4,1,3,5
391
- B,4,1,4,1
392
- R,4,1,4,2
393
- R,4,1,4,3
394
- R,4,1,4,4
395
- R,4,1,4,5
396
- R,4,1,5,1
397
- R,4,1,5,2
398
- R,4,1,5,3
399
- R,4,1,5,4
400
- R,4,1,5,5
401
- L,4,2,1,1
402
- L,4,2,1,2
403
- L,4,2,1,3
404
- L,4,2,1,4
405
- L,4,2,1,5
406
- L,4,2,2,1
407
- L,4,2,2,2
408
- L,4,2,2,3
409
- B,4,2,2,4
410
- R,4,2,2,5
411
- L,4,2,3,1
412
- L,4,2,3,2
413
- R,4,2,3,3
414
- R,4,2,3,4
415
- R,4,2,3,5
416
- L,4,2,4,1
417
- B,4,2,4,2
418
- R,4,2,4,3
419
- R,4,2,4,4
420
- R,4,2,4,5
421
- L,4,2,5,1
422
- R,4,2,5,2
423
- R,4,2,5,3
424
- R,4,2,5,4
425
- R,4,2,5,5
426
- L,4,3,1,1
427
- L,4,3,1,2
428
- L,4,3,1,3
429
- L,4,3,1,4
430
- L,4,3,1,5
431
- L,4,3,2,1
432
- L,4,3,2,2
433
- L,4,3,2,3
434
- L,4,3,2,4
435
- L,4,3,2,5
436
- L,4,3,3,1
437
- L,4,3,3,2
438
- L,4,3,3,3
439
- B,4,3,3,4
440
- R,4,3,3,5
441
- L,4,3,4,1
442
- L,4,3,4,2
443
- B,4,3,4,3
444
- R,4,3,4,4
445
- R,4,3,4,5
446
- L,4,3,5,1
447
- L,4,3,5,2
448
- R,4,3,5,3
449
- R,4,3,5,4
450
- R,4,3,5,5
451
- L,4,4,1,1
452
- L,4,4,1,2
453
- L,4,4,1,3
454
- L,4,4,1,4
455
- L,4,4,1,5
456
- L,4,4,2,1
457
- L,4,4,2,2
458
- L,4,4,2,3
459
- L,4,4,2,4
460
- L,4,4,2,5
461
- L,4,4,3,1
462
- L,4,4,3,2
463
- L,4,4,3,3
464
- L,4,4,3,4
465
- L,4,4,3,5
466
- L,4,4,4,1
467
- L,4,4,4,2
468
- L,4,4,4,3
469
- B,4,4,4,4
470
- R,4,4,4,5
471
- L,4,4,5,1
472
- L,4,4,5,2
473
- L,4,4,5,3
474
- R,4,4,5,4
475
- R,4,4,5,5
476
- L,4,5,1,1
477
- L,4,5,1,2
478
- L,4,5,1,3
479
- L,4,5,1,4
480
- L,4,5,1,5
481
- L,4,5,2,1
482
- L,4,5,2,2
483
- L,4,5,2,3
484
- L,4,5,2,4
485
- L,4,5,2,5
486
- L,4,5,3,1
487
- L,4,5,3,2
488
- L,4,5,3,3
489
- L,4,5,3,4
490
- L,4,5,3,5
491
- L,4,5,4,1
492
- L,4,5,4,2
493
- L,4,5,4,3
494
- L,4,5,4,4
495
- B,4,5,4,5
496
- L,4,5,5,1
497
- L,4,5,5,2
498
- L,4,5,5,3
499
- B,4,5,5,4
500
- R,4,5,5,5
501
- L,5,1,1,1
502
- L,5,1,1,2
503
- L,5,1,1,3
504
- L,5,1,1,4
505
- B,5,1,1,5
506
- L,5,1,2,1
507
- L,5,1,2,2
508
- R,5,1,2,3
509
- R,5,1,2,4
510
- R,5,1,2,5
511
- L,5,1,3,1
512
- R,5,1,3,2
513
- R,5,1,3,3
514
- R,5,1,3,4
515
- R,5,1,3,5
516
- L,5,1,4,1
517
- R,5,1,4,2
518
- R,5,1,4,3
519
- R,5,1,4,4
520
- R,5,1,4,5
521
- B,5,1,5,1
522
- R,5,1,5,2
523
- R,5,1,5,3
524
- R,5,1,5,4
525
- R,5,1,5,5
526
- L,5,2,1,1
527
- L,5,2,1,2
528
- L,5,2,1,3
529
- L,5,2,1,4
530
- L,5,2,1,5
531
- L,5,2,2,1
532
- L,5,2,2,2
533
- L,5,2,2,3
534
- L,5,2,2,4
535
- B,5,2,2,5
536
- L,5,2,3,1
537
- L,5,2,3,2
538
- L,5,2,3,3
539
- R,5,2,3,4
540
- R,5,2,3,5
541
- L,5,2,4,1
542
- L,5,2,4,2
543
- R,5,2,4,3
544
- R,5,2,4,4
545
- R,5,2,4,5
546
- L,5,2,5,1
547
- B,5,2,5,2
548
- R,5,2,5,3
549
- R,5,2,5,4
550
- R,5,2,5,5
551
- L,5,3,1,1
552
- L,5,3,1,2
553
- L,5,3,1,3
554
- L,5,3,1,4
555
- L,5,3,1,5
556
- L,5,3,2,1
557
- L,5,3,2,2
558
- L,5,3,2,3
559
- L,5,3,2,4
560
- L,5,3,2,5
561
- L,5,3,3,1
562
- L,5,3,3,2
563
- L,5,3,3,3
564
- L,5,3,3,4
565
- B,5,3,3,5
566
- L,5,3,4,1
567
- L,5,3,4,2
568
- L,5,3,4,3
569
- R,5,3,4,4
570
- R,5,3,4,5
571
- L,5,3,5,1
572
- L,5,3,5,2
573
- B,5,3,5,3
574
- R,5,3,5,4
575
- R,5,3,5,5
576
- L,5,4,1,1
577
- L,5,4,1,2
578
- L,5,4,1,3
579
- L,5,4,1,4
580
- L,5,4,1,5
581
- L,5,4,2,1
582
- L,5,4,2,2
583
- L,5,4,2,3
584
- L,5,4,2,4
585
- L,5,4,2,5
586
- L,5,4,3,1
587
- L,5,4,3,2
588
- L,5,4,3,3
589
- L,5,4,3,4
590
- L,5,4,3,5
591
- L,5,4,4,1
592
- L,5,4,4,2
593
- L,5,4,4,3
594
- L,5,4,4,4
595
- B,5,4,4,5
596
- L,5,4,5,1
597
- L,5,4,5,2
598
- L,5,4,5,3
599
- B,5,4,5,4
600
- R,5,4,5,5
601
- L,5,5,1,1
602
- L,5,5,1,2
