noshot 0.1.8__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +784 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +1445 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +603 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +721 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +392 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- {noshot-0.1.8.dist-info → noshot-0.1.9.dist-info}/METADATA +2 -2
- {noshot-0.1.8.dist-info → noshot-0.1.9.dist-info}/RECORD +16 -5
- {noshot-0.1.8.dist-info → noshot-0.1.9.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.8.dist-info → noshot-0.1.9.dist-info}/WHEEL +0 -0
- {noshot-0.1.8.dist-info → noshot-0.1.9.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1445 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 1,
|
6
|
+
"id": "ac978750-0ac5-4371-a0fb-a54f8503fc64",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import numpy as np\n",
|
11
|
+
"import pandas as pd\n",
|
12
|
+
"import matplotlib.pyplot as plt"
|
13
|
+
]
|
14
|
+
},
|
15
|
+
{
|
16
|
+
"cell_type": "code",
|
17
|
+
"execution_count": 2,
|
18
|
+
"id": "2bdf252a-559b-48be-acce-0fcc298c4e4b",
|
19
|
+
"metadata": {},
|
20
|
+
"outputs": [],
|
21
|
+
"source": [
|
22
|
+
"np.random.seed(42)"
|
23
|
+
]
|
24
|
+
},
|
25
|
+
{
|
26
|
+
"cell_type": "code",
|
27
|
+
"execution_count": 3,
|
28
|
+
"id": "1bc21b2b-ccd4-4ed9-888b-b022bd800d26",
|
29
|
+
"metadata": {},
|
30
|
+
"outputs": [],
|
31
|
+
"source": [
|
32
|
+
"values=np.random.randn(100)"
|
33
|
+
]
|
34
|
+
},
|
35
|
+
{
|
36
|
+
"cell_type": "code",
|
37
|
+
"execution_count": 4,
|
38
|
+
"id": "ae60fe16-d892-4591-a668-47d683229e40",
|
39
|
+
"metadata": {},
|
40
|
+
"outputs": [
|
41
|
+
{
|
42
|
+
"data": {
|
43
|
+
"text/plain": [
|
44
|
+
"array([ 0.49671415, -0.1382643 , 0.64768854, 1.52302986, -0.23415337,\n",
|
45
|
+
" -0.23413696, 1.57921282, 0.76743473, -0.46947439, 0.54256004,\n",
|
46
|
+
" -0.46341769, -0.46572975, 0.24196227, -1.91328024, -1.72491783,\n",
|
47
|
+
" -0.56228753, -1.01283112, 0.31424733, -0.90802408, -1.4123037 ,\n",
|
48
|
+
" 1.46564877, -0.2257763 , 0.0675282 , -1.42474819, -0.54438272,\n",
|
49
|
+
" 0.11092259, -1.15099358, 0.37569802, -0.60063869, -0.29169375,\n",
|
50
|
+
" -0.60170661, 1.85227818, -0.01349722, -1.05771093, 0.82254491,\n",
|
51
|
+
" -1.22084365, 0.2088636 , -1.95967012, -1.32818605, 0.19686124,\n",
|
52
|
+
" 0.73846658, 0.17136828, -0.11564828, -0.3011037 , -1.47852199,\n",
|
53
|
+
" -0.71984421, -0.46063877, 1.05712223, 0.34361829, -1.76304016,\n",
|
54
|
+
" 0.32408397, -0.38508228, -0.676922 , 0.61167629, 1.03099952,\n",
|
55
|
+
" 0.93128012, -0.83921752, -0.30921238, 0.33126343, 0.97554513,\n",
|
56
|
+
" -0.47917424, -0.18565898, -1.10633497, -1.19620662, 0.81252582,\n",
|
57
|
+
" 1.35624003, -0.07201012, 1.0035329 , 0.36163603, -0.64511975,\n",
|
58
|
+
" 0.36139561, 1.53803657, -0.03582604, 1.56464366, -2.6197451 ,\n",
|
59
|
+
" 0.8219025 , 0.08704707, -0.29900735, 0.09176078, -1.98756891,\n",
|
60
|
+
" -0.21967189, 0.35711257, 1.47789404, -0.51827022, -0.8084936 ,\n",
|
61
|
+
" -0.50175704, 0.91540212, 0.32875111, -0.5297602 , 0.51326743,\n",
|
62
|
+
" 0.09707755, 0.96864499, -0.70205309, -0.32766215, -0.39210815,\n",
|
63
|
+
" -1.46351495, 0.29612028, 0.26105527, 0.00511346, -0.23458713])"
|
64
|
+
]
|
65
|
+
},
|
66
|
+
"execution_count": 4,
|
67
|
+
"metadata": {},
|
68
|
+
"output_type": "execute_result"
|
69
|
+
}
|
70
|
+
],
|
71
|
+
"source": [
|
72
|
+
"values"
|
73
|
+
]
|
74
|
+
},
|
75
|
+
{
|
76
|
+
"cell_type": "code",
|
77
|
+
"execution_count": 6,
|
78
|
+
"id": "77dabfe8-29c0-4a1e-98f7-2027e81e6e8d",
|
79
|
+
"metadata": {},
|
80
|
+
"outputs": [],
|
81
|
+
"source": [
|
82
|
+
"dates=pd.date_range(start='2023-01-01',end='2023-04-10',freq='D')"
|
83
|
+
]
|
84
|
+
},
|
85
|
+
{
|
86
|
+
"cell_type": "code",
|
87
|
+
"execution_count": 7,
|
88
|
+
"id": "b23f68f1-98f8-4d36-8fc8-d92eb82240ae",
|
89
|
+
"metadata": {},
|
90
|
+
"outputs": [
|
91
|
+
{
|
92
|
+
"data": {
|
93
|
+
"text/plain": [
|
94
|
+
"DatetimeIndex(['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04',\n",
|
95
|
+
" '2023-01-05', '2023-01-06', '2023-01-07', '2023-01-08',\n",
|
96
|
+
" '2023-01-09', '2023-01-10', '2023-01-11', '2023-01-12',\n",
|
97
|
+
" '2023-01-13', '2023-01-14', '2023-01-15', '2023-01-16',\n",
|
98
|
+
" '2023-01-17', '2023-01-18', '2023-01-19', '2023-01-20',\n",
|
99
|
+
" '2023-01-21', '2023-01-22', '2023-01-23', '2023-01-24',\n",
|
100
|
+
" '2023-01-25', '2023-01-26', '2023-01-27', '2023-01-28',\n",
|
101
|
+
" '2023-01-29', '2023-01-30', '2023-01-31', '2023-02-01',\n",
|
102
|
+
" '2023-02-02', '2023-02-03', '2023-02-04', '2023-02-05',\n",
|
103
|
+
" '2023-02-06', '2023-02-07', '2023-02-08', '2023-02-09',\n",
|
104
|
+
" '2023-02-10', '2023-02-11', '2023-02-12', '2023-02-13',\n",
|
105
|
+
" '2023-02-14', '2023-02-15', '2023-02-16', '2023-02-17',\n",
|
106
|
+
" '2023-02-18', '2023-02-19', '2023-02-20', '2023-02-21',\n",
|
107
|
+
" '2023-02-22', '2023-02-23', '2023-02-24', '2023-02-25',\n",
|
108
|
+
" '2023-02-26', '2023-02-27', '2023-02-28', '2023-03-01',\n",
|
109
|
+
" '2023-03-02', '2023-03-03', '2023-03-04', '2023-03-05',\n",
|
110
|
+
" '2023-03-06', '2023-03-07', '2023-03-08', '2023-03-09',\n",
|
111
|
+
" '2023-03-10', '2023-03-11', '2023-03-12', '2023-03-13',\n",
|
112
|
+
" '2023-03-14', '2023-03-15', '2023-03-16', '2023-03-17',\n",
|
113
|
+
" '2023-03-18', '2023-03-19', '2023-03-20', '2023-03-21',\n",
|
114
|
+
" '2023-03-22', '2023-03-23', '2023-03-24', '2023-03-25',\n",
|
115
|
+
" '2023-03-26', '2023-03-27', '2023-03-28', '2023-03-29',\n",
|
116
|
+
" '2023-03-30', '2023-03-31', '2023-04-01', '2023-04-02',\n",
|
117
|
+
" '2023-04-03', '2023-04-04', '2023-04-05', '2023-04-06',\n",
|
118
|
+
" '2023-04-07', '2023-04-08', '2023-04-09', '2023-04-10'],\n",
|
119
|
+
" dtype='datetime64[ns]', freq='D')"
|
120
|
+
]
|
121
|
+
},
|
122
|
+
"execution_count": 7,
|
123
|
+
"metadata": {},
|
124
|
+
"output_type": "execute_result"
|
125
|
+
}
|
126
|
+
],
|
127
|
+
"source": [
|
128
|
+
"dates"
|
129
|
+
]
|
130
|
+
},
|
131
|
+
{
|
132
|
+
"cell_type": "code",
|
133
|
+
"execution_count": 8,
|
134
|
+
"id": "7c763c06-37fc-4070-b8ee-2241563a6ea4",
|
135
|
+
"metadata": {},
|
136
|
+
"outputs": [],
|
137
|
+
"source": [
|
138
|
+
"df=pd.DataFrame(values,index=dates,columns=['value'])"
|
139
|
+
]
|
140
|
+
},
|
141
|
+
{
|
142
|
+
"cell_type": "code",
|
143
|
+
"execution_count": 9,
|
144
|
+
"id": "0532ee59-42f5-41bd-8570-bfd68301272a",
|
145
|
+
"metadata": {},
|
146
|
+
"outputs": [
|
147
|
+
{
|
148
|
+
"data": {
|
149
|
+
"text/html": [
|
150
|
+
"<div>\n",
|
151
|
+
"<style scoped>\n",
|
152
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
153
|
+
" vertical-align: middle;\n",
|
154
|
+
" }\n",
|
155
|
+
"\n",
|
156
|
+
" .dataframe tbody tr th {\n",
|
157
|
+
" vertical-align: top;\n",
|
158
|
+
" }\n",
|
159
|
+
"\n",
|
160
|
+
" .dataframe thead th {\n",
|
161
|
+
" text-align: right;\n",
|
162
|
+
" }\n",
|
163
|
+
"</style>\n",
|
164
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
165
|
+
" <thead>\n",
|
166
|
+
" <tr style=\"text-align: right;\">\n",
|
167
|
+
" <th></th>\n",
|
168
|
+
" <th>value</th>\n",
|
169
|
+
" </tr>\n",
|
170
|
+
" </thead>\n",
|
171
|
+
" <tbody>\n",
|
172
|
+
" <tr>\n",
|
173
|
+
" <th>2023-01-01</th>\n",
|
174
|
+
" <td>0.496714</td>\n",
|
175
|
+
" </tr>\n",
|
176
|
+
" <tr>\n",
|
177
|
+
" <th>2023-01-02</th>\n",
|
178
|
+
" <td>-0.138264</td>\n",
|
179
|
+
" </tr>\n",
|
180
|
+
" <tr>\n",
|
181
|
+
" <th>2023-01-03</th>\n",
|
182
|
+
" <td>0.647689</td>\n",
|
183
|
+
" </tr>\n",
|
184
|
+
" <tr>\n",
|
185
|
+
" <th>2023-01-04</th>\n",
|
186
|
+
" <td>1.523030</td>\n",
|
187
|
+
" </tr>\n",
|
188
|
+
" <tr>\n",
|
189
|
+
" <th>2023-01-05</th>\n",
|
190
|
+
" <td>-0.234153</td>\n",
|
191
|
+
" </tr>\n",
|
192
|
+
" <tr>\n",
|
193
|
+
" <th>...</th>\n",
|
194
|
+
" <td>...</td>\n",
|
195
|
+
" </tr>\n",
|
196
|
+
" <tr>\n",
|
197
|
+
" <th>2023-04-06</th>\n",
|
198
|
+
" <td>-1.463515</td>\n",
|
199
|
+
" </tr>\n",
|
200
|
+
" <tr>\n",
|
201
|
+
" <th>2023-04-07</th>\n",
|
202
|
+
" <td>0.296120</td>\n",
|
203
|
+
" </tr>\n",
|
204
|
+
" <tr>\n",
|
205
|
+
" <th>2023-04-08</th>\n",
|
206
|
+
" <td>0.261055</td>\n",
|
207
|
+
" </tr>\n",
|
208
|
+
" <tr>\n",
|
209
|
+
" <th>2023-04-09</th>\n",
|
210
|
+
" <td>0.005113</td>\n",
|
211
|
+
" </tr>\n",
|
212
|
+
" <tr>\n",
|
213
|
+
" <th>2023-04-10</th>\n",
|
214
|
+
" <td>-0.234587</td>\n",
|
215
|
+
" </tr>\n",
|
216
|
+
" </tbody>\n",
|
217
|
+
"</table>\n",
|
218
|
+
"<p>100 rows × 1 columns</p>\n",
|
219
|
+
"</div>"
|
220
|
+
],
|
221
|
+
"text/plain": [
|
222
|
+
" value\n",
|
223
|
+
"2023-01-01 0.496714\n",
|
224
|
+
"2023-01-02 -0.138264\n",
|
225
|
+
"2023-01-03 0.647689\n",
|
226
|
+
"2023-01-04 1.523030\n",
|
227
|
+
"2023-01-05 -0.234153\n",
|
228
|
+
"... ...\n",
|
229
|
+
"2023-04-06 -1.463515\n",
|
230
|
+
"2023-04-07 0.296120\n",
|
231
|
+
"2023-04-08 0.261055\n",
|
232
|
+
"2023-04-09 0.005113\n",
|
233
|
+
"2023-04-10 -0.234587\n",
|
234
|
+
"\n",
|
235
|
+
"[100 rows x 1 columns]"
|
236
|
+
]
|
237
|
+
},
|
238
|
+
"execution_count": 9,
|
239
|
+
"metadata": {},
|
240
|
+
"output_type": "execute_result"
|
241
|
+
}
|
242
|
+
],
|
243
|
+
"source": [
|
244
|
+
"df"
|
245
|
+
]
|
246
|
+
},
|
247
|
+
{
|
248
|
+
"cell_type": "code",
|
249
|
+
"execution_count": 15,
|
250
|
+
"id": "3a3555e2-1925-4a94-85a2-5ca3909a4c72",
|
251
|
+
"metadata": {},
|
252
|
+
"outputs": [
|
253
|
+
{
|
254
|
+
"data": {
|
255
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGxCAYAAACXwjeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiSUlEQVR4nO3de1TUdf7H8dcEMqKhhgRIhrCpaWpuXuqU5sKWFF5W8dhm5iW01vIeWkptBywVzI1sdUXbPGDbanZR8+SqsaZYuW3hdfOU5g1WxTAzDMpBYX5/9IuzE15wnOH7/cTzcc6c03zm+/3OW6dOz/Od78w43G63WwAAAIa6yuoBAAAArgQxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQPASJs3b5bD4dDmzZutHgWAxYgZAABgNGIGAAAYjZgBUCdWr14th8OhjRs31ngsOztbDodDu3fvVkFBgYYMGaKYmBgFBwcrJiZGDzzwgAoLCy/5HHFxcYqLi6ux/tBDDykmJsZjraKiQjNnzlS7du3kdDp17bXXKjk5WSdOnPD2jwjAIsQMgDrRr18/hYeHKycnp8Zjubm56tKli26++WYdPnxYN954o+bNm6cNGzZozpw5Ki4uVvfu3fX111/7ZJaqqioNGDBAmZmZGjp0qNauXavMzEzl5eUpLi5OP/zwg0+eB0DdCLR6AAD1Q2BgoIYNG6bs7GyVlpaqadOmkqTPP/9cn3zyiebPny9JGjx4sAYPHly9X2Vlpfr166eIiAgtW7ZMEydOvOJZ3njjDa1fv15vv/22Bg0aVL3euXNnde/eXbm5uXrssceu+HkA1A3OzACoM6NGjdIPP/ygFStWVK/l5OTI6XRq6NChkqSysjJNmzZNrVu3VmBgoAIDA3X11VervLxcn3/+uU/mePfdd9WsWTP1799f586dq779+te/VmRkJJ+QAgzDmRkAdaZDhw7q3r27cnJy9Ic//EGVlZV67bXXNGDAAIWGhkqShg4dqo0bN+qZZ55R9+7d1aRJEzkcDvXp08dnb/989dVX+vbbbxUUFHTex331dhaAukHMAKhTycnJGjt2rD7//HMdPHhQxcXFSk5OliSVlpbq3XffVVpamqZPn169j8vl0jfffHPJYzds2FClpaU11n8eJ2FhYWrevLnWr19/3uOEhIRczh8JgMWIGQB16oEHHlBKSopyc3N18OBBXXfddUpISJAkORwOud1uOZ1Oj31eeeUVVVZWXvLYMTExevPNN+VyuaqPcfLkSW3dulVNmjSp3q5fv356/fXXVVlZqdtuu82HfzoAViBmANSpZs2aKSkpSbm5ufr22281depUXXXVj5fvNWnSRL169dLcuXMVFhammJgY5efna8mSJWrWrNkljz18+HAtXrxYw4YN0yOPPKKTJ0/q+eef9wgZSRoyZIj+/ve/q0+fPpo0aZJuvfVWNWjQQEeOHNGmTZs0YMAAJSUl+eOPD8APuAAYQJ1LTk5WSUmJKioq9NBDD3k8tmzZMsXHx+vJJ5/UoEGDVFBQoLy8vOpPP11Mjx49tHTpUu3Zs0cDBgzQzJkzlZqaWuO7ZwICArRmzRo99dRTWrlypZKSkjRw4EBlZmaqYcOG6tSpkw//tAD8zeF2u91WDwEAAOAtzswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjGZpzGzZskX9+/dXVFSUHA6HVq9efcFtx4wZI4fDoXnz5tXZfAAAwP4sjZny8nJ17txZCxYsuOh2q1ev1r///W9FRUXV0WQAAMAUgVY+eWJiohITEy+6zdGjRzV+/Hht2LBBffv2raPJAACAKSyNmUupqqrS8OHD9cQTT6hDhw612sflcsnlcnmsOZ1OOZ1Of4wIAAAsZuuYmTNnjgIDAzVx4sRa75ORkaEZM2Z4rKWlpSk9Pd3H0wGorZjpa/127MOZnLEF6jvbxsy2bdv00ksvafv27XI4HLXeLzU1VSkpKR5rnJUBAOCXy7Yfzf7ggw9UUlKi6OhoBQYGKjAwUIWFhZoyZYpiYmIuuJ/T6VSTJk08bsQMAAC/XLY9MzN8+HDdfffdHmv33HOPhg8fruTkZIumAgAAdmNpzJSVlWn//v3V9w8dOqSdO3cqNDRU0dHRat68ucf2DRo0UGRkpG688ca6HhUAANiUpTFTUFCg+Pj46vs/XesycuRI5ebmWjQVAAAwiaUxExcXJ7fbXevtDx8+7L9hAACAkWx7ATAAAEBtEDMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxmacxs2bJF/fv3V1RUlBwOh1avXl392NmzZzVt2jR16tRJjRs3VlRUlEaMGKFjx45ZNzAAALAdS2OmvLxcnTt31oIFC2o89v3332v79u165plntH37dq1cuVL79u3T7373OwsmBQAAdhVo5ZMnJiYqMTHxvI81bdpUeXl5Hmvz58/XrbfeqqKiIkVHR9fFiAAAwOYsjZnLVVpaKofDoWbNml1wG5fLJZfL5bHmdDrldDr9PB0AALCCMRcAnzlzRtOnT9fQoUPVpEmTC26XkZGhpk2betwyMjLqcFIAAFCXjDgzc/bsWQ0ZMkRVVVVauHDhRbdNTU1VSkqKxxpnZQAA+OWyfcycPXtWv//973Xo0CG9//77Fz0rI/GWEgAA9Y2tY+ankPnyyy+1adMmNW/e3OqRAACAzVgaM2VlZdq/f3/1/UOHDmnnzp0KDQ1VVFSUBg8erO3bt+vdd99VZWWljh8/LkkKDQ1VUFCQVWMDAAAbcbjdbrdVT75582bFx8fXWB85cqTS09MVGxt73v02bdqkuLg4P08HwFdipq/127EPZ/b127EBmMHSMzNxcXG6WEtZ2FkAAMAQxnw0GwAA4HyIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgtECrBwCAKxEzfa3fjn04s6/fju0v/vr7MPHvAvUHZ2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARrM0ZrZs2aL+/fsrKipKDodDq1ev9njc7XYrPT1dUVFRCg4OVlxcnPbs2WPNsAAAwJYsjZny8nJ17txZCxYsOO/jzz//vLKysrRgwQJ9+umnioyMVO/evfXdd9/V8aQAAMCuAq188sTERCUmJp73MbfbrXnz5unpp5/WoEGDJElLly5VRESEli1bpjFjxtTlqAAAwKZse83MoUOHdPz4cSUkJFSvOZ1O/eY3v9HWrVsvuJ/L5dLp06c9bi6Xqy5GBgAAFrD0zMzFHD9+XJIUERHhsR4REaHCwsIL7peRkaEZM2Z4rKWlpSk9Pd3nMwKAN2Kmr7V6BOAXxbYx8xOHw+Fx3+1211j7X6mpqUpJSfFYczqdfpkNAABYz7YxExkZKenHMzQtWrSoXi8pKalxtuZ/OZ1O4gUAgHrEttfMxMbGKjIyUnl5edVrFRUVys/P1x133GHhZAAAwE4sPTNTVlam/fv3V98/dOiQdu7cqdDQUEVHR2vy5MmaPXu22rRpozZt2mj27Nlq1KiRhg4dauHUAADATiyNmYKCAsXHx1ff/+lal5EjRyo3N1dPPvmkfvjhB40dO1anTp3Sbbfdpvfee08hISFWjQwAAGzG4Xa73VYPAeCXzdRP7xzO7OuX45r49+GvvwvAF2x7zQwAAEBtEDMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADCaVzFz6NAhX88BAADgFa9ipnXr1oqPj9drr72mM2fO+HomAACAWvMqZnbt2qVbbrlFU6ZMUWRkpMaMGaNPPvnE17MBAABcklcx07FjR2VlZeno0aPKycnR8ePH1bNnT3Xo0EFZWVk6ceKEr+cEAAA4ryu6ADgwMFBJSUl64403NGfOHB04cEBTp05Vy5YtNWLECBUXF/tqTgAAgPO6opgpKCjQ2LFj1aJFC2VlZWnq1Kk6cOCA3n//fR09elQDBgzw1ZwAAADnFejNTllZWcrJydHevXvVp08fvfrqq+rTp4+uuurHNoqNjdXixYvVrl07nw4LAADwc17FTHZ2tkaNGqXk5GRFRkaed5vo6GgtWbLkioYDAAC4FK9i5ssvv7zkNkFBQRo5cqQ3hwcAAKg1r66ZycnJ0Ztvvllj/c0339TSpUuveCgAAIDa8ipmMjMzFRYWVmM9PDxcs2fPvuKhAAAAasurmCksLFRsbGyN9VatWqmoqOiKhwIAAKgtr2ImPDxcu3fvrrG+a9cuNW/e/IqH+sm5c+f0xz/+UbGxsQoODtavfvUrPfvss6qqqvLZcwAAALN5dQHwkCFDNHHiRIWEhKhXr16SpPz8fE2aNElDhgzx2XBz5szRokWLtHTpUnXo0EEFBQVKTk5W06ZNNWnSJJ89DwAAMJdXMTNz5kwVFhbqrrvuUmDgj4eoqqrSiBEjfHrNzL/+9S8NGDBAffv2lSTFxMRo+fLlKigo8NlzAAAAs3kVM0FBQVqxYoWee+457dq1S8HBwerUqZNatWrl0+F69uypRYsWad++fWrbtq127dqlDz/8UPPmzbvgPi6XSy6Xy2PN6XTK6XT6dDYAAGAPXsXMT9q2bau2bdv6apYapk2bptLSUrVr104BAQGqrKzUrFmz9MADD1xwn4yMDM2YMcNjLS0tTenp6X6bEwAAWMermKmsrFRubq42btyokpKSGhfkvv/++z4ZbsWKFXrttde0bNkydejQQTt37tTkyZMVFRV1wS/kS01NVUpKiscaZ2UAAPjl8ipmJk2apNzcXPXt21cdO3aUw+Hw9VySpCeeeELTp0+vvqi4U6dOKiwsVEZGxgVjhreUAACoX7yKmddff11vvPGG+vTp4+t5PHz//ffVP175k4CAAD6aDQAAqnl9AXDr1q19PUsN/fv316xZsxQdHa0OHTpox44dysrK0qhRo/z+3AAAwAxefWnelClT9NJLL8ntdvt6Hg/z58/X4MGDNXbsWLVv315Tp07VmDFj9Nxzz/n1eQEAgDm8OjPz4YcfatOmTVq3bp06dOigBg0aeDy+cuVKnwwXEhKiefPmXfSj2AAAoH7zKmaaNWumpKQkX88CAABw2byKmZycHF/PAQAA4BWvrpmRfvwRyH/+859avHixvvvuO0nSsWPHVFZW5rPhAAAALsWrMzOFhYW69957VVRUJJfLpd69eyskJETPP/+8zpw5o0WLFvl6TgAAgPPy6szMpEmT1K1bN506dUrBwcHV60lJSdq4caPPhgMAALgUrz/N9NFHHykoKMhjvVWrVjp69KhPBgMAAKgNr87MVFVVqbKyssb6kSNHFBIScsVDAQAA1JZXMdO7d2+P735xOBwqKytTWlqa33/iAAAA4H959TbTiy++qPj4eN100006c+aMhg4dqi+//FJhYWFavny5r2cEAAC4IK9iJioqSjt37tTy5cu1fft2VVVVafTo0XrwwQc9LggGAADwN69iRpKCg4M1atQofvQRAABYyquYefXVVy/6+IgRI7waBgAA4HJ5FTOTJk3yuH/27Fl9//33CgoKUqNGjYgZAABQZ7z6NNOpU6c8bmVlZdq7d6969uzJBcAAAKBOef3bTD/Xpk0bZWZm1jhrAwAA4E8+ixlJCggI0LFjx3x5SAAAgIvy6pqZNWvWeNx3u90qLi7WggUL1KNHD58MBgAAUBtexczAgQM97jscDl177bX67W9/qxdeeMEXcwEAANSKVzFTVVXl6zkAAPVUzPS1fjnu4cy+fjku7Men18wAAADUNa/OzKSkpNR626ysLG+eAgAAoFa8ipkdO3Zo+/btOnfunG688UZJ0r59+xQQEKAuXbpUb+dwOHwzJQAAwAV4FTP9+/dXSEiIli5dqmuuuUbSj1+kl5ycrDvvvFNTpkzx6ZAAAAAX4tU1My+88IIyMjKqQ0aSrrnmGs2cOZNPMwEAgDrlVcycPn1aX331VY31kpISfffdd1c8FAAAQG15FTNJSUlKTk7WW2+9pSNHjujIkSN66623NHr0aA0aNMjXMwIAAFyQV9fMLFq0SFOnTtWwYcN09uzZHw8UGKjRo0dr7ty5Ph0QAADgYryKmUaNGmnhwoWaO3euDhw4ILfbrdatW6tx48a+ng8AAOCiruhL84qLi1VcXKy2bduqcePGcrvdvpoLAACgVryKmZMnT+quu+5S27Zt1adPHxUXF0uSHn74YT6WDQAA6pRXMfP444+rQYMGKioqUqNGjarX77//fq1fv95nwwEAAFyKV9fMvPfee9qwYYNatmzpsd6mTRsVFhb6ZDAAAIDa8OrMTHl5uccZmZ98/fXXcjqdVzwUAABAbXkVM7169dKrr75afd/hcKiqqkpz585VfHy8z4YDAAC4FK/eZpo7d67i4uJUUFCgiooKPfnkk9qzZ4+++eYbffTRR76eEQAA4IK8OjNz0003affu3br11lvVu3dvlZeXa9CgQdqxY4duuOEGX88IAABwQZd9Zubs2bNKSEjQ4sWLNWPGDH/MBAAAUGuXfWamQYMG+uyzz+RwOPwxDwAAwGXx6m2mESNGaMmSJb6eBQAA4LJ5dQFwRUWFXnnlFeXl5albt241fpMpKyvLJ8MBAABcymXFzMGDBxUTE6PPPvtMXbp0kSTt27fPYxtfv/109OhRTZs2TevWrdMPP/ygtm3basmSJeratatPnwcAAJjpsmKmTZs2Ki4u1qZNmyT9+PMFf/7znxUREeGX4U6dOqUePXooPj5e69atU3h4uA4cOKBmzZr55fkAAIB5Litmfv6r2OvWrVN5eblPB/pfc+bM0fXXX6+cnJzqtZiYmIvu43K55HK5PNacTiffTAwAwC+UV9fM/OTnceNra9as0T333KP77rtP+fn5uu666zR27Fg98sgjF9wnIyOjxkfG09LSlJ6e7tdZAfzyxExfa/UIqGf8+e/c4cy+fju21S7r00wOh6PGNTH+/Ij2wYMHlZ2drTZt2mjDhg169NFHNXHiRI+fUvi51NRUlZaWetxSU1P9NiMAALDWZb/N9NBDD1W/ZXPmzBk9+uijNT7NtHLlSp8MV1VVpW7dumn27NmSpFtuuUV79uxRdna2RowYcd59eEsJAID65bJiZuTIkR73hw0b5tNhfq5Fixa66aabPNbat2+vt99+26/PCwAAzHFZMfO/F+LWhR49emjv3r0ea/v27VOrVq3qdA4AAGBfXn0DcF15/PHH9fHHH2v27Nnav3+/li1bppdfflnjxo2zejQAAGATto6Z7t27a9WqVVq+fLk6duyo5557TvPmzdODDz5o9WgAAMAmruij2XWhX79+6tevn9VjAAAAm7L1mRkAAIBLIWYAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNECrR4AsFLM9LVWj3DZDmf29duxTfz7AC7En/8++/O/Q1w+zswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjGZUzGRkZMjhcGjy5MlWjwIAAGzCmJj59NNP9fLLL+vmm2+2ehQAAGAjRsRMWVmZHnzwQf31r3/VNddcY/U4AADARoyImXHjxqlv3766++67L7mty+XS6dOnPW4ul6sOpgQAAFYItHqAS3n99de1fft2ffrpp7XaPiMjQzNmzPBYS0tLU3p6uh+mA4D6IWb6WqtHAC7I1jHz3//+V5MmTdJ7772nhg0b1mqf1NRUpaSkeKw5nU5/jAcAAGzA1jGzbds2lZSUqGvXrtVrlZWV2rJlixYsWCCXy6WAgACPfZxOJ/ECAEA9YuuYueuuu/Sf//zHYy05OVnt2rXTtGnTaoQMAACof2wdMyEhIerYsaPHWuPGjdW8efMa6wAAoH4y4tNMAAAAF2LrMzPns3nzZqtHAAAANsKZGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYLdDqAQBcnpjpa60eAQBshTMzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKPZOmYyMjLUvXt3hYSEKDw8XAMHDtTevXutHgsAANiIrWMmPz9f48aN08cff6y8vDydO3dOCQkJKi8vt3o0AABgE4FWD3Ax69ev97ifk5Oj8PBwbdu2Tb169bJoKgAAYCe2jpmfKy0tlSSFhoZecBuXyyWXy+Wx5nQ65XQ6/TobAACwhjEx43a7lZKSop49e6pjx44X3C4jI0MzZszwWEtLS1N6erqfJzRHzPS1Vo9w2Q5n9rV6BACATRkTM+PHj9fu3bv14YcfXnS71NRUpaSkeKxxVgYAgF8uI2JmwoQJWrNmjbZs2aKWLVtedFveUgIAoH6xdcy43W5NmDBBq1at0ubNmxUbG2v1SAAAwGZsHTPjxo3TsmXL9M477ygkJETHjx+XJDVt2lTBwcEWTwcAAOzA1t8zk52drdLSUsXFxalFixbVtxUrVlg9GgAAsAlbn5lxu91WjwAAAGzO1mdmAAAALoWYAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGc7jdbrfVQ5gsZvpavxz3cGZfvxxX8t/MAID6x5//v6otzswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjGZEzCxcuFCxsbFq2LChunbtqg8++MDqkQAAgE3YPmZWrFihyZMn6+mnn9aOHTt05513KjExUUVFRVaPBgAAbMD2MZOVlaXRo0fr4YcfVvv27TVv3jxdf/31ys7Otno0AABgA7aOmYqKCm3btk0JCQke6wkJCdq6det593G5XDp9+rTHzeVy1cW4AADACm4bO3r0qFuS+6OPPvJYnzVrlrtt27bn3SctLc0tyeOWlpZWB9PWH2fOnHGnpaW5z5w5Y/Uo+H+8JvbDa2I/vCb24svXw+F2u92W1tRFHDt2TNddd522bt2q22+/vXp91qxZ+tvf/qYvvviixj4ul6vGmRin0ymn0+n3eeuL06dPq2nTpiotLVWTJk2sHgfiNbEjXhP74TWxF1++HoE+mskvwsLCFBAQoOPHj3usl5SUKCIi4rz7EC4AANQvtr5mJigoSF27dlVeXp7Hel5enu644w6LpgIAAHZi6zMzkpSSkqLhw4erW7duuv322/Xyyy+rqKhIjz76qNWjAQAAG7B9zNx///06efKknn32WRUXF6tjx476xz/+oVatWlk9Wr3ldDqVlpbG23k2wmtiP7wm9sNrYi++fD1sfQEwAADApdj6mhkAAIBLIWYAAIDRiBkAAGA0YgYAABiNmAEAAEYjZuC1w4cPa/To0YqNjVVwcLBuuOEGpaWlqaKiwurR6rVZs2bpjjvuUKNGjdSsWTOrx6mXFi5cqNjYWDVs2FBdu3bVBx98YPVI9dqWLVvUv39/RUVFyeFwaPXq1VaPVK9lZGSoe/fuCgkJUXh4uAYOHKi9e/de0TGJGXjtiy++UFVVlRYvXqw9e/boxRdf1KJFi/TUU09ZPVq9VlFRofvuu0+PPfaY1aPUSytWrNDkyZP19NNPa8eOHbrzzjuVmJiooqIiq0ert8rLy9W5c2ctWLDA6lEgKT8/X+PGjdPHH3+svLw8nTt3TgkJCSovL/f6mHzPDHxq7ty5ys7O1sGDB60epd7Lzc3V5MmT9e2331o9Sr1y2223qUuXLsrOzq5ea9++vQYOHKiMjAwLJ4MkORwOrVq1SgMHDrR6FPy/EydOKDw8XPn5+erVq5dXx+DMDHyqtLRUoaGhVo8BWKKiokLbtm1TQkKCx3pCQoK2bt1q0VSAvZWWlkrSFf2/g5iBzxw4cEDz58/nd7NQb3399deqrKxURESEx3pERISOHz9u0VSAfbndbqWkpKhnz57q2LGj18chZlBDenq6HA7HRW8FBQUe+xw7dkz33nuv7rvvPj388MMWTf7L5c1rAus4HA6P+263u8YaAGn8+PHavXu3li9ffkXHsf0PTaLujR8/XkOGDLnoNjExMdX/fOzYMcXHx1f/qjl873JfE1gjLCxMAQEBNc7ClJSU1DhbA9R3EyZM0Jo1a7Rlyxa1bNnyio5FzKCGsLAwhYWF1Wrbo0ePKj4+Xl27dlVOTo6uuoqTff5wOa8JrBMUFKSuXbsqLy9PSUlJ1et5eXkaMGCAhZMB9uF2uzVhwgStWrVKmzdvVmxs7BUfk5iB144dO6a4uDhFR0frT3/6k06cOFH9WGRkpIWT1W9FRUX65ptvVFRUpMrKSu3cuVOS1Lp1a1199dXWDlcPpKSkaPjw4erWrVv12cqioiKuJbNQWVmZ9u/fX33/0KFD2rlzp0JDQxUdHW3hZPXTuHHjtGzZMr3zzjsKCQmpPpPZtGlTBQcHe3dQN+ClnJwct6Tz3mCdkSNHnvc12bRpk9Wj1Rt/+ctf3K1atXIHBQW5u3Tp4s7Pz7d6pHpt06ZN5/1vYuTIkVaPVi9d6P8bOTk5Xh+T75kBAABG4wIHAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARvs/1SNKlcT74ngAAAAASUVORK5CYII=",
|
256
|
+
"text/plain": [
|
257
|
+
"<Figure size 640x480 with 1 Axes>"
|
258
|
+
]
|
259
|
+
},
|
260
|
+
"metadata": {},
|
261
|
+
"output_type": "display_data"
|
262
|
+
}
|
263
|
+
],
|
264
|
+
"source": [
|
265
|
+
"df['value'].plot(kind='hist',bins=20,title='value')\n",
|
266
|
+
"ax=plt.gca()\n",
|
267
|
+
"ax.spines['top'].set_visible(False)\n",
|
268
|
+
"ax.spines['right'].set_visible(False)\n",
|
269
|
+
"ax.spines['left'].set_visible(False)\n",
|
270
|
+
"ax.spines['bottom'].set_visible(False)\n",
|
271
|
+
"plt.show()"
|
272
|
+
]
|
273
|
+
},
|
274
|
+
{
|
275
|
+
"cell_type": "code",
|
276
|
+
"execution_count": 18,
|
277
|
+
"id": "d6188560-d5ed-4093-b3b0-7da64bfa99b1",
|
278
|
+
"metadata": {},
|
279
|
+
"outputs": [
|
280
|
+
{
|
281
|
+
"data": {
|
282
