noshot 0.1.9__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +2 -2
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +5 -5
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +1 -1
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +6 -48
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +39 -576
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +49 -1311
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +62 -493
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +53 -628
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +19 -238
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +8 -106
- {noshot-0.1.9.dist-info → noshot-0.2.0.dist-info}/METADATA +2 -2
- {noshot-0.1.9.dist-info → noshot-0.2.0.dist-info}/RECORD +15 -15
- {noshot-0.1.9.dist-info → noshot-0.2.0.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.9.dist-info → noshot-0.2.0.dist-info}/WHEEL +0 -0
- {noshot-0.1.9.dist-info → noshot-0.2.0.dist-info}/top_level.txt +0 -0
@@ -5,7 +5,7 @@
|
|
5
5
|
"id": "8c414eda",
|
6
6
|
"metadata": {},
|
7
7
|
"source": [
|
8
|
-
"
|
8
|
+
"##### __Machine learnings Laboratory First Lab Basic EDA and Principle components analysis__"
|
9
9
|
]
|
10
10
|
},
|
11
11
|
{
|
@@ -102,7 +102,7 @@
|
|
102
102
|
"id": "3b033918",
|
103
103
|
"metadata": {},
|
104
104
|
"source": [
|
105
|
-
"
|
105
|
+
"##### __PCA__"
|
106
106
|
]
|
107
107
|
},
|
108
108
|
{
|
@@ -5,7 +5,7 @@
|
|
5
5
|
"id": "def24f4a",
|
6
6
|
"metadata": {},
|
7
7
|
"source": [
|
8
|
-
"
|
8
|
+
"##### __Balance Scale Dataset__"
|
9
9
|
]
|
10
10
|
},
|
11
11
|
{
|
@@ -72,7 +72,7 @@
|
|
72
72
|
"id": "6702687e",
|
73
73
|
"metadata": {},
|
74
74
|
"source": [
|
75
|
-
"
|
75
|
+
"##### __class for [1,1,1,1] = R (predicted)__"
|
76
76
|
]
|
77
77
|
},
|
78
78
|
{
|
@@ -91,7 +91,7 @@
|
|
91
91
|
"id": "13d70944",
|
92
92
|
"metadata": {},
|
93
93
|
"source": [
|
94
|
-
"
|
94
|
+
"##### __Iris Dataset__"
|
95
95
|
]
|
96
96
|
},
|
97
97
|
{
|
@@ -151,7 +151,7 @@
|
|
151
151
|
"id": "06559281",
|
152
152
|
"metadata": {},
|
153
153
|
"source": [
|
154
|
-
"
|
154
|
+
"##### __class for [5.2,3.5,1.1,0.2] = virginica (predicted)__"
|
155
155
|
]
|
156
156
|
},
|
157
157
|
{
|
@@ -170,7 +170,7 @@
|
|
170
170
|
"id": "cdd56944",
|
171
171
|
"metadata": {},
|
172
172
|
"source": [
|
173
|
-
"
|
173
|
+
"##### __Iris Dataset Visualization__"
|
174
174
|
]
|
175
175
|
},
|
176
176
|
{
|
@@ -2,7 +2,7 @@
|
|
2
2
|
"cells": [
|
3
3
|
{
|
4
4
|
"cell_type": "code",
|
5
|
-
"execution_count":
|
5
|
+
"execution_count": null,
|
6
6
|
"id": "939c616d-2779-4e21-adcf-1d070898d65b",
|
7
7
|
"metadata": {},
|
8
8
|
"outputs": [],
|
@@ -15,7 +15,7 @@
|
|
15
15
|
},
|
16
16
|
{
|
17
17
|
"cell_type": "code",
|
18
|
-
"execution_count":
|
18
|
+
"execution_count": null,
|
19
19
|
"id": "17720a0d-e788-4b1d-b2b2-a542f6b824a2",
|
20
20
|
"metadata": {},
|
21
21
|
"outputs": [],
|
@@ -25,33 +25,10 @@
|
|
25
25
|
},
|
26
26
|
{
|
27
27
|
"cell_type": "code",
|
28
|
-
"execution_count":
|
28
|
+
"execution_count": null,
|
29
29
|
"id": "a050923e-4382-4ff7-93bf-446b117c0ef5",
|
30
30
|
"metadata": {},
|
31
|
-
"outputs": [
|
32
|
-
{
|
33
|
-
"data": {
|
34
|
-
"text/plain": [
|
35
|
-
"array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,\n",
|
36
|
-
" 1.065e+03],\n",
|
37
|
-
" [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,\n",
|
38
|
-
" 1.050e+03],\n",
|
39
|
-
" [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,\n",
|
40
|
-
" 1.185e+03],\n",
|
41
|
-
" ...,\n",
|
42
|
-
" [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,\n",
|
43
|
-
" 8.350e+02],\n",
|
44
|
-
" [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,\n",
|
45
|
-
" 8.400e+02],\n",
|
46
|
-
" [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,\n",
|
47
|
-
" 5.600e+02]])"
|
48
|
-
]
|
49
|
-
},
|
50
|
-
"execution_count": 3,
|
51
|
-
"metadata": {},
|
52
|
-
"output_type": "execute_result"
|
53
|
-
}
|
54
|
-
],
|
31
|
+
"outputs": [],
|
55
32
|
"source": [
|
56
33
|
"X = wine.data\n",
|
57
34
|
"X"
|
@@ -59,29 +36,10 @@
|
|
59
36
|
},
|
60
37
|
{
|
61
38
|
"cell_type": "code",
|
62
|
-
"execution_count":
|
39
|
+
"execution_count": null,
|
63
40
|
"id": "9f1a4355-718e-40ed-b892-3e3d03c4ef3c",
|
64
41
|
"metadata": {},
|
65
|
-
"outputs": [
|
66
|
-
{
|
67
|
-
"data": {
|
68
|
-
"text/plain": [
|
69
|
-
"array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
70
|
-
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
71
|
-
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,\n",
|
72
|
-
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
73
|
-
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
74
|
-
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,\n",
|
75
|
-
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
76
|
-
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
77
|
-
" 2, 2])"
|
78
|
-
]
|
79
|
-
},
|
80
|
-
"execution_count": 4,
|
81
|
-
"metadata": {},
|
82
|
-
"output_type": "execute_result"
|
83
|
-
}
|
84
|
-
],
|
42
|
+
"outputs": [],
|
85
43
|
"source": [
|
86
44
|
"y = wine.target\n",
|
87
45
|
"y"
|