603
- L,5,5,1,3
604
- L,5,5,1,4
605
- L,5,5,1,5
606
- L,5,5,2,1
607
- L,5,5,2,2
608
- L,5,5,2,3
609
- L,5,5,2,4
610
- L,5,5,2,5
611
- L,5,5,3,1
612
- L,5,5,3,2
613
- L,5,5,3,3
614
- L,5,5,3,4
615
- L,5,5,3,5
616
- L,5,5,4,1
617
- L,5,5,4,2
618
- L,5,5,4,3
619
- L,5,5,4,4
620
- L,5,5,4,5
621
- L,5,5,5,1
622
- L,5,5,5,2
623
- L,5,5,5,3
624
- L,5,5,5,4
625
- B,5,5,5,5
@@ -1,117 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "2d42ca1a-531d-4d5b-aee4-a489d5033d1b",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import matplotlib.pyplot as plt\n",
12
- "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.linear_model import LinearRegression\n",
14
- "from sklearn.metrics import r2_score"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "id": "f81220bc-5415-4b02-b2fd-fd5a8ff8c97a",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "df = pd.read_csv('machine-data.csv')\n",
25
- "df.head()"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "958f3a04-3ae7-442b-a6e7-9134b9c5aeb3",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "x=df.iloc[:,3:4].values\n",
36
- "y=df.iloc[:,8].values\n",
37
- "\n",
38
- "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)\n",
39
- "regressor = LinearRegression()\n",
40
- "regressor.fit(X_train, y_train)\n",
41
- "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None)"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "5b15fa5c-5c78-436b-8f33-4f431c797788",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "y_pred = regressor.predict(X_test)\n",
52
- "y_pred_train = regressor.predict(X_train)\n",
53
- "print(\"Model Score: \", regressor.score(X_test, y_test))\n",
54
- "print(\"R_square score: \", r2_score(y_test,y_pred))"
55
- ]
56
- },
57
- {
58
- "cell_type": "code",
59
- "execution_count": null,
60
- "id": "b044ea95-014e-466b-b036-8ba9f96e3910",
61
- "metadata": {},
62
- "outputs": [],
63
- "source": [
64
- "plt.scatter(X_train, y_train, color = 'red')\n",
65
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
66
- "plt.title('Y vs X (Training set)')\n",
67
- "plt.xlabel('X')\n",
68
- "plt.ylabel('Y')\n",
69
- "plt.show()\n",
70
- "plt.scatter(X_test, y_test, color = 'red')\n",
71
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
72
- "plt.title('Y vs X (Test set)')\n",
73
- "plt.xlabel('X')"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "id": "33c64414-d432-439e-a976-d28a9b4c3f2a",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "plt.ylabel('Y')\n",
84
- "X_future_expereince = [[2],[4]]\n",
85
- "print (\"Prediction :\", regressor.predict(X_future_expereince))\n",
86
- "plt.scatter(X_future_expereince, regressor.predict(X_future_expereince),\n",
87
- "color = 'red')\n",
88
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
89
- "plt.title('Y vs X (Test set)')\n",
90
- "plt.xlabel('X')\n",
91
- "plt.ylabel('Y')\n",
92
- "plt.show()"
93
- ]
94
- }
95
- ],
96
- "metadata": {
97
- "kernelspec": {
98
- "display_name": "Python 3 (ipykernel)",
99
- "language": "python",
100
- "name": "python3"
101
- },
102
- "language_info": {
103
- "codemirror_mode": {
104
- "name": "ipython",
105
- "version": 3
106
- },
107
- "file_extension": ".py",
108
- "mimetype": "text/x-python",
109
- "name": "python",
110
- "nbconvert_exporter": "python",
111
- "pygments_lexer": "ipython3",
112
- "version": "3.12.4"
113
- }
114
- },
115
- "nbformat": 4,
116
- "nbformat_minor": 5
117
- }