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGxCAYAAACXwjeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAizklEQVR4nO3dfVSUdf7/8dckMqIBpiZI3sCmpqlZ3tTZNL+wJeXdenNsM/MmtNbyPrSU2o5aJpob2eqKtnnAjqvZjZonV401xcptC283T6t5CyqGdw1COijM749+zllCFMYZrusTz8c5c07XNddc89apeJ4P18w4PB6PRwAAAIa6yeoBAAAAbgQxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQPASFu2bJHD4dCWLVusHgWAxYgZAABgNGIGAAAYjZgBUCXWrFkjh8OhTZs2lbkvNTVVDodDe/bsUVZWlgYNGqTo6GiFhIQoOjpajz/+uI4ePXrd54iNjVVsbGyZ/U8++aSio6NL7SsqKtLMmTPVqlUrOZ1O3XrrrUpISNCpU6d8/SMCsAgxA6BK9O7dWw0bNlRaWlqZ+9LT09WhQwfdddddOnLkiO644w7NmzdPGzdu1Jw5c5Sbm6vOnTvr9OnTfpmlpKREffv21ezZszV48GCtW7dOs2fPVkZGhmJjY3XhwgW/PA+AqhFk9QAAqoegoCANGTJEqampcrlcCg8PlyR99913+vrrrzV//nxJ0sCBAzVw4EDv44qLi9W7d29FRERo+fLlGj9+/A3P8v7772vDhg366KOPNGDAAO/+9u3bq3PnzkpPT9ezzz57w88DoGqwMgOgyowYMUIXLlzQypUrvfvS0tLkdDo1ePBgSVJBQYGmTJmi5s2bKygoSEFBQbr55ptVWFio7777zi9zfPLJJ6pbt6769Omjy5cve2933323IiMjeYcUYBhWZgBUmTZt2qhz585KS0vTH//4RxUXF2vZsmXq27ev6tWrJ0kaPHiwNm3apJdfflmdO3dWWFiYHA6Hevbs6bdf//zwww/68ccfFRwcfNX7/fXrLABVg5gBUKUSEhI0evRofffddzp06JByc3OVkJAgSXK5XPrkk080bdo0TZ061fsYt9uts2fPXvfctWrVksvlKrP/l3HSoEED1a9fXxs2bLjqeUJDQyvzRwJgMWIGQJV6/PHHlZiYqPT0dB06dEi33Xab4uPjJUkOh0Mej0dOp7PUY9555x0VFxdf99zR0dH64IMP5Ha7vec4c+aMtm3bprCwMO9xvXv31nvvvafi4mLdd999fvzTAbACMQOgStWtW1f9+/dXenq6fvzxR02ePFk33fTz5XthYWHq1q2b5s6dqwYNGig6OlqZmZlasmSJ6tate91zDx06VIsXL9aQIUP09NNP68yZM3r99ddLhYwkDRo0SH//+9/Vs2dPTZgwQffee69q1qypY8eOafPmzerbt6/69+8fiD8+gADgAmAAVS4hIUF5eXkqKirSk08+Weq+5cuXKy4uTi+88IIGDBigrKwsZWRkeN/9dC1dunTR0qVLtXfvXvXt21czZ85UUlJSmc+eqVGjhtauXasXX3xRq1atUv/+/dWvXz/Nnj1btWrVUrt27fz4pwUQaA6Px+OxeggAAABfsTIDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKP96j80r6SkRCdOnFBoaKgcDofV4wAAgArweDw6f/68oqKivB+sWZ5ffcycOHFCTZo0sXoMAADgg5ycHDVu3Piax/zqY+bKF8bl5OSU+UhzAABgT/n5+WrSpEmFvvj1Vx8zV361FBYWRswAAGCYilwiwgXAAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMJqlMbN161b16dNHUVFRcjgcWrNmTbnHjho1Sg6HQ/Pmzauy+QAAgP1ZGjOFhYVq3769FixYcM3j1qxZo3//+9+KioqqoskAAIApLP2iyR49eqhHjx7XPOb48eMaO3asNm7cqF69elXRZAAAwBS2/tbskpISDR06VM8//7zatGlToce43W653W7vdn5+fqDGAwAANmDrmJkzZ46CgoI0fvz4Cj8mOTlZM2bMCOBUACoreuq6gJ37yGxWbIHqzrbvZtq+fbveeustpaeny+FwVPhxSUlJcrlc3ltOTk4ApwQAAFazbcx8/vnnysvLU9OmTRUUFKSgoCAdPXpUkyZNUnR0dLmPczqdCgsLK3UDAAC/Xrb9NdPQoUP10EMPldr38MMPa+jQoUpISLBoKgAAYDeWxkxBQYEOHDjg3T58+LB27dqlevXqqWnTpqpfv36p42vWrKnIyEjdcccdVT0qAACwKUtjJisrS3Fxcd7txMRESdLw4cOVnp5u0VQAAMAklsZMbGysPB5PhY8/cuRI4IYBAABGsu0FwAAAABVBzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMJqlMbN161b16dNHUVFRcjgcWrNmjfe+S5cuacqUKWrXrp3q1KmjqKgoDRs2TCdOnLBuYAAAYDuWxkxhYaHat2+vBQsWlLnvp59+0o4dO/Tyyy9rx44dWrVqlfbv36/f//73FkwKAADsKsjKJ+/Ro4d69Ohx1fvCw8OVkZFRat/8+fN17733Kjs7W02bNq2KEQEAgM1ZGjOV5XK55HA4VLdu3XKPcbvdcrvd3u38/PwqmAwAAFjFmAuAL168qKlTp2rw4MEKCwsr97jk5GSFh4d7b02aNKnCKQEAQFUzImYuXbqkQYMGqaSkRAsXLrzmsUlJSXK5XN5bTk5OFU0JAACsYPtfM126dEl/+MMfdPjwYX322WfXXJWRJKfTKafTWUXTAQAAq9k6Zq6EzPfff6/Nmzerfv36Vo8EAABsxtKYKSgo0IEDB7zbhw8f1q5du1SvXj1FRUVp4MCB2rFjhz755BMVFxfr5MmTkqR69eopODjYqrEBAICNWBozWVlZiouL824nJiZKkoYPH67p06dr7dq1kqS777671OM2b96s2NjYqhoTAADYmKUxExsbK4/HU+7917oPAABAMuTdTAAAAOUhZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YKsHgAAbkT01HUBO/eR2b0Cdu5ACdTfh4l/F6g+WJkBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGM3SmNm6dav69OmjqKgoORwOrVmzptT9Ho9H06dPV1RUlEJCQhQbG6u9e/daMywAALAlS2OmsLBQ7du314IFC656/+uvv66UlBQtWLBA33zzjSIjI9W9e3edP3++iicFAAB2FWTlk/fo0UM9evS46n0ej0fz5s3TSy+9pAEDBkiSli5dqoiICC1fvlyjRo2qylEBAIBN2faamcOHD+vkyZOKj4/37nM6nfq///s/bdu2rdzHud1u5efnl7oBAIBfL0tXZq7l5MmTkqSIiIhS+yMiInT06NFyH5ecnKwZM2YEdDYAuBHRU9dZPQLwq2LblZkrHA5HqW2Px1Nm3/9KSkqSy+Xy3nJycgI9IgAAsJBtV2YiIyMl/bxC06hRI+/+vLy8Mqs1/8vpdMrpdAZ8PgAAYA+2XZmJiYlRZGSkMjIyvPuKioqUmZmp+++/38LJAACAnVi6MlNQUKADBw54tw8fPqxdu3apXr16atq0qSZOnKhZs2apRYsWatGihWbNmqXatWtr8ODBFk4NAADsxNKYycrKUlxcnHc7MTFRkjR8+HClp6frhRde0IULFzR69GidO3dO9913nz799FOFhoZaNTIAALAZS2MmNjZWHo+n3PsdDoemT5+u6dOnV91QAADAKLa9ZgYAAKAiiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABjNp5g5fPiwv+cAAADwiU8x07x5c8XFxWnZsmW6ePGiv2cCAACoMJ9iZvfu3brnnns0adIkRUZGatSoUfr666/9PRsAAMB1+RQzbdu2VUpKio4fP660tDSdPHlSXbt2VZs2bZSSkqJTp075e04AAICruqELgIOCgtS/f3+9//77mjNnjg4ePKjJkyercePGGjZsmHJzc/01JwAAwFXdUMxkZWVp9OjRatSokVJSUjR58mQdPHhQn332mY4fP66+ffv6a04AAICrCvLlQSkpKUpLS9O+ffvUs2dPvfvuu+rZs6duuunnNoqJidHixYvVqlUrvw4LAADwSz7FTGpqqkaMGKGEhARFRkZe9ZimTZtqyZIlNzQcAADA9fgUM99///11jwkODtbw4cN9OT0AAECF+XTNTFpamj744IMy+z/44AMtXbr0hocCAACoKJ9iZvbs2WrQoEGZ/Q0bNtSsWbNueCgAAICK8ilmjh49qpiYmDL7mzVrpuzs7BseCgAAoKJ8ipmGDRtqz549Zfbv3r1b9evXv+Ghrrh8+bL+9Kc/KSYmRiEhIfrNb36jV155RSUlJX57DgAAYDafLgAeNGiQxo8fr9DQUHXr1k2SlJmZqQkTJmjQoEF+G27OnDlatGiRli5dqjZt2igrK0sJCQkKDw/XhAkT/PY8AADAXD7FzMyZM3X06FE9+OCDCgr6+RQlJSUaNmyYX6+Z+de//qW+ffuqV69ekqTo6GitWLFCWVlZfnsOAABgNp9iJjg4WCtXrtSrr76q3bt3KyQkRO3atVOzZs38OlzXrl21aNEi7d+/Xy1bttTu3bv1xRdfaN68eeU+xu12y+12e7fz8/P9OhMAALAXn2LmipYtW6ply5b+mqWMKVOmyOVyqVWrVqpRo4aKi4v12muv6fHHHy/3McnJyZoxY0bAZgIAAPbiU8wUFxcrPT1dmzZtUl5eXpkLcj/77DO/DLdy5UotW7ZMy5cvV5s2bbRr1y5NnDhRUVFR5X4gX1JSkhITE73b+fn5atKkiV/mAQAA9uNTzEyYMEHp6enq1auX2rZtK4fD4e+5JEnPP/+8pk6d6r2ouF27djp69KiSk5PLjRmn0ymn0xmQeQAAgP34FDPvvfee3n//ffXs2dPf85Ty008/eb+88ooaNWrw1mwAAODl8wXAzZs39/csZfTp00evvfaamjZtqjZt2mjnzp1KSUnRiBEjAv7cAADADD59aN6kSZP01ltvyePx+HueUubPn6+BAwdq9OjRat26tSZPnqxRo0bp1VdfDejzAgAAc/i0MvPFF19o8+bNWr9+vdq0aaOaNWuWun/VqlV+GS40NFTz5s275luxAQBA9eZTzNStW1f9+/f39ywAAACV5lPMpKWl+XsOAAAAn/h0zYz085dA/vOf/9TixYt1/vx5SdKJEydUUFDgt+EAAACux6eVmaNHj+qRRx5Rdna23G63unfvrtDQUL3++uu6ePGiFi1a5O85AQAArsqnlZkJEyaoU6dOOnfunEJCQrz7+/fvr02bNvltOAAAgOvx+d1MX375pYKDg0vtb9asmY4fP+6XwQAAACrCp5WZkpISFRcXl9l/7NgxhYaG3vBQAAAAFeVTzHTv3r3UZ784HA4VFBRo2rRpAf+KAwAAgP/l06+Z3nzzTcXFxenOO+/UxYsXNXjwYH3//fdq0KCBVqxY4e8ZAQAAyuVTzERFRWnXrl1asWKFduzYoZKSEo0cOVJPPPFEqQuCAQAAAs2nmJGkkJAQjRgxgi99BAAAlvIpZt59991r3j9s2DCfhgEAAKgsn2JmwoQJpbYvXbqkn376ScHBwapduzYxAwAAqoxP72Y6d+5cqVtBQYH27dunrl27cgEwAACoUj5/N9MvtWjRQrNnzy6zagMAABBIfosZSapRo4ZOnDjhz1MCAABck0/XzKxdu7bUtsfjUW5urhYsWKAuXbr4ZTAAAICK8Clm+vXrV2rb4XDo1ltv1e9+9zu98cYb/pgLAACgQnyKmZKSEn/PAQCopqKnrgvIeY/M7hWQ88J+/HrNDAAAQFXzaWUmMTGxwsempKT48hQAAAAV4lPM7Ny5Uzt27NDly5d1xx13SJL279+vGjVqqEOHDt7jHA6Hf6YEAAAoh08x06dPH4WGhmrp0qW65ZZbJP38QXoJCQl64IEHNGnSJL8OCQAAUB6frpl54403lJyc7A0ZSbrllls0c+ZM3s0EAACqlE8xk5+frx9++KHM/ry8PJ0/f/6GhwIAAKgon2Kmf//+SkhI0Icffqhjx47p2LFj+vDDDzVy5EgNGDDA3zMCAACUy6drZhYtWqTJkydryJAhunTp0s8nCgrSyJEjNXfuXL8OCAAAcC0+xUzt2rW1cOFCzZ07VwcPHpTH41Hz5s1Vp04df88HAABwTTf0oXm5ubnKzc1Vy5YtVadOHXk8Hn/NBQAAUCE+xcyZM2f04IMPqmXLlurZs6dyc3MlSU899RRvywYAAFXKp5h57rnnVLNmTWVnZ6t27dre/Y899pg2bNjgt+EAAACux6drZj799FNt3LhRjRs3LrW/RYsWOnr0qF8GAwAAqAifVmYKCwtLrchccfr0aTmdzhseCgAAoKJ8iplu3brp3Xff9W47HA6VlJRo7ty5iouL89twAAAA1+PTr5nmzp2r2NhYZWVlqaioSC+88IL27t2rs2fP6ssvv/T3jAAAAOXyaWXmzjvv1J49e3Tvvfeqe/fuKiws1IABA7Rz507dfvvt/p4RAACgXJVembl06ZLi4+O1ePFizZgxIxAzAQAAVFilV2Zq1qypb7/9Vg6HIxDzAAAAVIpPv2YaNmyYlixZ4u9ZAAAAKs2nC4CLior0zjvvKCMjQ506dSrznUwpKSl+GQ4AAOB6KhUzhw4dUnR0tL799lt16NBBkrR///5Sx/j710/Hjx/XlClTtH79el24cEEtW7bUkiVL1LFjR78+DwAAMFOlYqZFixbKzc3V5s2bJf389QV/+ctfFBEREZDhzp07py5duiguLk7r169Xw4YNdfDgQdWtWzcgzwcAAMxTqZj55bdir1+/XoWFhX4d6H/NmTNHTZo0UVpamndfdHT0NR/jdrvldru92/n5+YEaDwAA2IBP18xc8cu48be1a9fq4Ycf1qOPPqrMzEzddtttGj16tJ5++ulyH5OcnMxbxgH4RfTUdVaPgGomkP/OHZndK2Dntlql3s3kcDjKXBMTyLdoHzp0SKmpqWrRooU2btyoZ555RuPHjy/1VQq/lJSUJJfL5b3l5OQEbD4AAGC9Sv+a6cknn/R+meTFixf1zDPPlHk306pVq/wyXElJiTp16qRZs2ZJku655x7t3btXqampGjZs2FUf43Q6+bJLAACqkUrFzPDhw0ttDxkyxK/D/FKjRo105513ltrXunVrffTRRwF9XgAAYI5Kxcz/XohbFbp06aJ9+/aV2rd//341a9asSucAAAD25dMnAFeV5557Tl999ZVmzZqlAwcOaPny5Xr77bc1ZswYq0cDAAA2YeuY6dy5s1avXq0VK1aobdu2evXVVzVv3jw98cQTVo8GAABs4obeml0Vevfurd69e1s9BgAAsClbr8wAAABcDzEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIwWZPUAgJWip66zeoRKOzK7V8DObeLfB1CeQP77HMj/DlF5rMwAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjGZUzCQnJ8vhcGjixIlWjwIAAGzCmJj55ptv9Pbbb+uuu+6yehQAAGAjRsRMQUGBnnjiCf3tb3/TLbfcYvU4AADARoyImTFjxqhXr1566KGHrnus2+1Wfn5+qRsAAPj1CrJ6gOt57733tGPHDn3zzTcVOj45OVkzZswI8FQAUL1ET11n9QhAuWy9MpOTk6MJEyZo2bJlqlWrVoUek5SUJJfL5b3l5OQEeEoAAGAlW6/MbN++XXl5eerYsaN3X3FxsbZu3aoFCxbI7XarRo0apR7jdDrldDqrelQAAGARW8fMgw8+qP/85z+l9iUkJKhVq1aaMmVKmZABAADVj61jJjQ0VG3bti21r06dOqpfv36Z/QAAoHqy9TUzAAAA12PrlZmr2bJli9UjAAAAG2FlBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGC7J6AACVEz11ndUjAICtsDIDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMJqtYyY5OVmdO3dWaGioGjZsqH79+mnfvn1WjwUAAGzE1jGTmZmpMWPG6KuvvlJGRoYuX76s+Ph4FRYWWj0aAACwiSCrB7iWDRs2lNpOS0tTw4YNtX37dnXr1s2iqQAAgJ3YOmZ+yeVySZLq1atX7jFut1tut9u7nZ+fH/C5AACAdYyJGY/Ho8TERHXt2lVt27Yt97jk5GTNmDGjCiczT/TUdVaPUGlHZveyegQAgE3Z+pqZ/zV27Fjt2bNHK1asuOZxSUlJcrlc3ltOTk4VTQgAAKxgxMrMuHHjtHbtWm3dulWNGze+5rFOp1NOp7OKJgMAAFazdcx4PB6NGzdOq1ev1pYtWxQTE2P1SAAAwGZsHTNjxozR8uXL9fHHHys0NFQnT56UJIWHhyskJMTi6QAAgB3Y+pqZ1NRUuVwuxcbGqlGjRt7bypUrrR4NAADYhK1XZjwej9UjAAAAm7P1ygwAAMD1EDMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGgOj8fjsXqIQMrPz1d4eLhcLpfCwsL8fv7oqev8fk5JOjK7V0DOKwVuZgBA9ROon1eV+fnNygwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaEbEzMKFCxUTE6NatWqpY8eO+vzzz60eCQAA2ITtY2blypWaOHGiXnrpJe3cuVMPPPCAevTooezsbKtHAwAANmD7mElJSdHIkSP11FNPqXXr1po3b56aNGmi1NRUq0cDAAA2EGT1ANdSVFSk7du3a+rUqaX2x8fHa9u2bVd9jNvtltvt9m67XC5JUn5+fkBmLHH/FJDzBmpeKXAzAwCqn0D9vLpyXo/Hc91jbR0zp0+fVnFxsSIiIkrtj4iI0MmTJ6/6mOTkZM2YMaPM/iZNmgRkxkAJn2f1BAAAXF+gf16dP39e4eHh1zzG1jFzhcPhKLXt8XjK7LsiKSlJiYmJ3u2SkhKdPXtW9evXL/cxqJz8/Hw1adJEOTk5CgsLs3ociNfEjnhN7IfXxF6u93p4PB6dP39eUVFR1z2XrWOmQYMGqlGjRplVmLy8vDKrNVc4nU45nc5S++rWrRuoEau1sLAw/odgM7wm9sNrYj+8JvZyrdfjeisyV9j6AuDg4GB17NhRGRkZpfZnZGTo/vvvt2gqAABgJ7ZemZGkxMREDR06VJ06ddJvf/tbvf3228rOztYzzzxj9WgAAMAGbB8zjz32mM6cOaNXXnlFubm5atu2rf7xj3+oWbNmVo9WbTmdTk2bNq3Mr/NgHV4T++E1sR9eE3vx5+vh8FTkPU8AAAA2ZetrZgAAAK6HmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2Ygc+OHDmikSNHKiYmRiEhIbr99ts1bdo0FRUVWT1atfbaa6/p/vvvV+3atfn0a4ssXLhQMTExqlWrljp27KjPP//c6pGqta1bt6pPnz6KioqSw+HQmjVrrB6pWktOTlbnzp0VGhqqhg0bql+/ftq3b98NnZOYgc/++9//qqSkRIsXL9bevXv15ptvatGiRXrxxRetHq1aKyoq0qOPPqpnn33W6lGqpZUrV2rixIl66aWXtHPnTj3wwAPq0aOHsrOzrR6t2iosLFT79u21YMECq0eBpMzMTI0ZM0ZfffWVMjIydPnyZcXHx6uwsNDnc/I5M/CruXPnKjU1VYcOHbJ6lGovPT1dEydO1I8//mj1KNXKfffdpw4dOig1NdW7r3Xr1urXr5+Sk5MtnAzSz19cvHr1avXr18/qUfD/nTp1Sg0bNlRmZqa6devm0zlYmYFfuVwu1atXz+oxAEsUFRVp+/btio+PL7U/Pj5e27Zts2gqwN5cLpck3dDPDmIGfnPw4EHNnz+f781CtXX69GkVFxcrIiKi1P6IiAidPHnSoqkA+/J4PEpMTFTXrl3Vtm1bn89DzKCM6dOny+FwXPOWlZVV6jEnTpzQI488okcffVRPPfWURZP/evnymsA6Doej1LbH4ymzD4A0duxY7dmzRytWrLih89j+iyZR9caOHatBgwZd85jo6GjvP584cUJxcXHebzWH/1X2NYE1GjRooBo1apRZhcnLyyuzWgNUd+PGjdPatWu1detWNW7c+IbORcygjAYNGqhBgwYVOvb48eOKi4tTx44dlZaWpptuYrEvECrzmsA6wcHB6tixozIyMtS/f3/v/oyMDPXt29fCyQD78Hg8GjdunFavXq0tW7YoJibmhs9JzMBnJ06cUGxsrJo2bao///nPOnXqlPe+yMhICyer3rKzs3X27FllZ2eruLhYu3btkiQ1b95cN998s7XDVQOJiYkaOnSoOnXq5F2tzM7O5loyCxUUFOjAgQPe7cOHD2vXrl2qV6+emjZtauFk1dOYMWO0fPlyffzxxwoNDfWuZIaHhyskJMS3k3oAH6WlpXkkXfUG6wwfPvyqr8nmzZutHq3a+Otf/+pp1qyZJzg42NOhQwdPZmam1SNVa5s3b77qfxPDhw+3erRqqbyfG2lpaT6fk8+ZAQAARuMCBwAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEb7fwIxBEmi2uk7AAAAAElFTkSuQmCC",
|
283
|
+
"text/plain": [
|
284
|
+
"<Figure size 640x480 with 1 Axes>"
|
285
|
+
]
|
286
|
+
},
|
287
|
+
"metadata": {},
|
288
|
+
"output_type": "display_data"
|
289
|
+
}
|
290
|
+
],
|
291
|
+
"source": [
|
292
|
+
"df['value'].plot(kind='hist',bins=20,title='value')\n",
|
293
|
+
"ax=plt.gca()\n",
|
294
|
+
"ax.spines['top'].set_visible(True)\n",
|
295
|
+
"ax.spines['right'].set_visible(True)\n",
|
296
|
+
"ax.spines['left'].set_visible(True)\n",
|
297
|
+
"ax.spines['bottom'].set_visible(True)\n",
|
298
|
+
"plt.show()"
|
299
|
+
]
|
300
|
+
},
|
301
|
+
{
|
302
|
+
"cell_type": "code",
|
303
|
+
"execution_count": 21,
|
304
|
+
"id": "42b76b42-0f4e-4f90-904e-ef286fa92464",
|
305
|
+
"metadata": {},
|
306
|
+
"outputs": [
|
307
|
+
{
|
308
|
+
"data": {
|
309
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAAGECAYAAACf0yDzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuWklEQVR4nO29ebwkdXX3/6ne737n3jt39pWBYRlANhFEhUQRFEQMRiWoqFlUXBKe5FFj4pJHxRhjfB5N/JmoYKIGNUFFiAsugIjIIsM6DDD7Pnffb6/1+6PrfOvb1bV3VXXd7vN+veYFc29Pd3V31bfO93PO+RxFVVUVDMMwDMMwDBMyiWYfAMMwDMMwDNMecODJMAzDMAzDRAIHngzDMAzDMEwkcODJMAzDMAzDRAIHngzDMAzDMEwkcODJMAzDMAzDRAIHngzDMAzDMEwkcODJMAzDMAzDRAIHngzDMAzDMEwkcODJMAwTEXfffTcURcHdd9/d7ENhGIZpChx4MgzDMAzDMJHAgSfDMAzDMAwTCRx4MgzDWPD9738fiqLg5z//ed3vvvSlL0FRFDz++ON4+OGH8cY3vhEbN25ER0cHNm7ciDe96U3Yt2+f42tcfPHFuPjii+t+fv3112Pjxo01PysUCvjEJz6Bk08+GdlsFsuXL8fb3vY2jIyM+H2LDMMwkcKBJ8MwjAVXXHEFhoeHcfPNN9f97pZbbsHZZ5+NM844A3v37sXWrVvx+c9/Hj/5yU/w93//9zhy5AjOO+88jI6OBnIslUoFV111FT796U/j2muvxZ133olPf/rTuOuuu3DxxRdjYWEhkNdhGIYJk1SzD4BhGCaupFIpXHfddfjSl76Eqakp9PX1AQB27NiBBx98EF/4whcAANdccw2uueYa8e/K5TKuuOIKrFixAt/61rfwvve9r+Fj+c53voMf//jH+O///m+87nWvEz8/88wzcd555+GWW27Bu971roZfh2EYJkxY8WQYhrHh7W9/OxYWFvDtb39b/Ozmm29GNpvFtddeCwCYnZ3FBz7wAWzZsgWpVAqpVArd3d2Ym5vDjh07AjmOO+64A/39/bjyyitRKpXEnxe84AVYuXIld8ozDLMkYMWTYRjGhtNOOw3nnXcebr75Zvzpn/4pyuUyvvGNb+Cqq67CwMAAAODaa6/Fz3/+c/zt3/4tzjvvPPT29kJRFLzqVa8KLAV+7NgxTE5OIpPJmP4+qJQ+wzBMmHDgyTAM48Db3vY2vPvd78aOHTuwe/duHDlyBG9729sAAFNTU7jjjjvw0Y9+FB/84AfFv8nn8xgfH3d87lwuh6mpqbqfGwPJoaEhDA4O4sc//rHp8/T09Hh5SwzDME2BA0+GYRgH3vSmN+HGG2/ELbfcgt27d2PNmjW49NJLAQCKokBVVWSz2Zp/85WvfAXlctnxuTdu3Ijvfve7yOfz4jnGxsZw//33o7e3VzzuiiuuwK233opyuYzzzz8/wHfHMAwTHRx4MgzDONDf34+rr74at9xyCyYnJ/GXf/mXSCSqJfK9vb146Utfin/4h3/A0NAQNm7ciHvuuQdf/epX0d/f7/jcb37zm/HlL38Z1113Hf7kT/4EY2Nj+MxnPlMTdALAG9/4Rnzzm9/Eq171Krz//e/HC1/4QqTTaRw8eBC//OUvcdVVV+Hqq68O4+0zDMMEBjcXMQzDuOBtb3sbjh8/jkKhgOuvv77md9/61rdwySWX4H//7/+N173udXj44Ydx1113iS54O1784hfj61//Op566ilcddVV+MQnPoEPfehDdd6eyWQSt99+O/76r/8at912G66++mq89rWvxac//WnkcjmcfvrpAb5bhmGYcFBUVVWbfRAMwzAMwzBM68OKJ8MwDMMwDBMJHHgyDMMwDMMwkcCBJ8MwDMMwDBMJHHgyDMMwDMMwkcCBJ8MwDMMwDBMJHHgyDMMwDMMwkRDrwFNVVUxPT4MdnxiGYRiGYZY+sQ48Z2Zm0NfXh5mZmWYfCsMwDMMwDNMgoQaeN910E8477zz09PRgeHgYr33ta7Fz584wX5JhGIZhGIaJKaEGnvfccw9uuOEGPPDAA7jrrrtQKpVw6aWXYm5uLsyXZRiGYRiGYWJIpCMzR0ZGMDw8jHvuuQcvfelLHR8/PT2Nvr4+TE1Nobe3N4IjZBiGYRiGYcIiFeWLTU1NAQAGBgZMf5/P55HP58Xfp6enIzkuhmEYhmEYJnwiay5SVRU33ngjLrroImzbts30MTfddBP6+vrEn3Xr1kV1eAzDMAzDMEzIRJZqv+GGG3DnnXfivvvuw9q1a00fY6Z4rlu3jlPtDMMwDMMwLUAkqfb3vve9uP3223HvvfdaBp0AkM1mkc1mozgkhmEYhmEYJmJCDTxVVcV73/tefO9738Pdd9+NTZs2hflyDMMwDMMwTIwJNfC84YYb8K1vfQs/+MEP0NPTg6NHjwIA+vr60NHREeZLMwzDMAzDMDEj1BpPRVFMf37zzTfj+uuvd/z3bKfEMAzDMAzTOoSeamcYhmEYhmEYIOaz2hmGYRiGYZjWgQNPhok5//XIQbzsH36J547NNPtQGIZhGKYhOPBkmJjzoyeOYN/YPO57frTZh8IwDMMwDcGBJ8PEnIViGQAwly81+UgYhmEYpjE48GSYmEOB5wwHngzDMMwShwNPhok5CwVWPBmGYZjWgANPhok5pHjOLnLgyTAMwyxtOPBkmJgzrymes6x4MgzDMEscDjwZJuYsaoHnDCueDMMwzBKHA0+GiTGqqmKeutoLHHgyDMMwSxsOPBkmxhTLKsqV6uhZrvFkGIZhljoceDJMjKGOdoBrPBmGYZilDweeDBNjqKMd4MCTYRiGWfpw4MkwMUYOPBeLFRTLlSYeDcMwDMM0BgeeDBNj5g0NRWwizzAMwyxlOPBkmBizKCmeAFsqMQzDMEsbDjwZJsbMF2oDT7ZUYhiGYZYyHHgyTIxZMASebKnEMAzDLGU48PTIfKGE677yW3z1vj3NPhSmDVgwptq5xpNhGIZZwnDg6ZFH90/ivudH8W/37m72oTBtgFHx5OYihmGI2x87jEs+ezd2HJlu9qEwjGs48PTIzGIRAHBsZhGFElvbMOFiVDw51c4wrcue0TlMzBVcP/5/Hj+CPaNz+PXzoyEeFcMES9sEnrtHZvH88dmGn4e6ilUVODq12PDzMYwdxuYiNpFnmNbk+MwiLv2ne3DdV3/r+t9Ma0JIsayGdVgMEzhtEXgWShVc/S/34+p/+TXypbLzP7BBvvEfnJhv9NAYxha2U2KY9mDPyByKZRW7RtwLJHrgydk3ZunQFoHn0alFTC0UMbNYwtR8saHnklOdBycXGj00hrGlzk6JFU+GaUnGtBT7YrHiWiCZXqiuB1z2xSwl2iLwPDylB4jTDSpGMzWKJweeTLhQjWcmVb1UOdXOMK3JmFTb6Taz0eqKZ6Wi4lu/3Y9njnLzVCvRFoHnESnwpOYgv8gLwiEOPANnx5Fp3PCt32G3h3RTK0Nd7cu7swDYTolhWpWx2bz4/6kF5/uUqqqY1h5XaNHA84E9Y/jr7z2Bj3z/qWYfChMgbRF4Hp7Um4AaVYy4xjNcvv3QAdz5+BH81yMHm30osYACz6GeauDJXe0M05qMzeqK57SLwHOuUEZF6ylqVcWTsoqjUlDOLH3aJPCUFc8GA09JMT3ENZ6BM6+NhHSz428H5rVU+7AWeHKNJ8O0JmNzenDlpiRMDk6LpdbsaqeAk0uMWou2CDyPSLZHjSpG8gVwZGoRpRbdaTaLxWL18+Tu7SqLlGonxZMXYIZpSbwqntOSCNKqiufoTPUz4Q13a9EWgaeseE4HWONZrqg4NsMpgCAh+6BGv6dWgZqLRI0nB+QM05LIzUVuMj7U0Q60bo0nKZ5zhTIqldZUdduRtgs8g6zxBICD41znGSSLJVY8Zaj0gBTPuQJ/LgzTisjNRW423jWp9hYPPAG97IhZ+rR84DmXL9XUyzRc46kFnit6q4EAWyoFCymejboPtApUejAsNRepKu/8GaaVKJUrmJA8pmU10wo5OG1VH8+awJPT7S1DyweespUS0FhAo6qqqBE9eWUvAG4wCpq8CDx5kQHqFc9SRUW+RW8yDBMV3/ztPlz5hftwbDoeY48nDINNvCuerbkZHZXqXrm+vXVo+cBTtlICGjt5F4sVlLQ6k5NX9gBgS6WgyXOqvQaq8RzSajwB/mwYplFu/vVePHFoCr9+frTZhwKgtqMdcFnjudjaNZ5VFVgPPOfynGpvFdog8DQqnv5v2jP56mKgKMCJK6qBJyuewUKp9tl8CeU2LyavVFSRau/MJNGdTQHgDk+GaYTFYlkMqIiLbZvc0Q647Gpv8RrP8fkC5KoiVjxbh9YPPDUrJUpVNhJ4Upq9O5PCumUdALjGM2go0AJ4oVmU5jV3SIFnu38uDNMIzx6bEcbrk/PxCDyNBumufDxb3E6JrJQI3nC3Di0feB7RFMmtmkLZSI0n3fC7cymsHegEUFVU2eYhOORgy82uv5WZL+ifRS6VRFc2CYBT7QzTCDuO6HO/46J4jmtWSkIg8Win1IoG8sZgnB09WofWDzw1xXOrVpPZiFpEimdPLoUVPVkkEwqKZRXH2cszMBYly4x2D7BoXGYunUAioaA7lwbAiifDNMLTh/XAc3K+YPPI6KBU++ahLgBuazxbXPE0Bp5c49kytHzgSTWeJ63oBtBojaemeGZTSCUTWNWXAwAcmuQGoyBQVbUm1d7ulkoUhHdmqin2Hq7xZJiG2XFkRvz/ZEwUT2ou2ry8GnhOLxYdbdNq7JTaIvDkda9VaOnAU1VVHJ6iwLOqeM4Xyr7HXIoaT015WtPPdZ5BYrQJanfFk1LtHelqip1qPGd4AWYYX6iqih1HZcUzHoEn2QZt0hTPYrl2E25GzeSiFrRYMzZccaandWjpwHNyviguXupCB/xL9nTik/K0dlm1zpMDz2DIGxZachFoV8hKqSNTDTy7qLmozQNyhvHLwYmFmg1tXGo8aWrR+oFOJBMKAOdja/VU+4j2mdDnwYpn69DSgSepnUPdGXRnU8imqm/X7xxwSv2S8rSGO9sDRW4sAljxXDAonj05TrUzTCNQYxFdU3Gp8aTmosHuLHq169zuPqWqassbyJMKvFa7z3JzUevQ2oGnZh6/qq964vY02JwxI3W1A/oFwSbywbBY5MBTRiiehlQ7p5wYxh9U33nuxmUAqqpiHFxJKK082JVBb0f1PmXn6jFXKEM+7Jas8ZzRVWAAmOXmopahpQNPGpe5ur/aBESKkd+ARtR4Uqpdq/FkE/lgMNZ4+lWmWwVR46ml2rsbPH8Zpt0hxfNFmwcBABW1+TXTi8WyOIaq4qkFnjbrnzEoLZYrjs1ISw1qLtowWA08eVZ769DSgWe94kmKkb+ARtR45mprPA9NLLTcRd8MjIqnXDzfjhgVT1Hj2ea1rwzjF2osesG6fnFdTTW5wYjS7Omkgt5cCn2a4mlX40lBaTpZrX9UVbTUpLdKRcWY9rlsHKw2XHGmp3Vo6cAzLMWTnmdlXw6KUlXqRmfjUSu0lDF2cba9nVKB7JS0Gk9hp8QpJ4bxymy+hH1j1bKoU1b1or+zGuBNLjR37abAc6ArA0VR0Nuh1XjabLzpd4NdWfGzVqrznFooikB6nZZq5xrP1qGlA0/y8CTFk1LkbsaRmaH7eFYXrEwqgZW91aCW6zwbh2s8a6FUey7DdkoM0yjPaGn2Fb1ZDHRlhLLYbEslSilTEClS7XaKp/a7we6M+Fkr1XnSZ9LXkcayzup75A1369DigWc11b6639Bc1GiNp6Z4ArqXJ9d5Nk594Nneiiel2juNqfY2/1wYxg9U33nKql4AEIpnsy2VRGORFkSK5iK7Gk/tdwNdUuDZQl6eZKU01J0Ro4I51d46tGzgWa6oODZNgWdVlRSKkc8b92y+trkIkDvbOfBslEVt4dRs29pe8VzQUkvUXKTXKLf358Iwfnha62g/VQs8heLZ7MBzjhTPahDpqsZT+11vRxoZzSawlbw8qXRtqDsr7rdsI9c6tGzgOTqbR6miIplQMNxTDTx7G7xxU8Dak5MDT73BiGkMUjwHtJRT2weeRZrVXptq55QTw3inTvHsqAZ6U0328hyTPDwB/T5lW+OprY29uTQyyRYMPDUrpaGerBgZPF8ox8L6immclg08KfW9oicrJh80Ykejqqqp4rmGvTwDI68FWst7KPBs75TyvKG5qFvaOPEC3FzGZvPsZLGEKFdU7DxaVTyNqfZm13j6SrULxTMlOttbKvCkVHtXpuZ+O1/kTXcrEGrgee+99+LKK6/E6tWroSgKvv/974f5cjUcMdR3AnqNp5/AM1+qiK7B7lx9qp1rPBuHutop8JwrlFFqocXUK4sWBvIAd3g2kx8/eQTnfOJn+Nd7dzf7UBiX7Bubw0KxjFw6Ieah93XGJNUugixDc5GLGs/eXBppTfEslFpnIyQCz+4scumEKL/idHtrEGrgOTc3hzPPPBNf/OIXw3wZU8hKaVVN4Om/xlNOz3dl6puLDrKXZ8PktZGZy7t1i5B2rmc0GshnUwmkxNxi3vk3i8cPTgEAHtg91uQjccfBiXn82727YzMeshnQxKKtK3pEBoxS7U1XPCU7JUBXPO1rPEvisekWTLWTCjzUk4WiKJKHcfveD1qJlPND/HP55Zfj8ssvD/MlLBEd7X058TO9ucj7yStPLaKFC9AV1flCGRPzxZouQ8YbpHj25FLIpRNYLFYws1hCf2d7fqZGA3lFUdCdS2FyvqiZyOds/jUTFhQQ7BtfGuU1n/7RM7jj8SP43qOH8M0/Ph/L2nCNMtZ3AnJXe5NrPA2p9j43Pp5C8Uy1aHORrngC1fvuzGKJFc8WIVY1nvl8HtPT0zV//KJ7eOo350ZmtZvVdwLVxg9KDXODUWNQajmbSojvqp3HZi6IGk/9nCO1vd0br5oJBZ4HxudjPy1GVVWhzD59ZBp/9JXfYmKu/ZTPp80CTw8+nvlSGX/2Hw/j6/fvDfS4VFUVXe1D3bWp9plF6znyIvDsSIsaz9by8aSu9mowzopnaxGrwPOmm25CX1+f+LNu3Trfz6VPLQom1T5j4uFJrOUGo0BY1FLt2XSy4SlTrYBQPDP6ZcqWSs2HOoqLZVVscOPKntE5jM4WkEklMNSdxdNHpnHtV34rpuVEQRzqtM0UTy81no/sm8BPnjqG//vz5wI9rvlCWWR6jM1FFdW6lluk2nNyqj3emyC3qKoq+XhWg/EurdxonkuMWoJYBZ4f+tCHMDU1Jf4cOHDA93MdnjJrLtJv2l7rMa0UT4BN5IOCFuBcOtFQI1irQIpnR1o/59jTrvnItXc0gjGuPLR3HADwgrX9uPVPz8dQdxY7jkzj2n97IJLgc/fILM78+E/x9z9+JvTXsmJyvoAj2v3g5FU94udUwjM1X3S8H4xo9j7jc4VAFWNKs+fSCZHZyKWTIn1uVedJimdfh55qbxUD+Zl8SbwXEXjSuteCTZU/eeoo/r97djX7MCIlVoFnNptFb29vzR8/5EtlsVCsMqnxLJZV5D1epNWauloPT4K8PNlEvjEo1Z5LJYWXXTtbKi0YmouAxizBmGCQRxnuHZtr4pE48+CeCQDAeZuWYctwjwg+nzk6E0nw+avnRjFXKOO+50ZDfR07KM2+dlmHSGMDeqq9UK6I7IIVdD8BgN2js4Edm24en635uT42s/46V1VVt1PKtV5zEXl4dmWSYu1r5VT7B/77cXz6R89g90hw51XciVXgGRTHpqonbjaVqGn26cqkoPicijOzaKN48vSiQNAVTz3VbjevuNUxNhcBrb0ALxVqFc94B56keJ63cQAAtODzRZEFn7u0m+lkExt4dhgmFhGdmaSoj3Sq86TULwDsOh7cdz5mqGUkeqnByGTjPVcog0o/eztaz0CeuvyHevRgvFUzPdOLRXHuRVn+0mxCDTxnZ2exfft2bN++HQCwZ88ebN++Hfv37w/zZXFYqu9UFL0DPZFQfI/NtAs8ucYzGMhOKZdOSAX2rbXQuKVQqqCk3V1kxbOnRRfgpYKqqjWB594Yp9qPTS9i//g8EgpwzoZl4udbhrtx65++CMt7qsHnZ0JMg+8eqQZpU020LDKr7wSqLhF9Li2VZMVzV4DKlFA8u2sVTxqbabbxpp9lkglkUwm9uahFUu1iapH0mejz2sOp8dx5dKYpTXfkNw60170u1MDz4YcfxllnnYWzzjoLAHDjjTfirLPOwkc+8pEwX1b38Oyrt5vp8WmpRApTj5SqIdZyjWcgLEojIkVzUZsGWHLqT1Y8xcapTT+XZjNXKNd0ssdZ8XxwT1XtPGVVb926tWW4Gx9+1SkAgN2j4b0HCtKmF0tNcwCwCjwBaXqRgyIbVuBJ3dtGGz7aeJvVeOod7SkoitJyzUW6lZKUrQxxw713dA6v/Py9+NP/eDjw53aCRDKgvRxcQvXxvPjii5tiqk4enqv6Oup+15NLA1OLnlOVszZd7ZRqn1ksYWqhKHarjDfMm4va52KUoSA8lVBE8wAgjc1so91xnDAGAvvG5lGpqEhI3r5xwZhmN0JBV1jn0my+JJp6gKpSF7WHaLFcwXPHqoGiMdUO2CuLMhQgArqKGwTjc7UenoQ+NrP+u5E72gEg3WI+niOi/EBSPMW89uDPVarZ3X5gEsVyRQTyUSC7Yph9161KS9Z40pe5pr9e8ez22bQiFE+TVHtnJiV2rOzl6R+Rak9JNZ5tdDHKiKlFktoJ6Ion13g2B0oZL+tMI5lQkC9VcFxSw+IEKZ4v3GQeeDbia+yGPYYAzW4ST1jsHplDoVxBdzYlSqJk3Hp5yornvvH5wNLaxnGZRK9NjTv9rEc79lar8TSaxwNybXvwqXb67otlFXtDVP/NqE21t4/I0pKBJ+2y5XGZhF9/SDsfT4DrPIOAFM+qj2d713iadbQDrVtkv1SgdNhAV0Zc83HsbJ9aKGLnsWpTjZXi2YivsRuM3d/NmIn+9JHqeNOTV/aYqtJuvDzLFRXjWi1mQqn+ff94MN/5mIXiKZRYk+9GnloEoOUM5PUaT/0z6dZqPMNY9+RNB10zUSGn2tvpXteSgafZ1CLC79hMslMyay4C5MCTFU+/1E4uam87pYVi9fysCzzZTqmpkGrX15HGhsEuAPGs83xk3zhUFdg81CUmqxmR1fMwSqJ2Ha8NPJuheFJHu1l9J+BuXvvYXB4VtRp00vM8H1Bnu2WNp828dmGlpD2GUsOt0lwkutpNFc8QAk/pM372aMSBp5xqbyMHl5YOPFebKp7+0kvCQN5C8WQT+cYxay5qp4tRZqFQvYkYU+2NLsBPHprCnY8faezg2hg58Nw4WPXvjWNnu/DvtFA7AV3x9ONr7IZdhlT75Hz0XcN2jUWAu3ntlGYf6MripBVVA/qgGozGTNLKgL2PJ5Uf0WO8zmq/77lRPHloyt8BR4BItffUB55hKJ5T0nn57LFovTTlGuh2EhNaLvCcy5fEhWmmePo1JqeTwqzGE5BN5ON3E1oqLJb05qJ2t1OiInqj4tnTYOD5vlsfxQ3f+h32RFzL1CrIalOcFc8H91Tns59nUd8JNOZr7AYKzjq1c7g5iicFnj2mvxdd7TaKJ6mSy3uyOGF59TsPIvBUVdWmucjax1M/B6uPyXjoap+YK+AtX/st3vq1B5vS+OsGMzulMEuMahTPCFPtlYpqCDzbR2RpucCTrJR6cilT6yPfqXaHGk9WPBujUlFFqiiXTrZ94GlmHg/o55/fBfj4dHVRH4lpQ0zcMVU8R+O12VwslvGEpmi90EbxTCQUdGfCKWkpV1SxuTlzbT+A6L08F4tlETRuXt5t+pg+F81FdK1UA8/q8xjVXD9ML5SEV68x1W7r4ylqPL2n2sfnC6io1XR2HNeAhUIZc1p9u1zjSZsX+l2QyN/93rE5kXkLm7G5Qs131k6NtC0XeJKV0moTKyUAvv0hZ2x8PAFg7QDXeDaCnOqTU+0LxXLLdGt6gZqLOi2ai/wE5JWKKpRSbk7yh1WNZ5zUo0f3T6JYVrGiN4t1A+brICHsuQI+Hw5PLiBfqiCTTOC01dU0d9TNRfI5blWbT/Pa7Y5NBJ7dWZwwXA08dx+fbfg7H9UalnqyKWRTtde5nmo3Uzy1VLuhxtPNOikHOvvH47VhAvQ0ezaVqPnOolI8K2qwPq12HJmqjRVY8VzCiMYiEyslAOj2oaTlS2VxwVotYKR4Ts4X2erGB/IuM5dK1CjL7ehZuSDVu8rQ+ZcvVTwH5HOSB95cCH547YAceK4b6ICiVFUY2eex2cj+nfLkNjP8unw48bx289401IUBTbmKOtU+l9ezBkkLn1WyU5qyqT+lwHOoJ4MNg51IKFUholHFkMZlGtPsgIOPp7GrPVV9b27WA3mDvy+GtckjUs2rfO5Sjed8oYxKwIMI6LvParWyUaXbKVahGt12yu61XuCp1UyYNRYB+kI762F3MSd5h1kFnj25NLo0dSqOKYy4s1jSDdNTyQTSyYRIM7fTBUlQ4GlUPLuk88/r7l8+j+OmeB6fWRQ+rnFmSqrxzKaSIrMSlL1OEFDgaeXfKdOIgm4HdbSfMNzlqnM8DEgA6LJYswF5cpGN4jmrK57ZVBLrBqolFo2m28ctxmUCelA5my+hZAgopwxd7V5qPGXFc18cFU8TKyWg9r4b9KaZvvsXrOsHEF2DEWVnT9RU9HZqpG25wPMIdbSbNBYB/kZmkuLWmbHeOQMQO3taUBj35It6fSehm8i3zwVJLFgYyKeTCeTS/nbIZAkG1Aahzebpw9O48KZf4G++92SzD8WRaUnxBIANMavzLJUr+N0+5452IqwJYTSGc/NQt/is7DrHw4ACFPKANIOC4vlC2XLjMyrVeAKQ6jwbC1BIJR80mebUK02/M17nljWerhRP/T3uj2FTnJmVElBVI+neG+TaVamoIpA/X9uoRWWpRKn2rZpTgnEcbyvTeoHnlPW4TMCfndKMg4cnMaBNnxiLUdptqUCKJwVVQHhpwKUABZ65TP1Nszvr1xIsnornvc+NoFRR8cudI80+FEem6gLPeHW2P31kGnOFMnpzKXFDsyOsGs8axVNYFjWnxrMzY71u9+T0zn6r4xOKpwg8g+ls11Pt9YpnOpkQ2Q7jxptqPPs6UuKxgLvmoqWjeNZ+JoqiiIxikOfqzGIJVKr7wk2DAKIzkSfFc+tK/Tptl7Kylgs8nWo8/QQzTh3txIC2wE40wa9uqSOmFklF9r020ztanXlKtafrzzlScDwHnotyjWd8FE+yvBmdzQtfw7gyZZiTHTcvTxqTee7GAVfz43tD2txRGvqE5d2uOsfDgJQxO8EgkVB0Rdbi+Kh0arhO8WxsszFGqXaL+fVmXp6ViirUaV3xdF/jWdNcFJNzVkb38Kz/TPQ6z+DO1UlNhe/KJHGq1gR3cGIhko05TS3aMNgp6kvb5V7XUoGnqqriy1xjUeMp7/Ddytp2c9plhOI5x4GnV8TUohrFs30tlRbFyMz6S9SvSlWbao/PZ/r04Wnx/zsjnhziBVVV9VR7ZzwVT7mxyA3dIUyEmVooigBi83I51d4cxbPLJtUOSPPaTY4vXyqL4yYVjjrbjZOZvGI1LpMwG5s5VyiBbluixtODgbzcXDQ2V4hdIyyVHxgVTyCc6UUT2majvzODga6MULWfa/C7dQPNaV/V19F2IktLBZ6T80WhnK20qvHMeS9SdprTTtACMs6pds+IqUWp+hrPdrKZIOZF4GmmeFKD3NJPtS8Wy6IeEACeiXHguVisiDo6Cgo2DsVH8VRVFQ/vrdZ3vnDTMlf/JozN3W4tBb2iN4vubEqk2vOlSmQeiYC75iLA3suTAqF0UldGSfE8NLkgSmL8QOq+Waod0A3i5YCdutwzyYRQyURzUclbcxEQP9VzxGKSEyBPLwruHKJpWvTdnrSi+t2GXedZLFdwbEZvhG63srKWCjxJ7RzqztT5ohHZVFJcqG6/ZOHhmTX38CTIBHicFU/PLBb1qUVEWGnApYCVgTzgX6WaNSgnceC5Y7M1mYdnjk7bPLq5UACQTOj1Zuu1DuephWJTRkLK7BqZw9hcAdlUAqev6Xf1b/Su9uA2d3KanV6DGkOiTLdTSrbLpsYTAPo6re2eRiUPT7L3GejKYJkWTO8e9a+MUY3nkGOqXQo8palFdDx+m4uAeLkxAHqq3UwFphKjIDfN9J3T5ohGooZtqXRsehGqWt00DHZlxAawXTrbWyvwnLRvLCJ0SyV3J7D7Gk8t8OQaT8/kS/W+lWF13C4FrAzkAf+Kp1zXGZeu9qePVCfsUGAS51S73FhEN/3OTAoreqvqTLNVT0qzn7W+X6RfnegJobmImm4o8FQUpSnpdlL4nRRPkWo3WbdHDB3tRBB1npRqH7BItZulX0XgKQ0ySftMtQPx8/KkYHy5meKZCf5cnZw3DzzDbjASsUp/DomE0nYiS0sFnjQn3e20DrcBzazrrnZWPP2yaGKY7sf6qlWwVTx9BgszNc1F8fhMdxypLvAvO2k5gKqHXtAG0UFh7Ggn4lLn+ZDWWGQ3JtNIGCm+3SLw7BI/67MJ7sKClDE7OyUAtl33xo52ggLP3T4728sVVTShDnaZp9r1sZn6d0Op9h7pHPTSXFQXeMaos71QqtTV08qEMb2IAs8+zVaLAs/nQvbyJCulVVpJYG+biSwtFXgeGK9+mWuXddo+zuvYTFKWepwUT23nynZK3jFLtbdb3YuM1eQioBE7pfg1Fz2tdbRftm0lMqkEForlWI7yA+Q0pyHw1NLtzVaPHtlfre8810PgKc6lAK8xUgHl+ejNUDznXNZ49tvUeI5Y2PtsFpZK/jYbE/MFqCqgKBBpeyOkgk2Zpdqle5EfA3na0MapxpO6/FOS04BMJ6XaA3TkoK52XfGsnrNHpxctXQ6CwDjaW/esjse6HDatFXiS4rnMIdWe9VZQPyN2zu5S7Wyn5B2z5qJ26/STsU+1a3ZKXlPt+Xil2lVVFVZK21b3iQkecW0wmjK56QPAxqFqELK3iYqnqqo4qnkYbxrqcni0TtANfMVyRSi/1P0NuJsQFDSk6nc6NRfZzGt3TLX77H4mcWJZZwappPlt2DTVvli/+fHk46mpolu07yZOm7zRGb3L38wKrCsExZOCS9p89OTSYvjMs8fDW4fI9pEmLNL3yYrnEuTghDvF03Oq3W2NZ7c+BSPK7s1WgFJAWZMaz3bZBcqIVLtdjafHdHncUu0HJxYws1hCOqlgy3A3Tl5Z9dGLa52ndaq9+YrnQrEsrqEBi2YVM7o9Zn+cODA+j2JZRUc6iVW9urOIk1dmGOg+ni7tlEwEg1GrVLsWuO0e9VcaQh3tdt+VeXNRrY8s4LG5SMss0Sbv0OSCqxR9FIzadLQDQHcmhFS7obkIAE5aGX6DkUi1a37j7VZW1jKBp6qqODjursbTc3ORS8WzJ5sS9Tbs5ekNvcbTLNXeHrtAGerINa/x9JcelRfs+RgonqR2bhnuQSaVwMkrqbA/np3tVoHnxhjUeFJdeSaVMFXJrZCbi4Kord2tpZ43DXXVqFb9TWkuctfVblvjKXW1y6xb1oF0UsFisSLcVLwgPDztAs+O+o23rnhKqXYPzUWFcvW6XztQNS0vV1ShvjUbOyslIBwfT91OSf8eaOJXmJZK1qn29rjXtUzgOb1QErt2xxpPj7uLGZc1noqiYBml210Eno8fnMRLPvML3PH4YVfH0cqYTS5q1xrPSkUVn4et4um5xlN/fKFccZWaCxNqLDplVXWhp9FxzxxZWornek3xHJ0tNG2TNDFXfd2BzozouHcDlR2pqj4tqxFER7uUZgek5qII57XPuRQMRBmAWY2nheKZSibEhsNPneeYQ5AFWPh4mnS16z6e7hXPXDohrMCaXZtM6CNEzYPxUJqLTBTPEyPobKfNSn2qvT3udS0TeFJ951B31rQhQ8brvHYxuSiXdniknjpxo3j+bMdxHBhfwJ2PH3F1HK2M2az2duv0IxYlr70g7ZSM53uQo+f8QIrnqauqKXZSPPeOzcWyVGXaIvDszaWFctWsmzjVlS/zkGYHqtdbSlMmg7jOdpl0tAOyV2Z05xwNYXCs8dTULjs7JbMAsZE6T6epRYBFqt2sxjNFXe0umos0VTSTlALPmNR5irIGB8UzyPr0qfn6wHNrg53tToHxfKEkNjki1d5mZWVLIvA0mt6accBlmh3Q65rcytpicpHDAgZI04vmnGdOj2iTC45NL7o6jlbG1E5J+54Wi5XY1CFFgTwNJWcyCMH/yMyS7d+j5mlD4Lm8J4tlnWlU1PDtTPxgpXgCza/zFIGnRYe0FYqi6OdTADc9o3k8YVdHGRazHu2UphdrxyjP5UsieDUqngBwwjApnt7PVZqIZFfjaTYyU6/x1O9Fco2nqtoHn6R4ZtNJodTvj8m4V6caT72rPZh1S1VVXfGUUu1bhruhKNXNAR2TW+59dgSnf+wn+NLduywfQ2n27mxKbC5Edo8N5OPDcy4kb7eNRYD3FK5bH09An9c+Pud8Ah2brp7Ux2e8ndytiEgBScbX8ufdLikIQLZSSph2d/qfXGRUPJunKs4sFkVH7Sla4Kkoip5uj+EEI7vAk9KuzepspxpPr4onEKyVC/labjYqnhHXeKqq6tpOSf4+ZXWRgo7OTNL0OXQTeR+Kp8O4TEBXNReLFSG+2HW1A0DJoU6XFM9sMhEbGzBCBJ490aTaZ/P6RkNWPDsySaEGe63zfGjvOCoq8MPHrMvnjog0u95818uKZ/zY7aKGxq2VEiCl2l18ycVyRdTbOdV4AsCAdgK7UTyPa4rn8Zm840611TFTPFPJhBhN2C6jxABd8TRrLAJqA0+3502pXBEBLX2mzVQ8qXN9ZW+uJliKc2e72U2fIBP5ZvkiUk05Wbp5wa8vrJHxuQImtBTi5iGD4mnTwBMG+VJFBGFOgWc6mRDXlGypZGWlROgm8t43G7RRsBqXCVR7Eahcl5ROcQ6a1HgCzg1GFMBmUgn9nI1Lql2zU7JsLhKTi4LZMFO6O5dO1JXn+R2dSefMjqPTlhnVIyYTFtutkXZJBJ57Rp0vbE+KJzUX5Z2/ZHl35bSAAbLi6ZxSOq4pnvLEhnZl0WRkJiCPzWyPnSBgP7UI0FPtZakJyQnZdHmFZnPTzM52kWZf3Vvzc72zPX6Bp63iOVRdd5qmePqs8QS8u3xYQcrfmv6Ouqa4PhuT9jCQ1fxOh5p/wHyyklVHO0Gq7vGZvOduZL3G01rxTCQUERDT81MA2tchp9r1rEix5KB4km1dKqGn2sfnYyF8ONopBax4inGZHfXXDBnJ7/RY8kPZS1UFHtk7YfqYQ5PWime+VHFVWrjUaZnA00uNp5eFlgKeXDpRk9Kwwu30onJFrakfafd0u9nkIqD9doKAftM062gHqjdSUkK8NshlkgkRnDRT8aTGIupoJ/RU+9IKPJvdIax3tXur8QRkl4/GrjFqsjF2tANAX6derxjFSFQKTnLphKVBu4zedS8png6BUE8ujWFNDfWqeo668PEEahuMKhVVfEey4plMKGI9yJftgxYKPDOpBNYu64CiVNeb0SZP2yuVK2LzZNVw1aXVeC4UyzW1uH4xTi2S0Udn+lM8AeDBveOmjxGpdknxlD3C20FkWRKB526HwFNVVaF4rnOheHZ7qPHUC9TdLehupxeNzeYhXzvt3mBEqfZsneLZXqPEAHvzeEBTQjLe6jz1erek6JRv5tjMp4WVUq3iSQv+yExe1MHFgXypLDZHZql2qvE8Or1Y0xwWFUHUeDa6EaF1erPJ5CQK7FQ1mhurW+9lQpQCzLtPtQP+OtvzpbL4DIZsutoBucGohLlCSdwz5HNQURQhijh1totBHakksind5H//eHMbjCbmi2KEqFW5iJxxDKLBSJ/TXn89b5UyL17UYCqfA4AH91gFnlqqvV8PPJOSus2BZ0yoTsOwTimOzRWwUCxDUXR7AjtE+tbFQqtbKblbwNzaKRkVTkq7tyu0IBq7uHva0FJJjMtMW59zXR4tlYQzQy4lFrhm2SmVKyp2HiXFszbw7MqmhHoYpzpPUjsVRVcIZfo706LTuBk1c7TR9TK1iOgOaHNnp3hmU0lROhKFl6fbxiLCrAbVamqRjJ/OdlKnUwmlRrk0Q/bypO8nk0wgm6q9dWddennKiiege9A2u8FIKMA2I0SzqQSSWrNlEGVCZh6exKahLiQTCmYWSzjqUhSqVNQa5fjxg5OmtnBmqXagvbJ7SyLwLJZVkUo3g363sjdXY0BuBd14Cy7qKegkcBt46nZK9ourUeE8NsOKJ2CXam/9XSBBgWfOZgKNV0slWbnvDLhI3yt7RuewWKygI50USqFMHNPtsnG3mdOAoihNndmu2yn5UTz9TcIyYuXhSUTZYEQ1zZ0OU4sI3cvTp+LpIfCU0+xm55KMnGoX52BHqm5IQNrl9KK8VOMJABsGaOpWPAJPO0N9RVECbYyc0q4ZsxrPbCqJTdr1/KzLOs/x+YIoARjqzqJYVvHo/smax6iqKpqL5FQ7IH/XrX+vWxKBJwA8b5PK0BuLnOs7AW82PV48PAFdcZhaKKJkswiw4lmL2eQiIP7NRXtH5/CNB/YF6jNKE2TsmiK8WirNSZ6G5GvYLMWT6ju3ruwRCobMKZTmilHgaVffSWxo0uhMVVWFiuYn1d4dQI1nvlTGAW0d3rK8XvEEom0wmnPp4UmI6UUL7puLADnwdP+dUzbMjTote3maTS0iqMHIaV573kLxtBN2osDJSokIssFo0sQ8Xsbr6Ew6Xwa7MnjR5gEAVXsl42tSKdXKPlY8Y4/dha1bKTnXdwK19RROu3zPtUJSLdOkzc6eAk267x5vc8Uzb6F4UqoprjNsP3HnDvzN95/Ez3ccC+w5Fx2aiwA58HT3ucxKG6gwZh57QW8s6jX9/VbNUumZGHW2uwk8Nw5SZ3u0N/G5QlkEHH7slHoDqPHcPzaPckVFdzZlqRBG6eU56zXV3mFd4zlkm2qvBp77xuZshQYZN+MyCTGvfaEkUu09Jueg+xpPrZaeFE9KtTc78HSwUiK6ggw86Zq2CDxPFJ3t7tah45JCfv6mauBprPOkUZlD3RkTB5f2ye4tocAzOMUTgOtC3lmpNs4NqWRC7KDs0u0UaG7RFq62Vzwt7JTiPjaTSiaCTFUtmHiaGvE6NlO+EdPi3Sw7pR0WVkoEpdqfOzYTSQe0G8TEmA7rdaBZXp7k4ZlLJ2w3K1Z4aba0Qk6zW82K11XF8K/leZ81nnRsqqpazmmXWdWbQzaVQLGsiok0TjjNJJeh9W9KTrWb3IvEvHaH4NdY4xmXVDvdD90GnkFsmu3slAB5dKY3xXN5TxbnaYHn7/ZP1HwnZh6eRK/JpKpWZckEnnapdkoTrB1wp3gC0u7CQTESzUUuFzBAT6HYBZ40tWjb6r7q39tY8SxXVLFTX2q7QFJvjgW4cRAzpl3VeLoLHuUmOVEn1aRUuz4qs8f09xsHO5FJJTBfKItsRrNxo3hSU5SXY86Xynj68HRDPorjDZjHA7pjh5tmSyusRmXKCMUzgrGZVOPZ5TIQN85rn1ooijXJrvM8kVBEytTtGk6b1WGbgJaQMz52AwzSLpqLVFWtT7Vr5+zobL6pLhd0/mw0cUSQ0RsjG980T9nYKQHASSvJRH7W1QaYguflPVmcNNyDvo405gtlPHVYn8JGiueqvvom6HZycFkygeeukVnLxdmLlRLhdpc/41HxBPQbgF3gSXPat62pBp7Hp5fu9KK5fAn/546n8cg+c8NcJ+TOv6XWXCQCzwA3DosOBvKAj1S7VDLSKRTP6D/T8bmCCNIppW4klUzgRC0TEJcGIzeBJ/3OS5POJ+/cgVf9v1/hlzuP+z62RszjgWBqy3ZZjMqU6e/U69/DxnOq3aB4Us1hX0fasWGVAki3WStKydIgBztEjedCUZrTbhJ4pqoqc95G8ZTT8PSe+jrT4jWaOcGI6rlpgIQVnQE2F+mKp/k1vWGgE5lkAgvFsggY7aDvf7gnh0RCwXkbKd0+Jh5Dqvjq/nrFs50cXJZE4JlQqoHHiImvX6Wi4pCPVLvbTk6vPp6AO0slWnwo8MyXKkt2p/OzHcfw1fv24PM/e9bXv68JPI3NRdn4XoyViipUiGNTwQWe1PTjqsbTR6pdL9CPPtVOafYNg522ddOis/1IvAJPM7WJEP6oHpRkGo5h7H71woSHZhUzvJ5LZpBitcXESoloTnORPx/P4y462olhLYB068UsK2NO1HS1C8Wz/j25UTzlxiPZjmlDky2VZhaLwmLopGH7wDPQ5iKHGs9UMiHsGd2UUVB8QhuRF25aBgB4cI8uyJjNaSea0dU+MpPHzb/eg0f2TUQqfLmX8ZrImmUdODRXTbcP99R+Ycdn8iiUK0gmFFP52gq30zq81ngCkqWSxTSISkUV9SDrBjrQ15HG1EIRx6cXbRWVuELvxW+d6iKlf5KJOnuROCues4US6FoNUvFc0Dr8bRVPr6l2qbnIT4AUFE8fpjS7udpJnLKyF8Ah7Dw2bfu4qHCjeJK6tlisoFxRTTv2jdCGoJGGpAnRnesv8Oxt0DlCVVXsJg9PN6n2KOyU8t7slKjOb3KhWK3vpMYiF3WYQvF0OX2O1kk3imevZCBv19WecdFclJc2+PJ89/UDnXj84FTTTORpHvrK3pxlEEgE1VykqqrYZNhdN6v7OrBvbB6HJ50Vz5Hp2s3KCzcNAqh2tlcqKhIJRTyPWY1nM7rav3T3Lnzt13sAVGOR15y5Gle9YI0Y5BEWS0LxpEkYZp3tB7V6qlV9OVej0Qi3AQ3VgJoVdFuxzGF60fh8AaWKCkWpFlN7XbjiBr1PJ9N8K/JialH990fKdBzVYLkD9liApRILWkBoW+PpMdU+J9V4Bj3z2AtOHe1E3Lw83QSe8vfl1qqKGrwasWASiqePcZmAvolZKJZdd2bLjMzkMZMvIZlQhD2PGVE2F/m1UypXVMzmS1KjiHNwSGLIcdeKZ60yZoeo8Vywr/HMuPDxJMUznVRqNvgbpJntzWDn0eqmZatDmh2Qm4say9YsFHUnCKtUO6APpHGTajcqnqet7kVHOomphSKe0zZm9qn26EWWo9P6+zowvoB//uUuXPpP9+Kyz9+Lf7n7+dCC4CUReG6yGUvm1UqJcDsmbtajjyfgnGqnHe9gVwbpZELsfBsdm9kse5xxzUNwYr7gqwtZn9Nef5OIs52SrNwUSpXAlBynkZmA9zGHM1KqnVSguSaMdnzaZeBJtV57R+dMp39EjZvAM5tKIKXd0N2WMZDqvGd0zvfGpdEaT3lt81N+8bxW37l+oNO2HrLPxLIoLOhzdVvjmUsnRfp5cr6od7S7sDxa0eteOJjLl8Q1O+ylxnOxqJd7mIgglGq38/HMW3glN7uznRRPN4EnbSQa3TRTuUc6qdhu8NdoAaIbxZM2HqR4ppMJnLOB0u1jKFdUMQXJNNXehK52CnI/efU2fOFNZ+Hlp6xAOqngmaMz+MyPd+L9t24P5XWXRuCp7cjMLJUOjHuv7wT0mk0nJW3GY60QIE8vMl+Ijokan+rJF4Ti+f9+/hzO+NhP8MDuMecHBwx1gpalmkcv6FZK1oqnmylTUTNtCDTdjlZzQkwuskm1d9H0Ibc1ntIGqlmKZ6FUEdewlZUSsbwni2WdaVRUe0eLqLBLcxKKonguY6Du3JnFku/ax0ZrPDMpfQSjn+uXMlFmM9plKJ0dx+YioHayEvlKuqrx7HEvHNAa35VJurqn0PlWLKtCsDDvale0xzkrnhnDuM11A81VPJ/Rxue6Se/qm+ZgAs/+zoyl/RegK5NONZ5z+ZLYyMsbCtFgtHcCIzN5UYJjLBkE9A1FlIonvdZwTw5XnrkaX3nruXj4w6/AJ6/eBkUBfvHM8VDs4ZZE4EmdkmaKJ6Xa13mwUgJ8KJ5eutq7qosVKYFGRqZrJXmvxelm/Oq5EVRU4MlDU76fwy9ySYGfdDspWmZqiZcpU1FjvEkHZankzU7J5eSigtzVTpOLyq4U6nJAXprPHZ9BsayiN5fCaod6bEVRYpVun3aheALw7JEqf39+R22Se4afcZmEaLb0sRmxm9EuYzYdKCzo8+9yWeMJ1DY/ufHwJLwonsJKyYXaCVTXAKoVPqipbuaTi5ybi3TFs/a2T6n2QxMLvkotGkFVVdcd7UBwzUWTYlym/fW82qXiSaUZHelkjYXXCzfpne3UQLWyN2da/92MrnZ6Lfk+29eZxh+dvwEXbRkCAHzn4QOBv+6SCDw3DlYXtMNTi3UnHCme6wY8Kp4uC3l1H08PXe2d9oondTXSghWE4rlntBqAB+Fv5pUJKcB2mlFvRl6k2utPR3nKVNwCT6Ny02ipBOHNTsmj4inVeAL6eE4rdh6dwRkf+wm++IvnXL2OHTu0DvVTVvXaqgzEyZrd0s6jzW8wcpNqB7x1thfLFWHoDfhPddLGz6/iCTRWX+Y0o50gpW6xWAm9fEJXPN0b6usNRgWPzUXVIHJqoej4vrzUdwLVDRgpYXSu9Jl0tbtpLiqUq8dmVDxX9uaQSSVQqrg3wQ+Kkdk8JuaLSCj2jghEV0COHFRnbOXhSazRUuKHnAJPqu/szdasbWet70c6qeDYdB6/1WyVrJqge6V+hqg6zGV/ZyNvPG89AOC7jxwIfEOyJALPZV0ZDGqLKtmPEAcnNfN4jzWeYkyczUJbrqgikPOkeIpUe8H0BDom+X0Benej2+J0I7P5kvCda0anco3iadHJbwct1kYrJSKuM2yNgaff78/IvJeRmS4DBblkJJtKiFGtTsrBQ3vHMVco49fPN17CQbVcTvWdxMkxUTyL5YpIo7lWPF1ch8ZNon/FU5vT3pDi6a1ZTWa3C/N4oOokQuedsUwlaGSF3y3UUT05X6yZQuNEb0dKqIgjDuLBcY+KJ1B/ztkpnm5qPDOGJtxEQsE6rVRtX8Sd7c9qjUUbB7tsS4sI2kg02s9AqfY+i6lFBHWfzyyWbMtQqAzCWBOcSydxxtp+AMDt2w8DMG8sAvRrsFxRRZ1/2NBG0yzwfPmpwxjoyuDYdB73PDsS6OsuicAT0NM4cr1XqVwROzSvzUViWofNjVs+ub3snEnxLJZV0wuEFM9hUjw9pGrMkDtiox6DqKpqTW2aH8XTalwmEVdLJWPgGViNpxvFM6c3CDmlywslXVnrzqagKIprWxJ6j267tO0Y1c5vt7ZncUm1y0GSnY8nICmeLq5D42fqR/GsXn+NK55+swrzhZJQg5wCz0RCEZ9f2J3tc35qPLVjm5griGyVm8BTURRpDbdfA4R5vEvFE6g/50xrPDUD+YJdql0LSs3cQ8S414jrPGkOulv7HpFqb7TG02FqEdGVTYnA/4iNGjxiuKfLUJ0nrWOrTBqLgNqyiijudbKw1mOymcmmknjdWWsAALc+FGy6fekEntTZLjUYHZlaRLmiIpNMuE5dEG5UNAoaq8X37gPPjkxSBA1mgZiebtEUT6k43Y/ELt+wolY85wvlml22VXmBHYs2qXYgvhMdKCgjNT6oGs8FUeNpfdOs6UR2+M7najZQ1X9HtW9OARIFNUF0wLtNVxNbV/YglVAwMpNvaoMRHXdPNuXozemlBs34GD+K50y+hJK28XC6idrhd3NHaudAV8ZVV31/BF6ehVJFpJy91HjS57dndA4VtTq4ZLDL3X1FX8Pt1wC9xtND4CkFBZlkoq5GE5BqPO2ai0rmiiegj84Mo5HEDiqjOclFfScQnI/nlMPUIhlR52ljqSQGDpi4IJyv1XmK5zPx8ASqGxgxNjOKBjzpWrfKDLzhvHUAqk1GQWX0gCUVeJKXp34DolGZa5Z11BmPO6HPardRPBdpRJl3n307SyUxWsugeC4WK77mJe9touJpDKwbai5yUDzj5uVJEyZOXFHdFAVxYRbLFRFI2Cme2VRCdLI6Nshpv8+lE+IGRQq+U9BKanYQ4zW9Bp6dmRReetJyAMAPHzvc8Ov7xc3UIsKLVZUx6PejeFJHe2cm6SpVaYWbDJAZbus7ib5Omoke3o11zmemiozEyXNxoCvraggAIGWtHNYAL+bxhDypqLcjZVof7cbHk+a0m4koFHhGbam081j1s3bTWAS43zA7oXe1O1/Ta8T0IuvAk0oszEoozt6wDPJXZpVqB6K915FHeTaVqKv7JU5c0YNzNixDuaLiv353MLDXXjKB5xaTVDt5eHq1UgJqu4KtUpVmHV9uIUulCUMgJk/FIJU2l06KE87P9J+9Ut2rU7NI0BhvIL5S7aR4WqjK8ti4OEEBCaWJglA85bo/uxpPOV3ufuyrfh67VeYoJRqE4mlngG3Fa85cDQC4/bHDkY50k/ESeFKg4yZQp6CfvALH5wqelcAgOtoB/zWeu1zWdxJRTC+i8z2bSngaKkLHRvcYN41FhLBUcqrx9DAu03hcgLWdl6vmopK5nRIgjc2MMNVeqah4zmOqna6vhWK5IbcNSrX3ubhu3HS2241Y7etIa5PYqtiVGkU5Ilqv77Rf10j1/PZDBwJbg5dM4EkL297RedFhdVDMaPdW3wnoF7CqWgdroiHDh+JJNwKjAjg5XxSpafkkbaTBSB63F4Qy5QXjdCZfXe02Pp5AdDWeU/NFXPGFX+ELP3fXwU03zxO1RXNkNt+w9RCpv8mEIhRNK9x2tpsFnm6VOUpJLTQh1Q4Arzh1BXLpBPaMzuHJQ83pbteP23kd8KJ4UnZieU8WQ1qKzusEoyA62gH/15iueLoLPPuFZVF4lkp+GosAXf2iGmsvwaGueDo1F9WWWblBDjZ7LK4dV81FJbKtsw4894/5H2TglYMTC5gvlJFJJbDRZuKVTJeHEiM7Jv2k2m1qPO0CT0C3VZKfzwx9YEoEiqdNY5HMq09fhe5sCvvG5vHA7vFAXnvJBJ5r+juQSydQKFdEwHlwnDw8vSue8pQRq92Fn6lFBNX9GQMxMo9f1pmuSXk0Yqkk36yinkZDNz5KJfjrareeXATINZ7hXoy/3jWKJw9N4zuPuCukJgX2hKEuJJRqsfbYbGOqJwV4Hemko+WQ18BTXrTd1kqRMlAwWP/4wU/g2ZVN4fdPWQEAuP2xQw29vl/oJuDmuMnDz00zlj5dJyluvF5ntouO9gYDT68uCYTu4eky1R6B4inmtHtIswO6nRLhKfCksZk2zUXzhZIQM1Z4qfGsUTzN70VufDztFM+1yzqhKNX7h9tyqZnFIm78znbcvfO4q8cbocaiLcu7XSvTtdPB/N8PplzaKQG6QmlnqWTMYhqhwDOXTmCZzWtG2c9A2Q2nwLMrm8KVWubp2w/tD+S1l0zgmUgo2DxUm27XU+3eFU+5kNdqsdWVIu9F+wMWgafVjtfv2Mz5QqkmxRtE97EXqJRAThd6RdgpOSqe5hfj1EIxkHGhdBOdsDD+N0Kp42VdGXGTajTd7sZKiXA6fwmzDVSXy9FzcilFI6pnvlQWGwwvqXZAT7f/8LEjvkayNopb83gA6PTgMygCpExKdBXvG/WoeDY4p53okTwE3VKuqMLezrXi2RlF4KkF9B4ai4D6IMRL4LnCheJJv+tIu5taRNQEnpaKp/PkorxN4JlLJ7FKuweZDWox43uPHsJtvzuE/++eXa4eb4Qai9yMyiS8OHLYoSuezhs2p7GZpXIFYw4uCC85cQjb1vTiD85eaysoROngMuNBWHujlm7/nyePBjLydskEnoBuqUTpHVI+1/mo8QT0FLrVYjvrUoo2Q/bylBEd7YYdr1/F02h/0WjRtVcmtJOQbjxW3qV26CkgqxpP64txoVDGq/7vr3D5/723YZPb3dpNdDZfchzPqapqjYLnd+NgxI2VEkELsFNDGi3Q8nns1ohZtr1pJLVFn5WiVLvDvXDx1uXoyaVwdHoRD+4NJtXjBS9KrRfFkx7TlUli05BPxbPBOe1Et48az8OTC8iXKsgkE643//J0oLCYMyktcYPx+3Uzp51wo3gKKyWDybgTssppWeOZck61F2yaiwDgrPXVueJu06n3a96+foMkaizyEngCcqbH/73OrZ0SoKfGj00vmpZSVe959i4IPbk07njvS/DJq0+3fa0o+xncptoB4Iy1fTh5ZQ8KpQq+v73xzFMkgee//Mu/YNOmTcjlcjjnnHPwq1/9ytfzyJ3t+VJZ+Cb6UTwB50JeP3PaCX16kTHw1Ow0DIqn37GZe7WJRaSwRq54ajc+CjwL5Ypn9dG1nZLJTfEXzxzHockFHBhfEEGwX3ZLjglON8aFYlkU8vfKgaeDj58TCy7GZRJuG4RMU+0uAqTFYrkmvd7IuUUOAD3ZlGcHimwqicu3rQRQbTKKmql5D4Gnh4lS8vciFE+PNZ5UKxlcc5H77/h57XrZNNTluvs7yuYiLx6eQDCK58R80XLTKqyUPNR3AkbF0z7VXihZb/rtajwB4IITBgEA9+8adTymSkXFA9okHr/T8p7VfC23umwsImht9NvPsFjUsy99LgLP4Z6qu0GxrIpBLTK0oRjsdu+CYEWU89p1xdP5M1AURaie//ng/obrgEMPPL/97W/jz//8z/HhD38Yjz76KF7ykpfg8ssvx/793msF5M72I5OLUNVqsOKl+1DGabH1M6edsLJTMlopEX4VT7JSOm11tWvO7fztoKBgb3V/TgSOblPVhJ5q924gL9vsNHIzU1VVeBICziUD9FrJhIKuTFLceI5NBaN4urHGcZtqN0upuAmQjMF3I+NYhWroMyX8mjOrRsY/euKIbToxDLwontRc5Oazosd0ZVPYqAWe3ms8g1E8SYX2csPzWt8J6JZFYRrI65+rtxrPboNPqxfFs68jLVRHq+lFVtkuJ2SV00rx9OLjaRV4XqgFno/un3Qsq9lxdFqsD37KnAqlishcuvXwJLxs7syQ12432ZdUMoGVvdZ1nk71nV6IY40n8dqz1iCTSuCZozN44tBUQ68deuD5uc99Du94xzvwx3/8xzjllFPw+c9/HuvWrcOXvvQlz8+lm8jP1dR3eklbyDjVU3j9YmSs7JR0xbP2JPXb1U4KiTyGMKpxW0Ct4kJphjGPJvJOIzNpx29MP8zmS/ilVNjeSOA5MpuvSVk7BZ6k4PV1pKEoimsDaSdIVXSjeFINm9MCbJZ67HIRIFE6Sn8e/+eVlzpJMy44YRBD3VlMzBdx33POikyQ+LFT8mIg35lJYr3WXDQ6m/d0Q6VN3kDDimf1vXlpLvJqpQRIimeIXe2zPms8FUWp6XL2ongqiiICVas14LhPxbPPRY2nGx9Pu+YioKpcr+rLoVCu4OF99un23+zSR+j6UR73jM6hVFHRk01htctJZkSj04vkjna3sQM1GJnVefqxyLIijl3tRH9nRmSeGp1kFGrgWSgU8Mgjj+DSSy+t+fmll16K+++/v+7x+Xwe09PTNX9kNg11QVGqN4LHDkwC8F/fCTgvtuKL8ZFqX2aVarcwEJYVTy8yNqXat67oEZ3lUU4vku1crBqqnKC0h9koN8B6g/Czp4+JgnmgsboYWe0E3CuedFMIKtW+6KHGk5R4pxpPMzslf4pn4zWefgPPZELBFWesAhB9ut2PgbwnxTNTHctH14+XdLte49lYc1G3jxSfVyslIOLmIh/rdp/PwBPQ0+0jFmuAXOPphRoDeYsgIeOhuchK8VQURUq3j5k+hqgJPIves2zPSBOLvApH+rx2fxthumd5yb7YeXkuWcXTRw8LeXrevv1wQw29oQaeo6OjKJfLWLFiRc3PV6xYgaNHj9Y9/qabbkJfX5/4s27duprf59JJMZP97p3VofXrBvzVdwLyfGILO6UGfDxJ/TM2qhyzUDwp/TJfKHv6QukmtWl5Fzq1YCUIz0W3kOLS35m2ndZkh/OsdnM7JeM0m0ZuZsbA0+hPakQEI9q5Qd9fUF3tOQ81nq4N5Guai5xrPI2BZyNWXfrn5T9Aes0Lqt3tP3nqaKTnuKfmIhefK2GsRRQm3h7S7aKrPSAfz0K54thYR+z2E3hKNZ5hlQT5bS4C9GAknVQ8b5KGHbIex23medtRk2p39PH0ZyBPXHjCEAD7wLNUruC3e3RFVFW9Z9me9WgcL9NoV7sXD0/CzsvTOAK7EaLsap8Wgaf7z+FFmwaxeagLs/kSvveo/yajSJqLjDsaVVVNdzkf+tCHMDU1Jf4cOFAv51KD0e/2TwDwN7WIcBqb6aX41khvR0r4jVFwpqqqpZ1SZyYllFW3dZ6LxTIOazWFGwe7PFm5BMVETaq9McXTqcazUK4IRXBqvoh7n6tuPk7SRlY2YkotNxYBzn6kRhVsZV+wXe2dLhRPUtWdgmTz5iLnztApQ6q9keEEjabaAeCsdf1YN9CB+UIZP3/mmO/n8QrZZrnrand/Dc5LPp4ApDpPd4pnpaLqGYcGU+1yWtrNTW9yvoBR7RrZ7HJcJqBfLxUVmA0pM0MbJK8+noAejAx1e+s8ByRLJQvFkwLSFR4DlFw6KYJFxxpPGx9Pu5GZBNV5PnFwUpz3Rp48PI3ZfAm9uZTvLNvOo95GZcq4baq0Ykp0tLu/ZuzGZo44mMd7Idqudu+TGRMJBX/0og0AgP/4zV7fTUahBp5DQ0NIJpN16ubx48frVFAAyGaz6O3trfljhHbXtFle57OjHXBOL5mlKN2iKIoo+Keax+nFkrj4zXa9y11OvyDISqknl8KyzrQnK5cgWCyWhUK3rIFUu5hcZLET787oCxx9Vz95+iiKZRVbtVmyADC14P99k5USvQe3iqdItWs3k/G5gmvFyIxFDz6ebqelzJqUjHS6GO0YSnNRA4Gnoii48gxthOb2aNLt5YoqzjkvXe1uRvrJPp6ArnjudenlOb1YFOugl5uoGcmE4slEnuo7V/XlPKW0c+mkaEIMwg/QjEYUT/oc/QQRw6JO36HG06PiCQCbNecAq9IyN81Fdj6exOr+Dmwa6kJFBX5rYatEXe8v2jyo14p7FDt2HtNS7T4Uz84G57U3pHhOmdV4Bplqj07xpPjGaw/LNeesRUc6iWePzeLBPf7s7UINPDOZDM455xzcddddNT+/6667cOGFF/p6TupsJ/xaKQHO9RSN+HgC9ZZKtPD05lKm6t4KF15wMnSDqta+Kp7G9QUBXcDJhILeXEp4l3qdXpR3UDwTCQXdmdqyCEqzX3nmKvRpJsCNpdqrO3AKYp2bi2oDqf7OtJiXbNXV6gYvBvLLe+wVFsIs1e5GNTB2HgdR4+nVPN4Ipdvv3jkSap0gIa8N7rra9e/N6fMyKp6bhrx1ttM52p1N2QYTbun20Nnup76TINPusLw8/TYXAfp37KWjnaDAw2xe+2KxLFKby32kZL/+9hfih++5SAS3RjIpNzWe1bUl4zAlyMlWieo7LzhhUKq3dL82zOVLODBeDeC8engCQLeHBj4zJn04bNil2oNUPEXfSaEUujuN1+Yioq8jjdeeVV2H//2Bfb5eO/RU+4033oivfOUr+NrXvoYdO3bgL/7iL7B//368853v9PV8JxgCTz/jMoleJzulBnbOQP30It1Ow3zxcKtgEVQLRh6AXS5UrCAhVZC6A/VUu7+udqvmIqB2Jzg2mxc1SFecsbphb8BCqYID2jCCc7XA06viqShKIHWeXgzkqVxjYr5oO87SLNXe6aIjPowaz0YUTwA4eWUvTlrRjUK5gp88VV8nHjR03J2ZpFCV7MimEsKSx0khJsWmSyie3rw8ycqs0cYiQi89cr6O9MDTfZqdCNvLs5HmIrqGV/V7Dw6HbZxJaE3PpROWDUJ2rOjN4dTV9RlAQvfxdGGnZLPOAsCLtTrP35jUeRZKFTy8t1rmduEJQ67cMYxQfefynqyv2mTRGNlwV7v7117dp0/mk+vLVVW19Ob2A12DqurcNNoouuLpff1484s2AgB+8uRRz048QASB5xve8AZ8/vOfx9/93d/hBS94Ae699178z//8DzZs2ODr+eQddnc21dCNzG6HX6moDTUXAfXTi+gEtepq9Dr9hmrBaM5z1IqnCDy1neOA1lDlvcbT3k4JkCyVFov48VNHUa6o2LamFxuHuhq+ke0fn0O5oqIrkxQ7cCfVdtpEwVsZwPQiLwby/R1pUUdsZmxMiMlF2XrFc75QtqzToVooWgwb2dAEpXgCwFUvqHp6RpFu99oUVc08uFNk5upqPKvX8bHpvCt1WR+X2VianfDS2b7ruGalNOxd8SSlyWjXFRR+fTwB4A3nrsP7fv9E/NlLT/D8b/Uaz/pr8ZgUnPi1/7PDVXORpoY6KZ4v2lydK/7M0Zm6deWxg5NYKJYx2JXBSSu6RcmOlxpPCjy9GscTjTYXTXmYWkT0dqREKZucbp/Jl0SPQhCKp1zPG2Znu6qqvmo8iVNX9+LcDctQqqj41oPePdkjaS5697vfjb179yKfz+ORRx7BS1/6Ut/PJdv2rF3W0dBFbGenJF9IQaXaj1k0FhFeTeQtFc+IajyFh6D2ffjvardPtQO1iqdIs2v1fhR4+i3Ipnq1zcu7hRuBV8UT8L5xMMOL4plIKGKxs0rvq6pq3lyknSulilpjSSVD75FmFTeyoZn2UCfpBH3v9+8adV2W4hc/Sq1bFWjeUOPZ35kRr2MchWtGUOMyCS9enn462omwFU+/k4uA6vSZG19xki+3lGGpztuoPOo2eo0HJ2a4qvEUtnX2a8tgd1b4QhtVTxqT+aITBqtz033UeFJjkZ80O9B4c5FQPD0EnoqimFoq0brbk025Ko9yQxTTi/Klipi85ze+efMFVfHwW7/d73mox5Ka1U5QeqcRKyVAP4HNzFpp8cokE7ZdgHYYAzG9o9188fE6NtOoeHako+1q1xXP6vv009VeLFdEE4bVyExAvynuHpkVVh6v1nwdxfxnnwoKpQ03L+8SKvXEXNG2Y8+s0zmIVLuwU3IReAJynaf5a8oLjKzcd0r1b1YBEi3QZJ7ciIVREF3txPrBTpy9vh8VFfjKr/Y0/Hx2+Ak8O13UoBVKFaFAyQHSRtFg5Bx4Bq146tOL7APCQqmCfVpg7K/GM9x57Y00FzXCss400pqf5ohBKfQ7LtMtWTcG8i4VT0DvbjfaKlHd5wWbq7/3oz5SY1GjiqdfH89JDyNwZSjwPCLVedI9PQi1k4iis52CWkXxVwsNAJdtW4mh7gyOz+Rx19PeXEaWZOBJDUaNdLQD8sjM+i9YWCn53A0A9dOLnCYcDDuoVzL5UlnsvDYO1SqeCxEpnvrUIi3V3k3z4ssife6E/Dg3iud3Hj4IVQXOWt8vGssaVVDIw3PzULe4iTvNnLdTPP3UvBDCTsnlYuB0zsg3BHmBSSYUoapa3TQmxThUUjybZyBv5H2/fyIA4Jb795qOsQsKPyUCbiaryFkJuazCS51n0Iqn6Gp3CCLk0hQ/Cl7YJvKidjbiwFNRFBFYGtcAv+My3eKuq925lp6gwPM3UoPRYrGMR/dP1vxelJV4WBsaVTwbdW+h886rEwStg/J6QxuMIAPPKDrbRRlhJoWEz/ny2VQSbzxvPQDg33+z19O/XZKB51sv3IgrzliFa89f39Dz0Be8WKzUXbBm8629Qj6LRsXTOLWI8JKqPTC+gIpaPT5SGqOv8aTmhurr92RTYsfvNt1O9TGA9UQNQP+uKAVJ6Vag8RvZbknx7MgkXc2cN6v9o5vw0QYCTzG5KOPu0nTqbKcFpjOTrJlDDUjjHS0WcHqPtOB6tUwhSlIQ76exwoyXnbQcF2weRKFUwed++mwgz2mGPBrVLXqNp/XnRddoJpWoaVoSiqeLzvagzOMJtze856X6Tj+lTvrYzOADzxolOaDUpxfoejRmPYJsQDEjLSYXqZaZGmEg70LxfOGmASQTCvaOzYtA65F9EyiUK1jZmxMODHKtuBvGZvOibvTEFd7VciAIA3m9KdYLZl6etMEINvDU3HZcNPn5hbIaftPsxLXnr0dCAR7YPS5qd92wJAPPk1f24ovXnl1nreQVOag0LraNdrQD9alnqzntBP18zsX0IlJENgzqs+qj9vGkGx8F2Iqi6J38Li2VREd7KmF7E5M77xRFT7MDuhq1WHQ/dUWGPDzJCJvqPMdt6jzDqvEUdkppd+cdWbNYKZ52Gyi7BbwoBYtrGlQ85VKWIJqLgOq59sHLTwYA3PboQTGCL2gaq/G0UTyF5U9tcETZC1eKp7YxWhZ0c5HD2tOIlRIA9GnHa1UaMzabx6PagBCvyJ951IonYD02M/QaT2nTXrRoMHIamSnTk0vjjLV9AID7n6+qnrKNEq3VbtwxZHZqwcn6gU7XWR0jbpV5Mwqlitj0eanxBIBVffVenqR4BrmhoGBwugFfaieCyOgCVVHiFadWPdn/4zfurZWWZOAZFKlkQqgTxoL62QC+mAEp1V61XbC3U+rK6p1zTulaUkRo2gmAyCcXTRhS7dX/rzXNdyLvorEIqN2ZnbdxoEY17snqBvNeVc/xuYJIKdMunuxprGyh8qWyUGrNU+0N2Cl58PEEnGs852ycGeyMmOXPkaYy+TWQp1qlLpeWRG45c10/Xn36Kqgq8Jkf7wzseWX81Xg6X4dzBfN0sJ5qd1Y8jaUujeK2uagRKyXAuTTmnd94BFf/y/148tCU5+cWtfkGJTkqRKp9JlrFU1YxrdLtBReTi2T0dHs14BT1ndrPAe8Wfs8e1TrafabZq6+pZypLHpta6JxTFO82QmZeniPTwZdQ9EYwr1338Gx87XjLBRsBALf97qDrf9PWgScgNxjVfslU99nTwK5ZnoIzvVgSN267CQcieHGo85QVTyJyxXO+vlZmsNtbg5GwUnKoO5JT2ldKaidQ7e72W5BNafbVfTkRiC0TbgTmz0U70eripZ8f9N3N5Eu+00B6jae7m4NTjaedcm9nxEzBeG8uJaXTGqupCqq+U+YvX7kVqYSCXzxzHA/stp4v7Re9Kcr9OuDmOhRekwbVh1Lth6cWHOukA+9qd9lcRC4QfhVPu+aivaNzeEjziXz6iHcVm4L9qBuLiBWiwbBWODgWQoAiIwfZVl6ebiYXyZCf5693jWI2X8LjB6sbAWosAqSsictN6c4GrZSqr6mvjV7LyshKqTeXris9cmKN1NVO5QyixtPHwAEroqjxbMRKyciFJwxi8/IuT99F2wee9CX/fMdx3Pn4EfGHFr9GaiAogKmowPPHqxdcdzZlmwJyUrCIPVp6mFJzQPMUT7nGzKuXpxiX6VLxTCjA5aevqvu93waj3ZKVEiE2DBbvgV6jJ1tbmN0tKdZ+0+1C8fTY1e4n8LSrCZbnGdP56rfGM0gPTyObhrrwphdWa70//aNnfM8OtsLPsbuptabA0zhPfKArg55sCqoKHHCwVAqrxtMuhamqKnYf1xRPn6VOdjXZdzyue7Mem/J+DVE5iNuNW9CYKZ6LxbJ4r17ntLslmVBAS5GZ4lmuqMI9xE2qHQDO3rAMmVQCx6bz+PZDB1CqqFg30FHjJtPl0rOWePZY9dw5qQHFM5tKippWrxt80ZfgI0uwoi8LRakG8ONGp5oANxSkQhrFsCDxOy7TDEVR8OYXefNlb/vAkwKWf/rZs7jhW78Tf/7rkaps3MjNMp3Up1TsOFINPJ3mubrtjN5nkmpvXo2n/hkNevTypJS102J42upeJBTgVaevwpDJ7rLPp0XLrlG9sYgQdaoWNZ52wYhe5+k93V6pqELxdGunJCueZkGXnaehnR+e7HXXJXWu+gnswgw8AeC9v78FnZkkth+YDHyaka8aTxd2SsLk3KB4KoqCDUPODUbliipG/wVe42mjtIzM5DGTLyGh1GZbvGC3SfzhY0fE/x/xsXlrlpUSYWapRpvCTCqBXg/KuVd0E/n6wFNWQd0qnrl0Euesr05y+9LdzwOoVTsB7w2tY5pCSBZtful0UUdthrBS8nHNZFNJoWxSuj2MrnY6R8xsHoPC77hMK/7gnLWeNnttH3i+++ItuGDzIF64aaDuz8Vblwu7AL8MaicqNT847YzcmMgXShUcnKDAU1/8o+xqL5Ur4sKQU+1+m4ucAq0twz144K9/H599/Zmmv29Y8ZSUY2H8b/EezDw8Cb1UwvtNUzZyd3sR04JXKFdM3zvV65mVjNhZoched6SkV1RYms3bEWaqHaiqTH/8ks0AqrWeXs2M7fAXeLqp8aydWiTjxlJpaqEI2gN4bZKwQnTT2tzwntdKU9YPdPr2N6ZRhfOFck1A9NyxGZGKBYCjfhTPBszjg2BYNPtJXo/SxLowphYRGWGpVL85lJsu3SqeAPDiLdVAc1RbCy/U0u+Eng1xFyQF0bQr/3uvXp5+O9qJVZKlUkFSPoNtLnK+DhulkXGZZvTm0njtWWtcP745V2eMePmpK/ByrSsrDJZ1prEHwDNC8bQ/Qd10Rh+arFopdaSTNTstCiSimNUuBznyRex1ehEpnnbjMgm7z67Pp6WSmMAipQ2XOSiedmboVjVebpB3724Vz2wqib6ONKYWijg+k6/zprNrLrLrap+U3qOc9p/Ll1wfG2EXqAfFn7xkE775wD7sHp3Ddx4+gD86399IXiP+utr913gCsqWSdeBJN7zeXCqwJppuFzWejdZ3AlWVRVGq86inFopiDfvh41W1szeXwvRiCUd8BJ6zTfLwJEhYGJ0toFiuIJ1MOE6sC4pMKgHkzVPtFOAnlGpTrVsuOGEIwLPS32sVT9o4ue0wnw5IaXOTVTBD9/D0txat6c/hsQPVOk+yhUolFN+BrBl6V3v4dkpBZgb+7jWnuX5s2yueYUM1j88cdZdqp4XLrjN6r4mVEiB1GLo0b28Equ/szaVqFrJBqaHKDcJOyYWpsR1+FM9SuSJ8QeUaz0GXNZ52iufRKfPvr1Su4FP/swM/2H6o7ncLkrWUl8J3uwajGRsFSF+8rbva+zvTNWbzfjrbw1Y8gerO/b2/twUA8PmfPRdIuUmlos8z9ubj6abGU2sis1U8rVPtZvXVjdIr1XhalVTsarC+E6htBqRaYlVVRX3ntdqm4ahkW+MW+t6b4eEJVLMlKe3apcCEyqbCslIiRKrdJCuR99jRTpyxtk98lpuXd9V5UHe6HA9bPQZd4e7JNrYW6NOL/KXa/QaKq/v0BiNab5f3ZH2bsJsRbVd7cIGnlw0NB54hQ0EMXSBW5vEE7YqP2aRq91FjkVTfCUiLQATNRUbzeGLA49jMRZfNRU74CTwPTCygWFaRSyewSvpeljm8hynR8V2/eImxpxbf3892HMO/3rsbH/zvJ+q6lnXzeG+fhZ2JvF3Nm53iOSVSUjScwH/gGeS4TDuuPX8D1g10YGQmj/988EDDzzdbKEHrx/BUn+rGYkYPkOq/F7L1cqN4ep2+Ygep4hXV+ntu1EqJIMWJAoGnj0xj98gcMqkErntRtbxpYr7oegIa0cic9iBIJJQ6E3lhoxey4plOkYm8deDptr5TPGcygfO1uk5jfScgnesuNnqyTVej/pF+57WTd6yfGk9AslSaWhDfa5D1nUBUXe3NrYXmwDNkjIGZY40nGRDbKp5afedQ7eJPN7FCuWJpqREUExY3PrJTGpt111wjUu1NCDwpzb5pqLtmx+q2uajPJF2z0qE57EdPVptfFopl3PPsSM3v6Gbf6fGzsFM87WqquoQyZ51qpwCh02HKkR36lKdwF7lMKoFrzl4HQPcLbATaYGRTCU/npxvF0y4lTE07hyYWLK/jyRAUz460Pt3KSkl67lhj5vGE8Xq9Q0uz/97WYazp7xAKu9eSlWY3FwH65pPWgLCtlIi0ixpPr4EnUB1Pe/HW5fgTrY5apsuDgbzdFDWviLUrasVT1HguivXWKYvplV6HrvZCqYJvP7Rf3L/8oE8uClcMsIIDz5AZNNwYnHZHshek1S6SlJCNhq5SWSlbCLnBSKT6DMEXlRZML5ZcNXmI5iIfC6KMnzF8upVSbQBPN/OphaKpQbF9c5H5yDyguvj/Ysdx8fcfP1nbgU3fWc6v4mnymu4mF9WfK3JzESBN4/GhptsF6kFDn4XbAQZ2+O3Gd9fVbm37s7w7i85MEhUVoonQSNBTi4BqR71dnef4XEGMg23EAByodaGQ0+xXnLkKiqKIrmevdZ76nPbmpNqB+gbRsM3jiYxNqr3gYWqRkRes68ctb3thndAB1Jq5k12TFUGmd/WNsFcfz0ZrPKuB55HJBfG9Bq14Ule72ShvAPivRw7iA//9BC77/K/wxV8856uZMugRxl7hwDNkjIqE0+LTnU2Jm5FVnSfVfm0wpNozqYRYfPyON3SL7odW+/76O9LCT86qRlLG7eQiJ/woniJtaFhQaTdMzQ9G3NkpLdbVyd3//Bhm8iXxHf1sx7Gam8S8R/N4QnTSmqjMts1FNh58uuJZm2r3c175mXfuF1LcR126Ktjht0RAdPraNhdZK56KojjWeeo1nsF+pnZpvqcPV505Ng52NqyUyNfr4wencGB8AR3pJH7v5GEA+rQsr53twh/V5zjGIFgh6vQXtf+Go4wZ0RXP4FLtTshrlVO6Pcj0ru9U+3xjgeeqft2n9dBEtQZ5ecAbCrtR3gBw986qeFEoV/DZnz6LK79wHx4/OOnpNYIamekXDjxDhsZmEm4KzId7rDujS+WKMJbeOFTvo9fpoeamEejGZ0y1JxKKNDbTReDpcnKRE/2+Uu315vFAtUiaboxmdZ52zTK0+82X6u2NfvRkNZ34h+etxfKeLGYWS2IMHQAsejSPN76m2UbFNtVuM3VE1HhqCzQ91o+SHkVzETFEpR4BKp6eA0+bUaSEneIJOHe203kZ1NQiQlc8TQLPI9XJNaeu7m34dUSN50IRP3ysqna+/NQVImCkkhXPimchBql2g4m8bqcUco2nZqpu5+Pp1wLLimwqIZqpnAaXiLUogPSu7+YiqvHs8HfdDHZlRPD+hDbSNegNhTzK29jZXipX8BttQtu7Lj4ByzrTeOboDF77z7/GJ+982vX6PBvgyEw/cOAZMgNSYNaRTrpaEIdtxmYenlxEqaIim0qYTsFwc9MLAn1qSv2J66XByK2PpxO9fgJPE/N4wu49TC1Ypyly6aS4qcrp9lK5gruePgagaoL/ytOqFl5yup1qPL1+FqLG01TxtB4h6MZOiQJ6CoYbqfGMRPGkyVkBKJ5+j5tuGgvFsmX60akWkRTPvaPmgae4/gJMtQP204ue0hTPU1cFEHhqN/7J+QLufKK6IbtCGoWrK57eOtubbacE1Fqq5UtlkR1qpuJZCEnxVBTFdTaEyjeCSO82S/FUFEWk25/VPGeDTrUDcmd77ft7/NAUZhZL6M2l8JeXbsXPbnwZXnPmalRU4N9+tQev/Py9eGTfuO1zVyoqZpu8QePAM2TkVPuwSwNhOxP5PaK+s8vUwqGRlKgXzOa0E168PN1OLnLCa6p9aqEo0rGbTGqXBmxsoZxSsCtNvFh/u2ccE/NFDHRl8MKNA7jstOpN9qdPHxPBidc57YSueNarQ8KvzdTH01wdr1TUurpMv2MzKxVV1MSauQAEDWUY5grlhuucfSue0mK+YNGVTSqzVUr4ZK2G8v5d5vPng57TTpACMmuTaj9tdV/Dr0Of6d07R3BkahE92RRedtJy8Xuq8TzqsbloXgT0zazx1IUDMbUomQjM6N8KCirtUu2NrrNmuF0bgjKPB+QyIffXeKlcEYFcI76bq7V0O+0pw9hQ6CUvtfezXz9XzZBdeMIQkgkFg91Z/L83nYWvXX8uVvflsH98Hu/7z+22z12dQFf7OlHDgWfIDEqpdrdzeu3GZu6TPDzNEGpLyM1F1FVr1txA73ncRWd7YHZK2qKeL1VcWbBQR+BwT9Y03WBXLuAUeA6bBJ6UZr/01BVIJRM4f/MA+jvTGJ8r4ME91R2qsFPyrHhWX296sVTz3lVVddXVblS3Zhb1hYneo98NzUxef66wRmbK9GRTooa20XS7X+P7bCoh6pytLJXmhe2P+Xd9ycnDyCQTeO74LHaadOjr42rDSbUbO2oXi2VREx1Eqp2uV/LRfcWpK2rWgJWaX6LXGs/ZGNR4ynZKlPVY3hPu1CJAmlxUqlfZC2XdIzho3Ka9g2wu8pNql0dQNpJ9IS9PIgzFU5jIG67DXz1fDTwvOrF2gtTvnbwCt7/3IgDVATN293/6HtJJJZTzwQ0ceIZMRzopvtzlLu007BTPvaPmVkpEVGMzdR/PYFLt2QYDz+5MStzs3aieVh3tBJUQGBukyhVVmLJbLV4rDDW6lYqKnzxVTbNftm0lgGpa7OWnVNPtNF+cUu0dHm+avR0poXbIlkqLxYrYldul2o0dqVQH1ZlJipowvWHG23lFQbpXSyK/KIoiWXo1lm7329WuKIqjzQxdn1Yp4b6ONF62taoAUg2kDF1/YTUXGY/7maMzqKjVGrcgFB7jtXPlmatr/u67q12MIm1mqr167GNzeRE4h20eD9jPas8HlFkyw82kLkBuLgquxtNLLwOJJT3ZlCezcyM0NpMIJdXeQZZK+vuby5fw6P4JAMBFW4bq/s1gV0Z8v6M2oo88LjPszZAVHHiGjKIowlLJ7YJtNzbTSfF0Y14dBHaKC1kqeUm1N2qnlEgonuo89fpOcz9Ceg9kW0PIxd5WAYn+/VUv/kf2T2BkJo+eXKpm1vHlWhD64yePolJRRVrWq+KpKAqWd9fXec7ki9rvzdP3stomK5lGKyVANpD3N6IuivpOQijuLocYWGFXy+uEXaCuqqrtyEyCgrEfPn64xiGhVNYb1wJXPC262inNfurq3kBuVnKqs68jjRcbbqR0DY3M5j3ZxdjVNEfFYFcGyYQCVdUbssK2UgKAtE2qnYLRoGs8Afdih+4dGaTi6X4jPGkoH/LLmn79u+zrSAfesAWYz2t/cO84imUVa5d1mN7/FUWRholYB55hjMv0StvPao+Cge4MDk8tuu5qpAD1N7vHcPrHfoJ0MoF0UkE6mRAnlHFqERGF4qmqqriITQPPTuuOcCNBNRcB1ZvZ5HzRm+JpoRwLxdNQ40mpj85M0nJGtnFeOzUQvfyUFTUL/4u3DKE7m8LR6UVsPzgp0iNeazyB6q770ORCTWe7uAlnUqbBQiZZ7UgtVVTM58vSGEObwNNjjee0T9WwEWjTYLfrd8O4lqr3EzR32nh5FsoVlDSF2WxkJvH7Jw8jl05g39g8njg0hTPW9gPQb6CKEnxA32tR4xlkRztQWxt+2Wkr6wKiwa4M0kkFxbKK4zN50dDhhG6n1Lwaz0SiuhE8Or2IJw5VA/ZoFE+tq91sZKa2wc80oPRZYdekKKMrbUE0F3mf1W5XHuaF1dK5GFbDmNm89vu0+s6LtgxZbv6W92RxcGLBdJgIMR3CuEyvsOIZAWv7q7uTDQPmKqWRU1f3or8zDVWt7njG5wo4Np3HQW2SSS6dwCkWnaVRKJ7TiyWRmjUrmB/o9qB4BuTjCXgzkafA02rmtFWNpxsFTyieM3moqioCT0qzE7l0EpdovoU/efKoCDy9jswE5OlFuko+6+DVpiiKaa2UcWoRIG9o4q94DnlobrNCrr3dtsZ7M02XzQxrOXi3m1LVlU3h97VyDDndTtmGvo50QylDM4SdUr72Gno6wI52oPZ8uOLMVXW/TyQUcR25rfMslSuiiaaZag6gTyl6kix3QrZSAqQaTxvFMwx1zs3ABCCcGk9vgWdjHe2EHHiGkWYHzLvaf63VdxqzAzJmmS8jszEIPFnxjIC/ueIU/N4pw3j5qStcPb6/M4MHPvT7GJnJo1RRUdRGYBbLFSG1W43Ki0LxpBtfZyZpGjAOeqjxDMrHE3BvqVSuqMId4IQhq1S71tXeSOA5tYgnDk3h0OQCOjPJmq5d4vJtK/HDxw7jR08exZnr+gH4C8KXi8CzPtVuV+/WlUliaqFYk0I3zmmvPoe/We3NTLW7HdtqxvcePYRiWcXpa/osN3l22DVj0c9y6YRj4HjlGatx5+NHcOfjR/Chy09BIqGI6ypoKyXA3EC+XFGx40i1wem0gBTP5T1ZnLa6F8mEYjoDHKjWeR6cWHAdeModzs2s8QQotT4lvquwrZQAucbTZGRm0f/ITCc6bTZZMrNB1nh6GNVJmJUQ+UFuLgpb8aS0+PGZRTyjNRnaBp4245OJIGtt/cKBZwSsXdaJPzzXndpJ5NJJrHOpkMq4LfRuhAmHlIWX5qKgJhcB7i2VDk9WleNMKoE1y8xTeFbvwU3DiVyfRh6Fl2wdNn2PLztpObKpBPaPzwsV2U+a0GhaDbirdzNVPE2UgU6fs5H9doY3wqAHxd0MVVXxnYcOAAD+8Ny1vp7DzmJGTC1y0UR28dbl6M6mcHhqEb/bP4FzNw7o11/AVkqAuYH83rE5LBTLyKUT2GSxUfNKMqHgzve9BJWKamoLB1Bn+wSOuPTyJG/CTDIRSoDlBeNc9igUT9vJReXwmotE2tvhnjMdYI0nnaf5UgWlcsWV8k/9EcYx1l7pyCQx0JXB+FwhtO+119DVfv/zVVu101b3WopOgLvAczYfnJ+qXzjV3mJ02szfDgqnlMWg5IHpNL9Xn9UeXOA56RB4ki3MxsFOJC1ueo6Bp40n5VB3BgmlqhR99+GDAOrT7ESX5F94aLJ6g/XaXASYLzi0wNgt9J0mAZJZEb5d6tiOZiiewkfWZ1f74wensPPYDLKpBF7zgjW+noM2D2aKDN2g7eo7iVw6iUtPq02363Pag/9MhY+ndNyUZj95Za/l9eIXq6ATAFZqwZtbxZPKi9x8rmFjVMIiUTxT1c+yaDOrPdTmIpc1nkGMaezK6i4mtG7aUamo+Kk2wOMlJ9ZnnrxCrguU2g4aEjZoA3ifhY2SEU+KJweeTFDoU1PCUzxFqs9i50VKjKrqBd1WLAaYaqfgxjhmzIjeWGSt3tB7WCjWGpG7mTueSiYw1E1d8QVkUglRy2nG5afXBqWN1HjKiieltuyUNTO1QmwspFR7R6axVHuUu+tGx2Z+++Gq2nn5tpW+A2Y9UK+/Duc9KJ5ANd0OAHc+cRTliuqYcWgEM+Pqp6SO9ighL88jLk3kZ104BUSFsZE07HGZAJB1Mas9zBpPp8ZDCniCWAsyqQRepJVo/M8TRx0eDTx2cBJHphbRlUk6Bm9uoEa/sK4JueRFVdWaxiI73NR4Bllr6xcOPFuMzgBGZn7jgX248dvbLW1MrOa0E+lkQiwuTul2fXJRdKl2Mq3eYDLrnujJpkSXqNzZ7lbBk280Lz1xuW26+/dOXiFeCwhS8dRS7XaKp0mt1NRC7Zx2wHrKkRPCkijKVHsDYzMXCmX8cHtVWfzD89b5PgbR/GASqHv1mnzxliH0d6YxOpvHb3ePSeNqwws85a72p4/QxKJoA09SlY55rPFsdmMRUKtwppNKKOq0Ebsaz0gUT5u1oXaYRTCfBdmN3W7ic2vkR1qD5++dsiKQsq6PveZU/OzGl9nWWzYCZR6mF4vYNTKHo9OLyKQSOG/jgO2/o/vAaMxrPDnwbDGCqPH8vz9/Drc9ekjI+0ZIEbNbTN3U2amqKk0uavxUpEDJTY0nAFuLFkVRhKIkB8/uA0/9xmOVZif6OtI1/p6+ajx7dQuhilbeQKl2uxtxt1mqXSie9al2rxsapylPYUDNRaNzhRr/Szf8zxNHMJMvYd1AB160ybzpxQ127hJeLX8yqYTwfP3h44dDG5cJSDOwC/qc+aA72t2y0qOJvFA8Y5Bqlzeewz25SIy67Xw88yEGnt0uyrsWivr5FJTSdtlpK5FKKNhxZBrPH6+f7kWoqiomx73KYS12SzaVxBYLR5QgkLva73tuBABw3sZljkGzECBm85Zrn5sSrLDhwLPFaLTGs1JRRTfwo/snTR/jpHgC1l3hMoVyRYxTbHRyEeBe8aQb2ao+e29AszpP3ZfS/qKlovNUQsErTnF2M5CDUz87ckrtl6RUrBsFyKwW0azGUy/hKDvW7co0patdUzwLpYqnrlcA+I6WZv/Dc9bZ1h86YecuIaYWeUgJU7r9R08eFV6tYXS1y+r4bL6E4zOLGJ3NI6FUazyjRCie04tiM2XHfAymFhGy4hmW5Y4Ru+aiQim8kZluxumSgp6wGGbhh2VdGbxES5v/8LEjlo976vA0DowvIJdOiGlgcUcuebnPhY0SQfeBQqlSM/VIhlPtTOA0qnhOLhTFmEUaz2WEApsBG8VzwIWXIqXZgWjtlKhLlm5sVpDiKafa3XZpk5p6wQmDriZlXHrqClEs7ydVmE4mxGdOdZ5uisiF4ulQ4ynfzBeK7jc1zVA8OzJJcXPz0mC0d3QOv90zjoQCXOOzm52wK03w0wRz/uZBDHVnMTlfxAO7qx2uYSie2VRSqGKz+ZKo79y8vNtX7XEjLO/OIqFUN1OjLup13UyDiopB7diBaMzjASBjZyAfouJp5+BATIv0rvkwC79YTfeSIbXzkq3DYkMYdygoLJZV/FrraH/JFuegOZdOin9r1WDEgScTOI36eMreh9v3T5oqDRPUVWtz43Pj5UnecooSzEQN0dVuYyCfL5UxqgUjqx2moQyYjF50q+C98bx1+KPz1+OjV57mfOCo3qg+/prT8M6XnWA5DtWJYUOd56wbH0/D6DlVVU1rPLOpBOh+4WVT43feeaMIL08Plkqkdr70pOWOargTdrXWc3n9JuyWZELBq7UmNJp6FPScdqInq6stzUqzA9UmPVIL3XS20zkcB8UzmVCE+hTFuEzASfEMcVa7iSWbEXk+eJC84tQVyKYS2D0yJ2qRZVRVxY+eMB/gEWe6MnrX/kKxjP7OtOtGJqfO9qBrbf3AgWeL0ejkolFJIZrJl/Dc8dm6x3hJtdsFnvqc9mQgu2C5q91q90s3sGwq4VjwP9BAjedgdxafvPp0T3VAb75gIz54+cm+PwvjnF4KenpcpNopmFwollHUmhPk96goit6p7bKMoxrERq94Anq63a2JfKlcwX89UrW++sNz/TcVEZR5MLOYmROjUb0FSKTuEGF0tQO1DUZ0M4+6o52gznY3gace0De/xhPQ6zyjUjxtDeTDDDxdZNmCnNMu05NL4/c0xxCzdPuzx2axe3QOmVRCPG4pkEgoNRvTC08YdG1l5tTZHtZ34QUOPFsMMUWiWHZVF2XEaEHzO5N0u55qdw487RSnfICNRYAe3BTKlZo0vszhyeoNbHV/h2OAt8wkeG5WIOUG4053Ju9c86Y3BlQfS2pxOqnU1WK5qeWSWSiWhToXfeDpTfG859kRHJ/JY6Arg5e7qMl1wq6rXdQiekxdn71+GVZL5SFhBZ7dkpULKZ5Rd7QTq2hspgtLJd0ftfmKJwCRuVg/2BXJ64nmIhsfzzDslDptznVidtG7yu8WkW5/rD7d/j/aAI+XnjgUuNoaNvLxXuQizU44KZ6camcChxRPVYXoGPeCsSbOWOepqiomXMy8HRRpamvFSSieATQWAdVFjXaFVnWebus7gVojfKD63qeblDp2g654Vm/SblK6xmY0faxcpi4wF7VcLss46DtIJeqD2LDxOjaT0uxXn7UmkDo4uxpP+qy9BkiJhIIrtJtsQgnvHOzRUnBHpxexV5v24mdsaBB46Wz3U8IQJn/9qlPwmWvOwGWnRZPitZ3VHmZXuyZ20FhnM8IMdn7v5GF0ZZI4NLmA3xkaYn+s2Shdvm1V4K8bNvL17eTfKWMXeBZKFaF+93CqnQkKeQKQV7NvQL9Rk7JivJAXimWxiNnVeA6IVKdNql0onsEEJYqiOHa2u+1oB+oVz9l8STRexVHxNI7NnHWx2BsN5CdN6juJTpv0sRlyfWcUdjIyXsZmjszk8fMdxwEEk2YH3NZ4ej/vX6MFnusGrKduNQopng/tHYeqVlPFQyFNaHGCNojuUu3kFhCPVPvq/g784bnrIhvfmaHJRaZ2SuF1tctNZ1ZlODNialHw62Z1updmNyZ5eu4amcXOYzNIJZRAshhRQ+v2+oFOrPdQ928XeMp1uDy5iAmMhKQuua3FkxnVbtQvP7V6oT5/fBZTUrMOBWHppGK7wLtpLqKpRUEuhk6BJ3l4ru53VjyNNZ70nJlUIrBgOUiMC86si1S7cdzdlImHp/5YzVLJreI537yyhEEPYzO/9+hBlCoqzlzXj60rewJ5fbvJRSIl7KPDdtuaPvzHO16I/++6cxo7QBvohvfb3eMAgNNW94X2Wk7oiqfzWEQ353sr0ywD+UwqIdRWqzKcsOsKrzyzqmje+cQRYfdGaueLtwy5chaJGzSExatJvV2NJ30PnZlkaBtXN3Dg2YK4mSRhBSmeJ67oETVKjx7Q0+26eXx9KlZmQEpTWzX6iKlFAQZxvaKz3TzgIMXTqaMdAJZpXcM0GzvO9Z1AbVd7paKK79+NgbxItS9Yl1F4dUxoVkc7IHe1O6fav/twtanoDQGpnYBulTRfqK+1pkyEX6Pzl5y4PNTUNzWj0QzsZnS0Eyt73SuecfLxbAZ2Xe1h2ikB+rlslQ0R2ZeQvpuLtixHX0caIzN5/HZP1X6I6jsvX0Ld7DIvPWk5OjNJXHPOGk//zm56URzqOwEOPFsSv+MNAV0hGurK4Oz1ywDUptvdzommwLNYVi2NbMWc9iYonu5qPKsXMAXPzZg77gVZ8ZwvloU5v90iY2wYkms8jXg9r+h7b47i6VzqAVRVWXJuePXpwdWByV6S8wbf0zj5TZphbMJoVkc7oJfEHJ1edJxCFSc7pWYgFM+Im4sA501p2AFPzXSvxw5j/9g8njo8jWRCEWn4pcZbLtiIJz/2SpyzwX5MppEhW8UzHnXQHHi2II3Ma6eauMHuLM5e3w+gtsHITWMRUK27oaDGKt0uAs8AFU+3NZ5uFE96j+WKiumFEqYXmhdIuYEUz9l8SaTbkwnFtpRB7mpXVdWhxtPbedVMhditj+eBiXkAwFB3JtB0XC6dED58RmuzuZgHSMbar2YqnjQKdrFYcRwMETc7paixay6KSvG0svGbjaDxi7rbf/TkUdz+2CEAwPmbBoQIshTxMz2N7gNjs/m6KXN6yUNz72EceLYgjUwvGtV2SYPdGZylKZ7bD+hG8jQC083FrHt5mqc7F0vU1R6k4lld2KZNblJz+ZK4eblRPHPppPgsx+cLTZnC44XubEp8lntGZ8XP7EoiqLO6olZvTnY1nl7Pq2YqxKR4js8VbG3F9o9XA891A/5M+62QfU+NKpBe4xnPAElWpbqzKawP+LPxQi6dFPW6Tp3tc+1e42nRXKSqKgrl8Hw8AWcT+ZmQDORlXiRN9/rS3bsALN00eyMMdGWgKNU13Sj66Eb+rHgyAeN3Xnu+VBZS/FBXFiev7EFnJomZxRKeH6kGMm7M4wmnBo98CIonjXk0U0eoQaEnm3K9AMrTi+Je46koiuhs3z1StcFxUhg6pc9+Nl/Sx2WaqH8domHG3XnVzECdNj3limqrlB3QAs8wgqtOk7o3VVWlGs94BkjyOXPKqp6GZtYHwQqXdZ5zhXiXMISNVaq9IAWioSmeDmsDKW1hdlInEwquOKNaLjNXKENRgFcu0TR7I6SSCXHvNXa2c40nExp+FU/aHaUSCno7UkglEzhjbbWj9Xf7qul2vbnIOZhwml6k13hGk2on8/hVLjraCbmzPe6BJ6DXee4ZdRd4Gl0QKNXeZ7Kx8Kt4NuPzyqQSQmm1S7cLxXNZ8IGn2c04X6qI9FdcA89eaVPWzDQ7scqFl2dJGhoR1881bPRUe63Cn5cC0bAUT6fhEm6s3YKAutsB4NwNyzDcG8240rhhVecpFM8mengCHHi2JJ0elSmClMnBbr1j/SzRYFQNPMc9pdrtvRTzoaTata52G8XTyxxu8vKcmCtgejG+5vHEsDHwdLHQy2myKa2O1dROyaOS3uzSBFp87Uzk90eheEo3Y1n97IihJRdQe84000qJIEslu+lFcjmDX7eApQ6pmcZUu6yAUnAaNMYJaEaE0hZywHPWumVYo9XvX7YETeODwsrLczoC5dkNHHi2IPru01vgKeo7u3SzaOpsf1TrbPeUau92qXiGYKdkp3i68fAkhOI5vzQVTzfqT5ekVkxp36/Ze1xKiifgbmzrgZBqPIF6j1RA3wx2pJvro2eHrEo1s6Od0E3krb086TNOJ5XQOrfjDqXaSxW1pq5ZNBYlE6ENctDLSszvOVHVFiYSCv7+D87AWy7YgDe9MDh7tKWGVeAZlfLsRHvmJFqcTocOQytkxZM4S+tsf+74LKYWigGn2oP38bRLtftRPAckxbOZvpRuIcWT0pJufPO6JLXC1sfTo+LZ7M/LaWxmuaIKr0ovk0Hc0mUyyEHUIcZYlSOrtEwygS3D3U0+GmCldr3apdrnGzDlbxXSST2oLFYqyCaq55hupRSezmQ3MKFcUfWu9ggCnotOHMJFJ3ozXW81rALPuNgpte9V2sJYddM6QWbb8ni8oe4sNgx2Yt/YPLYfmBRBpBvF00lxCnNykVlXuz4u073iuUx6D81W8NxACw7hZoGh82VyvigUuX4TH09qRDL6UlrR7M/LaWzm0elFFMsq0klFGJUHiQjoa1Lt8W4sAqrNPB+54lQs78nGYkKXGxN58vBs9g21maSlNHqhVBHKL43LDHN0JwX8s2YjYqXzv9lKW7tA04tGLWo8e5tsp8RnQQvS6bO5SCiehvrNs9cvw76xefxu34SYCOSmxnPQtZ1SgF3tnbriqapqTWpJH5fpT/GcFvZA8Q08qaudcJVq19Q3Uv8UxfwG4VVJb3bgOeTgqrB/rJpmX9PfEUra26y5iFLCcVfm3n7RpmYfgmCli3ntupVS8wPlZiEHnnKDUSSKp81wCVLZMslE25ZBRI214sk1nkxIdPm0UxoVqfZa1YyM5H+7Z0yoqJ5S7RY3fr3GM3jFs1hWsSApc6qqejKPJ8R7mC+IxpslpXh6aC6iwLOvI21qoeNkmSKzWCyL2rJmpdp1xd184xNmfSdgbqckxjrG1MMzjlDgOZMvWfpEtvucdqBqJ0QbKLnBKGzzeMD+nhOXusJ2wmpeO9spMaHhW/Gc083jZaiz/eG91c72hOJO9RuUutrNxt2FYafUmUkipS2+cp3n9EJJBExeUu1ynaro0g5wwk3QDNel2p0/WwooSRE262gHpHnMLs4r6p5UlPDmMzsxKNJN5hsfmloUlkG6ueJZ/f/ONg6QvNKdTYkbpZXqOd/mHp4E1XnKnexhj8sE7O85cVHZ2om413hy4NmC+K7xpDnthsDz5JU96EgnUdI6Jfs7M65MpVf25ZBOKsiXKjg4Ud+Rmi8Gn2pXFEW3VJrXA8/DWmPRQFfG0+tRo8WRqUVhxBxnxXOwOwv5q+l2YV8iFE/tOzLz8AQkmy4XSjoF6T3ZVNMMyJ1cFcK0UgJ0xVNW6Shob9exjn5Z5ZBu1+e0t/fnmjYZm1mIQPG0s1Oaicm0nHaCAs+phaKo8QXaZGTmJz/5SVx44YXo7OxEf39/mC/FSNANb8Gj4mlmpwSgxkgecJ7TTmRSCWxd2QMAeOLQVN3vF0vBp9oB8852vaPdWxMJKZ60eCcTSqzTpMmEIvxTAbep9ur7cVI8SdUolCum86BlpmKgDjv5eIY1LpMw6/QVimebK3NeoelFRywsldp9XCaRTdWbyFPgEWaNZ6eN2BEXla2d6OtIC/WbMj6qqkrNRS2seBYKBbz+9a/Hu971rjBfhjEgFE8PNZ6qqpraKRFnb1gm/n+Zi4524vQ11YDVLPAMQ/EEzL08xdQiD1ZKgFbvKAl2vTn72edxQE63u0q1Z2tvGlYbCzlYcqrzbHZjESA1hs0XUTIJlMMclwmY171xjac/nBRPCjzbPbgxUzyjqfG0bjzUazzjmylqNRRF0es8tXT7fKEMsndtdtlDqIHnxz/+cfzFX/wFTj/99DBfhjHgp8ZzJl8SqWSj4gnoRvKAu8YiYpsWeD4ZoeIpd7YTeke7N8UzmVBqrKPinGYnltcEni5S7YYgyErxzKQSYhftdG5Nx6ARa1lnBrRHGJ+vTbfPF0pCCQhP8ay/DrnG0x/k5Wk1vYiV5CpiXnuTmovMmr9EepfP+Ugx1nnSd5NMKE2fmsY1ni1IZ9Z7jSepnV2ZJDpM1Bgykge8KZ7bVuuBp7HBSPfxDPYiMPPy1D08vSmeQG2gvRQCT1nxdFPzZkxPWtV4AvI0HneKZzOtp5IJRZ88ZajzPDCud/CH9Z2aGe6zMucP94pneyvJ9s1FURjIl+vW+aimFjG1GANP0eSVbX7WLlaBZz6fx/T0dM0fxjuktBRKzrV4BNXBGa2UiKHurEhJLnPh4UlsXdmDVELBxHxR2PUQiyGl2s1qPP0qnkCtAhznqUWErHi6mY1sVImsFE/A/djMOKTaAXl6UW3gqdd3et+IuMVU8RQTdto7QPIKWSpZTS+aLXCNJ+CUag+xq10L+EsVtUZtBaQaTw48I6U+8IzPBsBz4Pmxj30MiqLY/nn44Yd9HcxNN92Evr4+8WfduvadtdoIXmrxiFGb+k7i/E0DALw16OTSSZy0otpgZEy3hzG5CIBpV3tDimeXHjwthcCzpsbTxSJjVN/sgsUOEUzFv8YT0Os8jRM8wu5oB8ynudDn1u62P14R04ssUu3z3FwEQE+nm3W1R6F4AvXZkBmu8WwKxulFcWry8nwE73nPe/DGN77R9jEbN270dTAf+tCHcOONN4q/T09Pc/DpA6rFK5ZVzBdKrm7+wsPTpL6T+KtXbsUZ6/px9VlrPB3P6Wv68PSRaTxxaAqXbVsFoNrMlA9hchFQr3hWKqpI0XntagdqpzQ1O5Byw3JpepGbVHun4TF2rgV0Y3ereDY7UCcFvz7VHm5HO2A+zUVMLmrzlLBX6LodnytgsViuWzPEKNI2D+hFjWepvqs9zBrPZEJBLp3AYrGCuXypZs2UU7xMdFgpnnGYvOf5TBgaGsLQ0FAYx4JsNots1jrwYdzTmUlhaqHourPdysNTZrg3hze/aIPnY9m2tg/ffvgAnjikl07kpRqkoJuLjF3tY3MFFMoVKIqesvPCsiXWXDTcW72G3I6oM94Q7AJPShE7nVfTMVE8rcZmht3RDki+p4UyKhUViYQiUu3trsx5pa8jLQKb49N5rB+s/d5meWQmAL3GM2rFE6gG/YvFQl02hGs8m8OQYXrRbD4+Rv6hnon79+/H9u3bsX//fpTLZWzfvh3bt2/H7OxsmC/LwH0tHqHXeLqv33TLttW9AICnpAajRWmcZdiKJ3n/Dfdka+YZu2WpKZ6bhrqQTirYMOguqDLWG/Z1WJ8DZt6UZsRN8TSOzYwi1S4H9DS+dZ6VOV8oiiLKZMy8PHVj/vb+XJtlIA9Yd7bHqbawnYhzjWeoR/CRj3wEX//618XfzzrrLADAL3/5S1x88cVhvnTb05nV1RY3jGqpSLtUu19OWdWLZELB2FwBR6YWsbq/QzQWJROKr2DQjn5DV7tfD09iqQWeQ91Z/M/7XuLavN2T4mkzk1kmfjWeuuKpqqreXLQsvMAzl05AUQBVrQZGXdkUNxc1wMreHPaMzpnWeYpUe5sHnlmTGs98BCMzAWsbP13xjP/a2UrIgaeqqrGq8Qx1C3TLLbdAVdW6Pxx0ho9fxXOoJ/jAM5dO4sThbgC6kbw+pz34U7Cv01zx9NPRDtR28cehPsYNJ67owXCPu/dr7Gq3CxY7NXV6obhEUu0mYzNHZvLIlypIKMDq/vC62hVF0RXifK3iGYfFf6lBZTJUJiEjJhe1uZKs+3jqNZ6RpdotNqVc49kcKNW+UCxjrlCOVZNXrOyUmODocFmLR4gaTw9WSV443WAkH1ZjESB1tS8UoapqQx3tADC4xBRPr2RSCWS0G1Z3NmWrQFNTjNlMZpm4KJ6DJmMzD0xUA5dVfR2hpx9JBZrNl6Cqqq54tnktoh9o/O4Xf/k8fvb0MfHzckUVGyGu8dQUz5KseGrNRQFnlozo9d+cao8DXdmUEKBGZvKixjMO3wMHni2K21o8YoxS7RY+no1y+trawFMoniEGnuWKirlCWXh4+uloB5Zec5Ef6Ibt9P5ko2grSuWKGF7Q7M9rwKS5KIr6TqJLKnlZLFbEyLp2V+b88NYLNuKSrcuxWKzgT//jYdz64H4Aen0nwKl2s8lF9P/ZgJs4jXSbOF4UShUhMrjxFGaCRU63x2kDwIFni+K2Fg+oBgoT884+no1w2mqa2T4NVVV1D88QFsOOdFJ0d04tFIXi6TetutRqPP1A6Xa7+k7AneI5vaj/rtmL3JBWszyTLwnlZ/9YdSMSpnk8IVSgQqkmQGr2yLqlSEcmiX99y7l4/TlrUVGBD972BP7fz58T52IqoYSeTo47mZTW1S4rnlo9ffiKZ/3EPLnRqN3V6GYgB55xchdo/hEwoeClxnNivghVBRTF2zhML5y6qhcJpWpme2w6j0VKtYdQ8K4oCvo60hidLWBqvogjDSqenZkkTl7Zg4n5Alb0tabdF6kVToGnG8WT0uxdmWTgjWNe6e1IIZVQUKqoGJ8rYFVfR3MUz3xZ6mhPIpFo7si6pUo6mcBnrjkDK3pz+OIvn8fn7noWj+6fAFC9Tps9CrDZmHa1R6R4dplsSmcX9Wa6VJPXgnZEDzwXhSDQHQPlmQPPFsVs92kFWc0MdGaQDOmG2JFJ4sThHuw8NoMnDk2hotkqhbUYUuA5MV8QXbB+FU9FUfCD97wY5YoaemdosyAls9/GSgmw7lyViUt9J1D97ga7Mzg2ncfYbDXwpBrPMM3jiS5J8ZwV5vG87DaCoij4y1duxYreLD5y+1P45c4RANy8Apg3F+mKZ7hrl1lz0TQ3FjUVfXpRQTR5xUHx5C1IiyKmpjg0gQB6/VtYaXZi2xpKt09JXe3hLIYU9Dx7bAYVtZqGG2qgfjWbStZ1f7cSdGNwsmBys6GJi4cnMdBVOzouCvN4Qtia5UsiWO9iK6VAePMFG/Ev154tGsTavb4TsJjVXo7KQL5+Uxqn9G47IkzkZ/JCfY7DJoADzxal00VKlKAbchgenjKnr9GN5GkXHvTUIoICz2eOzAAAVvTmQlNzWwFSMp1Uyk6TMZBGpmMWeJKl0thsddwiKeDRKp5lEay38gYmai4/fRX+4+0vxPqBTlx++qpmH07TydhMLgrfwaHeQF54R8bAwqcdEan22fzSHpnJLA30OdEuUu1NUDxftnU5gHC62gEp8DxaHdPp18OzXaCdsVMdrNGX0ow4pdoB3Q5rfK6AQ5MLUNVqoD0YknWYjFCI8yVR+xYHxaGVOH/zIO7935c0+zBiQcbUQD78We2A3NUuNxdpm1BWPJsCBZ5HphaF5VgcRmY2/wiYUNBToi5S7VqNZyOpaDecurraYHR8Jo/9Y9V0Z9iB585jVcUzTKPwVuA9v7cFW4a78bqz19o+Tu7StiJ2gSfVOc3la9LsUTSiyBvAuTx7eDLhImo8S9EbyJs5XsRpWk47QoHn3tE58bM4lD1wqr1FEU0gLuyUhOIZsgLUmUnhhOXVCUYP76t2ooadaqfRnH7N49uFVX0deNuLNzneILpcjGKNy9QiQvbypMAzijQ7IDdclMRnxh6eTFiY+Xjmo5rVbiJ2xMk7sh2hwHNB+GYnmu40AnDg2bK4UaaI0dlwzeNljBOMwuoSN9YXcqo9GPSu9jJUVTV9TNwUT3lsZpRWSkCt/RTPaWfCJk2p9lJ9jWfYjhyydRgxEyMLn3bE2LcRl++BA88WxY0yRVCqPewaT0Cv8yxpI1zCSrX3G/xIWfEMBgqayhVVKClGyEIlLnVdtPiOzeZF4LluWTTnQ42BPM0T57QjExJmzUVU4xl6qt1E7IjTmMZ2JJNKYJnkVBKXNZkDzxbFam6uGWJOe4SBJxF2qp3wax7P1CJ3ZFttaoTi6WDNFBW0oRqdLeDAeHWYwPrBaFPt8/my8DfkCS5MWBhT7aqqRlbjaad4cuDZPCjdDsSjsQjgwLNlcTNhhhiLyE4JAE5b3Qu5pyPs5iKCm4uCIZlQxGbBalMTt1S7UDwNzUVRQBvAWcnHk+2UmLAw+niWKiq05FL4NZ5ZXfGkMpxZDjybjhx4xuV74MCzRZH9Fq1q8QBgQfIXjCLV3pVNYfNQl/h7WLtwOejJGtINTGPQpoYK1o0cm45uI+MGOq8XixXMaMHy2mURK56FkrjO2ECeCQs98Kyu+QWpHCb0Gk9tXaioelMn13g2n+VS70Zc3AU48GxR5EXAqhYP0Os7M6lEZCfl6VK6PQrFc3V/R9vPcA6SDpsyjqmFIkZmqufU5uVddb9vBp2ZZE1Jx3BPNrTzzuy1Ac1Anms8mZDJGnw85cAzbMWzQ7qmqM5zhicXNR3ZJrEnBubxAAeeLUvNImBT5ynqO7sykQVn22oCz/AVT67vDBa7Mo5dI7MAgBW92dgscoqi1KivUaXZAclUO18StW8ceDJhoft4VgNOEh2SCSX0yW2JhKJP6tLuOTQfPC61he1ITY1nTNYeDjxblERCEcGnXZ2n3tEeXVq0JvAMKf2TSyfEDp872oPFzCiaeP54NfDcMtwd6TE5IZeRRBl4itG1xbJQf9hOiQmLtNbVXjAonmE3FhGdwre2es+h8Zlx6aZuR+TAMy7fAweeLYxc7G3FaETjMmVOW90r/j+slKeiKEL1ZA/PYHGjeNKggLggD0eIyjwe0K9BVQXGtU0eK55MWKQNqfaoxmUSXZna3gKu8Ww+3NXORIo+J9pG8RRTi6JTPHtyaWxd0QMAWBbitCQ98GTFM0hkE3kju2KreOrnd5SBZy6VFC4OtMnjyUVMWGSouUgbmZmPWvHUzu3ZfAmLxQrKWks913g2j9qu9nhsAPhsaGE6pd2nFWSlFIWHp8w/veEFeOLQJM5c2+f8YJ+csLwLzx+frVFYmcaxO69Eqj1uimeTUu2JhILOdBJzhbK4CbOPJxMWRjulqMZlEt3S4BKq70woXF7STJZ3x89OKR5HwYRCV9aF4jkXfaodAE5d3YtTQw4I//EPX4D3j82H/jrthrGOi8iXymIy0AlxUzy7mhN4AtXPa05Sh9nHkwkL6xrPiFwcpPpvqmnuzqbYVaSJLOvMIJlQUK6o3FzEhI8bxXM0QvP4qOnOpjjoDIEui/Nq7+g8KirQk01huCde5xOd35lUIvJjMy72cVn8mdbDqHhSAEop+LDpEuVdJWlqUTzSu+1KIqGINc84SrpZ8ArYwriZXtSM5iJmaSNqhw2BJzUWbR7ujp3CsaK32mC2YaATiZBtZYzIaUZFCc9CjGEyqVoD+bw25CEb0TmnN7SWeWpRjPjg5Sfjd/smajy0mwmfES2MPL3ICr3GM14KFRNfurLmzUVxre8EgPM3D+DPXrYZLz5hKPLXlpuJujKcdmTCg5TNckVFuaJGrngK+7BCSffwZIW/6Vz1gjW46gVrmn0YAj4jWpguh672SkXFeJNqPJmlSwfdXAznlbBSGo7HxCKZdDKBD11+SlNeu1NqJuImCyZM0lITUbFcQb4YbXORUDzzZZ5axFjCOZ8WxqnGc3qxiJLWaTsQoq0R01qI6SSG8yrOimczkRVPVn+YMKHmIqBa30mKZ1TNRXpDa0mk2ru5xpMxwIFnC6PX4pkrnlTf2ZNLRbYwMUufTpPa4UpFxe6ROQDx62hvNrLK2clWSkyIpBOS4lmq6DWekRnIy3ZKrHgy5nDg2cKIWjyLWe1c38n4octkZObhqQUsFMtIJ5XI7YrijjypiK2UmDBJJBSktOa5YlmVFM+oajyra8NsvoTZfLXGs4dVfsYAB54tjJPiKTw8Oc3OeIDOq4Wifl7t0tTODYNdwtKFqSIbxndxjScTMrKlUtQ1nrqBfIkVT8YSvkO0MF0OXe2keHJjEeMFUjXkpjWu77RGVjl5TjsTNrKJfOSKpzRcQjaQZxgZDjxbGLNaPBndw5NT7Yx7uiTLFOL5mM5ojwOyyslz2pmw0b08K2JyUWRd7VLjIRvIM1Zw4NnCiAkzFnZKY3NajSen2hkPdEo+nhXNFSHOVkrNplOu8eTmIiZkyLOzWFIjn9Uuj2meJR9PTrUzBjjwbGFE2sMy1c6KJ+MdWbWjOs9dItXe05RjijNGA3mGCRPy8iyUKyLwjMxOKcM1nowzfEa0MPpMbQvFk8dlMj7IpRNQFEBVq+dWoVQRjWqbl7PiaURWObnGkwkbai4qlCrIl6prf1SKp5wNmV6krnZOtTO18CrYwnRk6m1vZEa1VPtgFyuejHsURUFnOom5QhnzhRJGZqrn0eq+HAdWJsjNFV2camdCRu5qL5SibS6SFX3ZJ5phZDjV3sLQIpAvVVDSuhtlSPEcYsWT8YjcvarXd3JjkRk1BvKcamdCJpMkH89K5DWeuXQCmo0oylr9N9d4MkY48Gxh5BTffLE23V4oVTC1UE2FcI0n45UuaRwrdbSfwFZKptTWeLLiyYSLueIZzXmnKEpdHTMrnowRDjxbmEwyIaZYGDvbRzQPz4QC9HdwDQ7jDXk4wS4elWkL13gyUSJqPMtq5DWeQO35nkkmeBwzUwcHni2Moii62behs/1bv90HADhlVS8SlBthGJdQreKCpHiyebw5NYon13gyIUNd7cVS9DWeQO3mitVOxgwOPFscWgQWpM7249OL+Np9ewEA7//9E5txWMwSp0MLpsbnijgwMQ+APTyt6EhzjScTHXKNJ00uilLxlDdaXN/JmMGBZ4vTadLZ/oVfPI+FYhlnre/HK05d0axDY5YwVKv45OEpqCrQm0thOdcKm5JIKBjuySKhAEP8GTEhI08uolnt2WSEqXapjpkVT8YMPitaHFI8yctz39gc/vPB/QCAD1x2MhSF0+yMd0i5e/zgJIBqfSefS9b861vOxfhcHst7OPBkwoVqPPMlaVZ7OrrAU7YP4zntjBl8VrQ4xhrPz931LEoVFS87aTletHmwmYfGLGGoVnHn0RkAXN/pxAvW9Tf7EJg2Qe9qV4XimUlGV1vcWVPjyY2rTD2cam9xSJmaz5fx1OEp/GD7YQDAX71yazMPi1ni0HlVLFe9+rZwRzvDxIIaO6UmKJ6yZVgPK56MCRx4tjiy4vnZn+wEAFx55mpsW9PXzMNiljidBj9K9vBkmHhQYyCv+TdnIqzx5K52xgk+K1oc6jD85c4R3PvsCFIJBf/rFSc1+aiYpY4x8GTFk2Hige7j2XzFk7vaGTNY8WxxyMz33mdHAABvOG8dNg6x7Q3TGLKqkUkmsHZZRxOPhmEYgnw888WKKIWJUvHkGk/GCQ48WxzZUy2XTuB97NvJBICseG4a6kIqwhsbwzDWkOIpW+hF6uPJXe2MA3y3aHHk8WVve/EmrOjNNfFomFZB3tCwcTzDxAeaUiRPq4tybGUX+3gyDnDg2eJQgNCbS+GdLz2hyUfDtAqy4slWSgwTH9Jac9HMYqnuZ1EgT+fiwJMxgwPPFuf3TxnG2ev7cdPrzkBfJ9fbMMEg13GdwI1FDBMbKNU+q6Xas6lEpMMdurnGk3EgtMBz7969eMc73oFNmzaho6MDJ5xwAj760Y+iUCiE9ZKMCWuXdeK2d78Yrz5jVbMPhWkh5HQaWykxTHwQgaemeEZZ3wnUlndxjSdjRmhnxTPPPINKpYIvf/nL2LJlC5588kn8yZ/8Cebm5vDZz342rJdlGCYCyCZFUYDNy7nGk2HiQsbQXBRlfSdQW//NgSdjRmhnxWWXXYbLLrtM/H3z5s3YuXMnvvSlL3HgyTBLnJW9Obzlgg0Y7snW1HQxDNNc0imtxlNKtUeJXP/dy6l2xoRI7xhTU1MYGBiw/H0+n0c+nxd/n56ejuKwGIbxiKIo+LurtjX7MBiGMWC0U4o68OzvTCOVUJBKKujKRqu2MkuDyALPXbt24Qtf+AL+8R//0fIxN910Ez7+8Y9HdUgMwzAM01JQ4FmpesdHXuPZk0vji9eejVw6wf6+jCmez4qPfexjUBTF9s/DDz9c828OHz6Myy67DK9//evxx3/8x5bP/aEPfQhTU1Piz4EDB7y/I4ZhGIZpU4xTiqIOPAHgsm0rcfHW4chfl1kaeFY83/Oe9+CNb3yj7WM2btwo/v/w4cO45JJLcMEFF+Bf//Vfbf9dNptFNpv1ekgMwzAMw6A+0Iw61c4wTngOPIeGhjA0NOTqsYcOHcIll1yCc845BzfffDMSCb4AGIZhGCYs0jFQPBnGjtBqPA8fPoyLL74Y69evx2c/+1mMjIyI361cuTKsl2UYhmGYtsU4pShqOyWGcSK0wPOnP/0pnn/+eTz//PNYu3Ztze9UVQ3rZRmGYRimbalTPLnBh4kZoZ2R119/PVRVNf3DMAzDMEzw1NV4pjnwZOIFn5EMwzAM0yKw4snEHT4jGYZhGKZFqKvxZMWTiRl8RjIMwzBMi1Dn45nk5iImXnDgyTAMwzAtAtspMXGHz0iGYRiGaRHYQJ6JO3xGMgzDMEyLwIonE3f4jGQYhmGYFqHeQJ5v80y84DOSYRiGYVoERVFqgk8OPJm4wWckwzAMw7QQcrqdR2YycYMDT4ZhGIZpIeTAk2s8mbjBZyTDMAzDtBAceDJxhs9IhmEYhmkhMlzjycQYPiMZhmEYpoWQVU5WPJm4wWckwzAMw7QQ3FzExBkOPBmGYRimheAaTybO8BnJMAzDMC1EOiUrnnybZ+IFn5EMwzAM00LIzUWseDJxg89IhmEYhmkhams8+TbPxAs+IxmGYRimheAaTybO8BnJMAzDMC1EjeKZ5K52Jl5w4MkwDMMwLUQmJRnIp/k2z8QLPiMZhmEYpoXIyKn2JN/mmXjBZyTDMAzDtBCUak8nFSQSisOjGSZaOPBkGIZhmBaCfDxZ7WTiCJ+VDMMwDNNCUMCZTXNjERM/OPBkGIZhmBYirRnIs+LJxBE+KxmGYRimhaAaT/bwZOIIn5UMwzAM00JQ4MlTi5g4wmclwzAMw7QQpHSy4snEET4rGYZhGKaFyLDiycQYPisZhmEYpoUQzUUceDIxhM9KhmEYhmkhyMczm2I7JSZ+cODJMAzDMC3EttV9yCQTOGt9f7MPhWHqUFRVVZt9EFZMT0+jr68PU1NT6O3tbfbhMAzDMMySYKFQRkeGFU8mfrDiyTAMwzAtBgedTFzhwJNhGIZhGIaJBA48GYZhGIZhmEjgwJNhGIZhGIaJBA48GYZhGIZhmEjgwJNhGIZhGIaJBA48GYZhGIZhmEjgwJNhGIZhGIaJBA48GYZhGIZhmEjgwJNhGIZhGIaJBA48GYZhGIZhmEhINfsA7KAx8tPT000+EoZhGIZhGMaOnp4eKIpi+5hYB55jY2MAgHXr1jX5SBiGYRiGYRg7jh8/juXLl9s+JtaB58DAAABg//796Ovrq/ndeeedh4ceeqgZh+ULPt5waeXjnZ6exrp163DgwAH09vaGfGTmtPLn22yW0rEC3o+32edvq3++zYaP1x1+roOl9NnS+8tkMo6PjXXgmUhUS1D7+vrqvqhkMtm0m7Af+HjDpR2Ot7e3t2nvsR0+32axlI4V8H+8zTp/2+XzbRZ8vN7wch00+1j94JRmB5Zwc9ENN9zQ7EPwBB9vuPDxhgsfb3gspWMF+HjDho83XJbS8S6lY/WColIHTwyZnp5GX18fpqamllzUzzBBwdcBs5Th85dhWv868PL+Yq14ZrNZfPSjH0U2m232oTBM0+DrgFnK8PnLMK1/HXh5f7FWPBmGYRiGYZjWIdaKJ8MwDMMwDNM6cODJMAzDMAzDRAIHngzDMAzDMEwkcODJMEsQRVHw/e9/v9mHwTAMwzCeaGrgef311+O1r31tMw+BYZrG9ddfD0VR6v48//zzzT40hrGFzt13vvOddb9797vfDUVRcP3110d/YAzTJO6//34kk0lcdtllzT6U2MOKJ8M0kcsuuwxHjhyp+bNp06ZmHxbDOLJu3TrceuutWFhYED9bXFzEf/7nf2L9+vUNPXexWGz08BgmUr72ta/hve99L+677z7s37+/oecql8uoVCoBHVn8iE3g+eMf/xgXXXQR+vv7MTg4iCuuuAK7du0Sv9+7dy8URcFtt92GSy65BJ2dnTjzzDPxm9/8polHzTCNkc1msXLlypo/yWQSP/zhD3HOOecgl8th8+bN+PjHP45SqVTzb48cOYLLL78cHR0d2LRpE7773e826V0w7cjZZ5+N9evX47bbbhM/u+2227Bu3TqcddZZ4mdu1/bvfOc7uPjii5HL5fCNb3wj0vfCMI0wNzeH73znO3jXu96FK664Arfccov43d133w1FUXDnnXfizDPPRC6Xw/nnn48nnnhCPOaWW25Bf38/7rjjDpx66qnIZrPYt29fE95JNMQm8Jybm8ONN96Ihx56CD//+c+RSCRw9dVX10X9H/7wh/GXf/mX2L59O0466SS86U1vqrshM8xS5ic/+Qmuu+46vO9978PTTz+NL3/5y7jlllvwyU9+suZxf/u3f4s/+IM/wGOPPYbrrrsOb3rTm7Bjx44mHTXTjrztbW/DzTffLP7+ta99DW9/+9trHuN2bf/ABz6A973vfdixYwde+cpXRnL8DBME3/72t7F161Zs3boV1113HW6++WYYLdL/6q/+Cp/97Gfx0EMPYXh4GK95zWtqlP35+XncdNNN+MpXvoKnnnoKw8PDUb+N6FCbyFvf+lb1qquuMv3d8ePHVQDqE088oaqqqu7Zs0cFoH7lK18Rj3nqqadUAOqOHTuiOFyGCZS3vvWtajKZVLu6usSfa665Rn3JS16ifupTn6p57H/8x3+oq1atEn8HoL7zne+secz555+vvutd74rk2Jn2htbukZERNZvNqnv27FH37t2r5nI5dWRkRL3qqqvUt771rab/1mpt//znPx/hO2CY4LjwwgvF+VssFtWhoSH1rrvuUlVVVX/5y1+qANRbb71VPH5sbEzt6OhQv/3tb6uqqqo333yzCkDdvn179AffBFLNC3lr2bVrF/72b/8WDzzwAEZHR8VueP/+/di2bZt43BlnnCH+f9WqVQCA48eP4+STT472gBkmAC655BJ86UtfEn/v6urCli1b8NBDD9UonOVyGYuLi5ifn0dnZycA4IILLqh5rgsuuADbt2+P5LgZBgCGhobw6le/Gl//+tehqipe/epXY2hoqOYxbtf2c889N9JjZ5gg2LlzJx588EFRcpJKpfCGN7wBX/va1/Dyl79cPE5erwcGBrB169aaDFUmk6mJb1qZ2ASeV155JdatW4d/+7d/w+rVq1GpVLBt2zYUCoWax6XTafH/iqIAQEsX4TKtDQWaMpVKBR//+Mfxute9ru7xuVzO9vnommCYqHj729+O97znPQCAf/7nf677vdu1vaurK5LjZZgg+epXv4pSqYQ1a9aIn6mqinQ6jYmJCdt/K6/XHR0dbbN+xyLwHBsbw44dO/DlL38ZL3nJSwAA9913X5OPimGaw9lnn42dO3fWBaRGHnjgAbzlLW+p+bvc1MEwUXDZZZeJINJYm8lrO9PKlEol/Pu//zv+8R//EZdeemnN7/7gD/4A3/zmN4Wq/8ADDwi3h4mJCTz77LNtm6mNReC5bNkyDA4O4l//9V+xatUq7N+/Hx/84AebfVgM0xQ+8pGP4IorrsC6devw+te/HolEAo8//jieeOIJfOITnxCP++53v4tzzz0XF110Eb75zW/iwQcfxFe/+tUmHjnTjiSTSZEyTCaTNb/jtZ1pZe644w5MTEzgHe94B/r6+mp+d8011+CrX/0q/umf/gkA8Hd/93cYHBzEihUr8OEPfxhDQ0Nt62Pe1K72SqWCVCqFRCKBW2+9FY888gi2bduGv/iLv8A//MM/NPPQGKZpvPKVr8Qdd9yBu+66C+eddx5e9KIX4XOf+xw2bNhQ87iPf/zjuPXWW3HGGWfg61//Or75zW/i1FNPbdJRM+1Mb28vent7637OazvTynz1q1/Fy1/+8rqgE6gqntu3b8fvfvc7AMCnP/1pvP/978c555yDI0eO4Pbbb0cmk4n6kGOBoqqGnv8Iueyyy7BlyxZ88YtfbNYhMAzDMAzDhMLdd9+NSy65BBMTE+jv72/24cSCpiieExMTuPPOO3H33XfXdH0xDMMwDMMwrUtTajzf/va346GHHsL/+l//C1dddVUzDoFhGIZhGIaJmKam2hmGYRiGYZj2ITYjMxmGYRiGYZjWhgNPhmEYhmEYJhJCDTxvuukmnHfeeejp6cHw8DBe+9rXYufOnTWPUVUVH/vYx7B69Wp0dHTg4osvxlNPPSV+Pz4+jve+973YunUrOjs7sX79erzvfe/D1NRUzfO85jWvwfr165HL5bBq1Sq8+c1vxuHDh8N8ewzDMAzDMIwHQg0877nnHtxwww144IEHcNddd6FUKuHSSy/F3NyceMxnPvMZfO5zn8MXv/hFPPTQQ1i5ciVe8YpXYGZmBgBw+PBhHD58GJ/97GfxxBNP4JZbbsGPf/xjvOMd76h5rUsuuQTf+c53sHPnTvz3f/83du3ahWuuuSbMt8cwDMMwDMN4INLmopGREQwPD+Oee+7BS1/6UqiqitWrV+PP//zP8YEPfAAAkM/nsWLFCvz93/89/uzP/sz0eb773e/iuuuuw9zcHFIp88b822+/Ha997WuRz+dr5rszDMMwDMMwzSHSGk9Kjw8MDAAA9uzZg6NHj9bMOM1ms3jZy16G+++/3/Z5ent7LYPO8fFxfPOb38SFF17IQSfDMAzDMExMiCzwVFUVN954Iy666CJs27YNAHD06FEAwIoVK2oeu2LFCvE7I2NjY/g//+f/mKqhH/jAB9DV1YXBwUHs378fP/jBDwJ+FwzDMAzDMIxfIgs83/Oe9+Dxxx/Hf/7nf9b9TlGUmr+rqlr3MwCYnp7Gq1/9apx66qn46Ec/Wvf7v/qrv8Kjjz6Kn/70p0gmk3jLW94CtillGIZhGIaJB5FMLnrve9+L22+/Hffeey/Wrl0rfr5y5UoAVeVz1apV4ufHjx+vU0FnZmZw2WWXobu7G9/73vdMU+hDQ0MYGhrCSSedhFNOOQXr1q3DAw88gAsuuCCkd8YwDMMwDMO4JVTFU1VVvOc978Ftt92GX/ziF9i0aVPN7zdt2oSVK1firrvuEj8rFAq45557cOGFF4qfTU9P49JLL0Umk8Htt9+OXC7n6rWBarMSwzAMwzAM03xCVTxvuOEGfOtb38IPfvAD9PT0iLrNvr4+dHR0QFEU/Pmf/zk+9alP4cQTT8SJJ56IT33qU+js7MS1114LoKp0XnrppZifn8c3vvENTE9PY3p6GgCwfPlyJJNJPPjgg3jwwQdx0UUXYdmyZdi9ezc+8pGP4IQTTmC1k2EYhmEYJiaEaqdkVqcJADfffDOuv/56AFVl8uMf/zi+/OUvY2JiAueffz7++Z//WTQg3X333bjkkktMn2fPnj3YuHEjnnjiCbz//e/HY489hrm5OaxatQqXXXYZ/uZv/gZr1qwJ5b0xDMMwDMMw3ojUx5NhGIZhGIZpX3hWO8MwDMMwDBMJHHgyDMMwDMMwkcCBJ8MwDMMwDBMJHHgyDMMwDMMwkcCBJ8MwDMMwDBMJHHgyDMMwDMMwkcCBJ8MwDMMwDBMJHHgyDMMwDMMwkcCBJ8MwDMMwDBMJHHgyDMMwDMMwkcCBJ8MwDMMwDBMJHHgyDMMwDMMwkfD/A+lYEGuEd0QVAAAAAElFTkSuQmCC",
|
310
|
+
"text/plain": [
|
311
|
+
"<Figure size 800x400 with 1 Axes>"
|
312
|
+
]
|
313
|
+
},
|
314
|
+
"metadata": {},
|
315
|
+
"output_type": "display_data"
|
316
|
+
}
|
317
|
+
],
|
318
|
+
"source": [
|
319
|
+
"df['value'].plot(kind='line',figsize=(8,4),title='value')\n",
|
320
|
+
"ax=plt.gca()\n",
|
321
|
+
"ax.spines['top'].set_visible(False)\n",
|
322
|
+
"ax.spines['right'].set_visible(False)\n"
|
323
|
+
]
|
324
|
+
},
|
325
|
+
{
|
326
|
+
"cell_type": "code",
|
327
|
+
"execution_count": 22,
|
328
|
+
"id": "e1975c05-f04e-445f-8ddb-30ea29f3e231",
|
329
|
+
"metadata": {},
|
330
|
+
"outputs": [
|
331
|
+
{
|
332
|
+
"data": {
|
333
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAIhCAYAAAB9gDqHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxsVXX2/5yaq+fuOw/cgcsMoiCDXAyIGlERjVFfjRnQVxKjGBMhiWLeBPA1TsSocX5/KhoTEzUxzhGVICqTgszzhTvP3X17quqaz++PU2ufXVVn2GeqOtW9vp8PH+Xepvt01amz99rPs56l6bqug2EYhmEYhmEYhukg0esLYBiGYRiGYRiGiStcMDEMwzAMwzAMw9jABRPDMAzDMAzDMIwNXDAxDMMwDMMwDMPYwAUTwzAMwzAMwzCMDVwwMQzDMAzDMAzD2MAFE8MwDMMwDMMwjA1cMDEMwzAMwzAMw9jABRPDMAzDMAzDMIwNXDAxDMNI3H333Xj1q1+NTZs2IZvNYs2aNbjgggtwzTXXRPpz77jjDlx//fWYmZnp+LstW7bgFa94RWg/q1gs4vrrr8fPfvazjr/78pe/DE3TsGvXrsA/59FHH8X1119v+b3e9KY3YcuWLYF/Rr/xs5/9DJqmWb72Uf9M+ieTyWDVqlW48MIL8Td/8zfYvXu37+994MABXH/99bj//vvDu+AAON1zDMMwfuGCiWEYpskPfvADbN++HXNzc/jIRz6CH//4x/jEJz6BCy+8EF//+tcj/dl33HEHbrjhBsuCKWyKxSJuuOEGy037ZZddhjvvvBPr1q0L/HMeffRR3HDDDZab17/927/Ff/3XfwX+Gf3G2WefjTvvvBNnn31213/2Bz7wAdx555249dZb8cUvfhEveMEL8KUvfQmnnnoq/vVf/9XX9zxw4ABuuOGGWBVMdvccwzCMX1K9vgCGYZi48JGPfARbt27FzTffjFTKfDy+4Q1vwEc+8pEeXln3WLVqFVatWhX5z9m2bVvkPyNOVKtVaJqGkZERPO95z+vJNZx44oktP/uVr3wlrrnmGrz4xS/Gm970Jpx55pl41rOe1ZNrYxiGiTOsMDEMwzSZmprCypUrW4olIpEwH5dvectbMDExgWKx2PF1L3zhC3H66aeLf9c0De94xzvw1a9+FaeeeioGBgbw7Gc/G9///vfF11x//fX4q7/6KwDA1q1bhXWqXQH60Y9+hLPPPhv5fB6nnHIKvvSlL3X8/EOHDuGtb30rNm7ciEwmg61bt+KGG25ArVYDAOzatUsURDfccIP4WW9605sA2FvyfvSjH+FFL3oRRkdHMTAwgFNPPRUf/OAHbV/LL3/5y3jd614HALjkkkvEz/nyl78MwNqSR6/VTTfdhJNPPhn5fB7nnHMO7rrrLui6jhtvvBFbt27F0NAQXvjCF2LHjh0dP/enP/0pXvSiF2FkZAQDAwO48MILccstt9heJ9FoNPD+979f/NyxsTGceeaZ+MQnPtHydU899RTe+MY3YvXq1chmszj11FPx6U9/uuVryAL31a9+Fddccw02bNiAbDaLHTt22Fry7rnnHrzyla/ExMQEcrkczjrrLHzjG99o+ZpisYi//Mu/xNatW5HL5TAxMYFzzjkH//Zv/+b6+9kxMTGBz3/+86jVavjYxz4m/nzHjh1485vfjBNPPBEDAwPYsGEDLr/8cjz00EMtv+e5554LAHjzm98s3uPrr79e/E5veMMbsGXLFuTzeWzZsgW/93u/12EBVP293F4jt3uOYRjGL6wwMQzDNLngggvwhS98Ae985zvx+7//+zj77LORTqc7vu7P//zP8aUvfQlf+9rXcOWVV4o/f/TRR3Hrrbd2bKB/8IMf4Ne//jXe9773YWhoCB/5yEfw6le/Gk888QSOP/54XHnllZiensYnP/lJfOtb3xJ2uNNOO018jwceeADXXHMN3vOe92DNmjX4whe+gLe85S044YQTcNFFFwEwiqXzzjsPiUQCf/d3f4dt27bhzjvvxPvf/37s2rULN910E9atW4cf/ehHeOlLX4q3vOUt4vqdVKUvfvGL+OM//mNcfPHF+NznPofVq1fjySefxMMPP2z731x22WX4wAc+gPe+97349Kc/LSxobsrS97//fdx333340Ic+BE3T8O53vxuXXXYZrrjiCjzzzDP41Kc+hdnZWVx99dV4zWteg/vvvx+apgEA/uVf/gV/9Ed/hFe96lX4yle+gnQ6jc9//vO49NJLcfPNN+NFL3qR7c/9yEc+guuvvx7/5//8H1x00UWoVqt4/PHHWyySjz76KLZv345Nmzbhox/9KNauXYubb74Z73znOzE5OYnrrruu5Xtee+21uOCCC/C5z30OiUQCq1evxqFDhzp+9q233oqXvvSlOP/88/G5z30Oo6Oj+Pd//3e8/vWvR7FYFMXs1Vdfja9+9at4//vfj7POOguFQgEPP/wwpqamHF9TN84991ysW7cOP//5z8WfHThwACtWrMCHPvQhrFq1CtPT0/jKV76C888/H/fddx9OPvlknH322bjpppvw5je/Gf/n//wfXHbZZQCAjRs3AjCK85NPPhlveMMbMDExgYMHD+Kzn/0szj33XDz66KNYuXKl8u+l8hr5vecYhmFc0RmGYRhd13V9cnJSf/7zn68D0AHo6XRa3759u/7BD35Qn5+fb/naiy++WH/Oc57T8mdve9vb9JGRkZavBaCvWbNGn5ubE3926NAhPZFI6B/84AfFn9144406AH3nzp0d17V582Y9l8vpu3fvFn+2uLioT0xM6G9961vFn731rW/Vh4aGWr5O13X9H/7hH3QA+iOPPKLruq4fPXpUB6Bfd911HT/rpptuarmO+fl5fWRkRH/+85+vNxoNm1fOmm9+85s6AP3WW2/t+LsrrrhC37x5c8ufAdDXrl2rLywsiD/79re/rQPQn/Oc57T8/I9//OM6AP3BBx/UdV3XC4WCPjExoV9++eUt37Ner+vPfvaz9fPOO8/xWl/xild0vJ/tXHrppfrGjRv12dnZlj9/xzveoedyOX16elrXdV2/9dZbdQD6RRdd1PE96O/k1+SUU07RzzrrLL1arXZc07p16/R6va7ruq6fccYZ+u/8zu84XqMV9DO/+c1v2n7N+eefr+fzedu/r9VqeqVS0U888UT9Xe96l/jzX//61zoA/aabbnK9jlqtpi8sLOiDg4P6Jz7xCfHnKr+X6mvkdM8xDMP4hS15DMMwTVasWIFf/OIX+PWvf40PfehDeNWrXoUnn3wS1157LZ71rGdhcnJSfO2f//mf4/7778ftt98OAJibm8NXv/pVXHHFFRgaGmr5vpdccgmGh4fFv69ZswarV6/2lE72nOc8B5s2bRL/nsvlcNJJJ7V8j+9///u45JJLsH79etRqNfHPy172MgDAbbfd5u0FgRFGMTc3h7e//e1CyYmSSy65BIODg+LfTz31VADAy172spafT39Ov/8dd9yB6elpXHHFFS2/e6PRwEtf+lL8+te/RqFQsP255513Hh544AG8/e1vx80334y5ubmWvy+VSrjlllvw6le/GgMDAy0/4+UvfzlKpRLuuuuulv/mNa95jevvu2PHDjz++OP4/d//fQDo+L4HDx7EE088Ia7xv//7v/Ge97wHP/vZz7C4uOj6/VXRdb3l32u1Gj7wgQ/gtNNOQyaTQSqVQiaTwVNPPYXHHntM6XsuLCzg3e9+N0444QSkUimkUikMDQ2hUCi0fA+338vLa8QwDBMFbMljGIZp45xzzsE555wDwGjWf/e7342Pfexj+MhHPiLCH171qldhy5Yt+PSnP40LL7wQX/7yl1EoFHDVVVd1fL8VK1Z0/Fk2m/W04VX5HocPH8b3vvc9SxshgJaCT5WjR48CMG1WUTMxMdHy75lMxvHPS6USAON3B4DXvva1tt97enq6pRiTufbaazE4OIh/+Zd/wec+9zkkk0lcdNFF+PCHP4xzzjkHU1NTqNVq+OQnP4lPfvKTlt+j/fVVSRqk6/7Lv/xL/OVf/qXj9/2nf/onbNy4EV//+tfx4Q9/GLlcDpdeeiluvPFGnHjiia4/y4k9e/Zg/fr14t+vvvpqfPrTn8a73/1uXHzxxRgfH0cikcCVV16pfN++8Y1vxC233IK//du/xbnnnouRkRFomoaXv/zlLd/D7ffy8hoxDMNEARdMDMMwDqTTaVx33XX42Mc+1tKzk0gkcNVVV+G9730vPvrRj+Izn/kMXvSiF+Hkk0/u2bWuXLkSZ555Jv7+7//e8u/lDbEq1Nu0b9++QNcWNdQP88lPftI2hW7NmjW2/30qlcLVV1+Nq6++GjMzM/jpT3+K9773vbj00kuxd+9ejI+PI5lM4g//8A8ti2LACOyQUVHk6LqvvfZa/O7v/q7l19A9NTg4iBtuuAE33HADDh8+LFSZyy+/HI8//rjrz7LjV7/6FQ4dOoS3vOUt4s+oH+wDH/hAy9dOTk5ibGzM9XvOzs7i+9//Pq677jq85z3vEX9eLpcxPT3d8rVuv5eX14hhGCYKuGBiGIZpcvDgQUtVgOxD7QXHlVdeieuvvx6///u/jyeeeAIf/vCHff/sbDYLAIFsVq94xSvwwx/+ENu2bcP4+HgoP2v79u0YHR3F5z73ObzhDW/wZMsL43dS5cILL8TY2BgeffRRvOMd7wj0vcbGxvDa174W+/fvx1/8xV9g165dOO2003DJJZfgvvvuw5lnnikUrqCcfPLJOPHEE/HAAw90FCdOrFmzBm9605vwwAMP4OMf/ziKxSIGBgY8//zp6Wn86Z/+KdLpNN71rneJP9c0Tbx/xA9+8APs378fJ5xwgvgzu/dY0zTout7xPb7whS+gXq97+r28vEbdvOcYhlk+cMHEMAzT5NJLL8XGjRtx+eWX45RTTkGj0cD999+Pj370oxgaGsKf//mft3z92NgY/uiP/gif/exnsXnzZlx++eW+fzbNv/nEJz6BK664Aul0GieffHJL75Mb73vf+/CTn/wE27dvxzvf+U6cfPLJKJVK2LVrF374wx/ic5/7HDZu3Ijh4WFs3rwZ3/nOd/CiF70IExMTWLlyZUfMNwAMDQ3hox/9KK688kq8+MUvxh//8R9jzZo12LFjBx544AF86lOfsr2eM844AwDw//7f/8Pw8DByuRy2bt1qaS8MytDQED75yU/iiiuuwPT0NF772tdi9erVOHr0KB544AEcPXoUn/3sZ23/+8svvxxnnHEGzjnnHKxatQq7d+/Gxz/+cWzevFnY3T7xiU/g+c9/Pn7rt34Lb3vb27BlyxbMz89jx44d+N73vof/+Z//8XXtn//85/Gyl70Ml156Kd70pjdhw4YNmJ6exmOPPYbf/OY3+OY3vwkAOP/88/GKV7wCZ555JsbHx/HYY4/hq1/9Ki644AKlYumpp57CXXfdhUajgampKdx999344he/iLm5OfzzP/9zSxz+K17xCnz5y1/GKaecgjPPPBP33nsvbrzxxg5r5rZt25DP5/Gv//qvOPXUUzE0NIT169dj/fr1uOiii3DjjTeKe+u2227DF7/4xQ6FSuX3Un2NunnPMQyzjOh16gTDMExc+PrXv66/8Y1v1E888UR9aGhIT6fT+qZNm/Q//MM/1B999FHL/+ZnP/uZDkD/0Ic+ZPn3APSrrrqq4883b96sX3HFFS1/du211+rr16/XE4lES9LX5s2b9csuu6zje1x88cX6xRdf3PJnR48e1d/5znfqW7du1dPptD4xMaE/97nP1f/mb/6mJX3upz/9qX7WWWfp2WxWByCupT0lj/jhD3+oX3zxxfrg4KA+MDCgn3baafqHP/xhy99Z5uMf/7i+detWPZlMtqSp2aXktb9WO3fu1AHoN954Y8uf2yW/3Xbbbfpll12mT0xM6Ol0Wt+wYYN+2WWXOSbE6bquf/SjH9W3b9+ur1y5Us9kMvqmTZv0t7zlLfquXbs6rud//+//rW/YsEFPp9P6qlWr9O3bt+vvf//7Xa9N/rv2FLcHHnhA/1//63/pq1ev1tPptL527Vr9hS98of65z31OfM173vMe/ZxzztHHx8f1bDarH3/88fq73vUufXJy0vF3o59J/6RSKX3FihX6BRdcoL/3ve/t+B11XdePHTumv+Utb9FXr16tDwwM6M9//vP1X/ziF5b33L/927/pp5xyip5Op1vSF/ft26e/5jWv0cfHx/Xh4WH9pS99qf7www933Puqv5fKa6Tr9vccwzCMXzRdb4vGYRiGYZS55ppr8NnPfhZ79+7lU2yGYRiGWYKwJY9hGMYHd911F5588kl85jOfwVvf+lYulhiGYRhmicIKE8MwjA80TcPAwABe/vKX46abbuqYvcQwDMMwzNKAFSaGYRgf8FkTwzAMwywPEr2+AIZhGIZhGIZhmLjCBRPDMAzDMAzDMIwNXDAxDMMwDMMwDMPYsKx6mBqNBg4cOIDh4WFP0+oZhmEYhmEYhlla6LqO+fl5rF+/HomEvY60rAqmAwcO4Ljjjuv1ZTAMwzAMwzAMExP27t2LjRs32v79siqYhoeHARgvysjISI+vhmEYhmEYhmGYXjE3N4fjjjtO1Ah2LKuCiWx4IyMjXDAxDMMwDMMwDOPaqtM3oQ8f/OAHce6552J4eBirV6/G7/zO7+CJJ57o9WUxDMMwDMMwDLOE6ZuC6bbbbsNVV12Fu+66Cz/5yU9Qq9Xwkpe8BIVCodeXxjAMwzAMwzDMEkXT+3Rc/dGjR7F69WrcdtttuOiii5T+m7m5OYyOjmJ2dpYteQzDMAzDMAyzjFGtDfq2h2l2dhYAMDExYfs15XIZ5XJZ/Pvc3Fzk18UwDMMwDMMwzNKhbyx5Mrqu4+qrr8bzn/98nHHGGbZf98EPfhCjo6PiH44UZxiGYRiGYRjGC31pybvqqqvwgx/8AL/85S8dM9OtFKbjjjuOLXkMwzAMwzAMs8xZspa8P/uzP8N3v/td/PznP3cslgAgm80im8126coYhmEYhmEYhllq9E3BpOs6/uzP/gz/9V//hZ/97GfYunVrry+JYRiGYRiGYZglTt8UTFdddRW+9rWv4Tvf+Q6Gh4dx6NAhAMDo6Cjy+XyPr45hGIZhGIZhmKVI3/Qw2U3gvemmm/CmN71J6XtwrDjDMAzDMAzDMMAS7GHqk7qOYRiGYRiGYZglRF/GijMMwzAMwzAMw3QDLpgYhmEYhmEYhmFs4IKJYRiGYRiGYRjGBi6YGIZhGIZhGIZhbOCCiWEYhmEYhmEYxgYumBiGWfI0Gjru23MMpWq915fCMAzDMEyfwQUTwzBLnh8/egiv/swd+MiPnuj1pTAMwzAM02dwwcQwzJJn7/QiAGDPdLHHV8IwDMMwTL/BBRPDMEuecs2w4i1Waz2+EoZhGIZh+g0umBiGWfKUaw0AwGKFe5gYhmEYhvEGF0wMwyx5RMFUbfT4ShiGYRiG6Te4YGIYZslTbqbjLVbYkscwDMMwjDe4YGIYZslTqZPCxJY8hmEYhmG8wQUTwzBLnnLTilfkHiaGYRiGYTzCBRPDMEse6mHiwbUMwzAMw3iFCyaGYZY8FCtereuo1jn4gWEYhmEYdbhgYhhmyUMKE8B9TAzDMAzDeIMLJoZhljxlKU68xH1MDMMwDMN4gAsmhmGWPGTJAzj4gWEYhmEYb3DBxDDMkocteQzDMAzD+IULJoZhljxcMDEMwzAM4xcumBiGWfKUpSJpkS15DMMwDMN4gAsmhmGWPBUpSpwLJoZhGIZhvMAFE8MwSx45Ja/IljyGYRiGYTzABRPDMEseuYeJY8UZhmEYhvECF0wMwyxpGg291ZLHChPDMAzDMB7ggolhmCWNXCwBPIeJYRiGYRhvcMHEMMySRu5fAlhhYhiGYRjGG1wwMQyzpCnXWgukxUqtR1fCMAzDMEw/wgUTwzBLGjnwAWCFiWEYhmEYb3DBxDDMkqZTYWrYfCXDMAzDMEwnXDAxjhQrNbzve4/i17ume30pDOOLUkcPE1vyGIZhGIZRhwsmxpHbnjiKL92+E/9w8xO9vhSG8UWHJY9T8hiGiSm1egMP7J1Brc5KOMPECS6YGEfmSlUAwOG5Uo+vhGH8UalxrDjDMP3B1361B6/69O340u07e30pDMNIcMHEOEKby6Pz5R5fCcP4o72HqcShDwzDxJSdkwUAwIEZPqRkmDjBBRPjCBVMhUodhTL3fjD9B6fkMQzTbX740EFc+ZV7MFusevrvaJ2tsiWPYWIFF0xLiGOFCv7n8cOhep/lfo/JBVaZmP6DCqZ8OgmALXkMw0TPF37xDH762GH8YsdRT/9dofl8qtX1KC6LYRifcMG0hPjADx/D//7yPfjpY4dD+57yaTzb8ph+pNy8h8cG0gDYkscwTPTMLBrKkldnRrH59bUGF0wMEye4YFpCPBOB97nIChPT55DCNDaQAcAKE8Mw0TO3aBQ+hbK3541QmBpsyWOYOMEF0xJiqlnQhNmjsVgxT8dYYWL6EVEw5Q2FabFah67z6S3DMNGg6zrm/CpMzTWXLXkMEy+4YFpCTC1UAJgP3DBgSx7T71BKHlnydL0zCIJhGCYsyrUGKs1e4oJHRbtYZoXJa1AGw3QDLpiWCKVqHfPNk6wwLUfy9zrKlrxYwOqIN8pVsuSlxZ/x8FqGYaJidtHc8Hs9wCwsc4Xpx48cwrPf92N88Zc8h4qJF1wwLRGmCxXx/8PcDMrfixWm3vPl23fi/A/cgh1H5nt9KX0DqUkDmRQySeORx9HiDMNExZxUMC14Dn0wnk3VZRr6cP/eGQDAI/tne3shDNMGF0xLBLLjAeEqTGzJixf/88RRHJkv4+6d072+lL6h0iyYsqkEcmnjkcfBDwzDREWLwuQh9EHXdaEw1ZepJY9eOz7UYuIGF0xLBDnBLtSCiRWmWFFp9uOwpUwd6mHKppIYyKQAcLQ4wzDRMVcyC6aCB0teqdoACUvVZWrJo4KJn9FM3OCCaYkgF0yL1fBCH9p7mLh/preQWuI1qnY5Q5a8TCqBfMYYXsunlwzDRIWsMHlJyZOLq/oyteSxwsTEFS6YlghThegtedW63rIQMN2HTh2LIRbFS52yZMnLp42CiS15DMNEBc1gArw9a2T7Xq2+3C15y/P3Z+ILF0xLhClZYYrIkgfw8NpeQwqTF1/8cqfcLPqzaUlh4oKJYZiIaFGYPFjy5K9d9pY8fkYzMYMLpiVCFKEPtbo5S2LlUAYAcIT7mHoKvR+skKhjKkxJoTCFaVtlGIaRmWux5HlQmNiSh5nmDKZSjdc4Jl5wwbREmIzAkleU7HibJgYAcPBDryGFiTf86pihD7LCxHYPhmGiwXcPk1RcVZdhSl6joYvADHYBMHGDC6YlwuS8bMkLZzNNknhCA9aP5QFwwdRrxPR4tuQpY9XDxA3FDMNEhZySV641lPuRZIVpOQ6unS/XQLlS/Ixm4gYXTEuEqYIUK16th5JmR0pVPp3E6uEcACMpj+kdQmHi0zdlys3m4Ww6iQGhMLFCxzBMNLSHIxUUn9fyQdhytOTJVsYyhz4wMYMLpiWArustPUy6bsxzCIoomDIprBrOAmCFqdeIWHHe8CsjW/JyrDAxTN9ycHYR7/r6/Xhw30yvL8UROSUPaFWOnCi2hD4sv4KB+pcAw02xXJMCmXjCBdMSYG6xhlrbaZTqA9oJ2lQOZJJcMMUEsuSxwqQOvWZyDxOHZjBM//HNe/bhv+7bj6/csbvXl+JIh8KkaKFekGPFl6HC1P66lWpcMDHxgQumJcBk0443nE0hmzLe0jA2hLQp54IpHtQburBpsMKkjrDkpZIYaCpMPEWeYfqPXZMFAJ0b67gh9zAB6sEPrT1My69YaH9f+WCQiRNcMC0ByI63Yihj9miEsCGkh3cuncSqIaNg4jlMvUO2aLBCoo4IfeA5TAzT1+yaMgomL8lz3abe0DFfMq5vYtAYx6F6wFVY5grTzGKl5d/5YIuJE1wwLQFoaO2KoSwGMikAISlMFpa86UJlWTajxoFyrbVgCiPYYzlAPUyZJFvyGKaf2T1VBAAsxLhgWiiZ17Z2xAhLUh003qIwLcN1tsOSxwUTEyO4YFoCkOqzcigjbQhD6GGSLHkTgxkkNKChtybyMd2jIhVM9YYuenMYe3Rdb1WYOPSBYfqS+VIVU815g3FWmMiOl0snMD6YBuBBYZIOctiSx89pJl5wwbQEmBSWvKwUmxyGJc/4Hrl0EsmEholB7mPqJe2pSaqnlsuZal0Xcz2yqaRZMLHCxDB9BalLgDGvJ67Qpn80nxaOD9XQh6L0ezV0Y5DrcmK2yD1MTHzhgmkJQIrPykGzhylsSx4ADn7oMZW2xKAin765QnY8oDUlj08uGaa/kAsm2fYWN2iW0EgujaEsWeRVFabWr1tutjxOyWPiDBdMS4CpFoXJeECHcTJjWvKM78kFU29pt+AVY3zKGhfkvq9sii15DNOv7J4uiP+/WK3Htpe2VWEynjeqPVftB521xvIqGDglj4kzXDAtAeSUvDB7mGRLHgCRlHeUk/J6QofCxIuJK1QwZVIJaJoW6oECwzDdY/dkseXf4xr8QD1MI/k0BrPeQpjaf6dqPZ5FYVTMFDn0gYkvXDAtAWgO04rBrJgzE4Zda7FqPLzZkhcP2hUmnsXkTrn5OaD5ZPmM8b+sMDFMf0GR4kRcgx+sFCblOUxtvU5xVdGigl67lUNGHDsXTEyc4IJpCTDZLGBWDWdCDX2QU/KM788FUy9pV5hYJXFHJOSljHuY1FJW5ximv9gz3ScK06JxXSO5lOhhUi2YOnqYlllSHvV/rWnGsfPBFhMnuGDqcyq1BuaaDbArBrPIhziHib5HngumWMCWPO9URMFkPOrIklepNZbd6S3D9Culah0HZ0sAgOFmERLXgskyJU/hWa3resczvbqMnlG1ekOkH67lgomJIVww9TnTzbkUyYTWYgEIMyUvzz1MsaAjVpwtea7IM5gA814G2O7BMP0CqUvDuRQ2jOcBxDcpr7WHSb2nuGxxiFNfRj1Mc9L7ubpZMJX4UJCJEVww9Tk0tHZiMINEQpMseeEOrgVMhWmSFaaewAqTdyhW3LTkmY88fv0Ypj+gSPEtKwYxkjOGwcZdYRrJpzHoYQ6T/DwiK191GaXk0es2mEliJGf8/hwrzsQJLpj6HJp8vmLQaJLMh6gwmZa8Zqx4U2GaK9X4dL4HdMSK84bflXLVTMkDAE3ThMrE9zDD9Ae7m4EPm1YMCNUmrgWTPIdpIKse+kBfk0snhIW4towUJtnKmOUB40wM4YKpz5lqKkwrm8XMQIiDOdsteSP5FDJJ45aZZFte1yl3KEzx3DDEiXJbDxMQ7qECwzDRQwl5W1YMYIgUppha8uSN/6CHnmL6msFMCqmkBmB5zWGaKRqHv6MDGZ6Xx8QSLpj6nElRMDUVpnR4oQ/tljxN0zj4oYe09zCp2DyWO6YlTyqYeDFmmL6CLHmbVwxiyINq0wuoF2cknxJzmFRGQNDXDGSTSCWWs8KUQr5pnWYXABMnuGDqc8yhta0KUziWPOMBTifyALCSC6aewbHi3mmPFQfM+5lfP4bpD0TBNDEg+nviaslrUZh8WPJaFablUzDNSa9bjm3TTAxJ9foCmGBMioLJUJhCDX1os+QBnJTXS9oLJh5c644YXCuFPZi2VX79GCbuVGoN7DvWDH1YOShUm/kYFkylal08p0fyaejNeqda11GpNUQvpRXkGBjIJIWbYDnNYZopGgXTWD5jHmpxwcTECFaY+pypQtOSN2gUMmH1Z1TrDVSbdoABSWFiS17voIU4YRw+skKigFUPU040FC+fzQjD9Cv7ZxbR0I0whNXDWc/DYLsJqSQJDRjKpDAorZ1uPaf094PZlGnJW0YKk1DmBtLSM5rXOCY+cMHU50x1KEzGYhL0QSOf7OS5YIoFdOo4NmC816wwuWNpyUurz0ZhGKa3UELe5olBaJqG4WbkdBxDH2gG03AujURCQyppJt65WQgLUs/wcrTkyVZGM8mUD7WY+MAFU59DKXkdPUzVOnTd/8OWCq5kQhPJeAAXTL2kTAVT3kiJ4tM3dyoWChN9RtgfzzDxxwx8GAAAYcmLYw+TvOkn6HrdXB/FsqQwJSn0YfkUDDPcw8TEHC6Y+hhd180eprY5TPWG3jG3xwtiBlM6CU3TxJ9TDxPHincf2vyPDhiLcYELJldESl6aU/IYph8RkeIrBwEg1qEPc4tmQh6hGvxQkGPFm77r6rJMyUvzM5qJJVww9THz5ZooisQcJimgIYgCsSiG1iZb/nzVsFGYcehD96GCiRUmdZxS8ngOE8PEnz1NhWnThKEwxbmHyVJhytD1qilMRqy4UTDVl5ElT07Jy2c4VpyJH1ww9THUvzSYSYpNYCqZEBa6IAoEJYgNtBdMQzkAhiUviOWP8Q71MI1zD5My5arF4Fo+vWSYvsEcWttUmHIxVpiaPUwjObNgojXU7XldWOaDa6nYHBtIiwMufkYzcYILpj6mvX+JyIcQLS5b8mRWNhWmUrURywVrKdNuyWOFxB3LwbU8h4lh+oJ6Q8fe6UUAUg9TU7GZj2How2zRqYdJLSVvIGMOrl1OlryZoqwwmaEPjWWksjHxhgumPqZ9BhMRxvBaO0veQCYlLBEc/NBdKiL0wXi/K7XGsmoK9oNVrDgXTAzTHxyaK6FSbyCd1LB+LA8AIiWvXGsI1T0uCIXJwpK34GLJK0ihD+kkWfLi9ftFRaXWEGqS3MMEmM9whuk1XDD1MTSDacWgtcIUqGCqmhGn7XBSXm8QPUwD5mJcZMuCI06x4mz36D/2Thfx9z94FAdnF3t9KUwX2D1p2PGOGx9AstnXQ4oNEL8+JqsepoFm6EPRLfRBGlybXGahD/S6aZoRyZ6TCibuY2LiAhdMfczkvKEwrbRRmIKcoNtZ8gAzKY+DH7pLpbl4DmVTYkFllcQZq5S8MD4fTG/4l7t24//7xU788527e30pTBfY1RYpDgBpD7ONuo1IycuZRZ0IqXCLFafBtRkzVny5hD7MLhp7meHm2iaPM+GDLSYucMHUx5DCtLKth2kgrTb3wQlRMGVSHX/HClNvqDQ3/5lUwmwkjtmGIW5YhT7kWGHqW6YLxsZq37H+VpjqDV30oDL27J5uDq1tBj4QwzENfiClRLbkDWTUUv1E6EM2hbRQmJaHHU0oc5J7IpfmgomJF31VMP385z/H5ZdfjvXr10PTNHz729/u9SX1lCmbHibTkud/MSEZfMBKYeKCqSeQJS+dTITSp7YccLLk8WvXf9B7dni21OMrCcbffudhnPeBW/C9Bw70+lJize7JToUJMG15cTswsu5hUluPzcG1SSSboQ+1ZaMwdVoZudeUiRt9VTAVCgU8+9nPxqc+9aleX0osmLRJyROWowAnM/Rwbw99AMyCiYfXdhcKfcimEqKRmDf9zlQsQh/oxJe98f0HKQqH5vq7YLrtiaOoN3S8+z8fxI4jC72+nNjSHilOkM0tbkl5QmGSY8WzanOYSGEayMihD8ujYKKEPAo0AkwnANmqGabXdPqtYszLXvYyvOxlL+v1ZcSGqaY9ZeWgncIUhiXPoYeJFaauUq0Zi2cmlQhFRVwOWPUw0VBEtnr0HwWpYNJ1HZqm9fiKvDNXqmL/jGEpLFbquOpff4NvX3Wh5bN2OaPrOvZMWytMVDCpWvJ0Xcfnf/4Mztw4iu3bVoZ7oRJzFkrJUFbNPi16mLJy6MMys+TJChNZpyvL4zVg4k9fKUxeKZfLmJuba/lnKWE3hykMu5aTJY9mMXHoQ3chhSnDCpMyVpa8HFvy+hbaIFdqDXEq3W88fnAegBHWs3IoiycOz+Nvv/Nwj68qfhxdKKNYqSOhARvHrQsmVUveg/tm8aH/fhzv/dZDoV8n0WjomG9ez0jePIsWPUwOh1uVWkMk4hkKU9OSt8xS8mQrI/eaMnFjSRdMH/zgBzE6Oir+Oe6443p9SaFRrTdwrLlhaO9hos10KINrLRWmHABWmLqN3MMUhoq4HLCawyQsefza9R3ypvNgn/YxPX7IOLh79sYx/NPvPQcJDfiPe/fhG7/e2+Mrixe7mwl568fyyKRatypDOW+WPFqr9h1bjMzmNl+uQW9+a9mSN5h1f1bLTgFjcK2hMC23HiZ5ZAYpTGydZuLCki6Yrr32WszOzop/9u5dOgvSsaYdL6EB4wNdtuSJHqYKT+HuIkJhagl9YEueE+WqmSxIiNCHah26zvdvP1GU+kAO92kf02NNhemUdcPYvm0lrv7tkwAYQRCPHey+C6JUrePyT/4S7/nPB7v+s52ggqm9fwmQQx/U1riZ5oa81tBxZD6a+4bseNlUomWOkDm41v5ZTX+XSSWQTiaQbPYwLZfB5LPFTkveck3JazR03LNrmsMuYsiSLpiy2SxGRkZa/lkqTDYT8iYGM8LvTIQxZ6bkMLiWFK16Q8exYsX3z2C8QQqTESvOljwVLFPymvd0vaEvm8GQSwV509mvwQ+kMJ2y1liP3v6CE3DxSatQrjXw9n/9DeZL3bUaPnZwDg/tn8V3Y5bYt7sZ+LCprX8JMOb1AMBCWe21mpHWqQMz0UTSW/XhAGZxV3Qo7ug5Tol6aU7JE8/p5aYw/fDhg3jt5+7ER25+vNeXwrSxpAumpQzNYFoxmO34u3wIm2lzcG1nLkg6mcDEIPcxdRs58U0oTDGL1Y0TtXpDbDiyFgoTsPxOL/uZWr0hCmAAONSHlrxGQ8cThwyF6dR1wwCARELDx17/HKwbzWHnZAHv+c+Huqp8HpgxXsdipR4rx8AuoTB1FkyDHkMfaEMOAPtnolWYRtoKJjEzz8ENUBCR4sbvlSKFqbFMFCay5Fn1MC2zQ8GnDhupmXun+3vW3FKkrwqmhYUF3H///bj//vsBADt37sT999+PPXv29PbCeoDdDCbADGooBooVt7fkAZyU1wvIkpdOJjCg4Itf7lQkO4uckpdOakKVXW6LcT/Tbr/qR0venukiipU6sqlEi9VsYjCDT73xbKQSGn7w0EH88527u3ZN+2eK4v87beq7zZ4p66G1gJySp2jJkwJColKYaAZTu8IkB1TYFcKmwtQsmKiHaZko4DMWClNO9DAtj6KRoMNwttvHj74qmO655x6cddZZOOusswAAV199Nc466yz83d/9XY+vrPvYzWACZEue/w8c/bdWljyAh9d2m3pDF83KmVQCA2lKXuINvx1laaHNJM1HnaZp4lCBFab+oX0z34+WPLLjnbRmGKlk6/L73M3jeM/LTgEAvP8Hj4qvjZoDkuKi2hPUDUhhao8UB8zQhwVF++KMrDAdi9aSN5JrdWXQHKaGjhaFVIYUJjoIo3tjuVnyRqxixZfZM3py3jgM57U9fvTVHKYXvOAF3KTdhHqYVgx2KkxhhD7QQypvESsOcMHUbeR5HJlUQiQvBSmKlzq0OUkltI7NaS6TxHy5xqd4fUR7hHQ/WvJE4MPaYcu/f8vzt+J/Hj+CO56ewi2PHRF9TlGyX1JcjJ6gXOQ/042ZYkVsojdNWBRMXkMfutDDNLdo3J/tCpM8mqNQrrUEQhD2CtPSV1d0Xe95St7e6SKq9QaOXzUU+c9ygxQmXtvjR18pTIwJzWBaaWXJE7HiEVryRFIeF0zdQD6ZzHCsuBJiaG2q8zE3sEwbivuZ9n6VflSYKAXvlHXWhZCmaThxtbFp65Zd9EBLwRSPzwMl5K0ZyYr1TIYKpnlfPUwRK0xtBVMioZl9TDavb6HN0UEFU3UZKEylakP05/Yi9KHR0PHqz9yOV37q9lgcoFG7RZzUXsaAC6Y+ZaoZK77SwZIXSGGq2KfkGT+3GfrAClNXqEgFUzqp8eBaBURIhsWJLk+R7z9oA7F2xFBAZorVvit4H28LfLAijNAeL8gFk+og2KjZRf1LE539S4AcK652vb3sYQLch9dSgp4Z+mBszerLoIeJCs1kQhOFMGAedEVtyStW65hcqGChXMOuyaL7fxAxdAi93KyI/QAXTH3KlEMPUz7gjJ6qlC42YJGSB0iWPFaYukJVmsGkaVrg93g5YDW0liBbDL9+/QMpTOvHcmJGSz8FPyyUa9gzbWzInKx2oge1Gv29WazUxAB0QH0QbNTsduhfAoDhnLeUPNmSN1eqRRLdbvYwdRZM5vBa6+ul36NdYVoOKXlypLimmSNS8iGMR1FhQbrn6fPZK8q1Ouaa1xOXwwvGhAumPmXSKSUvE6xZUj7ZtE/JM055WWHqDvIMJgCsMCmgYsnjU7z+gTabg9mUUJn6qY/piWaIw5qRrBjLYEUYDgFVDrRFbMdlk0YK05aVzgrTgkKBV6s3xCaUCpH23zsM5mzmMAHy8Frr91S+twFTYVoOc+KomG1/3boV+iDP8tp3rLcF03TBLOzLtYYIemLiARdMfYiu66IxcKXFHCZShap1vSUsQBU60UkmNKSTmuXXcOhDdzEjxY33g3uY3KGUPHloLZFfpjM++hnazA9lU1hDBVMfKUxm4INzkEM3P9vt9rS4xIrvaSpMVoEPgNnDVKk3xMGIHXNSUbWt2dQfhS3P7GHqdGUIhcmmIC20hT7Qc345bJjter/IBVCOOFZcLmL39lhhov4lgh0Q8YILpj6kUKmL2QRWCpOsCvlZdOlEZyCdbJHIZahgOlastvTXMNHQoTC5WDwY05KXsVCY8qww9R20sRnIpLB2tP8UJooJP9Um8IEY6JIVCegsHOJiyTOH1lorTHKvi1tzPCkYw9kUNjUtflEEP1Bh1r7xB+QeJhuFSQyuNd57mhPn58Cz37AaWgt0UWGS7vm9EUXOq9IeosUHovGCC6Y+hPqXcumEZShDJpUQ1gM/iy5twu3seIDxcKOfQWoXEx2kMNHmn1REfqDa42TJW64zPvoZU2FKmpa8PlKYHj/oHvgAAHnx2Y6+eGkvHOJgyVso18TGcZNND1MyoYnPsNs1i6GoA2lsGMsDiKhgcuhhGnIJqShUzMMAAEglls8cplkbK2OuB5a8XitMk20KUxw+j4wJF0x9CH2oVg5lbRWgIKEAiy6R4oARlUoJfWzLix6hMDW97QNZ07bTWAaLqh9E6EPaQWHigrNvKMg9TE2FqV9CHxoNXSTkuVnyutnDRIUDHcTEYYNGdryJwYxlPxBBw2vdVLHZojnjZ/2Ycd9EacmzTslrFnd2KXmVVoWJLHnLuWDqVqy4bMnbd2yxp7M+p1hhijVcMPUhTgl5RJBF121oLcF9TN2DCqY0FUxSMVty8fAvVxx7mEIqmL5xz15894EDgb4Ho0ah3L+hD/tnFrFQriGTTOD4VdY2M6KbgSRUOFBvj+pcoyjZ3Qx8sOtfIki1cUvKm1k0DhjH8hmsbypMYRdMpWpdHNBYWfIozKFoN4ep3KowJX0Mrq03dHzljl145MCs+oXHAHuFyVjrIi+YpMTExWbEeK+YKrT3MPHaHie4YOpDxAwmx6Ql/5atossMJoKH13aPSltEdi6VBImLPODOGhVLXjHAYjxXquI9//kg/vIbD3ja2DD+oPt8MJPEGqEw9cezhwbWnrB6SBx62NHd0Aej4DxpjVEwxUFhMvuX1AomV0te0bTkmQVTuIU2zWDSNKNXqh1SjuyKO6EwZUhhas5h8qAw/WrnNK777iP4u+88on7hMUD0MA3Y9DBFHSve9p7s7WFSXmcPU+8/j4wJF0x9iKkw2RdM+QBzZlQseQAPr+0m1bYepoTk4WdbmTVOc5joMKAU4LWbL9XQ0I3+shIHn0TOgoXCdHiu1BeWVGHHc+lfAszDrqg/142GjoOzhtJy0hrjuuJw+HKoeU0bxvOOX0dFiJsqRgXTWD6Njc2C6dBcKdRDjrlF4xqGsykkEp02efMA06aHiRQmihX3EfpARVuvZwl5hd6fdmVO7jON0ibXHvXeyz6mdnWLFaZ4wQVTH2LOYHK35PkLfSBLnvXQWoIted2jPfQBcPfFL3fMgskhVjyAwiR/trhojR45VnzVcBaaZvR4TPZB6AwpTKe69C8Bsp26FulGcXKhjGpdR0IDtjVtgnGw5NH6M2ih1MgMZY0NtpvCJCsYK4eySCc11Bs6Doe4bs1KwRJWDIpntY0lr01hSvnoYaLianKh3FeKt50lL9t8Rjf0aOdRyaEPgNHH1CvoMJwsmXFQfBkTLpj6EJJtVzhY8oLYOkSsuJslj0If2JIXOeW2HiYgmO1yOeAU+pBLB7c9yUVS1D57RppVk00hnUyI58/h2fg/f7woTPTsbujmPRwFFPiwdiQnTvfjsEFT7aEdzqkNr6VY8bF8BomEhnWj4fcxkbpjlZAHmMqR3etLvU1icC2l5HkoFKhg0vX+WpPnXGLFgWj7+ej+ofuplwoTzWGicBJOcY0XXDD1IfShIoXHCnFK6eMDt9g87XLvYTI+1KwwRU97Sh7QehLNdOLUwyRsT0EUpioXTN1EDn0AYM5iinlSXrFSw65mkIHbDCagbaMY4WEI9fGsH8tjWFGt6QY0Y9CtYHLrCyJm2tSfKJLy5hwS8gCz38oq9KFSawgHwWB76ENDvWCWVZh+6e0DOt8fIp3UxOsQ5fOV7h9Sf3vVw6TruhjRQoEncbDIMiZcMPUh9KFaMehUMJEP3vsCSKfuOZcFi3uYukd7DxPQ3fjhfsQ5Jc94HYNsSFsLpv6xwPQrhbbhnmv6ZBbTk4cXoOvGGIiVDjZqIp1MiFjpIKEkbuyfMTaG68fyZvERg8G1tDl2W3/IkudaMBVbFYwNY+EPr3WawQQ426flZ1C+LfTBj8IE9E96pK7rtpY8TTP7dLtSMDXV373TvbHkzS3WRNF73Lhxj/rZvzHRwQVTHzIleph6a8kbGzB+/lwMFtmljlCYUp2WPO6fscYp9IH684L1MJn3PVsnokeEPjTvexH8EPPNoehfUrDjEWagS3TPVlKYNoznzYjuiPumVFhULpjUijyzh8lYrzY0Fab9IfaqOM1gAkxV1ErBoyIqk0yI57uvHibJvnlkPt6fCaJQqYskwLF8536GosUjteQ135NTmurv/pnFnvSAUS/mcDYl7lW7njemN3DB1GfUGzqmi+4F00CABLVFxVjxkbyxCMwtVnu+yC51nCx5HPpgDVnyMlYFUwhzmPrJkjdbrOKv/+MB3P3MVK8vxRe1ekMUwENtlryDMS+YHhcFk7sdj+hGfyIpLOvH8mIIrK73XrGmz5JbSqtc5DkhepiEJS+KHibjGmhNbIeKfKsNMFmqaRg5YKbkedm4y8VVvwx0pvcmk0yI4kgm14UkWCq4t60aQiaZQL2h9+SZQgfhK4ezbLePKVww9RnThQqoNpkYcJrD5F9hUrXkDTftB7WGzpakiHFKyWOFyRpnhSmMlDzzno+7wvT9hw7gG/fswyduearXl+ILeaNJp/VrpGjxOPMYBT6sVVeYumG3pYJhw1gO+XQSCTHXrbebNKEwWXxuZYaa64+TwtRomJYvsuRFMYtptuimMDXfTyuFScwXM4utVPNgrOpBYaq0WPL6wyZP781IPg1N64xjD+M57QbFig/nUiLKvhd9TFNSmBfb7eMJF0x9BvUvjQ+kxUPVinyAE0rTkucc6zqYMRfZuVLV8WuZYIiCSVaYhM2DH6pWiB4mi8I/jGJTPv2Lu8K086gROrB7qr9mtBC0iU8nNXFosK4PQh90XReWvFMUIsWJMBRQNw5ICpOmaWLD7tYTFDU0G81dYWoq7A7XO182ZqUB5pyfaBQm61lCxICkMLXPDStYhCylmwurl8G11Zr5tf1iybMbWkvQoW05wgNZihUfyqawsVkw7etBH9OkNF9zkNf2WMIFU58hZFuX5mGxIaz6H1zrZsnTNE0sENT0ykSDZQ8TRWP7eI+XA04peTnp5NLv4NNSH1nydjULpYOzi+Je6ifaE/IASWGKsSXvwGwJ86UaUgkN21YPKv93UZ8wFys1HGuqIlRAkC2v5wVTTS0lTyX0gZSffDopPvMbmr/vfLkW2kGfWw/TkHTftqslxbahtYCZkldv6Mp2dzlRr19CH9zSBaNWmGr1hnDHDOdSOK6ZTtcLhUmerxlk/8ZEBxdMfYZ8CuFEkNAHOjl3s+QBZioQBz9ES8VqDpNDVC3jPLhWPgzwO+umn1Ly9kwbClNDDzcdrFu0Bz4AZg/TfLnW802+HdS/dMLqIcv70A7TIRDN70V2tOFsSjzDqRjt9Wu5qGgJJ5vbvMPaM7PY2r8EGGvjRHOGYVjBD25zmHLpBMhx1t5zSv8+JPcwSc951aGtsiUv7jZVYsbFypiLWGmVFZzBbEqk0/ViFhO5h1YOZU1Fktf2WMEFU58xJZ1CODEYwJJXVFSYAHPYG1vyooVjxb1TcehhyoUwFFF+3ePcw9Ro6C1WvD09HMzoF3qt5ZP6oWxK/HtcT9Qf99G/BEihPRHdV7Idj4iDDUjXdeWUPFp7nEJv7DbkYc9ikntxrJAtj+2vL/27bIGnWHlA3ZYnR5DPlWp90dva3l/WTj7ilLz5ph0vm0ognUyI+Ud7Q0xQVMV0D2UwyKEPsYQLpj5DnEIMOitMQXo0Soqx4oCkMLElL1KsNv/8UHVGKEwW6UvJhNkL4/f16xdL3uH5UouK1o8F00LbDCZizYhxcBTXE/VHqX/JQ0IeEP1hiFkw5cSfDQuFqXfPcvk+dethEopYyT4KfcamR2b9aLh9THOLxv05apOSB5j3bnvPFT1/BqXflyx5AFBVHF5bbUvUi+tnQsat0MxFPIeJnitUfB830Qx96MEzUriHBrOBHEJMdHDB1GdMzqspTPkAm+miYtMtYMaoOtkimOBYpeQFCfZYDpg9TNb3MW1K/S7Gi32iMO2abF38e7EZCIpVDxMArGtufGOrMInAB28KU9Qbpv2WClNzrlEPFSb5s+iakte8F2oN3dZWO9uMrR5vS5Sl33t/CEl5jYbuGvoA2Ls+ChY9TOmE+bvXFS15/VgwzSj2MEVVMLU/V8iSd2S+3PVDMHm+Jl0Pr+3xggumPoMUJrcepiAKE/03bk23gBktzpa8aLHqYWKFyRmRkmez8aL72++iJP93UaY4BWX3VMHx3/uBgkUPE2AGP8QxKa9UrWPnpPFan+ZTYYpq02ZdMNkPV+0WdPCQTmqOKbBA671g13dFlrx2hYnS0MLo5zOG/Rr/366HCTDnLKkoTImEJnqe1BWm1sIqjp+JdtzCMnIRW1PpoJeK77GBtPj/+7psyyOFaeVQVqxNvY74Z1rhgqnPEEkqg2opeUUfDxrVWHFAtuTxBztKKs3FUI4VZ9neGSdLHhA8ullexOPcL7C7qSjRJnFPDyJzg0JzmNoVprWj8bXkPXV4AQ0dmBjMYNWw8/O6nehDH4x7gO4JQLLk9dAtQOEpOYWAjERCE0WG3cbSVDCsFaYwLHmUxJdNJRz7rszhtdahD+3rLalMNZ8K05G5+M9imlOMFY8qVIcKbSqSNE0Tn4luJuVVag0RnLVSUpjKtYanaHkmWrhg6jOOzhsPQbcF2K9dq1JriInh3ix5rDBFSaVpL2sNfWDZ3gk3S17QyNqWHqZafN8DUpQuOmkVAMOSpxpVHBcK5c4kMQBYSwpTDC15j0l2PKuhnE5E38NkvF5WClMvU/JEQp7C2gOYUeh2lvBjxc6UPCDcgknFjgeYr297qin9e3t/XirpbRYTFUy55gFRHA8R2nFLyYs6VpwOB6iHCYCIFt/XResyOYdSCQ0juXRL/zg7SOIDF0x9hK7romBa7VIwUcpSxeMJhXxS7s2Sxx/qKLGcw8SWPEfKFq+ZjFiMQ7DkxVlhoh6m55+wEoCxIaYZPP0CbeIHsv1jyXvskPeBtUQYg5XtaDR0HJyNpyWPDh5U1h7Avcgj9ac9hY3CLg7PlTqUGa+42coIek/br9VOYaLgB9XrI0vexmYfThw/E+24vXb5jPHsLkX0fF2w6I0U0eJdtORR/9LEYAaJhIZsKgHK/Yjz2rLc4IKpj5hbrInmf3eFyd8JBZ3kpKQUMSdGKFacU/IiRYQ+JC0KJp7V0IGu646x4oBkyfMb+tCiMMWzh0nXdaEwnbRmWCgy/ZaUV2izzhBxDn14/KARKX7qOm+BD0Dw/jonJhfKqNZ1JDRgjbSODMdgcC1tjHM2Ntp2hl2KPLuUvJWDWWRSCTT04PcO2dFHcs4W9qGstc2SQh/a723qV615VJjIUtYPlrxZF0te5AqTxXOlF0l5cv8S0BZDzwVTbOCCqY84Mm882EdyKdcZFX5PKOhhrmLHA0wbAoc+REu11uxhkmPFaQGu1vvOYhU1cmpWVKEP8qlnVCegQZlcqKBQqUPTjI0AzRnpv4KpaVtqey6tafYwTS6UUQuoFIQNvcbHrxry/N+S2hDF6TIFHawdybUEK9AGraeWvGq4CtNM05LX3sOUSGhYPxrOLKY5ZYXJegNsKkxtlrzmAu61h4kKpsPz8TtEkFFJF8xGHStOoQ+5ToWpm89IOSGPyLv05zHdhwumPuKIYv8SYJxQ+OlxKXpIyAPMU0mOFY8W61hx4z2qN/SWKe9Me8Fk08MUMIms2Ac9THumDXVp/Wge2VRS+PP39FlSHm0q20MfVg5mkUpoaOjA0YV4najTZtBtI22FGdoT/nPVqn8JiIklj0IfFNefITdLnoOCIfqYZgMWTMo9TDYpeaKHqfXeFgWTx5Q8YcmbLcX6IG2+ZKYL9qqHiZ4rQ5nOHqZeKkyAeT/EeWTFcoMLpj6CFKbVwzmXrzTwk6LmZWgtwINru4XoYZItedKmgm15rVDgg6YZEcVWBO0TWeyDHibqX9qy0tgE9K/CZG3JSyQ00c8ZJ1teo6GLTbybVcuKKBMwD1hEigPxsOTR5lC5YKJrtjiw03XdNlYckIMfgt03qj1MZkGqqDA1n/XtceF2kMK0ofl7lWuNWKfX0uuWTycVgnmiORCct1CYSKGbK9XENUbNVIHSj02FaYAVptjBBVMfIQIfRtQiasWG0MMppTm0Vm2RH2VLXlcoW8xhSiUTQnHyEx+/lJH7l+wSymhT5ue1a7QNy4yrwkT9S5smBo3/XUHR4v1VMC1YDPck1oyaDfxxoSDN5hl2mM1jR5ShD1YzmAD7DX038WrJG3JQxQqVuuj/Gct3zi00h9eGY8lzmsEE2M/NK9pE5ntNySPr3lAuJQrEOAc/qBSadHBQ7mIP02A2JQqXbqlMQmGS3ENRPgMYf3DB1EdQE6dbQh5hDj/zbslTVZjoVLJUbYhNKhM+VQtLHiAtwnwK1YKYweQwzyXIgtReIC1W4nnv75pqKkwrSGEyCqe9fTaLyS5WHADWNQumgzFSmOjkOpXQlAMMZKKMFacCYcNYq1OBXtteKky0MVbtoaWN7rzFNVP/UiaVsHwPNlLBFDANTT0lz1rBo3vbvodJ1ZJnuhDWDMfvEKGdmUXqL7N/3eh9i8ySZ6Ncb6Ro8S7NYhI9TC0KE4c+xA0umPoILz1MgL9Fl9Qoryd8gLdZTAdnF7Frsr/6KHqJXeIbz2Kyplx1TsgDzHvcTw9T++sd1QloUEhh2ryiqTA1NwIHZhf76oCjaNPDBMQzWnxemu/idQYTYCr8UZwu21nyhrLGxnWhXOtZ78uix5Q8EfpgYcmbkSLFrd6DsGYx0UgNmklof62d63Gt3hCHO4OZ9h4mbyl51MeaSmixVF3bEYWmTUIeYLoAolJZrCx5gPmc7NbBknUPE48NiRtcMPUR5gwmtR4mkbTkwZJHJ+WqJ3ypZEIUTaqzmHRdx6s/fQde/k+/YH+uIlahD4Dkc+aHagtiaK3DxisXICWvfQGPa2Pu7unWHqaVQxnk00noevdOT8NAzEuxsApTVPrhWClMxmbQjx0PkObo1Ruhp/9RgbBhvN2SZ4bIlHtUTHvtYSKHg9Xzzy2ymmYxHZhZDFQgeu9hMq9VtgMP2AyuVQ19IEteOpUQcfF9UTA5WfJ6ECsOAMc1Pxt7u60wySl5aT4MjRtcMPURZuiDoiXPh8JUtGlAdWJEJOWpKUyFSh2H5kooVuqxstHElXpDFz52uYcJYJ+zHWqWPP8pRKRKUXR/raHHLtZ6plgRp+x0YqppWt8FP9TqDZGeZqUwrR2Nr8LkpjrY0TJHL8TNYrFiDi3u6GGSitFe2fLofVaOFc/Yp7SaClNn/xJg/v6FSj1QOIJqD5NpsZIKpqZdPp3UOp5VKTG41lvoQzqREJ+JwzGexUTvj7Mlj3qYonm22lnyupmUp+s6pgoOChMfKscGLpj6CL+WPC+b6UWPseKAeYqquugcaybCAMCxYsXhKxmgddJ7p8LEPmcryhapgu3QFHk/xSYdQowPmJuxuA2v3d3sX1ozkhX3CQBsWtH92NwgyPf2oEUPE1ny4rQ5pBCc4aw/hcnvHD03KBFuOJvq2OAnEproibSyuHUDvyl5Vk4F0SNjozDl0knRM7Jvxv9ngZQS1VhxOdF0QfQvdRbWlJKnGvogCqaUhtUxtKm2Q4XmmILCFIXSqutmkmW7JY9mMe0N0N+2e6qAz/xsh6uLZq5UE0XxxKDFHCZe22MDF0w9wog8VS8WStW6OEVTt+T56WHy1nQLmKeoqkl5cpEkF0+MNbI9pr0AMItiPoWSoZ4iJ0seWR78KEz038ibsbipfLuof6kZ9ED0m8JEGw6rU3jAtOQdnA1mrQoTuYfJD37n6Llh179EuA2CjZqSx5S8YYfrlXuY7CBbYpBocdV5W4NWChP15lmst6bC5G0OUzppWvKOxLhg8pKSB4R/IFWuNcRr1qkwGffFvmNF38+UT/z0KXzkR0/gG/fsdfw66l8azqZaDgoGuT85dnDB1AOOzJdw2t/djHPe/1Pl0yPqX8qkEso2Dz8eWK8peYBpRVC15JElBDAXNcYeuTm/fabQQAyigONI2SYkQyYfwM5IBdNgJiUa1KOaRu8XUpg2NxUlot8KJqfAB8C05JWq8Zk7YxZM/hQmQO6xC+93Mgsm60M3p5jubkCfoZzi+uMU+uDWwwQYA50B/8EP5Vpd2AjdFSYzUZbUkoJDXD4pTLWlbslzeH/k53fYz1e5yG7vjVw/lkdCM94rvwOxSd17aP+s49dZ9S8B8oF3PJ5pDBdMPWHFYBbVegO1hi4KITeof2nVUFY5dcmP+uDPktdUmBQ3K7KyxpY8dypSXGz7ez8QcVNsv6LSwxSkoVj+nOQCpO1FCRVMW1ZaK0z093GHZjBZBT4ARmERt7kzZuiDP4UJiKY/0U1hGurx8FphyXM46JBxul5aZ8YGrHuYgOBJebTmaZqpdtkxYNGX5qQwpRPe5jDJljyyqR5dKCv/991GRWHSNDOWP2wFv1A2X/tEonVdTScTWNcspv0m5dHB8GMH5x2/bsoiIQ/gBNw4wgVTD0gmNHECtF/RO+11aC3gL/TBtOSpL/QjHofXyja8aS6YXKnWrBPyAMnnzI2hLYiUPIeNV5ANqYg/ziSlePK49TBRpHirwiQ3NMfFwuaE2NhY9C8Ra2PWsyFCH0IomMLcMO1zs+TZzArqFuIgwuMcJqsodJVQAVLa9vksmGjTP5xNdWy628mmEsJmR31MBeHo6LxPkmTJU0jJ03W9xZK3ciiLhGYUW1M+FZKoUU0XDDL+wQm7SHFi47hpy/PDbHNvs+PIvKOtcrJgrTBxrHj84IKpR9CCtU+xqfCIiBRXL5jEguvhQRPMkqcY+iBb8gpsyXPDLlIcsJ7twUhzqxyU0iCWJzpYGJAUpripfObQ2laFaeN4HppmbNam+6CHUESKO5zgr4lZtHjQWHHA34GXGyJS3KWHqVcWX+pT8ToHsKF3HljMKFjyNo4HVJhKaoEPAPWltQ4HLjocBqQ9WPLkWU3pRALJhCbCoeJyiNCO14Ip7OerXaQ4QQdLe3wq8bTPqdZ1PH10wfbrJpt7uxVtChP93my3jw9cMPWIjWPemk2PzHlLyAN8puR5HFwLyJY8teKHLXneoM1/e/8SIMv2fAolo9LDRJ8PP8qQfBIeR0veQrkmmok3tSlMuXRSKDL90MdE97bdxgaIn8I0FzD0AZCe3x7m6LlB642dwjQsLG69OcgqicG1auvPQCYJcinPt13zrEusOBDckqe66SeoIKV72klhMucwKRRMUlGVThn/XRzTI2VUX7tcRAq+XaQ4YSbleX9Glqr1lgLvsYNztl8rIsUH2xWm6IZXM/7ggqlHUDqPZ0ueYkIeYNrqvGymix4tEYB3S960pDBxweRO2cGSF4VtZylAczscQx8CRNbK8cfCYx+jgonseBODGcv5MMf1UfCDWw8TYAY/xGWuWygKU8iDKxsNHQdnnUMfSOlY6NGpttdYcU3TMJSxVsUoVtwx9KFZMB2ZL7eE66iiOoOJaFfwig7qKVnyVJ5NlbocDGQ8j8yCKR6fCZlavSEUHqceMwCRKfh2keIEJeX56WGabTs8ftyhj4lCH1YOt/cw8VD6uMEFU49Y71Vh8ji0FpACAXzMYfJjyfMX+sCWPDeqUuhDOzy41hqzh8kh9EG6x70uxotS/HFUHvsg7LFJyCM2BbSbdBM6CR5w6mEajdfmMGisOBD+Z3tyoYxqXUdCMxW5dgZjkpLnxeEggh/aLOEqPUwrBjPIpBLQdX/3zpxXhamt55QUJuvQh6YlT0FhkntkqE9qTbPfOS6fCZk56b1y6/MLkmbqhOhhcrHk+VGY2g+CH3VSmCglb9A69IHX9vjABVOPIA/5fo89TH4seX5CH7wUTMKS52MOk5dZVMuVilCYOt8Tq+nxjGTJc5jDlE0lhJ3Hc8EkHSzE0ZJn179E9FO0uJt1BpAsebFRmMIrmMJSmPY3bWdrR3IisrqdYYeY7m5gKkzqWxMq8mRLXqlaF88AJ4VJ0zSxFqv2E8vQxl911Ef789o8DLBQmMiSp9LDJAIfNJGkujbGChOt+0PZlO29SER1IFVw6Y0kS97B2ZJnBwIV67S+PH7IXmEi67RdrDiv7fGBC6Ye4dU77c+S533BLXr0kAOmJU859KEgW/KqfZHU1UtEwWTZw8QKkxUqKXmappkNxR5fP7mHKY4peXYJeQT9eT8UTJ5CH2KyOZyLYeiDW/8SIM016tEmTShMHg7shiyCKmjDmkxojoU2YB5e+ulj8t/DRCl57rHiNYWUPFKYUgnzebc6xj1MXl63qObc0XPFLg5+9XAWmVQC9Ybu2epLBeHJa4ahacb+bdImrXBSxIpb9zCVqo3YRsMvN7hg6hH0kJ4v1zr8ru3UG7r4UHmJFReSrocHTcmhCdWOkQChD/WG3iLPM51UHVLyzBNLLphkqIfJ6jWTMRvr/VnycumkULHi1MO0q1kw2SlMcrR43KEIZkeFqWnJmypURLHcKxoNXWzGwogVD2uj6DaDCeitJa9Wb4hobE+WPBEtLqWvUv9SPu06t5D6ufwUTN57mFoteUWVwbUKm2XqYZKDgeJ2iCDjrWCKpofJLVY8kdBEiqLX5yS1GmwYy2Nz81lrFfxQqTXE/qdzDpN/yzgTDVww9Yh8JomJZiqK24N6qlBGQzfk3RWDzg2SMl4nReu6LiLIvVnyjIfeQqWGhsvDvVyri809rWNsy3PGKVacFSZrVAbXAtJi7PH1k+P349zD1J6QR5Al7+BcqecFhhsLDqfwxPhAWnw+jvT4RL1QqYFE8yAKU9gJmPsVCqZeWvJKUuiCF4eDWTCZ9zG5GEYd7HiEcHvMBlCYFH4OIB1wld0VppSH0Aey5MlrRJwteV4Kpqhixd0seYD/pDxSOMcGMjh13QgA6+AHGuuQSmgdRXc2lQCN9irynMVYwAVTD1HtYyI73orBjKvfV0aOTXYrZABjY07Sr5cFi3z6um4oZk7Qg0RuPObgB2dESp7Fey9OLPvM53zLY4fxyVueisyOqWLJA+Dbkic3p8dtDlOpWseBpoXETmFaMZjBQCYJXffXu9FNnPo8CE3TYhMtTifXqYTmqRenHbo3w+5h2mCTkAdIlrwebNDkz6Db51bGKvRhtqkwjbsksAHeZyLKiDlMioXxUNsw0qJCrHhVoYfJypJHoQ/HitVYHeYAZsHk1F9GRBUr7mbJA/wn5dEh8NhAWhRMVgoTOYcmBjMdg4+NuV3hJmUyweCCqYeQFWC/i8JkBj6o9y8BrQ9hlc1cqWI+kLwoTLl0Uixwbra8Y+JBkhEK27E+GJ7ZS8w5TJ0f13yfPlCv++4j+OhPnnRMDwqCyhwmIBxLHm1syzHpYSL7yHAuhXGbDYmmaX0T/KAS+gDEJ/hBDnxws4M5EbZ67MmS14MDGPkQwsvrZmnJEzOY3DfkGwP0MFEyrGoPE63JtFkvOAyupeJHpX9FWPJS5us2mk+L5x8dusaFWYUEQyIfsjWVcIsVB4IrTOMDaZyydhgA8JhF8IMZ+GDdasHBD/GCC6YesmHM+DC6PaiP+hhaCxjNkrTuqGyoi80BiemkZrk5d4KsJ27BD2SVGBtIi9M/nsXkjFMPE1k5KjXvs4R6CS0oUS3kFZGSp2bJ81pwFltS8po9TDEpWuWEPKeN56Y+6WMi+5KTdQYA1sQkWjyMGUxAFKEPCpY8m4jublDykZAH2IQ+eLDKeR3xIUNKiWpK3mC29T2l/7W6t1MeQh/MlDzztdM0LbZ9TDN+epgiihV3mu/mt9eT9jSjkiVvx5H5jllfYgbTkLUS2h4SwvQWLph6CClM+9wKJgp88FgweU0B85OQR9CC4RYtTlL1+EAG46QwsSXPkYrD4Fo5TaoYM9uFHbquixOzqIrlqBUmOc1LWEZi0gvklpBH9MssJrpXhhzmMAHA2qYFKU4KUxCEHSeEz3WxUhPPWbXQh+7fy/JsMy+IWHGpyDMVJndLHsU5L1brnjflYmOs8HPkaxWhDxX7TTvZ771Y8tKJ1ucd2fJ6bVNtR7QZ2BQKMlH3MKkpTB4teYumwrRxPI/hbArVuo6njy60fN1UgRLyrPd2YdtymWBwwdRDKIHFTWE6Mud9aC0hgh+q7ieGfobWEubwWjdLnvkgIbsQhz44U3HY/GeSCXESWezBJscPxUpdNMVPF6IplpV7mHzaPUSsuNzDFJNFbbfL0FpiU59Ei4seJpfkThq5cNQmvrdbeO1rscO05AVXe0g9GcqmHJP7hpqvcaXe6HoYCPWoeD2wow2vnOxHPUwqPTJD2ZR4hno5wKnVG6JIm1AMYxrsmMNkv+bSNalY8qoWljxATsqLlyWPnjlUkDgRfay4/T1CPUxH58uenu/ywbCmaThlnWHLe/xQqwV9UgyttVOYmvs3Dn2IBVww9ZD1iqEPR+b9KUyAN1uHObTW+8mo6iwmuYdprGnJm+YeJkfMyNjOj6umadJ73B8PVXljE1X/GvUTqabkebfkGb9DyxymWjwskbuEwmQd+EAc1yc9TAuKPUx5nz0/tXoDf/7v9+Ff7trt7wLbCEthCtOSZ9rxco42TbmXptsqk9wX6AVSHuWgCjOlzL1g0jRNcjuoP49IRdA0Lz1MFCteR72hi9/Z0pInQh9U5jB1WvKA+EaL72v2BNEzyImoUkgXXGLFAeN9pVCI/TPqz8ljbT1aZvBDax+Tew8Tjw2JE1ww9RBKyTsyX3Y8zTvqM/QBAAbSzVlMHix5Xi0RgLk5ULXkTQxmJIVp6VnydF3HX33zAbz3vx4K/L1ErLhNX9lAyL0OUSM//KejtuS59EP4bayn03BZYSrF5PXfLfUwObFZKpjiOjy6Vm+I19qth8lv4frIgTl85/4D+PhPn/J3kW2YBVNYClN4BdMGBzseYNjA6ES/27OY5GHQXhhqKgRWBZNqIUNr0TEPijcd9ozk0kgm1EIqzJ6UWssBl6XClFQPfbCz5MUxWrxQrgllxW7sgUzep23aCV3XzXEFDlZfTdNEb6TquAJd10WoBRXip6y1Tspz62EKU2VmgsMFUw+ZGMyIxcnJdy8UJg9DawlPCpN0au4V05Ln/MGelkIfJnyc6vULM8UqvnnvPnzt7j2BI3qdepgA0+bRNwVTy8YmqoLJY6y4h8W4Vm+IIjafTiKfaVpGYtDDVKk1xOntFpfNyIbxPDTNuG+mYqryyv07ThsbQI4f9vY+kD1qcqHc0ZTtBzP0IWAPUzq8z7XKDCZiqEfR4vSZ9Rv60FIwidhqNavcmI8AItlerorcI0bvazKhWT6nyJLnqYepzZJHe4Y4FUyUODeaTyvZVsklEGasuGwLd7LkAWYxo2r1LVbqYn0YEwpTMymvTWFy62GKg8JUqTXYBdSEC6Yeommaacuz6WPSdR1H5kPoYVI4oVj0MbSWoNCHeQ+hD0vZkidbE936utxwK5jyfRY9Km9sonrvVQfXUiy7l1N8WcHIZ5LIpeLTw7R/ZhEN3Sjk3FI1s6kk1jVPoONqy6PiOp3UFOyVxuej7LFgkuPg6VkbBPrsO/UKqSCfrKvM0XOiHwqmRZ8OhyGLYbuzZP1WVJgmmmuRlwMcKq7GPQyTH5Se1WZvnnWMupeUPCqqUh2hD/HrYaKZRpsU7HiAf6utE3RvJxVmpZFdjtQgN6hYzyQTYi918tphaJpxKCMnw07ON3uYXBSmXh6GvuNrv8Fz3/8T/OlX78V9e4717DriABdMPcZteO1CuSZOVrzGigPePnBBLHlCYXIpmMQi0xL6sPQsefLr4PaauOE0hwkwFaY4bNhVkIt3LxYYL5g9TOErTHT9mmZ8/xwFR8RAYZIT8lRm2fiNze0WqoEPgP8Bl7IiFUbCXlix4vLBVdB7iyx5FDTkRK+G1/ruYbIIfZjxMBgVAMYHm5Y8D2sRWfJUhuMSNHy5KClMdrHWaT+WvKS9JS8utls6nFEumCLoYaJ7e9CmWJVZ1SyYJhUVJrovxgbS4nsPZFLCIk3BD7quC4XJtocpBqEPjx6cg64DP3rkEF79mTvw+s/fiVsfPxKb+6mbcMHUYza4KExkxxvKpnyFMXgZbOrXQw6Yp6luljyzGTezpOcwyZsNtyAMN2gxtNv8C4WpT5J0FqRm8ih6mHRd92DJ8z5DiQY804BNU2HqfeiDakIeQZuW3TGNFqd7xS3wAZDmtfgcQgyEE78cWuiDVDgEPWH2ojC1R193C78peWTVXKjUxGefXi+VWHEAvtwOxzwESxByCiGthXZW02RCPfShJmb1WafkFSt1zMdkfaDDmY0T7vciEE2s+IKHPkOy5CkrTDb3hWnLMwqmuVJNKIO2KXkxsOTR2njxSauQTmq4e+c03vzlX+OlH/8FvvWbfUr351KBC6Yes8Flyjg1Gvqx4wHAgIg8jjhWPO9NYZoYNOcwlWuNvlFHVAnVkucwuBYwF9yw51RERXtKXtgnVbWGDjqUdbNx0SGEl9eu3bpKBatXK1gUUEKeW+ADsTnm0eJ0surWvwT4jx+WFalwFKZwQh8Skl0oyPOx3tDF76VSMA1bWNy6gd85TNSDoutGYTArpdepFq1+RlyIACMPCpN8GHl0wXhP7MJM0s2UvJpCD1PFxpKXzyTFYeaRmPQx7fWoMEURK66avAmY6o+qwjQjIu1b74tTRfCD0cc01fx+w9mU7SFBHEIf6PDh/77qDPz8ry/BH//WVgxmknji8Dyu/sYDePE/3harHrko4YKpx7j1MFGj4UqfBZOX0IeiWLC8n4zSwuSkptQbuljMxgbSGMwkxaIQltIQl9OO+QgseXYpefkQm8O7gVww1Rp66CefZanHyC0lL+ehx4+gr6VFTmxqY1AwmQqTWsEU92hxYZ3xoDB5L5jCteTNhRT6AEjDawN8ticXyqjWdSQTGtYorCO9suTRgYNXh0MunQCF1C2UayKhbDSfRkIxvc50O3iw5PnoYcqkEuI5Tr0sdgeUVPzUAljygPj1MXmZwQT4V46dWPBwELPSqyVPDE1uPTA5ZV1rUp6YweQwvLfXoQ8NKfo+n0li3Wgef3PZabjj2hfhry49GSsGM9g9VcTX7t7Tk+vrNlww9ZgNYnit9UIdZGgt4K2HybTkeb8tVHqY5har4uR/LG8MdBPpRCE0/3/ljl0447qbcdczU4G/V1DkzYabTdGNslsPUwx8zl5on+8S9iwmOenMrsgkhALroe+l/SSc/rfW0HtesJsKkzdLXmx7mCj610sPk8eku7ha8gDz3goyY40O49aO5ERUtRNykls3ET1MLjbadjRNE0rBfKlm9i8pBj4A8GUPlxNfvUDPa3KP2N3byaR66IOdJQ8wC6YwDgOCouu6SMnzGvpQqjZCcyOYM5jc3zsqaCYVLXmzReveNrLkPX10AZVaQyhMdv1LQLijBfwg907Khf1oPo2rLjkB73nZKQCA/3n8SNevrRdwwdRj5B4mqySko2JorfcZTIC3D5xpyfM/uNbJfkaL0VA2JexlZjpR8Ob/nz1xBOVaA/ftmQn8vYISpiWv6mLJC3PAZTdoT/PzcqqrAvUvZZIJ1xNmsRh76WFqOwmX7RRhD1f0Qr2hY18zgWrzSjWFiTYth+ZKPb12O6iHScmS1/x8VGoNT6ly5cgUpmCWPCCchDAKFFo/praGUKG3UO5uGA/9jjkflnB6rQvlmjmDyYNVzgx98G7J8xL6AJjrK/UnD9hZ8khhCmDJAySFKYQEyKAcXSijVG0goanZQ4HW52s5pOHgdKA5rKBcy6EPKgWbUJgGWz//G8byGM6lUK3reProAiYLzjOYAGnQcY8sefKhiZVV9gUnr4amAQ/tn10WtjwumHrM2tEcNM1Y5K1moZhDa/1a8pqWDoXNUNGnhxxoteTZPVSsmmTp/4dhyTvUPLGLw8avpWAKy5LnMoepX6aBt1t9wlaYVBPyAHMxLla9WPJaPyfyzwlzVohXDs4uolJvIJNMiHQsNyYGMxjKpqDr9rbgXlLwYMnL+0yVkxWpoApTo6GL+ztorDgQTqzwAQ+BD4D5PFnossJE74Of9UcEP5RropDxojCR02HGy+BanwUTXSut7YM2BWJSxIq7b9JrjpY8Y++gOng1SkjJXjeat13P2pEVx7CUFi+WPFKYyrWG0hp7TNx/rfeFpmlSH9OcksI0KKUq9gJxiJG2PnxcNZzFmRvHAAC3LgOViQumHpNOJrCmqR5ZbVjE0NqAljy10AdzLoRXyJJXkzyv7VidyI37mH9hB51wxCHeuaWHKaAlzy30IQ6NoV5otw6GPYtJzGBSGIBpvnYeLHltaZKapnluTP6Hm5/Ai//xNtHTFwbUv3TcRF5sttzQNM3sY4phUl7RQ3N2LiUrfd7fT8DYVAaZeVSo1MyBmGEoTKKgD14wbVAtmLK9Sd00N2fe1x95dtSsx0hxwHQ6zJdryrZaUrLGB71a8khhMtYrO0eHGfqgMofJenAtYBzKAvGw5NEMpuMUE/IAIJU0+77C6mMyQx/c37uBTEqsE5Pz7kXnrMNAYzkpj1L3Vjr0wAn3iIcDvTChn+tkiX7RKasBLA9bHhdMMYD6mKxmMYmhtSPR9zAV2zaCXn8ObdLsCgQxGV16QND/DzqPp1Sti413uYen/EQkCpNN/0GvG0O90n5yHXasvBkp7n4f5z2kSBIlCyXW66yQ7z5wADuOLODh/bPKP9cNrwl5xKbm5iWOwQ+mJc+9YEokNPEZ8aIyy19bqTcCqd30uU8pDMRUIYzDEC+R4oBsyet2rLh/h8OglOw3Y9N078RIPg0ax6PyPGo0dP8KU/N5LRQmG5WD+s2qCpY8+pq0hSWP7PxxsOR5ncFEhB2sY/YwqanAXoIfhMJkUTBR8MPjh+bF93JUmDK9VZhU9oQvbBZMv9wxGQt3T5RwwRQDnKLFA1vy0uoFk99YV8A4qTZtedYFwow0tJag/x900yzbDeLwoQ13DpOxGLorTL3/vVWgk2uaPRGZwqRg+RCvXbWu3FBstYh4TXKi+yPMe/Vw8wR5nWKvCrEpxkl5wpKneIiT9RFB3B4SEeQkXg58UBkc7EYYKXn7m4FC6gpTbwsmPwoTrT2FSk3EOnvpYUomNIzm1Qepz5dqZoCRx9AHeubMlZztpqnmAWSQwbWAack7HAOFyWtCHuE3AdMOU2FSu9e8BD+YQ5M7779T18mWPOphcg996FUPk8qomdPXj2DNSBbFSh1375zu1qX1BC6YYoBdtHil1hCqjP/Qh+acmYhDHwD3pLxpi8noYQ2vPThrvnZxKJi6GSve64eqV+g6NzY36qErTFVnC6MMNZg3dNP66IbVwYKpMKl9D7NgCk8NNYe8etvAxblgWqg4byrb8RNB3P68CNK8PB9i4AMQTqCLsOSNeyuYum7JEwWT920JncTP+1SYAGktUjjAoWfWYCappGTLtNtL7Q4DUh5S8qhgov9Ghix5R+aD2U3DQMxgUkzxJMykvO5b8gBvCpOwaloUTCetGYKmGYXXE4eNeUzOseLmuqJSOIeNeTho//zVNE2oTP/z2OGuXFev4IIpBghLXlvBRDOY0knN88Of8OKBLQaIFQeAkbzxoXKz5FmFPgRNSpObtXvZeE+EmZLnFivupSiOA7QR29i878NXmMiS534fy0WP6utnVTBlPWzUy7W6KILDLO4LHk9NCZrZ9PSRhdCuJSyKHkIfAO+Fq/G1re/BwZAUpjAIqh7LPT3rRhVT8nqkMAVxOAzlgvUwAbLbwf15PS1sV97seAAw0Pb5tDug9DaHqelCsFgjVg5loWnG9wlr3qFfqGDa6FFhMq3TIaXk+bTkTbkoTI2GboaOWNx/A5kUtjaft3SfOqXkyc+9Xsz5o3EGAy6fyReesgYAcMvjR0IfRB8nuGCKARuaFpr2Hiay460cyioP4GvHU6x4gMG1gLvCZBX6MDEYTuiDfCocj9AHuYcpqCVPLVa8bxSmphJCtoyg/WvtmJY8941XOpkQzdWqC5KVTSHvwQomR7WGea96VWOIZ28cQ0IDnpksxKIxXKYgVDNVhcl4H8o+FCbaFAVRmMIcWgsEV5hIXRrJpZRVr14pTKQM++mhHZauecbiYE4FL24HsZZ5DHwAOhvobXuYKCVPqYeJDtU69wnpZELc2738fFdqDRxsfra89jBlI7LkqcSKA2ZR46YwzZdNq+aozSE32fKIFYP2lrxsKiF664LMYvOLiiUPAC48YQUyqQT2HVvEjhgevIUFF0wxYMOY8fA4MNtaMAUdWgv4G1zrJyUPMDcJdgWCVTMkndAFVRnkU+HYWfIWq4FOXSouPTm04PabwkRJSZGFPihae3Ie+vwA63kxXjz28kY0TDXUqxpDjA6k8awNowCA23dMhnY9YUAbG9Vnkjm81kvBZLwHNOw3HIUpHEveQPPwyu/p8n5hx1PfoA71WGHy08Mkhz7Q82Q07039GfNQMNEhj9fAB6Dz82mrMDWLH5XUPtOSZ/3ME9HiPQx+2D+zCF031CInVcWKfMihD17GFQDqljwqpPPppO19fMraYfH/U1LvnBWapvU0+EE1CGwgk8L2bSsAGCrTUoULphhAAwVnitWWzdQREfjgr38JkAYfujS167ouTjD8nPABksJkY0Gjk78JOSVvQL3R1onDMbLk6brestlwilpXwTVWPE2nq/EvmHRdF0qYUJhCLpjcCsx2TLuHf0uel5Q8WX0M15LXTJTz0YN44QkrAQC3Px2vgonuFWWFKeXdkkfv55bmsN9gPUw0gymkgilgSp4ZKa6+htBrXao2lCKtw0LE9Qe15PlUmCYG1dcivwl5QGfxb6cwkQVbLfTB3pIHQIwuOTTbu1lMIvBhIu85ECXvozfRiXkP4woAs8/IzZI34xApTsgK08RgxtU91MseZXq9VQ6sRLz4Y1wwMREynEuLIYdyUl7QhDzAPL3SdedNRKXeEFKy74KpeVJilwpntchQ8bRQromNrh/ipDAVK3W0r3F+ZzHVG7pYMG17mLLmYtLrpl43SlXzPqMepmPFaqjX7cWSB8iNtf4teTkPRZe88HmxjrnhZRhjO8+ngmnHZKw86F5PgklV9KK20vu+tVkwBUvJi6clTzVSHGh9rbt1CKPrulAFg8xhmlmsis2w177fMR+hD04bYztUFSZ5cK3bZ9JpDhMArGn2rwU5DAjKXp+R4kAEoQ8eew1VFaZjCr1tp643CyanSHGilym4oodJ4RDukmbBdM/u6VDmasYRLphiAi1o+6SCKejQWqD1tM7JAyt/GN0a/OwwLXmdJ3S6rgsbg3zyN5JLgw5YKA7WD3JkajlA4RUGVDAmE5r4Xe2i1t2Q7RhuseJAdxtDdV3Hdd95GJ+/7Wnl/0ZW3uierzf0wNHrMtQLoaowebbkWViHTCuY+723ICtMId6rRY9qjMzZm8eRTSVweK6Mp48WQrumoHjtYcoHsORtblrywogVHwk79MGvJe+Y94IpkzIHhS506VS7XGuIgb9+UvLo/pAPHJ2sTlZ46WEyA4yCW/LsFGF5ppJb8IOw5FnMYQJMhamXlry9QmHyXjCZynHw9a0uOT7CtuSpBI6sH82J54OKNbGXcxa9zObcOD6Ak9cMo6EDtz15NOpL6wlcMMWEjRbDa48GHFoLGJt22jg6bQjp7zLJhK0P2g0nS16xUhfWMllhSkgeXr/N//WGjsPz8ZnDtFA2T5npd/MbLS4Xf3Z2i1wqKTWGdu93f2aygK/cuRsf/fGTHmYYmXN1cumk2OiEmd7ktYfJ66bUypKX86BsLJSjseRRrLifsQC5dBLnbpkAEJ8+Jj8bm1yAlDwa+DtfrvkOPAg7VtxLD6oVBzzOYCKExS3Egwwn5M9BkB4mchoMZ1Oe1zEvKXl0gi7by1VpjxG3U4STUoCDmy2PgiHsXAhrR3sf+uB3BhNg9ouGkZInP39V1XgqbOZKNbG+WHHMYnRKO5qmiQG2TjOYiDCGV/tFuCkUP5MvPLVpy1uifUxcMMWE9RbDa48Khcl/DxNgLiZOG0JakINMpx8RxUHnB5tO7TLJRIcfNugspqmFcsuC0uuCiX7/oWxKKiL9Pexkm6JVAhJgFJ1e+3DCgIr7Sr3hef7QQPOepJSpMKPFvVry8h4tD1bzyrwoG1EVTAWPvvx2tp9gNO3+MiYFk2xdVA998DG4VkrJo9fukE/rUtix4vmAg2v3+7DkAeZGslvBD/T8SCc1202/E/S+0Tow5iO9bnzQe+iD1z4poPNAw21wLeAe/GAmqVqvEatHyJLnvYfpmm88gFd+6peBLPMAsPdYAEteiD1MdE9nUgnlNWI0nxbvh1MfExXboy73xelNW96aEfe93YBIgIy3wgSYfUw/e+JoV/sfuwUXTDFhg8Xw2iMh9DAB5sPGadEtVf2fThO0SbCyn8lRr+0Nn+MBo8Vpc0PfttehD3JSlphN5VNhEoEPyYRjo6wp23fvFEoeFqxqOWy3WE146BtQpew39MGrwiTNKxPKhorC1BL6EM692qrG+LPUUh/TXc9MxWKxowIwJankbtD7oNobVqs3hN0pl06IIZ9+T+JDT8kLcLpcqzfEs9GrwkQ2sW4VTMLm6nEILNFeoI55TMgDzIO7qEMf5M9nQrN/TsmFo1u0eKX593aWPJrBte9Y0VOP4nypiv/8zT48uG8We6aDWXX3TAWw5Pk4CLFjoeT9YEnTNKXgB7LkufW2vfWibXjHJSfgTdu3uP7sQaEyd19hKlocDjpx1qZxjA2kMbtYxW/2zER4Zb2BC6aY0K4wNRq6pDAFK5gGFD5wRYtGdq84WfKOOVgY6OEy7dOSRzaM9aPGa1iqOScCRo1oKG1RmHz2MNWcE/IIN+vOodkS/vo/HsBjB+d8XYcV+2fMTaXqrKlCWzCBl1NdVWizrFwweRz8K2LF5ZQ8aSK7G/Im1Mne4QX5s+01Vpw4ff0oRnIpzJdqeGj/bCjXFQSR+pdNKadqeS1+5R6yXDqJtSPBCqbQ5zB57K+TOTJvKO/ppOZ5DaHr79YsJquofi+03/N+lB8zsbXiGkITrGAyr3UwY39vy+Fpbj1MNTGHyfqZt3XlINJJDXOlWsuhrBuPHjDXiyCHO7PFqlgjaJyEF7ykkLqx4FOJV+ljUr0v1o7m8JeXniwOaJwIGvwShMWqt7EOyYSGF5y0CgBwy+OHI7uuXsEFU0zY0NbDdKxYEQ9JFZ+rEyopK7Th8uMfJ0w1xcqSZ29h8DL/wgpK/qGmbV03lZleICdlmcN8fVryXCLFCbei+Iu/fAbfuGcfvnLHLl/XYYVsH1VV0AptqTsTAd97K8qKRSbhdcaHVfwxFWcq32MhgjlMVFwkPagx7SQTGrZvM9Pyeo0fi2HWYw8TvZda86SfLDJxseQFSciiz+fa0ZznwedirlG3LHk1/5HiQOc94jXwATDXoYbu/DzTdV2sZ0EH1w44qMGapgkbdq2hZsmzs21nU0mctMaY//PwfvVDs0daCib/G3ay460cyvrusQTCteR5LZhWKBRMpE76uf/sGOyT0AfihaeuAQDcugT7mLhgigkbmwrTobkSavUGjjY/lOMDaeWNnx0qJxSmJS+4wmRlz3JqhpwIaMkjhYnmqAC9teWJKeK5lJkc6FNhIt+4XeAD4aYw3fH0FADTMhAGrZY8bwoTLVbm4OLwrst7rLhHhcnCvuol9rYQQQ+TiBTPJD3POJG5sNnHdPuOqVCuKwj0Onl5Jnm17pQkNVLTNGFd8m/JCzv0odnD5DJHzwrRvzTq/URfHgTbDUoBe2izqURLz48fhSmTSojnklPwQ7FSF89lX3OYpCLJbWYaWezcLHlVl9AHAGI49cMe1OOHD5hfG2RNlWcw+cFrn6kTfix5gBn8MOlgyZsJoDzaIcaG9DL0wcMz+OITVyGZ0PDk4QWRjLhU4IIpJqwcyiKTTKChG0XTkblwAh8AadFVsOT5ncEEmAVTqdrosBo5zScY85BOZAVFim8czwsbQ5jzbbwiQh9yKSkII1hKnt18DYI2OFbv8bFCBY82rXhhnhgfkC15ioXYgmSzAsxhkeH2MHlLyfMSK16Vel5aUvJS6ieg83LBFFKseJBIcRkaYHvv7mM9mfshs+BxBhMgxQ8rvq7lttk/NK/Gj8LUaJgDq8OKFafncb2he1bNqWAi94IXhrNdtuRZJE96QdM0kewH+OthAuS1yKmx3z7ASAVVhQkwgx9UY8WdCqbTqWA6oF4wPSKpUUHUnSAzmADvn2snxKGdx8/oqqbCNOVoyfMfBmKHGEzfQ4XJy30+OpDGOZvHASy9tLy+K5g+85nPYOvWrcjlcnjuc5+LX/ziF72+pFBIJDSsa05jPzBTMmcwBYgUJ1QUpqKFzcgr8gOoXXFwmoA9HrDxnzY360ZzvmKFw0Y+ZR4Rs6n8bTyqdTWFyanX4a5npsSMk7A2QLqut1jyVBWmolCYWnuYwowVr0QY+iB/TU4KfaDPWFmlh0l6rcIq7NvTB/2ydeUg1o/mUKk3cM/u6TAuzTcFH0VgzmOvA8UU0z2wVqSJeS+YCpWaGMocdugD4P10nT6fXgMfAElh6tKpNj2vg1jC5fvE74ZVZS2akex4ftTcZEITSpqbPS1FljzFlDw7Sx4AnNFMZnt4/6ySWlmq1rHj6ELLv/tlT8CCSSj4IRQN874teaQwOVny3AfXeoX6fYtdOryQMfeF3l6rFzbT8m7hgql3fP3rX8df/MVf4G/+5m9w33334bd+67fwspe9DHv27On1pYUCWSf2zxRF4MOqgP1LgJmhH7UlL5nQxEOofQPt1Aw5rnCq5wTZZ9aMSAVTSM30fpCniAuFKaglz8VeJhQmi+hRsuMB4UWTThcqLTOiVFPyFux6mHoYKz7gwU5Hm9ZkQmspYnMe+qCisOQV2pQ7v2iahu1NlanX8eLm76T+TKLkQmVLXpvCRJa8gz4sefTMS0kb4qCkkwmxCfba9E0KsNdIcaD7ljyrYdBekTfAfntIVNwOQQIfCFKZ3DbtNEvKXWFyt+Sdum4EyYSGyYWKUrz444fmQxvXEWQGExByrHjJn8Jkhj5Yr1W1ekMcjLql5Hmhp6EPYr329rl8UXMe011PT3VNpe4GfVUw/eM//iPe8pa34Morr8Spp56Kj3/84zjuuOPw2c9+tteXFgpy8ANN5F4VgsKkFvpAlrxgG64Rm54ds0nWqmBSj3NtR9d1SWHKI5cKL37UL/NWKXl+Qx8UAwycHqp3PG1ufMOy5Ml2PMBD6EObzSoKhYlUHuUoag+xrXLgg3y67EXZiCb0oVW5CwLFi/c6+KH9XlFBWHd89DAB5lyUyYWy6+ybduTAhyB9ZO34TcqjACE/BVO/WfKAdoXJXzGj0k9LM+OC2K7onnbbiApLnmsPE1m37Z95uXQSJ64eAqDWx/RIm3UvyJq6r3kv+okUB8INffCjXAPuoQ/yGh9F6EO3CyZd11H0eZC+bdUQNk0MoFJv9PzgLUz6pmCqVCq499578ZKXvKTlz1/ykpfgjjvusPxvyuUy5ubmWv6JM+vFLCbJkhdCD5PK8MMwLHkAbHt2zGZIC0tegE3zXKkmrn3tSEwseWXJktd8Peb9KkzCkue8ATNVxNYNzuG5Ep4+as7PCGtO04HZ1mha9dAHmsNkXC9tUHrZwzQgFmP3e8buJNzLgt5SMIWkhNL76tZErsL2bUbwwyMH5kJ9X7wiCiYPv5PXz/9iW+/misEM0kkNum7OwVMl7MAHwmsoCRGKJa9LwzLL4nPlf0syGKIlz2mQtmkv968w0QbUNfSh+dyvqqbkuaQhnr5evY+pPU3P75pab+jYdyxY6EOYc5jmIwp9IOVxOJcSymAY0L3SzRmLgOHUIOem1952TdOELe8njy6dePG+KZgmJydRr9exZs2alj9fs2YNDh06ZPnffPCDH8To6Kj457jjjuvGpfpmozS89mhIQ2sBSWGq2n/gwrDkAXJSXuvPMk/l7EMfZherLRYAFajXYDSfRj6TlGKFe2/JG8qmAg+urarGimeti+I7m3Y8uo/COjE+MOO3YGq15NGmw897b4dXS56ZwOT+O9g1weY9bNQXIrHkeVdj7Fg9ksNJa4ag68Cdz/QuLa89IESFrNeUvOa9QspUIqGJQyqvSXlhR4oTKnP02pkrVUWvxvox74duZINcKIeXXulEe+Hqh9bQhy5Y8izcEqoIhck19MG4n52ejfWGLnrnnCx5AHDGBupjcj88JoWJ1BK/z6rDcyVU6zpSCQ3rfCQ2At5SSN3wGytO7RHThbLlnK4oEvIA/wcmQZH3En6i4F9yurFXv+Wxw7EYhB4GfVMwEe1WB13Xbe0P1157LWZnZ8U/e/fu7cYl+kYeXhvW0FrAPXLa+DvjIRJkwQJgG6PtFPpAiUa67r3XhzY11Kwd5kmUX+SN07AYXFvzNUy37DFWvP0Uiux4L27ORqjW9VCGpVLBRNYd1fet3Q5BG5SGj/fejrLH0Ae7vjsrSjbWIVVLnq7rbT1MjVCGLC/46PdxIg7zmPzYDL32MJYslA0aJuk1+CHsobWEsNt6eKbR53N8IO1rs2MOru3OczSUHibp9xwNqDA5WfLMERnBLXnuseJNhclhwyn/nZMlDwDOUIwWr9YbePzQPADguc3EM792OOpf2jieR9LjPDBC9DCFUDT4me8GmAVyQ7fut56JICEPMIvqbitMtCfMpBK+3rfztkxgfCCNY8UqfrWrtwFCYdE3BdPKlSuRTCY71KQjR450qE5ENpvFyMhIyz9xpqWHqblYh1EweUnJC6wwWVjyKrWGONWxOn3JpBJi4+01+EEUTM1NTpjxo36hk105Ja9Sb7SEJKii2sM0aNGnpuu6mKfz26etFn8exiboQPN1P3mtMQxRVWFqVw3SyYTYnIXVx1QWfSlq9/K4h+G59PrmbBUm59e2XGuIBm35z4JSDFFhAuLRxyRshh5+J3NjpRgrbrFRX+sz+ME8KAnbkud9s0j9S34ixQFpWGa3BteGkZInFap+e0hoU+wcKx7ckkfPa1eFiUIfHHqY5IIp5bKxPW3dCDTNSJY96mA53XFkAZVaA8O5lBh469eSZ85g8te/BMgHIcEPmPyGPqSTCVEkW9nyzEjxcBWmwR4pTH5mMMmkkgm8qHlQ++NHloYtr28Kpkwmg+c+97n4yU9+0vLnP/nJT7B9+/YeXVW4UELTYrUuMvdDteQ5fOAWw+phynWe1s8sGg8XTTMLqnbGBv0l5VHgQ7wUJvOkeTCTErOh/CgoVDC5WS3yFtPA904vYv/MIlIJDc87foV4bcLYBNEJNhVMqpZDc2Nv3mdh9zEJhUmxH4JOBFVCR0QTbIfCZKZZOZ0GW4VuqESRuyGUuxB6mADg/OMnkExo2DVVFP0H3SZID5NqXLtV2IDfaPGoLHle5oQRBwIMrQXMInW+D0MfBjJJ5cOSdkRiq8MgbaeZgqo87/gVyKQSOHvTuOPXUQHkZMmTiym3dWIwm8LxzQHv7aEOMqRAnbZuxDwM8ulM2BdiwVRv6B0HTl7xGysOmMEPVrOYRKR4iIEPgOQe6ZLaS4hD9ACfyUtPXwsA+PEjh0JxUvSavimYAODqq6/GF77wBXzpS1/CY489hne9613Ys2cP/vRP/7TXlxYKuXRSRFcCxuIRdBCl8X3cB9eKBSuwJa8zRltI1fm0rbRrzr/wVlTQKTANnPS6YQqbar0hTuKGcykkEpr5mvhIylPtYRq06MMhO95Zm8YwkEmJeymMpLyDM/4UJqtNsEqjtRdUbYwEFUzlWsP1FK9k02shn4w7FetmD1cS5CQOI/iBlLugc5iI4Vwaz95o2Hfu2NGbPiY/UeniwETZkkfFdWfB5L2HyXh2jUSmMKl/bvcHiBQHZEtetxSm8AqmIBtWFbWZ1jMauu2HK7ZvwcPXX4rnHb/C8etE6IOCJS+hQck6Rba8Rw7Y9zHR352xYdT8TPlUOILOYAJa74ugSXlB+j0p+OGoZcFk33YQBLMHvW7ZOxUVxRD6Cn/rxJUYyCRxYLak1DcXd/qqYHr961+Pj3/843jf+96H5zznOfj5z3+OH/7wh9i8eXOvLy00NkgNuqtHsqHE06r1MJH8GjBWXIQcmAut6fm2P5HzYouSOSwNrQW8p2SFjTy3hBbwIMEPqkNYrWyXNH/pgmY/Ci0QQTdB1XoDh5ux9yev8aYwLVgsVhMKNhgveE3JG8qmxEkuqaF22J2EZ1MJswByuPdkFcJrBLYTYcaKE8/v8TymBQs10g16Tat1XanR2KmHyW/ow0jooQ/eY4X3NxWmjX4teVKITFhhLE5YvQ9eIYvVaADlZ1zEildtT8SdAoy84HYIBgBphdCHSl3NhUCc0UzKe2ifvcJE6tMZG0bMwAWfBztBZzABxkBeKgaDPi8Xyv6V4JVCYbLoYVoMf2gt0LonCyNWXRUKCQuyJ8ylk7j4pFUAgJsfsQ5n6yf6qmACgLe//e3YtWsXyuUy7r33Xlx00UW9vqRQkT3nYQytBVpPKOwIz5LXqTCZFgb7kxe/w2vjFvpAm6Z8Oin851aviSpmrLi71QIwN1W6rouCiWKiSdUJqjAdmi1B141r2rpqUHxPt9MvXdeFZVBWTk2FKXjoQ0OybKjacjRNM9OxXK7B7tRN0zSlAkg+3TTv1RAseSH3MAEQA2zveHqyJ3aKoo95KS1Kn0JvmKUljwomz5a8aGLF/QyuFJY8nwqT/Jp3o9k8jNCHNc2ZhRt8pAIStA5V6g3b1zuqNDQrqEioKljyVBX10ykpz8aS12joeLSpMJ2+flR6rvl7Tu1t9tMFUZiM52s4a/uCz1hxQB5e26kwHYso9CGXNg/juhn8EIbCBJi2PC6YmNCRZ2asDmFoLaC24IZtyZMtWipNsmNCYfKYkjfXGvqQTQU7DQuKVVJWkOG1yj1MbXOYdhxZwORCGbl0AmdtGgNgLhBBvdBkg1w3lhO/m64DCy4P83KtIU5KB1p6mKiHKLjCVJFUBdWUPMC8/9yuwanXQqVYF6eb2ZSnYbduhDmHiThr0xjy6SQmFyp44vB8aN9XFV+x4tJ7rvK6WoUNCEveXMlToRhZrLiPoZ1BC6ZsKiFU127Y8sKIFb/oxFW48bVn4rrLT/f9PfLppFB+rCzClVpDHPpMdKFgIkuek1pKlryUy6w+gmYx7Tu2aPm82zVVQKFSRy6dwPErB4VS7yd0YLFSF+ESfmcwEXmFg183yrW6WCOCWPKsCqaoCmlN03oS/BBWENglp6xGKqHhqSMLeOboQhiX1jO4YIoZ8gIXxtBaQC3HP7yUvE77mUqTrEqcazulal0saqbC1GNLHlmj5IKJXpMgCpNbDxMpTM1NJqlL526ZEEUkWZuCboBoM7Zu1BgUTNfm1sck/9yWHqbB8HqY5AAFTwVTs+9hxuU9KjkcLOQVNrYLLQpTmJY878WFG9lUEudunQAA/PKp7tvy/IQ+JBKaeN9VXlergal0UFWpNTwd4MQlJa9abwirsp8ZTEBzkxaShVeF9nlYfkglE3jdOccFChfQNE2oTFYhMLQ+JbTwC2Mr6KCs5qAwkaKuaskbzaexeYXxGln1lTzcVJdOWTuCVDIRKPSBAmOGcynfyYWEGA4eoGiQDwuDhT7Yx4r7jbR3It+D4IegKXnEaD6NC5oul5v7PC2PC6aYIStMYSTkAa2DD+1OTKmhOApLnkqTLP2dl9CHI3PGKU8mlRAyeFwsefKmyQx98N/D5Dq4VprVYsSJGxtcelAB5mY6qCXvwGzr6fWIzeytduhhn08nW5qT/favWUH9S8mE5mna+pjiNRQdPicqxbo8NFFs7EOIFS/46PdR4fknGPcPFeDdot7QReHp9XfycmhipRhmU0msaBbxXvqYopvD5K2H6dBsCQ3deGasHPS/hniZTxYUuzCVXuD0PJqWDv8SPmcKeYGekyqx4qoFE2D2MVnZ8uT+JSDYIaQc+BC0HzuMw1Cy4w1kkr5mCzlZ8mZCiJu3Y1Daw3ULYclLB3+eLRVbHhdMMWN9BAUTLUIN3Xrmi66bm5OgpwnDFrHixxSaZOnvvMziOSQFPtDDuPcKEyVlWVjyFv1b8lQLpnpDR6nawF3PUP/SSvE1QyGdGLdHFlvZMK0w5+q03mNhpuR5HVprXoNatDjN97Ha2OVUFCbJPx9moqPfYYxuXCj1Mfkp+P0ie/W9qmZeDk3oa7JtBbCf4bWRWfKEFUntc2t+PnOBNvVhWXhVCKOHKSycCiY60Au7T8WONFnyGu6WvLSiJQ+Q+pgsBtg+0lSdqKgKooSHEfhAqM66c2K+uT77fU6aljwrhSn4QGM7vB6ahAEdogfdEwLAS05bA00D7t874zlMJ05wwRQz5FSjMIbWAq05+lZydrnWACn+QU/4aM7SfLkm+lVUepj8WPKoYFozYtpORGNoj3qY5i0aSsmSN+9jw1lVDH2Qk2x+vWsac6UahrMpnLHeHNYsFKaAp1QH2iKLzdlbbgqTdTCBmZIXfEMuEvI8FkzmLCbn+88p/lhlo16QLJtmBHaw4r7RMMM0gqZctnPauhGcuHoIpWoD375vf6jf2wmylqYki50qXjZWdgNTyeLrZXhtXEIf2hVgv9DBRhhjCNwIIyUvLMaF28F+U9yN/iUASCZUBtd6s+QBZjHUHi2u67pQnajXKUihsne6GfiwIryCKUgPExX//gsmU2GS3Tpyb9tYfmkpTGEUTKtHcjjruDEAwE8e7V+VqfdPJ6aF0Xwaw80PM51yBiWVTIgNd9HiYSMXUUEtefLpKp2mH1M4eRGLlIdN86FZs5eG6PUcJqtT5kChD4o9TElpY/nTxwyf8PnHT7TY0sLqSTAbyo3XXdVyuGDTk0J2zDAUJjFXx2MvhBn64JaSZ2/JE/G7DveePDQxrB4m+TMdtsKkaRp+//xNAIB/uWt319LyFlrmVXlTSbyozHSwkmv7fK3xmJSn67q45vBjxT0WTM0DjQ2BC6bw5ra5Ecbg2rBwCiCaDmForRfSCS8Kk4eCqTmLaedkoeW5fWC2hJliFamEhpPWDgEIZnM3FaZg9yIA5Dz28llBDpAhn5/RFU2FqVxrtHwuou5tG+ii2ksUHfp1/fASYcvr3z4mLphihqZpuO6Vp+OtFx0vZtyEgUiYsTihoA9GJpnw1PdhRTaVFBt3ehB7CX04Vqgob8oOzRo+4rUjnQVTryx5Vj1MpLr5Cn3wMISVNla3PHYEgDl/iRgSoQ/BHrrtCVymgua8sSpaRIoD5ns/u1hVmp3jhLDkeTypFrHibpY8h0XEc6x4Kpzivtj8ngktmhP6V5+9Efl0Ek8eXsA9u4+F/v2tCGIxzHooRO3S2daJ4bWLSj+zUKkLlb7XoQ/7joWjMHVzeC2FtcShh2nCwe0Q1XBSO8zBtSo9TOoHCxODGVFQPyqpTGTRO2nNsDh0CrKm7qWCKUAQBxGGe8TKAeKFgUxKfB7l4AcKCxrNpyPpbSOXkNWBd1SEFfpAUB/TXc9MYTYEN0kv4IIphrz2uRtx7ctPDWVoLeF0ShlGpKuMKBCaBZNYZBxCH2jTXGvoyieah+aMjUGLJa/noQ+dHmkRiuDDkldW7GECTDsWDa288ITWKfJhnBgvlGtCKSNlbzirVhAK1aCth2k0nxZzJtxS6tzwa8lTtYQu0sbOypKnsLGVhyaGNYdJVu7CfGYQo/k0Xvns9QAMlakbBJkr5WVjRZ+vdkueqTB1NndbQZ/7VEILvWilpmtVOw4daARWmEKa2+ZGrd4QSnqQlLywcDo8IZse2YijJqkwuNaPJQ8ATl/f2cf0iJi/ZFq55d5MLwqzruvYe8wMfQhKPgSFKYw0UavgB7ovoprNRWtmsQuHF4RwU4Rk8966chAnrRlCraHjlsf7U2XigmmZ4OSDD/skwUxNM4aZqvi+8xlTmXKzRRHUPChb8sTpco97mFoseQEUJi92C/n9WzGYwUmrWxXKMEIfDjY3YyO5lDhJtwr6sMJuE5xKJkTkbNBZTF4KTBnRw+TyHok0SSeFyaEnScwWyoRnyYsiUrydP3jeZgDAfz90CFMWCVFhQ/0AvgomL5Y86p1p26iTan1YsYdJ/tyHXbR6VZhEwRTQBtUtS578eYmDwuQY+iCGk3bJkhfBHCaCbHktBdP+2Za/A1pVa6vQKDumChUUK3VoWvB7EQgn9IEsecMBnpUrLIIfaN2IKgxksAehD6KHKUSbbL+n5XHBtExwWnSd+jL8YKamVTFfqgmritsiYzb/q22aDzdPf9fIPUwBp5IHRVYQiGGhMEWXkge0FkzP27aiwxpAD90gBdN+i4GYpqKoVjANWZxYmUl5ARUmvz1MeY+Da63mMGXcBzwulEwPfS6k4t4ufTBMnrVxFGduHEWl3sA3790X2c8hgljyvDSHm+9n6+eLDmEOKlryogp8AFpHBrih67rlZ9QPKpa867/7CF7/+TvFc8oP8gbYqzIcBWY/rVXBFF0SmhUpCn1wVJi89zABwLOoYJIteSLwoVNhAlrn3LlB/UtrR3Ken8dWqKSQuiFSSgP0GVkpTDMR97YN9CD0IeyDdMAsmG578mhXh/CGRe+fTkxXGEjbn1A4bQL9IG+gaYEZzCRdN/1jHuKlGw1dRP62hj7Ew5LX0sNkMZtKFdXQB6A1IW27NH+JCOPEmFLD5M3YsKLlUCS5WWzsaQMSNPiBXi/PlrxBM1bcyXYiYsWtLHkp9wKoZQ5TSJa8qCLF2/mD8w2V6Wt370HDYQMXBnLog1foGaDSGyZixds2dHQIM1eqKS3sNDIgioZvLyl5s4tV8XXrAoYGuT0vZooVfOXOXbh75zSePDzv++fQ65tLJyKxlHrF7Ke1sOR1OfQhJWLF7T9vlKCn0ucqQ9HiTx9dQLFSw9H5Mg7PlaFpwKnrzIIpnUwg1Tx881KshNm/BIQ0hykqS14xWoWJ1vZCDxSmMFXf09ePYMNYHqVqAz9/6mho37dbcMG0TMg7nFBEZ8mrelpgVGfhAMBkoYxaQ0dCA1YNmfHr8Ql96LTklWsN0WOjip/QB6B1/hIRxlwVsvvImzHlOUwOG3uv6qIdZbEB9mjJy6v10DkNeBYpeQ6LmhxrqxISoYJZXERbML3i2eswnEthz3QRv2gORo6KIEWgqtVR13XbWPHhrNncrZKUF9XQWsB8Xyu1hmMvC2AqwCuHMoFnGomCyeZzfdcz06CzhakABx1OUf29wMmSZw5h71LBlKDQB/v1rOLTkrd6OIfVw1noOvDYwTkxsPb4lYMdBYUf+/DeEGcwAeHEii8EnMMEmLOYWkIfqGCKIFIc8G7LDQNzcHh4zzRN0/CS09cA6E9bnu+CaceOHbj55puxuGg8oLsVN8v4g+w6Vg+bojjhC1dhmpcUJqfAB2Lcw6aZ+pdWDmVbkv3iEisuP5CHsykRauBWVLRDDb1KClPzZ64bzWGLxdyLQZGSF7IlT3EO04JDI39Yw2vNwbXe7mWVHjq3Ac8qxTq9RoMtseJBFaboe5gAY+P+mrM3Aog+/CFQ6IPi6yr3Y7QHNWiaJsY6qNjyrNIxw0K+19wsOWFFigNmn0fB5mfe+bRZNE8X/Pe1lRyCVHoBPYuKlXrHAVfXLXlJ99CHmk9LHmD2Kj20b1YKfBjt+DpzZpyXgqk5gykkhYlss04HUm5YWea94mTJi+q+GAhh7fZK2K0aBNnybnnsiONBQBzx/AmbmprCi1/8Ypx00kl4+ctfjoMHDwIArrzySlxzzTWhXyATDpS09Kud0/jPe/e1/HPnM1MAwlOYZIsW2RpU0mPoYWM1MLAdq8AHwN+DPUysLHmJhCYKKK+2PC8KEw23275tpaW1ZUjaAPk94DhosSEbVrQcFh029kJhCqtg8pFUNuaicFbq5oDnnEPBZHcCquvmgNmWlLyA9yotbEMR9jARf/A8YybTLY8dFmpjFAQJfcgq2nLlv7c6LBLBDwoKk5WyHBbZVEIcuLidMO9vppIF7V8CZEue9c+84+kp8f/l03av0OclrAO7oAznUqD2T/lZUG/omF3sbuiDqTC5p+R5teQBEIPNHz5gKkxnbBjp+DrxbPNQrJAyu24snHmSYfR80ue0fRagF1Y4KUwRKY90vUHUNa/Qeh1mDxMAnLtlAhODGcwuVvGrndOhfu+o8fwJe9e73oVUKoU9e/ZgYMA8OXj961+PH/3oR6FeHBMetJB//8GDuOabD7T88x/NJu6wTkflnh3zRE6lYLIfGNgObWLkSHHA7COp1nVX+0rYyMMr2zdOfofXekl9u/SMtdi2ahBvbA4abYc2QA3d/4P3gMWwYOWUPAonsHgAk7o4HTglz58lD3C24gBAqSKleVn1MLls1EtV01IlD64Nqoaace3RKkwAcMLqYZy/dQINHfj3X++N7OcIhcnHYq1q3SFlI5XQLE/nSWGieW9O0EHJSAQKk6Zp5hwWlw3rAYseQ7+QIr1goRwfmS/hqSML4t+DKMNxK5gSCc3yWTC7WBUWxKh6VdpJKaTk+bXkAa1JeQ/vNxSmMywVJu9quHmQE85zyU/R1o6w+oasMInWg3w09wXZvbulMOm6LkJmwrZ6JxMaXnzqagD9Z8vz/Er8+Mc/xs0334yNGze2/PmJJ56I3bu7M6OD8c7vn78Jh+dKtgtuNpXAm7ZvCeVnyXOYvAz6G3PZsMoctFWYzEW3VK1HblOSKbYMr2wrmPJp7J9Z9KEwGe+Xit3ikpNX45KTV9v+/UAmCU0DdN3YZHt9EDYaumXow2jb3C07nCx55rDI3qTkAe7R4sWqcf3ppPUG222jTr+/phnvBRV1/RL6QPzB8zbj7p3T+Pdf7cGfvfAEX1YgN5zuFTdUN3cll436Wg/Da6NUmABjFkqhUnctmPaHNIMJMOerWfU83impS0CwgqkUcuhQGIwNpDFVqLT8XrQuDedSkdzzVpDC5GzJ8zeHCTALpqeOLIifcdp6K4XJuxoedmhAOD1Mzc9pCKEPR6WCiZTHqOYwdTtWvFI3D/ei+FxeevpaPLB3FltWDIb+vaPE811TKBRalCVicnIS2WzW4r9g4sCJa4bx2T94bld+1oikOHgJfZgYVA99ILl/TVvBJCsL3S6Y6GGcTGgdCoTf4bVktwgjblfTNAxmUlgo14xN0LD7fyMzVaigUmtA08zTd8DcJJaqDVTrDduF22ljPxZSSp7Zw+TDkucSLb7o0utnKkbWG/UFKVZd07TQ5jDJs526waWnr8XKoQyOzJdxy2OH8dIz1oX+MwKFPigOrnVTNoTCpGTJi05hAqSm76rzCfP+Y+FEigPOPY9UMI3m05hdrIYS+hD2wN8gGBvfQstaFPVwUisoVrwaQaw4YBw4TgxmxHN343jecq0WM5A8bNhFmFRIyqFpeQ6QklfyfxBDUOjDfKmGcq2ObCop7XOiVZi6VTDJKl7YljwAeOEpq/GiU9eE/n2jxvMn7KKLLsI///M/i3/XNA2NRgM33ngjLrnkklAvjulPTPuZP4VJZdNMPUxr2yx5iYQm7GtOA0SjgDZNQ9nO4ZVmn483Sd1LrLgKQYIfqGdl9XC2ZXGWN7VOtryCgyc6tJQ8suT52HyNuxTsiy5pXq4KU9tiHXYPU5RzmGQyqQT+1znHAQD+5a49kfyMMAbXulkd3TbqQmGaU7HkRaswDShumA6EqDDR53rBoueR+pde2mzgDmTJqzh/rnqBVQDRMQ9rWVh4GVyb9mHJ0zStZebS6RbqEuCvf0gMPg3pICcfgoV5IQRL3mg+LZS/qYUKdF2PPFacnu3dmsNE752dmyIocRgf4AfPr8SNN96Iz3/+83jZy16GSqWCv/7rv8YZZ5yBn//85/jwhz8cxTUyfcZIngIOamIhHVdohhwfcD7hl6FT37UWs0bECXOXk/LmHDZN4jXxoDDVG2Yflp+GXiuCzGKitLD20+tUMiF6TZwshwUHT7voYepRSh4AjOadiza3+H23sIH2xTqsIctBEuX88nvnbYKmAb/cMYmdk4XQv7/5O/mZw+Sth8lVYepxSh6gdsJcrtVxZN4o7jaMh1AwNe9TXW/9uXuni9gzXUQqoeGlZwQvmNyskb3AasSFmfjaPYUpqTS41r8lDzAH2ALW/UuA+Tz108MUmiWPBoP7XNdbeowDPCs1TWsJfihVGyKcaalY8ooxPMSIA54/YaeddhoefPBBnHfeefjt3/5tFAoF/O7v/i7uu+8+bNu2LYprZPoMcy6PtzlME4qhD7qu2ypMgL+ZEWGw4LBp8jO8tiIpZOmQFCZzFpP3gml/MyFv/WjnZkxlFpPTxp7e+/lSzTFq9Dv378cL/+FneOKQ9aBMssP5UeRokzTrojDZbexUe5jo98+GZsnrfsF03MQAXnDSKgDA1+4Ov3e1G7HiqgrT0fmy4wk/EO0cJkBtDsvhZjhFLp0IRQXJp5MiLU5+XlCq6rOPG8NxE8azYGrBf6z4okvh2gusxhzMeAgwCguV0IeqCH3wt0acIRdMG6wLpryPOUBOIxj8EDT0YbFq9hgHUZiA1uAH2uOkk1ok9jWg9cAk6qHhgHw42L01pR/w9WqsXbsWN9xwQ9jXwiwR5ES4bKo56E9hkRlrWqIWq3WUqnXbBXS+XBMnIJYKU4+G14pTZotNnjybSpWKtEiGpjBlAihMYgZT52s+kk/h0Jz9LKZKrSFOQq16bUbyaSQ0I8HvWLGC1cPWUbRf/OVOPDNZwL//eg+uu/z0zp9T99/D5JaSt+jSxOx23xXaTjdpo14OaB2lz0I3YsVl/uB5m3HrE0fxzXv34d0vPcX3hs2KIH1ZbmmFhNvA1BVDWaQSGmoNHUcXylhncVBARB76kHY/Yd43Y0aKh2F5oZ7H+XIN8+UaKE6G+pe2b1uBFYPGxnGuVEOl1vB1UOFmde0FVgFE04VobVdWCEueQg9TxoclD2hVlWwteYp9gfI10fM+7ILJ7wETrXkJLfi9Jgc/rCkaa9XYQCYyq5n8HFzsQm82qYNRFYD9iudX/ec//7nj31900UW+L4ZZGpD9rN7QcWTeUCVUFpnhbEpsUI4VK7YblMNNdWkkl7I8AREb0S4rTPMOp8x+Qh9aFCafi2E7g0Jh8v7aHLCx5AFSj5bN7yefUFvZrJIJDWMDRvPxsULVsmCaL1Xx8H5jVojd/AZ6z31Z8mgOmIvCZLeI5F0W9Pk2m1l4oQ+0uHX3NPAFJ69GQjNsS9OFClZbqL1+CRT6oPi60ubP7mAmmdCwejiLA7MlHJotuRRMnfPXwsTsYbI/6KDAhzD6l4ihnFEw0fuh6zpu32EMrL1g2wqM5tNIJjTUm8/s9jEPKpRjGPpgFUDUC4VJWPIU5jD5teQdN5HH21+wDelkwvYz7PUQUi7sw07J83sQKveQBi1sZEveTMSR4oDx2aCE22KlCwVTDJMr44DnV/0FL3hBx5/JN1+93puBoUx8yKeTYhGlgzEV37emaRgbSGNywdg0221QzEhx678PY8CdH5waSkXUuhdLnhT4ENbJ1VCA0Aey5Fm97uawYuvvS69NNpWwVSLGB9KYbovylbln9zFxPz16cA6zi1URaU4EScmjjdCszXvk1pzutlE3i4B0y9fbpeqp0u1YcSKZ0DCST2OmWMVcqRpawVRv6KI4DdLD5LaxWqy497utGc3hwGzJcXit3BsxEpnC5G5H2jNtKEybJjpTbP3S3vP49NECjsyXkUklcPam8ebMIuOZPbXgr2DqF4WpFz1M6QQpTNFZ8jRNw1+/9BTHr6GNs+rhDt2nyYQWmjuC7o9KvYFaveH59w2jf4lY1WLJizZSHDBnsRmjBWoAOhOpdV3Hl+/YhU0TA4ET6Nz6dZcrnu/kY8eOtfxz5MgR/OhHP8K5556LH//4x1FcI9NnaJrWsnFIJzXlAZQqwQ92keJEWM30XnEMffAxuJYUprAWHCBg6INDAteISw+TU+AD4fbey6qSrgP37u5UmYKk5I0JhcnGkqfYw1Rr6JZ9WAtt9wfZXOSZF34gtbCbPUwEve92RaYfZBXFz+/kpvQRKvN/aM4bHdJYUWiZvxZx6IPD70ThG2HONhHPi+a9e+fThrp0zuZx8TmYCBjYIuL6Y7Q5E/bcQm9T8qgocLLkUTHl15KngtcgJWHpSidDO+xrmbHow8YcZq+nqTCVMbMYbaQ4MeDiDnlg3yxu+N6jeMtX7sFHf/xEoF4nc4YW9zDJeH41Rkc7mwJ/+7d/G9lsFu9617tw7733hnJhTH8zkk9LUZvq3l7RbOtQMB0WgQ/Wc7/c0sqiwjn0gZID1TeW1ZAjxQH/oQ9yAtc6ix6mYZffT0SKOygGIinP5r2/+5nW2S93PzONF57SepIWJCWPFrzZxSoaDR2JROs965YcJBdppWq9wyKzYGPJM6677stSp+u6KEa7FSsuI4YWe4zLd4LulWRC86UUKvcwkSXP4WesEdHi9gUT2fFSCS0yW5lK6MPuKUNh2rIyvIKJTuPpHrtD6l8iqGCaKvgLfqDNb87HZzYqxi3sub2Zw0ShD/ab30otmCVPBa8BNWEPrQU6Zyx6VdRpfQ4a+ADIoQ8VYduMvGBymcV2/55j4v9/8n92YOdkAf/wumf7ClNZlApexiS0T9iqVavwxBNPhPXtmD5HVlm8nMiNufSRAMBBESnuYsnreuiDOYepHWHJ89HDFIXCVPA4z4ESuDKpBFZYWFLcUvJE6plDUTBhcapLFCs1PLjP6F/63xduBQDcZdHHRPa2IINrdd36fSq59DBlU4bPHLBOyluwseQZ39vfvbpYrYNG5HRrcK0M9SuGqTCJwjLj73TatOS6peS5p7NRUt5hB4VJDnyIqunbrWDSdR27hMIUpiXP+LkLZSOdixLyLti2UnwNBT8EVZji1C9BhzdzpapQf6OetWMFpeQ5JYcGteSpYCaAqj2nwk7IA4wZi3Qg4ScpbyFE67Kcktet3jY6ULNTmB5s9vc+d/M4UgkN33/wIH7v/7sLkz4SLItsybPE853z4IMPtvy7rus4ePAgPvShD+HZz352aBfG9DfyxHsvDxJhy3JYfA87RIoDvYsVp42TVR/DiI/BtaSWhKkwmZY8b68NBT5ssEngcpszpdJnY85i6vwev9k9g1pDx7rRHF57zkZ87KdP4uH9syiUay0WC2HJ8/GaZVLGPKlCpY6ZYrUjCt/NOqRpGnKpJBardcu+JHHC2dyEJhMa0kkN1boeOPlJ03qzuI36OAhwo6hg33SClIp60xppd/KuYslbq2DJizrwATCtMXaWvKlCBfPlGjTNiHwPC9mS99ihOcwUqxjMJHHmRtNpEtSS55ZW2AuogV/XjcOA8YG02BhPdHUOk/GsdbLskiUvrGAgK7yuqVFZuvLpJErVhq/nZZgFE1nyJhcqopAejbiQHpSixa14qHmgeNUl25BLJ/G2f/kN7tszg9/59O340pvOxUlrhpV/VhQK4VLA867iOc95Ds466yw85znPEf//5S9/OSqVCr74xS9GcY1MH+K7YHKxZQFy6INdD5O3CNSwEE2lVpa8ZkGxWK07nhbKkMIU5kLoN/ThQLN/ye41l2dvWVGgEyuHxYqSqax6iO7eaZxsn791AhvG8tg4nke9oePe3cdavk5Y8nxuvqyavYmiwsZOzCuxWNBFH5dUUJv9dv7u1aIUv92L6emih8lldpoXgvYatFsj7RBzmByKa6EwOVjynHoXw8JUmKw/t7unDHVp/Wg+1HlGw5KFl+LEz9s60VKEmpa8YAVTnFLyUsmEeD+nm8Uo9RF105KXVuhhqtbCHW5uharNlViMKJY6iHskzIKJQh+mC2VxUBD1fZF3SMoslGvYcXQBgDFLa/u2lfjW27dj84oB7Du2iNd85g78/Mmjyj8rCoVwKeD5E7Zz504888wz2LlzJ3bu3Indu3ejWCzijjvuwCmnOCetMMsHKhAAYHxQ/eTFasJ6O7R5sUtkiqMlT/4z1VlMZg9TeA8tv6EPVKRaRYoDpqrmZslzmhVkNSySuLtpvzv/eKN34rytEwA648WDpOQBpt3G6v4rKdgUnJqj6bWRrXPZgPeqGSnem4UtCoXJ7HfzWTC5WCMJeo+cimtKhDw4W7I95Y96BhMgx4pb/z47J6l/KTx1CWh9Xpj9SytbvoZO26cXfFryXMJUeoUcQjPTVL1z6URXr5N6mJwO2SpdtOR5VZjCfi65DQd3IsweJjrYbegQVtiow0Bo3ShYPAMeOTAHXTcOeGgkx7ZVQ/ivt1+I87ZMYL5cw5u//Gt84569Sj+LijIOfWjF8yds8+bNLf8cd9xxyOXCm7/BLA1klaXd2uSE2/DQcq0uTjKthtYCvZzDZL9xSiUTomhSDX6oRGjJ86ow7aehtTav+YjLHKYFlR6mQev3vlSt4/69MwAMhQkAnrfVKJxIeSLoPff7molN0mLn/acSf5xz6DURRaOsMKWDqaG9ihQnRiIJfXAvrp0gayTgHNm+qNDDtH4sh+FsCuVaA48emLP8mq5Y8tLOBRMpTGEm5AHm88IIWaH+pRUtXxM4JS+GljzA3BQfK1bFM0llAHuYpJpzmOJjyfM2hyns9zQXpGAK8VmZTiZEgbS7Gec/mo+6h8leZX6o2b/0rI2toWwTgxl89crz8Ltnb0C9oeO67zyCmoLDhXuYrFG6c/7pn/5J+Ru+853v9H0xzNKh1ZLnQWGSFikrjsyZ4QN237dnPUwOc5gAQ4VZKNeUT+Pp5DAb4smh35Q8suTZKUzDLgpTseJus7Kzw92/dwaVWgOrhrPY2kwAI4Xpgb2zKFXr5kyjgAqTGF5r0UdFi4jTBltY7CwCB8w5IOZ9G/ReLSi8rlFCymI0oQ/+f6dcOoHFal3Jkue0qUslEzj/+An89LEjuOPpyY4NCWAWi9EqTE1Lr63CFE3BRL/TXc9MoVCpY2wgjdPWjbR8TdCUvLJC4doLRFJeoSKKES+Hf2Fghj64W/KiTcnzasmLZsMdl9AHAFgxlMWxohkK4sVJ44cBYafv/N0f2jcDADhzQ+fzKZtK4iOvORPf+s1+LFbrmF2sYsWQdcIwwXOYrFG6cz72sY8pfTNN07hgYgC0WvK8KUzmImUFxfuuHcnZ9mz02pI3YnPSPJJP48BsSfk0nmwY6VR4J4e0CfUa+nBwxsWSl3dLyXMfRCoUprZi5e5nDNvdeVsnxHu+ecUA1oxkcXiujPv2zOCCbSug67pZZPq0MQpLqEUBYPq67R+beQeFyZw0b16bqYb6u1dVXtco8ZP+6EbQ0AeAngFVx2eAau/MBdtW4qePHcHtT0/hrRdv6/h7t899GJhzmKw/X7tIYQoxUhwwnxdkyb3g+BUdcfuBU/IUwjd6gex2oGdw1JvidqhQUxlcG2XB5NUKF1noQ4YOxnpryQOAlUMZ7Dhi/vtYxAoTfRat3oMHbRQmgnry5ks1zCgUTFEphP2O0p2zc+fOqK+DWWLI9hQvNganpnvAXLjt7HiAqS50M/ShWm+IzZndSbOYVaS4uSxHECseXGGyC30w7Ya6rncUsyqN/HSfLJRrKNfqough293zmqoSYBzOnLd1Bb73wAHcvXMKF2xbgWpdFxHbfgbXAs7Dc81UNfvvLQqgtntP13UsRBD6oBLXHiVUMIWrMLnP7HLDjBZXCH1w2RRceIJhQfv1zmlUao0Ou2c3e5isCnFd17G72cO0NaIeJmJ7mx0PMA86ZhaN0/ZkwtsBz2JMN2dmwVQVxUi3FaYkWfKcFKY4WvKq0fRWisItBgrTyraiI+q4eSoW29fu+VIVzxw1DkyeZaEwEWMDaaNgUgjoMRUm7mGSiU8sDbOkkKO1/YQ+zJdqlo2ubpHiQG8seQuSsmJXFJjR4r3sYTJPCp188TJzpaqwG66zmX1FBXKtoVsuqiq9NsO5lNhs0UO9UmvgN82BfBT4QJzfFvwgFym+LXl5+9AHFUue3YJerJjzkuTXIBuwhynM6fV+iCb0IfjvlFPYWNF96rZRP2n1MFYMZrBYreOBpvVFxuxh6k3ogxwpvnE83IKp/Xe6oC3wATCe2ZpmRHDbHXTZoeu6uPf9HnJEhRlAVDEjxbvew9S05DkpTF2w5AnLc88tef57mMLu95QLpnw6GbmllA7F2p8BD+83eis3jOUdlSNSwGYt+nPbiarg7Xd83Tn79u3Dd7/7XezZsweVSuuL/4//+I+hXBjT39DJM+DtVG40by6+M8UqVg23PgCEJc9BYeqFJY9OmfPppO3C5dW+ZBZM4afkAUb/i4qNiOx4YwNp203sYCaJhGakBs2Vqh32moLCiVUioWF8II3JhQqmCxWsGcnhof0zKFUbmBjM4MTVQy1fTwXTb/YcQ6XWEIoc4F+VcwodUTl1y9oU67RYJ7TWDbqpMPm7V2nx7F0PU/ix4mJjE7CHCVCLFXfbqCcSGi7YtgLff/Agbt8xiXO3TLT8vTl/LXpLnjGouFXBjSpSHGi9r1YPZ7FtVaflL5VMYCyfxrFiFdOFSsfJuxPlWkMcJMRNYRqTwiyolyjqJLR26OeqhT7E0ZIXn1jx+dALJnNf041hxqS4t8eKP0x2PAd1CXBOgG2H5zBZ4/nOueWWW/DKV74SW7duxRNPPIEzzjgDu3btgq7rOPvss6O4RqYPkU8mvcwnSCUTGMmlMbtYxR984W4M5VLIphLNf5J4+IDxcHBWmLw1qIbBfNn9lNktersd05sentUim0ogldBQa+golNUKJnMGk7W6BBgWueHm+zZfqnZEvqsmn40PZIxhgM1+iLuof2nLRIfN74TVQ1gxmMFUoYIH981gXbO/yoiV9veaOcaKq8xhEhuL1gV9XlJN5GsLHPogLHm9jRWfL9fQaOgd/S1+mA9DYXII3yBI2VApMrZvW4nvP3gQdzw9hb94cevfmZa86DZNVKTrurFZlDcyUUWKA62f1+3bVth+riYGMzhWrGJyoexpQKZ838c19GGmWEU61RtLHqXkGXbjTqszEM28vnZoTa01dNTqDdcIc3G4FPJ7GpdYcQAtak437gs7ldmtf4kYE3ZzL5a8eH0me43nI4lrr70W11xzDR5++GHkcjn853/+J/bu3YuLL74Yr3vd66K4RqYPoY1UQjP/vyqnrDUW3CcOz+Pe3cdwx9NTuPWJo/jRI4ew75ixed9qcdJJqGyWwmZe4WFsRjB7U5j82sus0DTNc7T4gVnjNd9g079EUNDHnEVBqGqzah9cbM5fmuj4WqOPaUJ8HdlFgrxeYw6x4iqNsHbFekEk5LX+/mb6VLA5TD1TmPLmRn7eY1+cFbqu477mMOKtAQIMVA5NFivNdDYFBZf6mO7bc6zjhHeuC5Y8+Z5r//m7IkrIA4AhKdGxff6SjN/gB7rvUwktUoXEDxOS2kyWvF6FPgD2KhMl6HXDkgeoratFMbg2mtAHPwdMUVryxjzucfxAr2X7ui0S8twKJrKbK+w/OFbcGs93zmOPPYZ/+7d/M/7jVAqLi4sYGhrC+973PrzqVa/C2972ttAvkuk/Nozl8XvnHYfVwznPTcA3vflc3L93BuVaA+VqA+Va3fj/tQbK1TrGBzK4+MRVtv+9V791GKicMpuzitQ2lpT4FvYE96FsCrOLVeWkPBWFCaC47EXLgrCguICKTUqhglq9gXt3mQl5Vpy3dQL//fAh3L1zGi88ZTUA50GkbohT5bakPl3XldK87AY8mgl5rb9/WApTr+YwZVNJ5NIJlKoNzC1WPR+OtPPk4QUcmC0hm0rgeW09a15QeQaUPaSzbZoYwIaxPPbPLOKeXcdw0Unm86cboQ/JhIZsKoFyrYFipQ75laGEvCAFph3y79Q+f0nG7yymuM5gAuQAIjP0wYtbIgzktbPW0GFV23fDkicfQi1W6q7PGzGMOGxLXspfrHi9oQtbeBSWvG4U0lYK02yxil1ThsKsbslz/4wuRpRy2O94fjUGBwdRLhvzFtavX4+nn34ap59+OgBgcnIy3Ktj+hZN0/DB3z3T1387kEk5nma60QtL3gJZ8hwexkKB6WHoA2AGPygrTC6R4oTTLCaKv3ZbrGjhOVas4pEDcyhU6hjJpXDK2hHLrz+/OcD23l3T4lQzDIVpvmyEjtAmRO6Pctpg2xVAdjO6xIBVn2poocc9TIBxEFCqljG7WMVxAb/X/zxu5PResG1FIP+8inXHtOS53y+aZvQx/ce9+3D705NtBVP0g2sBY8NUrjU6ficqmDZHoDANZlP4q0tPBgAcN2Fv+Ztobh6nFjwWTJVoNtZhQM+imWJFhC90u2CSi6CahcKk67qkMEVnydM0TRyMqKyrUVnycj4VpoKkyoYXK95tS15n6AO1KBw3kXe9BqdAI5lavSEOa8N+//odz3fO8573PNx+++047bTTcNlll+Gaa67BQw89hG9961t43vOeF8U1Mownehn64HTKPCwUJm+Da8M+OaTN9YJyweQcKU44zWIyrWPuPUyAcVJNceLnbZ2wVSlPXjuMkVwKc6UafrN7BkCwgklWSGYXq2JRlE80cw7f3y7FyU4JClrcFxRf1ygZzadxZL4cSlLerc2CidRCv2RdngG1ekNsNFUseYBhy/uPe/fhzqenxJ/pui7u7ZEIFSbA2DAdK1ZbNkxRRooTV11yguvXrPCpMHkpWrsNPYtqDR2H50stf9YtUrLCZJEaKw+0desrCkounUSp6fhwIypLl98eJgqlSSc13zP62lkhhz50wZI3mO1UmB5q9i+duWHM9b837ebOz+mi9Npy6EMrnp/w//iP/4iFhQUAwPXXX4+FhQV8/etfxwknnKA84JZhoiQXMKrZDyoFkxkrrmjJi0hh8jqLiXqYVBWm9o1ztd4Qv4ubwiSG1xYr2DttbARJRbIimTD6mH762BH8/KmjAIKlCiYTmijAZopmwUSLSCaZcNyY2BXrdjNAhHXM573a6zlMgPfePDtmi1Xc24yQv+TkYAWTWyFaUlQMZUj1fmj/LGaLVYwOpFGo1EEH/1ErTGJ4rXRaHmWkuBf8WvJKMZ3BBBifzXw62UwmNP6s2z1M7Za8duSBtmFbt9sxDhaqovfPiahS1uwsz25QYbFt1ZDLV6ozkElhIJNEsVLvSiE9kCaFyfz8P7RPLfABMIu6WRdLHh0OJrRw+6eXAp5fjf/7f/8vjh49Cl3XMTAwgM985jN48MEH8a1vfQubN2+O4hoZxhPZgMNA/SBCH7IOPUx564LCjsgseTbNo1Y0GjoOzapZ8qggnG/7/YpSr5RbDxMtPJMLZfxql33gg8x5bfOYgj7kKXhC9novKm4A7E5A7QumYKEPcbDkiVlMigcBdtz21FHUGzpOXD3kaP9SwU1llp8NqvfLmpEctq0ahK4DdzXVT7rXUwktcpXEangtBT5EESnuBSqYpgplT/9dnHuYgNYY8VRC63qvoKZpQmWqWQyvpRlMgBlBHhUicEHhcIfe17BDH+hwhgbYq3LXM83h5wH6Iq2gA7XRrsaK19FoFs8P7p8BAJzp0r8ESD1MbgqTND7Db9rsUsXzE35qagqXXXYZNm7ciGuuuQb3339/BJfFMP6RN0u6bj+/IkxUhld6HlwbUeiDaclzX/gmF8qo1nUkNGDNsPN8FbvY9IXmiVgmmXAt/mjj9ZvdM5gv1TCUTeG0ddb9SwQpUOWQUgXpJO6Y5PVWiRQH7JWNqEMfemnJo/d9NqDCFJYdD3C37lDR4TWCnlSmO3YY/bqyshz15oJ+J9mSQw3fUQQ+eCFoSl6QoJYokftCxgYyPdlAUiFkNci9Iv1ZKoRIfyfouaryrDJT8sJ9X5+7eRwA8OjBOaXwAuLu5niK823Cg/yyqXmws9HlMDEMZBdBqVbHsUIFe6cN98fpXgomlx4meu/YjteJ553Fd7/7XRw6dAjXXXcd7r33Xjz3uc/Faaedhg984APYtWtXBJfIMN6QT3r9NtN7hRQEx4KpuREvVOqWfvR2aIEM35KnHvpwoHmSt3o45+qRH7YpCL1s6kndoY3uczePu/7c09ePtMwhCrr5MudVmAuyqsXEzjJSsLk/cgHV0F7HigOSwhSgh6ne0HHbk4al8pIQCiZ6Btil5JU9zGCSoXjxO55uVZiituMBzgrT5hW9s+MBSzMlD2i14HV7aC1Bs5isYsXJkpdJ+p89p4roz3RJqGs0dFEIh73pXjOSwwmrhwyV95kp9/8Axj35xOF5APZpq375+1efgY+9/tmhK1dW5NIJ0FtcKNeFzXDLigGldFJa1+ZKVcdByDyDyR5fO7GxsTH8yZ/8CX72s59h9+7dePOb34yvfvWrOOEE9+ZQhokaeRNUDhj8UG/o+PLtO/FIM43GDrXQB/PvVAIXhCWvh6EPR+cNi82aEWd1CbBPyaNiQcWeMdHmBXez4wFGs/Nzt5hfF9iSZ3ESp7qxs7OC2Q1jDTKHSdf1nseKA+ZBQBCF6YF9M5guVDCcS4lT5CCI98HGPiQ2dB436s87fgU0DXjqyAKOzJXEiIAoI8UJMyXL/HxFGSnuBWqAP1asCruQCqrKba+Qe1PoMKfbkMIk9ysRZMmL2o4HSIdBLoeQsqobxab7wma8/e071AomsmqfuHqoZdhsGGxeMYhXn7UxlIHdbmiaJlLrFitmwfSsjWNK/z0VVbreaZuXUZk3uFwJtLOoVqu45557cPfdd2PXrl1Ys2ZNWNfFML5JJxOiWTZo8MPdz0zh+u89imu/9ZDj16mcNKeTCbGAqPR7lCOLFVfvYZpaMAomlYVmxEZpUI0UB4CxtqZqp8CH1q8Lr2CyGl6r2sNkl5InpszbWfJ83KflWkMEDsRCYQpQMJEd76ITV4WSCmkqd849TF77jsYGMjh9vWERvfOZqa7MYCJE6ENVtuRFFynuBSos6g3dU+Hs933oFi0FU88UJiqYLHqYujCDiVBN9Cy2JIqGv+m+oGmLvf1ptTE2UfUv9QKai1So1ETgg0r/EmDcI7T+ONnyeGitPb4+Zbfeeiv++I//GGvWrMEVV1yB4eFhfO9738PevXvDvj6G8UXOg9/aCYqTffzQvKOMPW+zIW5nxEO0OClMYS+GIiWvolAwNS02KxROV+0UJtVIccCYY0UbhHw66Tq9nGgtmIJa8jp7mBarNXFNTthtKui17rDkBYjAlxXCXs7LoHs6iMJE85fCsOMBsnJn08NU9WfJA8w+ptt3TPbUkqfrOnZFHCmuSiaVEL1sUx5seaoHEb1CLpK6HSlOkCXPMvQhotETVqj2Wy5KCkUUyssFx69AQgOeOVoQgURO3L1TLTyoHzCjxWuSwqS2RgLm4dYxh/4vWuvCDuxYCnj+lG3cuBEvf/nLcfToUXz+85/H4cOHcdNNN+HFL34xEol4nhIxy4+wZjHR/IZKrYHdzdNcK1RPmkX0tsLmMqoeJq+hD4CiwiRS8qwteSoqiKZpwvry3M3jyhuBMzeOCWUpG/C02oxflQqmiponP28zWFGEPmTae5ice22cMK2O0WxMVDGVRX8peYfnSnjkwBw0DXjByavc/wMF3EIf6Lngr2Ay+5i6qjC1hT5MFSpYaEaKB00VDAN6RnjpYyr57CXrFu2hD73AKfSBLHlRDq0lVCO9i1XzuRQFowNpnNFUVW7f4awyzRarePzQHIDw+5d6ARUxe6cXsX9mEZoGoXiroJKUF1Uk/FLA887i7/7u73DgwAF8+9vfxute9zrkcs7DLBmmFwRNHyPkTeCThxdsv84MfXA+abazrVlRiUHow9SCsflZOaSuMLUXg9RzoToriPqYvCxwmVQCZ28yel/CihWXT+GUe5hsrGAiVtxWYfJTMPU+UhyQ4vJ9Kkxkxztz45iI6Q2Kaqy4HyvYuVsmkEpo2HdsEY8eMDZjI11QmMw5TMa1y5HiYQ3jDIIZ/KAeLU4HEXEtmCYkZX2iyzOYCFLcrRwO3bTkuQ2DJrqx4d6uaMv71a5p6Dpw/KpBrB7u/70qFaGkmh2/ctCTuk0F06yDJY9DH+zx/Cn7kz/5E4yPB2/KZZgocbPkqCLbjJ5qJu20o+u6UkoeYEYwq/QwkSUvG1Hog1LB1Nz8qGxk6cG9UKm1NH4veNzYn7NlHOmkhpeesVbp64mXnG70UB4fsAGeTpJbLHkVNUsebRLU5zCpNVJbURCFaG8XttGAoQ+3PtGMEw84rFZGDASOwJI3mE3hrE1jAEwrYXdCH1qL67hEihNUXEwueLDkxTz0YUyy5PVOYTKe/1XLOUxUMEWvMNHhgp1qS3Rjw01plXc+PeU4OoT6l1R7YeOOWTAZv9ezFPuXiLF8ZwJsO9zDZA+bFJkliTjpDxgrLm8CnzxirTAVK3Vx+udaMHlRmGgxjMySp64wrfCgMOm6UTTRqbuZ5Kb2AH7/75yBa19+qufktysu2IIXnLwaWwJGLFtNRBcbO7fQh+Z9V2/oqNYb4uTXLvhCtZHaijhEigPe+vLaKdfq+OVTxilxGPOXCLfXtRxwo37BtpX49a5jygclYZBvS8mLS6Q4scJHtHi5r0IfetXD5JCSVydLXvSvn7IlTyhM0X0mztk8gUwygYOzJeycLOD4VUOWX0eFxfOWQP8SYBYxzxw1PvuqCXnEqAdLHvcwdRLPpxTDBCTIRlRmTkFhok1TMqG5bsDMzaV7sUKLYdix4kMeFCY6LabBlE7k0klhH5RfN1JCBhQ39pqm+YrJTiQ0bF05GHgeybilwqTWw5TLmO8V3XuNhm5b3GSlOUxehyx76Q2LEjoEKFUbYr6RKr/eeQyFSh0rh7KevPhuuCl3QXqYADPamOhK6ENbD9POmESKE35mMcVdYYqFJS8Zl5Q8VUte83kf4XuazySFynv709bx4nOlqrDMLoWEPKDT1q4aikTQYaBTSt5iREOHlwJcMDFLkrB6mGSF6ZmjBcuBs5SUNZRNuW7WvfR7RB8r7j6AcFpY8tROV0cskvLiMCvIC3QKt1iti/tHNSXPGCAJ8d8DrWmEnSl5xnvb0K0tN04UPcS1R8lwNiV+ZxWrqYxIxzt5VajBFSL0wWbI5mJAZeM5m8Za/ttu9DC1p+TtjkmkOEHFhaeUvADWyG4QC0ueU0pec43oxhwm1UPIbvXAXHiC0cd0h03wwz27ptHQjcGua0b6v38JAAYkl0ZCA05b5+2QSfQwceiDL7hgYpYkZg9DeJa8Sr0h+gZkvCRleYsVNx5coYc+NE+pKvWGsP1ZMbNYFXN+VIc2it9PVpioh6lPHsAjuZSY40Xvv+omQNNMlZHuPfr9kwmtI5BC3ih6ncW0UI7HSWAioWG4WbR57WMS/Ush2vEAqYexZq3c0abPb1hCNpXEudKw5K7OYarUYxUpTpBt10voQynmBdNQNoW1IzkMZpJY26NNN/UnWR3WxduSF3XB1OxjembKcljyXc8048SXSP8S0GqTO2H1kGd3gZgx6NTD1Hx/ezmqIq5wwcQsSXLShikIVAyRLc7Klqc6gwkwrTsqJ/FRWfLkeUhOtjwaWjs2kFZekK1mMXm15PUaTdNEkAFZF7ychLcPr10o2yuQcgHlVQ2Nk3JHqpyXPqadkwXsnCwgndTw/BNXhno99B7oupk2KUO2oiCbOkrqAroV+mD8jMVqPXaR4gAw0bTtTnkKfWi+DzHdnGmahv+6ajt+8M7f6pn1NekwuJb6msJeI6zIKhZM9NyL+iDnzI1jGMwkMVOs4tGDcx1/fzcNrN22NPqXgNbX9AyPgQ+AZMlzONha5B4mW7hgYpYkuVS4ljzyCltFi1NxoGLLEZa8HsaKp5IJsVF3Cn4w+5fUrShUEM6XZYUpPht7VczhtcZrUJSGMbrRfhK74GCd0zRTdfKqhhYq8YgVB/wNr6U48XO3TITeA5STlCOrngsx/ydAHPd2qY+pm4Nri5Va7CLFAX+hD6U+sP+sG81jSw/7xOiwyir0odJVS57zbDNC9DBFvOFOJxM4/3iaidZqy1so1/Bws39pKSlMcg/TmX4KpqbC5BQrTu9fnD+TvYILJmZJojozwolavSEKiuduMaL0nzzSqTCRguDJkueysaw3dJG8F8XpoQh+qDgoTAX1obWE2aNlfl+vseJxYFxYF4z3qeTh1JTsYHRSt+CiQAr7qEc1VIQ+xGBhI0XOyyymqOx4gGFjopYoq2hx2qgHSWc7Y8Mo1o3mkEsnsGYknPlRTsiWvJ2T8Qp8AMwepmPFinKAiTm4lrcidgiFyaKHiVSn7lryej+HiaBDi9t3tAY/3LNrGvWGjuMm8lg/lo/8OrqF/Jp6TcgDOg8CreA5TPbwU4pZkoSRkifbys7ZbMj6jpY8lYKpubGcd0nJk3uLwlaYALVZTF6G1hLDWfr9rBSm/nkAm2lCxmsgLHkKi0i+LaHNbmgtYd6rHhWmmKTkAeoHAUShXMPdzR6DF4Q4f4mQe8msTsRpox5kU5dMaPj2VRfi5r+4qKsK02Kljt3NXsq4RIoDZsFUretKKaCAuTmLaw9THBChD1YpefXuWfI8hz504T0lW+yvdk63rJlLsX8JMO30yYTmOfABkEZmLFYt+74A07nAClMnXDAxSxLVCFQnyF40mEnitGbk8TNHCx1BCXOeQh/ULHly30UUp4fmLCb7xY96mFQixQlSmOSCsFsWjTBpH17rxZKXa0toc5uX5DfRMS5zmABJYVLcKP9yxyQq9QY2TQxg26poVBKnZ4CIFQ9oZ1szkutaSt1A2nifaw0dTzWV7jgpTLl0Uqidqra8uMeKxwGn0IdeWPLiEvoAAKesHcbEYAaL1Tru3zsj/tycv7S0CiZ6zp60ZtjX60sHtg0dmLc5LOUeJnu4YGKWJObgWv8KExVMo/k01o/mMJRNodbQsasZ50uYliuVHibjaxbKNdsTHqBVYYpiijupPU4K02RBfWgtMWyRArjQxz1MM4vGa1Dy0cNEFruF5msxbFcwpfwV97QxicPrSoWyag8T9S+98JTVgedm2eG0waNNQbaPrGDyBoma3LfEJFKcIPuualJeOeA8rOWAc+hDfC153dhwJxIaLhC2vMnmz6/hoX2zAIDzty6dwAfAUNTeetHxuO7y03z997l0UryPdn1MRZ7DZEv/rBYM44EwLHm06R/Jp6FpGk5YbUwTf7LNlkf2MxWFib5GdzjhAVoDH6LYUJoKk3tKnpcepmGhoBnft1ZviAU2DkqIKuNUMBVaU/JUFpFcWw+TGc5g/d/6vVfjEisOeO9hotNgmqUSBVmH19Xsnen9a6dKJpVAqrl53ju9CADYEpNIcULMYlJIyqvVG+I5xwqTPSL0wWEOU3cG16olz9LMum49ly5s2vLubA6wvXf3MdQaOjaM5WOTIBkWuXQS17781EDKWfthYDte3BTLDS6YmCVJGHOY6LR8RMjgVDC1JuXRxnVEoWDKppJi4XHaXJLClI1oIfTUw+QhJY96WciSV5Q2q3HY2Ksi5lUstvUwebDk0UZ93kWBFAElPkMf4qEweUvJOzJvFOMbx6NryG7vJZMpxTzO2g5ZZYpTpDjhJSlPfl+4X8IeKpKrFil51MMUhQuhHUpjtBsGTXR78CnNY7pv7zEUKzXc1YwTX2rqUli0j8yQqTd0lJufy35ar7sFF0zMkiQMhUm25AGGbxjoDH7wEvoAWNvW2hELYQSBD4A5vNaxYBKWPB8KU/O1o++fshjaGmfMNCGjOdbL3B4zfpcG1zqHXvjttyvGKFbc7GFyL5jKtbrYUK+JcBhoey+ZTNwHptohb2LiFClOCIVJpWCSns399GzoNtSfVLdSmLppycuQ1bjhmILY7ZS1TRMD2DCWR7Wu41c7p0WYzFLrXwoLkQBrcbi12HLA2ft1JW7wU4pZkuR8ntrLUDQ2qSYnNgsmW0ueQg+T8f06o7fbIYUpqvQjldCHSWHJ8zGHqdRaMA1aDG2NM+PSvAr5HlLZBHTOYXJJyUsFs+TZWf26iZc5TEeb6lI6qQnrYxTQoYlVXLtZMPXXEihvYuIU+EBMDKlb8halaPd+ejZ0G0rJq1ql5PUg9AGAUCGsKHa5YNI0TahM//P4ETywbwYAcP7xrDBZQYeBsxbR4tS/pGn992zsBvyKMEuSrM9GeplOhcmw5O2aKrZswqgXSaWHCTDtS06n8bQgRREpDriHPpRrdaGcrfSRkkc9TE5DW+MMvefHipUWhUIlVa1d3TRDL6yLAz8pebquxytWXPQwuafkkR1v9XAu0o2y0/DqUp+ms8nXG7f+JUC25LmHPvTre9BtUg4peV2NFZfWIidbntkD073nEsWLf/3Xe1Gt61g7ksOmmNlV44LoYbKw5C1K/Ut8iNEJF0zMkiQKS97akRyGsynUG7oYHAl4t+SpzKypRFwwufUwkWUqldBEEaTCSJvCVIxRMIEXxgfNwbW0AcimEkgk3BeRDoWp5KwEmUqIenFfrjVEQlYcCqZRDyl5R+ZKAIBVw9EOe1WKFe+zzbr8OYpbQh4ATDQPV9Qsef35HnQb6mGqWylMXbTkpZIJ0Svl5NxY7EHKGg2wpWfo+cdP8IbfhtG8vSWv2+pgv8EFE7Mk8TvbRmZOFEzGZlDTNJxoEfxAxcGI4vBKleG1ZjNv1JY862sgS82KoYynhYdUtlK1gUqtEatZQV6gAX+VekMUj6qLSFb0MLUqTHYKpJ97tSid8A7GwGtu3tP2AxEJUpjWjHSnYGofXKvruvizfooVB1p76OJYMHkJfeAZTGqkmmtA1SElrxuWPMB9BIKu6yLop5ub7tUjOZzYTLEFuH/JCbM/18qSx0Nrneiv1YJhFAljcK0cK060Bz9UpdhsVduZyvDaqBUmutZCxbpgmvQxtFb+voCxeabv32+WvIFMUthcDs4aEc6qG7v2eSXCOmdT2PgpmOh75tIJMaell9BhQUO3v6eIw02FKcrAB8BeZZaVvH5TN1oUphha8iZ8FEz99h50m5SYw9S5lpHK3A1LHiAdBtlY8oxACOP/d3vTLY8o4IQ8e+gw0GoOkwjs6KKdsp/ggolZkjg1fKvSbskDOoMfFiSVSNmSp9DvQfNJoo4Vtwt9mFzwPrQWME5DB5sL5XyphkK5PyV+TdPESdyBGWODn1P8HdqVjXnl0Af14j5uw4Bz6aRIOnOz5R2Zox6m3ljy5FED/aZuUOhDIoaR4kBrSp5TkhrQv8Eb3YZCH6wG11YidiK0k884z2KSle9up6xRwbRmJBvLQJS4YM5hsrLkGesKK0zWxGO1ZZiQcbMOqGBVMFHww1NNSx5tXPPppPKiNRwDhWnQJfSBhtau9BApTozk0yhU6s2CKV4bey+MDaRxZL4sFCbVok9sKpobQrfXIBtAYYqT1XEkn8bR+bJxEDBu/3WHKfShRwoTFbLJhNa1jWZY0EZm/Vj8IsUB84ClUmugUKk7fu5F6ANvzhxxDH3omSXPrmAynkuZVPeV7xedshp/+ZKT8Jzjxrl/yQHRw2RhyfMyoH050l+rBcMoEmYPk5Ulb9dUAaVqXRQ9quoSoBj6EPFAwiGX0Acxg8nD0FpCLgjjuLFXhYbXHpw1FCZVNULeVNQbujh1tS2YSGHyEPpQEM258XldyWrqrjAZr2fkClOK5sa0PgOEstGHs38GmvdgHPuXAON+pEJ12iVaXE7kYuwxLXmdClOti6EPgPu62u0ZTDKJhIZ3vPBEPP/Ele5fvIwRseIc+uCZ/lsxGEYBWrRrDd3yZM4NXddFNLasMK0ezmIkl0JDB545WhDBDaqR4oBarHi3UvLsQh/MGUzeN7XyLCaxsY/BrCCvkNebCibVXguy7pWqjZZ+HltLXgCFyW4Ybi9QHV5rhj5EqzCRctHeb0F2on5UNmjOEYXPxJEVIinPOVq8JII3+u996CYU+lCzCn3oYqw40Nmf2Y7YcPN7GlvkWPF226wZ+hCfg7g4wa8KsySRN7elWgNDHheUhXJNxLjKBZOmaTh57TB+vesYnjoyLxr5hxUT8gCPg2sjst3ICpOu6x0WhimfPUxA6+8nNvZ9+ACm4bUHZrxZ8kjZWKzWRY9bOqnZWqj8FExxTB+kgwAnhalSM1MHoy6Ysjabu0URE99/m7o3nrcJmWQCr3zO+l5fii0rhjLYP7PoGvyw2HxfWGFyhlwGVqEPlS5b8rIu4zo4ZS3+0LpWa+gdtlkRCc+fSUtYYWKWJFlJmfFjyyN1KZNMtHwvoDX4Yb5sbA6HPWxclRSmiE8OaaPd0K1PC+l0eKWPgomKx7lSNZYbe1XGBo3fg1LdlFPyMmYBpBLO4GcOUzGGr6tQmBwKpqNN5TKd1DA+oH7I4AcRptFhyaP5P/23/I0NZHDlbx2P1cPRFptBkIMfnOBYcTWoF8hKYeqVJa89qp9YrNIMpvg8l5hW5ICe9j4mLnid6b8Vg2EU0DTN7A3xUTBR5OZIPt2hvpy02pzF5MuSl1OYwyQUpmhODuUTJCtbnlCYPMaKA+Zr0fehD83m2IbHmFw5bEClYBS9Nl4sec2FbTBGC5tKb95h0b+Ui7wx206562dLXj+gGi1e5pQ8JdIOKXlxteTxZyveyLY8Ge5hcoafVMySJcgsptm2obUy8iwmKnq8FAQjeSoo7Id8Rq0wJRKa2Gy3Bz/ouh7MkicpaP3cw9SugOQVZ1PIm4oFhfvDz30aR+XO7GGyPwigSPFVEQc+AE6x4hT60H/3ZD+gOryWFSY1yG5XtejF7bYlzy55kuANd38wJpLyWgumXoZ29ANcMDFLFreHuxNWQ2sJsuTtni7iaLOB3VsPk/uQz6hDHwD74If5ck0UbGEpTHHa2Ksy1l4wZdTeC9m2oqKwifvUw8ywOCp3dBDg1MN0ZJ6G1kZfMOVtFCYemBotE81nBgXH2EGbM9X5ZssVsuTVOSWPCYlRMYupzZInov7js67ECS6YmCULPdz9DK+1msFErBzKYHwgDV0H7t87A8CbJS+XTgrlyG5zSf0sUS6EdtHipC4NZpK+rBUtKXkx3NirQrHihNdY8XpDx7Gie+y8v5S8+MWKq/QwmUNro+/BsTsw6ecepn5AVWGiGH1W+pxJK6TkRTV+oh27QwhCWPIU1XimN1ACbKfCRD1o/Jm0glcMZskSZHjtnEPBpGmaUJkeOTALwFvBBACrmyfsB2ZKln8vvOldUJjaVa6pAJHiQFtKXh+fOLYrTOqx4uZ7Rqfsjj1MYmPvYQ5TDGPFSTl1Upioh6kbCpOdJa/EClOkqPYwLXK/ixKkMFUtUvKoiOqWwmSXPEnwhrs/sJvFxJZKZ7hgYpYsgSx5NLTWxmp3UnMOSrW5YHktmLauNAZP7pxcsPz77ljyjIfiQrn19ZkM0L8ESKEW5f5WmMbbFCZVNSeTTIDyDKhgckpRzKZ8KEyV+FkdVeYwHW5aWFdHHCkO2Fsd2ZIXLTQrasplcG2JQx+UIPXIypJnDjjvliXP+Dl2KXm84e4PyD1hm5LHz0ZL+EnFLFncTsOccLLkAWbwA+GlhwkAtq0yCq5njhYs/z7q0AfAwZLXjBT3078EtPay0AM4Tht7Vdrfe9UeJk3TxIJDBZNK6EO51ugYJGhHHHvDVOYwHREped1UmNiS102ULXkc+qBEqpmSV+0HSx4fRvQFo7aWvPhZveMErxjMksVPbwjhVjCduLq1YPKqoJDC9MykdcHUVUueTQ+TnxlMgFk8Hp41m777UWHKpZMtmzkvGzu69ybnm/1gCpY8QH0WE/UwDcZoYTN7mBxS8poKU9RDa4FWS55ciJZ5ox4pZMlbrNbFBswKVvrUSInQh95b8twSPUusMPUF5J6YabfkNedosU3WGi6YmCWL3eBKFSga2V5hGmr5d6+WvONXNQumoy6WvAgXQruUPLOHyW/BZHxfUskSGjqG//YLcrS4l+SgdoXJ6f6QN4yqxb0ZKx6fhY2smIvVurh/ZSq1hlAduqkwAa2FKG/Uo2UomxLPLVKrreBeMjVSDqEPvbLkcax4fyN6mDhW3BN9s4v5+7//e2zfvh0DAwMYGxvr9eUwfUAYc5hGLOYwAUYgAllPAP89THumi6hZzNcod6GHyc6SN1nwP7QW6Oz7GsymIh9SGhWjUh+TF0Ui29xYHFUIfUgnE6KxW/VepR6mOCl3w7mU6N2y6mOi1yKd1Dr6w6IgJ3125A0eb9SjRdM0peAHutdZ6XNGzGGyUJjIidCtOUyqljyOpY43IiWvPVacCyZH+qZgqlQqeN3rXoe3ve1tvb4Upk8IEvpgFkz2vUknSiqT1x6m9aN5ZFMJVOs69h1b7Pj7roQ+ZEhhan19SGFa6VMFGMgkRQEAxGtT75UWhcnDxo6+VnWwsVBDFe/VIsWKx+i1TSQ08Xta9TFR/9KqoSwSieg3eKlkQtiZ5EKU/n+/qp79ABVMUw4Fkxhcy5szR4Qlr01hqjd0kNM0SieCjOgLtnFtcEpefyDmMEkKk67r/Jl0oW9WjBtuuAHvete78KxnPavXl8L0CaKZPoIeJqA1+MGrwpRIaFJSXmcfU7ULVguyc/3/7d17lFxlme/xX926qrvT3SHk0rmSACbIZSDgiGHQgEshiqBzcbiMA3jQM3EmCqMzKuOsSdC1DLqA8YAijjMGxsNFPUThjOLgMiAIjg7SOQkyymUSbkkICaS7k77V5T1/VL27dlV3VVd10vtW389aWZCuSvWufvutvZ/9PO/z1lzD1Dm1LEAsFqsIEMJ88nRnQpo5iVRnLyYNmCa5EHEbyxWcUpwZAbuTW28vplcHvOuQZ010R3yEi4JpZ8t5X6/TKc/J9LEPU11O04eqLnlZV2WCZyV5pbGqtTZtiFbxoVDukpd11ncW13oWH6fpw8RCEzBNxejoqAYGBir+oHWUL0Knvg9Trbbikpy9mBLx2JTKSuw6pucnWMc05kHTh9pd8mxb8amvM3GXMoY5w9RTsYap+QyTVW/jWqm58lH3eAVpDZNUni92DaDb3kHv9mCy7B1xdxvkYS7Up91knfLcd7MzDXafbFW2A1516bY7YPKsJK9tsn2YSplvyiwDzZbkjeULzjwccu3HSJnsxCL9SbVx40b19PQ4fxYvXuz3IcFDzZY5WSPZvLOGqKejdsC0ohQwzZjiGp16GSZbkpf2uOlDLl/QG0OHtw+TJHWlyz+3ILW+btZUS/KqW1ZP1s0u3UT5qF2/lE7GnQXhQdFTp7X4Xpth6vIuwzRRWe6o01aci4LpMqu0/rFWSV6xhX7x/7k4q8+WN+fGZZjKf0/FvW36MFojEz5EW+pQ6GhLOIG4LcuzY5dOxitK6lHm69l2w4YNisVidf888cQTU379a6+9Vv39/c6fl1566QgePYLOubtcp7XtRGx2KR6rX/K0cslMvefkXv3Pdxw7peM7dnZxDVS9gMmTDJPrztIbQ1kZI8Vi4zdubYY7wxTmk+fM9vLPoJnSwuqL8clKNpvZvNZpKR7AQNSO+8Qled5nmCbK3Nmyx0b31ULznJK8Gl3yRl3jQeBaX6pGlzybYUrEY56sCZQaKcmjLXUYxGIx9bSXy/KkcuY9iOeVoPD1J7Nu3TpdcskldZ+zdOnSKb9+Op1WOu3dyRnBMtWSPNvhqyuTqnsiSiXi+vqHzpjy8S1zWotPtIZp+vfXKO/DVD752TbAszraDusuk7sJxoyAlY01Y6Yrw9RMk4Dm1zDZTMjkv6tBbClu1c0wDfqYYXLdEbcXe5TkTZ/JuuTZi7NkPObZ+puwKmeYJi7J82rTWslVklfjnGrHNczrVlvFzI6U9h0cdTrlOevPuIFRk68B0+zZszV79mw/DwERNtUueY00fDgSji2V5O0ZGNGh0VzFnR0v2orbC253SZ5t+HA45XhSZUYlzHesbJatPZVoquyy+qQz2c/AXrzXKnVxs2uYgrRprVVew1Q7wzTXwwyT0/TBdUfcBk9pLgymjQ2Y9tVo+uB042IMJmXXJ9UqyfMy4LSfU/mCUTZfqPje2XzBOSYCpuA7qmovpiE6HE4qNLd2XnzxRW3dulUvvvii8vm8tm7dqq1bt+rgwYk3/gQyTZQ5uXkVMM3saHMuLKrL8sZKF3VeN32wG61OdQ8mq7siwxS8C/tG2QxTsycR9xqmtmR80nF01gY0kGGyJ7YgBqLddbrkveZLhml898ERZw1TaE5/oTNZ0wf7mUzQOjm7PsmYYqBiedFJtVraNWeGq86rQ66bEpTkBZ9Tklf6rGbT2skF74xbwz/8wz/ojjvucP6+cuVKSdJDDz2kc845x6ejQpCV24o3WZI3XLwgrbVp7ZG0bHanXj80ph37DunkhT3O150ueR6U5A2N5VUoGMXjsSOWYerORGMN04reLvV2Z/TWZbOa+nfuO+eNBIzNtBU/GOA1TOW24pVd8sZyBacBgKdd8pITrGGi9GTaNVqSxzqyySVcJXe5QkGJePH31o+SvHQyrlisGLyNZPMVN8bsBXciHvNsXyhM3cyqvZhoCT+50PxW33777TLGjPtDsIRaJlq/0AivMkxSuSyveh2TLW3wIsMklRs/2DVMsw+jpbhUuYYpiGttGtWVSemxz75T/+uS05r6d+mpBkwNNX2wm+EG7+dqbzJUr2F6rZS5TCVih9VMpFkTleXazwOaDUwfm6E+OJqbsMyUoLVx7g547sYPfpTkxWKxcvlw1Y1Ip6SryfJl+MO2FrdrmIbpcDip0ARMQLOauQh18zJgso0fduwrl5bmC8YpvZjOO3Xu9qG28YOTYZriprVWVPZhkop3TJu9AHBfCDaSCWqm6YMNboO4hsnJMFWtYdpbWr80Z0bas45e0vguecW1F6biMRx53e1JJUvjPFGWiaC1ce49lioDJu9L8qTyZ1WtkjwyFOEws8YaJsavNgImRFYzF6FujWxae6TY1uL/7VrDNObqQDSdGaZYLKbOtsrGD/sOHv6mtVJlhqkj5AHTVLgvBLsaeP/NtRUP8BqmzMRd8l61ezB1e7d+SSoHrvbizv3zJbsxfWKxmI4q3XTZP0Hjh+Ex9sJqVDJeWZJn+VGSJ7kaqVR9VtEhL1x6Spl+u+/ikB0/5mRNBEyIrGYuQt3sxV63FyV5NsP02iGZ0k6OXgVM0vjGD7Yk70h2yQti6dh0c6/NmDHJHkzSxPsF1VLehyl4P9eeGk0fXhssdcjr8nabh3IzjeLPzH1XvJk28WieXav2f//frnGP0SWvcbFYbMLNa/0oyZNqf1aVM0zBu5GD8ZySvCGaPjSKMwYiKwwleccc3aFYTBoczTnrPGzDB6ny7uJ06KwOmEp3g2cfdtMH1xqmFjyBuvf4aaokr6GmDwHOMDkleTnnBoBUzjDN8zjDVP0ZYP/blox7WhrYij769uKG3t945L/1f379csVjdhzoVNgYex7Ius4NudL/Jz0OmNK1Mky0pQ4VpyRvuLrpQ/DOK0HBpxUiq3wROrWNa70ImNLJhBYd1S6pmGWSXB3ykvFpXzxrL7oPOgHTkWkrHpV9mKYq47poONJNH4ZCsIYpXzA65GozvLeUYfKyQ540/m64/S+Zjen3/tMWat25x0uSrt28Tb/a8brz2AgZpqbYgGmituJtnpfk1V/DRMAUDjNtW/GqLnmMX20ETIgse7E0liuoULXpXz39Tlvx6Q+YpPHrmGxJXtqDO4dOSd5YTsNjeeci97Dbire7u+QF78J+urkzTI2UJGaSje/DFOS24ulk3GlU4l7H5Kxh8nAPJml8u3YyG9765LuX672n9CqbN/qLbz+hF/YXP+OGaRDQFJtFyrqaPoyV/j8Z96skr0bTB4LgUHDaijtd8sgQToazBiLLvaB4tIks04CHJXlScS8mqbx5rQ2Ypnv9klReB3NwNO+sX2pLxg+7s13lGqbgXdhPt/aKDNPkv0dRaSsei8Um3Lz21VKXvLmeZ5hKd8PHqgOm4P3soigej+nGD56mUxb26I2hrP7H7f+p/uGsE8Cmk4xDI5LOGqbxJXkpj9fi1drfkDUw4WIDppFsQSPZ8s1SbmLURsCEyMq4TiTNrGPyOmA6bo7di6nYWtzLdrHuNUzO+qXOtsMuBUwnE/rYOcfpQ29bojkeL/QPAncGo5HmDM1sXBvkLnnSxHsxvTboU4bJNn7JVZbkZbhQ90x7W0L/fMVb1Nud0fOvHdK6u57UwRFaGDfDthafqK249yV5lZ0nLdbAhMuMdNJpJtI/nCXgbQC/2YisZCKuZDymXME0vHltvmA0WLog7W6gu9mRsKyqJG/UwwyTu0teuUPekQlwPrPmhCPyOmHkLkvpaqhLXvP7MAV1g8HqTnljuYL2l/bi8W8NU2WXvAwXBZ6a153RP1/xFn3wtl/o0Wf3OeuZKN9qjC27c3fJ86skLz3BZtCSNJSlpCtMYrGYZrantP/QmA4MZcv7MKWCeV4JAjJMiLRm2jVLlWVEnq1hKmWYXtw/pGy+4HFJXrnpQ3kPpsNbv4TKkq9GMkG1Ok9NxLYVD2qpo+2QODBi9/YqBuLJeExHdXj7u1XdVtwpyaOluOdOXtijr1xymmKx8k0h1pI1xmaY8gEqyas+p5KhCJ8eu45paIymDw3g0wqRlqlxN6wW2yGvsy3h2f4Wvd0ZZVJx5QpGL78x7Cq18DjDZAOmw+yQh8qAqaEueU3sGVZuKx7ME5vNMNmSPGf9Ulfa81be7eO65LGGyU/nn9Srz7oyz2SYGlNuKz6+JM+vjWtrl+QxpmFh92J6YyjLxsMNIGBCpDW7ea2Xm9Za8XisXJb32kEnw+TFncPO0ofjodG801L8cPdgQuWd8yNZkufOQAaxrbhUXsNks7V77folj/dgksqZO3sxYNcycaHun//5jmN15VlL1dmW0MolR/l9OKFgb95VrmEqbVzreZe8iW9COhkm5lZozCxl/PuHxwh4G0DAhEhrZm2I5O2mtW7Hujrl2X2YvGgr7i7Js+tMKMk7fG2JuGwypaGSvFJgPzrJWruh0fLjQW36UJ1h2uvKMHmt+uJuZIy24n6LxWLacNFJ2rbhfJ28sMfvwwmFxARd8pwMU9LbDFOmxmfVUMDXVmI8m2E6MORu+sD41cJZA5HWTPcxyZ8Mk1Rex/T8a4c8XcPkLsnbd4Q2rUXxonB+T7tSiZjmNdAZrtHA/mDpoqQtEffk92MqymuYKjNM83zIMFU3faAkLzgSHpdnhllywgyTd91U3WwGYniMkryws2uY3nA1faAkrzZCSURaec+IBtcw2U1rM94GTOW9mA5q5ZKZkrxv+jB0hDatRdH//siZGhjO6qjOyX+eje7DNBTw9UvS+C55r/qaYapqK54jYEL4TLwPU6kkz+OAKV2r6QNrYEJnZnvx3LR3cES2ASMBb20ETIi00JTkzSmuYdqxr5xh8mIxr7MP01jO+b6zj1Bb8VZng+BG2Av4XMEoly84d5Sr2YYPQS6bKG9cWzzWVwf8yzDZtUpjuYIKBaPhMdudjYsChEc5YHK3Ffen6YPtMFldtUGGKXyO6ix+Vu8+MOJ8jTVotQX3rAscAc10H5P8C5jsxfWrA6M6MFRcS9TmweaatiTv4EhOg6U20GSYvOdeUzOaqx0wBb2luFTOzvZXNX2Y4/EeTFLlz3Ukl3dlmIJZzghMZOKmD8WAyet9mGqV5LEGJnzsdc7u/mFJxVLvWucesIYJEddoqZNl113YTl9e6WlPOd3pfrtnUJI3bcVtadcbQ1nn7uWsBkrIcGRlXMFxvd/VoLcUl1wleSOVTR8aWct1pFX+XAusYUIoJZy24uNL8rxey+jchMxVVm2wBiZ8bJe83f3Fz2iyg/URMCHSnF3Jc8EuyZPKWabf2YDJg+5H1ZmKrkzS6dgG78TjMSdArve7ai9KgtohTyrfbOgfziqbLzjdF+f5kGGq+Llm807ARFtxhEnK2bg2ACV5NdYFOyV5zK3QsF3y7EbSBLv1ETAh0prOMAUgYPrvfYckeZVhqrzwZv2Sf9INbLJ8yGaYAlz2YufO0Fhee0p3LpPxmI7q8Cdz6f652rWMlOQhTGzZXbYwfh8m70vyit/PvXFtvmC46A6hmR2V1zlkmOrjrIFIK69haizD5GfAZBs/2LuIXpRapKraUx9NOZ5vGgnuD5bWMAU5w9Tl6jD57N5itnRuV1pxn9pIt7s2r6UkD2GUKGWRchUled5tcO420Wbw7uCJNUzhYbvkWQS79REwIdJq7Upei1/7MEnju6p5VZvuLsuj4YN/GunoaDNMMwK8hikRj6mr9Dv17KsHJUlzfOiQZ2VcbZDt5wBlpwiTVHx8SZ5dz9TmU0me+3PKlgrHYmRvw6Qrk1TM9evTkSLYrYffbESaU2/d5Ma1fmSYjptTGTB5tb+Gu4HA0ZTk+cZmQ+vtGXbILqwOcIZJKt9weHZvMWCa58MeTJa9gBvN5jVcusij9ARhYjuXZfPuNUz+lOTZ+eTOKg271i/FYmxIHBbxeKziWofPxfoImBBpzezDZIzRQKm1th8B0+JZHXJXLXmVYXKvh5lNSZ5vypus1g6YbEDflQlZwBSEDFMu7wSjGY/LmIDDkXQyTP6X5FXvbSaVGz5Q0hU+M13XOoxffZw1EGnNNH04NJZ3Sh66M94HTOlkQotndTh/96Lpg1RdkkeGyS+NBPe7DhT3y5jf418A0ojuUkD33KvlNUx+magkjzVMCJNkwrYVD05JnlTursamteHV42rGw/jVR8CESGtm41p7974tEfetDtu9jintVYaJNUyB0Ehwv6u0I/vCmR01nxMENkN7qHQhFYQM0/BY3ikj4sIAYWLL7nKuDJNfXfLcAZOdT86mtayBCZ2jOsgwNYqACZGWbqIkb8DV8MGvOuxjZ89w/t+rNUzuDBNtxf2TnqSjY6FgnB3ZFx7V7tlxTUV105Q5PuzBZNnyu5Gcq604TR8QIrYkLzdB0wevS/ISVXubSeWmD9yICJ/KkjwC3noImBBpjawLscod8vz70Fjmavzg2RomV9OH2WSYfDNZR8e9g6PK5o0S8ZivTRQaUb0GcF6X/xmmkWzB+RygkxfCxDZ9yE1QkpfyoV1/9Z5xNtNEhiJ8ZrpL8ihVrouzBiJtohaotfjZIc86brYfAZOrJK8z2BfiUTZZcP/KgSFJUm93xrmACqrqNYBz/cwwlS7uBoazMqXrzQwXdggRJ8NUsQ9T8ZfZ6wyT5CpzdTJM5S55CJcemj40LNhnXeAw2XKceq2aLT83rbUqMkwel+QlqlqMwluTNX14xVm/FOxyPEnqcWVpk/GYZnX4l7m0F3EHhsacr1GShzCxTR/cJXljNsPkw82T9qobkTR9CK+ZrGFqGAETIq2ZLnlOSZ4PHfKs3u6MczLy6s6hzTDN6mxT3IfyDhSlJ9mH6ZU3wrF+SapcwzS3K+3r75X9DDhQmt/xmJTyuLMYcDhSdUrykj7MLffeZlL5/MoFd/i4A6Z21jDVRcCESCuXOTXe9MHPLEssFtPvLeqR5F3raBswHc0eTL6abA2TLckLR4apPIfm+NghT5LSpc+AN4aK8zvD5poImUQpKMoWxpfkeVW67Ta+JK+0oTYX3KEzs7183ifgrY/fbkTaZBehbkFYwyRJt1y2Ui/sH9IJvd2efL85pc54YbgQjzJbJjZaI7i3LcUXhGCc3BkmvxtU2M+A/lJJHussEDbljWuDUZJXvTaYkrzw6qnIMDF+9RAwIdLcJXnGmLp3lgdGinfJ/OySJ0lzuzKa62FXsXeeMFeff/9JOvv42Z59T4w3WflomEry3Dcd/Gz4IJUDUVuSx6a1CJvgleRVflaV92FiboWNu614JxnCuvjpINLsxVLBFDf6a0vWPrkEJcPktbZkXJevWur3YbS8ek0fjDF65UApYApDhinjzjD5W5Jn75q+caiYYUrTUhwhk3D2YQpISV7pe47rkkeGInSO6qAkr1GcORBp7oujyfZiatWACcGQrtNWfGA4p4OjxQzogpn+BiCNCFSGybYVL2WQKclD2NgmJTZIMsY4HfN86ZLXVplhsgETa5jCx10+TcBbHwETIi2djMtW4U22jmkgAF3y0LrqleTZ7NKszrZQXJRkUnHnIm+uz00fqluIU5KHsEnEi5dq2VKQlHWV5iV96PhYvd5yOGubPjC3wiYRLzaaOqoj5VmjqbAK/pkXOAyxWEzpZFwj2YJGJ9m81mkrToYJPrBlLhOV5IWpHE8qzrs5M9La1T+ixT6vuaoOkDKU5CFk7M2HfKkkL+vawNar/frc7Byya5coyQu3761dpbFcIRQ34/zETweRl0klNJItTJphoiQPfqqbYXojPC3FrS//yanase+gjp/b5etxVK9ZYtNahE3SZpjyNsNUcD3mQ4aprUbTBwKmUEonE84+gKiNgAmRV7xAyk54594ayead8gJ3m03AKzZgmqit+K7+8LQUt85+02yd/Sb/Oy9Wr1nKcFGHkHGaPuRthqkYOMVi5ce8ZG862PWWQwRMaAHUJiDynO5jdZo+DIwUs0uxmDSDtDR8UG/PsDC1FA+acSV53ElFyJRL8iozTKlE3JdNmJ2Na8eq9mFKce5EdBEwIfIm299Gqmz4EPfhjh1Q7/f05ZCtYQoS1jAh7JKJiUvyUj6dq9qrbkIOj9H0AdHHmQORl67alXwi/cPFD3zWL8EvTpnLRE0f3iBgmqrqAIm24gibZNU+TDZwSvmwB5PkKh8ubQg/lKUkD9FHwITIK3cfayDD1E5JAfzhLh01ptw2eCSb176Do5IoyZuKcWuYCJgQMuWAaXxJnh+ckrzS2l/7cUWXPEQZARMir5GSPDrkwW82E2qMNObqgrW71PChPZXQUTQkaRoleQg7W5KXC0hJXsZVtWHXL0lsXIto48yByCvfua9dkmebPhAwwS/uC3l3WZ674YMfC7zDLl1VtkSGCWFjM0z5qo1r/SvJK1dtDJXWL7Ul47507AO8QsCEyHPXW9fSP1Ru+gD4oS0Rl42H3L+rrxwo7sEUppbiQWI3r7YImBA2yVKXvGy+cuPaIJTksQcTWgUBEyKvvJiekjwEVywWm7DxwysHiiV5NHyYOneQRMCEsLEb19o1TLY0z49Na6XyusBRV0leB/MKEUfAhMgrlw9MXpLXTcAEH020Z5gtyVtEw4cpa68ImDjtIVxshilXlWFq87lLXrEkr7QHExkmRBxnDkReM00fCJjgp/QE2dBySV7Gl2OKAneQRFtxhE2qKsNkm8L4lWGy82k4m9dw1u7BRMMHRBsBEyLP2YcpR0kegs1eiIy6GpTsckryOnw5piigJA9hlnAyTJUleX6tYWonw4QWRMCEyGukJI+NaxEE1dnQQsFod3+5Sx6mJk1JHkIsNW7jWn9L8ux8KpjyzUaaPiDqOHMg8hpp+uBsXJuhrAD+Sacqmz7sHRxVNm+UiMc0ryvt56GFWsZ1YWnLHoGwsPswFUzxJkpQSvIk6Y1DY5IImBB9BEyIvExqfOexagOU5CEA7IW9De7t+qXe7oxz0YTmucuFKB1C2Lj3N8oWCr6X5LUl4rKH9Pqh4rmzPcXNRkQbZ2BEXnldyMQZpnzBaHCUkjz4r7okj5biR0YmyRomhFcqUQ6Y8gVT3ofJp5K8WCzmzKPXD41KIsOE6CNgQuRN1iVvsNRSXKJLHvxVbitevCCyLcVZv3R43CVEGZ8uMoGpsvswSVI27wqYfCrJk8rn1deHWMOE1sCZA5E3WdMH96JVv0ocAKl8ETJaVZJHhunwuLNKlOQhbNxrlYoZJn9L8qRypzy7hol5hajj6hCRN1nTB1qKIyiqf1dtS/EFBEyHpaKtOE0fEDLxeMxZM5TLF3wvyZOkdOlG5Os0fUCLIGBC5E22D9MALcURENXZUEryjgwbMLUl4or7WMYETJUty8sWjHJBKMlL2jVMNsNE0wdEGwETIq/RkrzuDAET/OVeb2eM0SsHSgETGabDYj8D2IMJYZUsNX7I543GglCSV8ooDZey4R00U0HEcfZA5E3W9GFX6aK0p4OACf5yZ0MHhnM6WOreuGBmxs/DCj37GUCHPISVXceULZRL8vzcaqD65gMleYg6AiZEXnkh/fgMkzFG9z75siRp1bFHe3pcQDV3NtRml2Z1tqmDcpfDYjvjETAhrGxwlMuXS/LaEv6X5Fk0fUDUETAh8uzF0li+oHzBVDzW99IB/XbPoNLJuP749EV+HB7gcDd9oBzvyLEXc5TkIaxshilXKASiJC9TFSBxUwdRx9kDkee+q1y9ee1dv3xRknTB782nJA++K5ePFvTKG7QUP1Lsz7WdDBNCKuXKMAWiJC9ZHTAxtxBtBEyIPHfA5G780D+c1b9t2yVJ+rMzl3h+XEA1mwEZzZUzTLQUP3xLZnUU/3t0p89HAkxNwpVhcrrk+VmSV5WtpSQPUUcOFZGXiMeUSsSUzZuKxg/ff/JljWQLWjGvS6cvOcrHIwSK3A1K7B5MtBQ/fKctnqkffeLtOuboDr8PBZgS2yWvmGEqluS1+bgPU3W2lgwToo6ACS0hk0wom885AZMxRnf9qliOd9mZSxSLsTcL/Odu+vAya5iOmFgsphMXdPt9GMCUpUr7MOUKRmO2JC/uZ5e8qoApxeUkoo2SPLSEtGttiCT9+oU39MyrB5VJxfWBlQv9PDTAkS6tCxjN5cub1hIwAS3PluRl85TkAX4gYEJLcO7cl5o+2GYPF/7eAvW00+wBwWB/TweGc9p3cFQSJXkAysFRvhCMkjx3hikZj/l6LIAX+A1HS3CvDTkwNKZ/275bUrEcDwgKm2HaM1Bcv9SeSugoujcCLa+cYXJ1yQtISR7ZJbQCAia0BKf7WLage598RWO5gt48v1unLZ7p74EBLtXrAhYe1c76OgBOC/FihikIJXnlzyoaPqAVEDChJbg3BL3rly9IotkDgqd6XQAtxQFI5eAoVyg4JXl+blzr7pLH/mZoBQRMaAn2btgjz+7T868dUkdbQh84bYHPRwVUGpdhImACIClRKr9zl+T5GTC5b+60t9EhD9FHwISWYD/cNz/5siTpolMXqCvD2hAES3XAtIiGDwAkpeK26UOBkjzABwRMaAm2rfhorniiodkDgiiTrC7Jy/h0JACCxG5cm3VtXJv0NcNEwITWQsCElmDXMEnSyQu79XuLZvp3MEANyURcyXj5rvHCmR0+Hg2AoLAd8XKufZjaglKSxxomtAACJrQE94f7ZW89xscjAepz37llDyYAUjnDlCsYjdmmD0lK8gCvEDChJdgP9862hC6i2QMCzAb3iXhM87rSPh8NgCBwMkyFYOzDVNElj6YPaAEETGgJttvYn5yxSDPSfLgjuOzmtb3dGV/XKAAIDluqG5ySPDJMaC1cOaIlXHbmEi2Z1aF3LJ/j96EAddkMEy3FAVjukrxsIEryysEaARNaAQETWkImldC7Tpzn92EAk7J3blm/BMAqZ5iMsgX/S/LcjZTaCZjQAqj3AIAAcQImMkwASmx57mguL1NMMPlakhePx9RW2gahgy55aAEETAAQILa8hQwTAMuW5A1n8+O+5he7b1wHTR/QAkIRMO3cuVNXXXWVli1bpvb2dh133HFav369xsbG/D40ADiirjp7mS44Zb7WnNTr96EACAhbkjc0Vg6YUj43hbGleJTkoRWE4rbAb3/7WxUKBX3jG9/Q8ccfr6eeekof/ehHdejQId1www1+Hx4AHDHnrJirc1bM9fswAASIXa80knUHTD5nmEqleDR9QCsIRcC0Zs0arVmzxvn7scceq9/97nf6+te/TsAEAAAizQZHw6UMUzIeUyzmb8A0vyejF/YPaQHrLdECQhEwTaS/v1+zZs2q+5zR0VGNjo46fx8YGJjuwwIAADiiEqUMky3J87scT5K+cvFK/fdrB/Xm+d1+Hwow7fyfcVPw/PPP65ZbbtHatWvrPm/jxo3q6elx/ixevNijIwQAADgybIbJluT5XY4nSb09GZ11/Gy/DwPwhK8B04YNGxSLxer+eeKJJyr+za5du7RmzRp98IMf1Ec+8pG6r3/ttdeqv7/f+fPSSy9N59sBAAA44hLxyi55QcgwAa3E15K8devW6ZJLLqn7nKVLlzr/v2vXLp177rlatWqV/umf/mnS10+n00qn04d7mAAAAL6x+zAFqSQPaCW+BkyzZ8/W7NmNpXNfeeUVnXvuuTrjjDO0adMmxX3c4RoAAMArqXhVSV7S/5I8oJWEounDrl27dM4552jJkiW64YYb9NprrzmP9fayVwkAAIgupyTPZpi4aQx4KhQB04MPPqjnnntOzz33nBYtWlTxmDHGp6MCAACYfrYEjzVMgD9CMeOuvPJKGWMm/AMAABBlyVJXvIKp/DsAb4QiYAIAAGhVyXhlgESGCfAWMw4AACDAklVrltoImABPMeMAAAACrLoEj5I8wFsETAAAAAFWnWGiJA/wFjMOAAAgwKozSgRMgLeYcQAAAAE2vukDJXmAlwiYAAAAAiyZoCQP8BMzDgAAIMBoKw74ixkHAAAQYOPXMFGSB3iJgAkAACDA6JIH+IsZBwAAEGDVGSX2YQK8RcAEAAAQYImqNUxtZJgATzHjAAAAAqy6BI+SPMBbzDgAAIAAq+6SR0ke4C0CJgAAgACj6QPgL2YcAABAgFVnlFjDBHiLGQcAABBg1U0fKMkDvEXABAAAEGA0fQD8xYwDAAAIsEQ8ppgrqURJHuAtZhwAAEDAuTvlUZIHeIuACQAAIODcnfIoyQO8xYwDAAAIOHdWKUWGCfAUARMAAEDAuUvyyDAB3mLGAQAABFwyQUke4BdmHAAAQMClaPoA+IaACQAAIOASriCJtuKAt5hxAAAAAZeiSx7gG2YcAABAwCUoyQN8Q8AEAAAQcO6mD5TkAd5ixgEAAARcKkFbccAvzDgAAICAoyQP8A8BEwAAQMC5mz5Qkgd4ixkHAAAQcO6sUpKACfAUMw4AACDg3CV5KUryAE8RMAEAAAScu9EDTR8AbzHjAAAAAi4Zp0se4BdmHAAAQMDZNUzxWGV5HoDpR8AEAAAQcMlSlzyyS4D3mHUAAAABZ0vyCJgA7zHrAAAAAs6W5NEhD/AeARMAAEDA2b2XyDAB3mPWAQAABBwleYB/mHUAAAABV276QEke4DUCJgAAgICzgVKSDBPgOWYdAABAwCUoyQN8w6wDAAAIOJtZaqMkD/AcARMAAEDApeKU5AF+YdYBAAAEXIJ9mADfEDABAAAEXCrOPkyAX5h1AAAAAUfTB8A/zDoAAICAy6QSpf9y6QZ4Len3AQAAAKC+d504V48/P18fetsxfh8K0HIImAAAAAJubldGX73sdL8PA2hJ5HUBAAAAoAYCJgAAAACogYAJAAAAAGogYAIAAACAGgiYAAAAAKAGAiYAAAAAqIGACQAAAABqIGACAAAAgBoImAAAAACgBgImAAAAAKiBgAkAAAAAaiBgAgAAAIAaCJgAAAAAoAYCJgAAAACogYAJAAAAAGogYAIAAACAGgiYAAAAAKAGAiYAAAAAqCHp9wF4yRgjSRoYGPD5SAAAAAD4ycYENkaopaUCpsHBQUnS4sWLfT4SAAAAAEEwODionp6emo/HzGQhVYQUCgXt2rVLXV1disVivh7LwMCAFi9erJdeeknd3d2+HgsYj1bAGAcHYxEsjEewMB7RxxgHhzFGg4ODWrBggeLx2iuVWirDFI/HtWjRIr8Po0J3dzeTJUAYj+hjjIODsQgWxiNYGI/oY4yDoV5myaLpAwAAAADUQMAEAAAAADUQMPkknU5r/fr1SqfTfh8KxHi0AsY4OBiLYGE8goXxiD7GOHxaqukDAAAAADSDDBMAAAAA1EDABAAAAAA1EDABAAAAQA0ETAAAAABQQ+QDpo0bN+r3f//31dXVpblz5+oDH/iAfve731U8xxijDRs2aMGCBWpvb9c555yj3/zmN87jr7/+uj7+8Y9rxYoV6ujo0JIlS/SJT3xC/f39Fa9z0UUXacmSJcpkMpo/f77+/M//XLt27Zr0GLdv367Vq1ervb1dCxcu1Oc//3m5e3Hs3r1bl112mVasWKF4PK5rrrmm4fd/6623atmyZcpkMjrjjDP06KOPVjy+efNmnX/++Zo9e7ZisZi2bt3a8Gs3q5XH4pFHHtGFF16oBQsWKBaL6Qc/+MG451x55ZWKxWIVf972trc19PpBEYUx3rx5s9797ndrzpw56u7u1qpVq/Tv//7vDb3/IM03qbXHI4hzLgrj8fOf/1x/8Ad/oKOPPlrt7e064YQT9I//+I8Nvf8gzY9WHosgzo3pEIUxdnvssceUTCZ12mmnNfT+gzTfIsFE3Pnnn282bdpknnrqKbN161ZzwQUXmCVLlpiDBw86z7n++utNV1eXuffee8327dvNxRdfbObPn28GBgaMMcZs377d/NEf/ZG5//77zXPPPWd++tOfmje96U3mj//4jyu+10033WR+8YtfmJ07d5rHHnvMrFq1yqxataru8fX395t58+aZSy65xGzfvt3ce++9pqury9xwww3Oc3bs2GE+8YlPmDvuuMOcdtpp5uqrr27ovd9zzz0mlUqZb37zm+bpp582V199tens7DQvvPCC85x//dd/Ndddd5355je/aSSZvr6+hl57Klp5LH70ox+Zz33uc+bee+81ksz3v//9cc+54oorzJo1a8zu3budP/v372/o9YMiCmN89dVXmy996UvmV7/6lXnmmWfMtddea1KplHnyySfrvnbQ5psxrT0eQZxzURiPJ5980tx1113mqaeeMjt27DDf/va3TUdHh/nGN75R97WDNj9aeSyCODemQxTG2Dpw4IA59thjzXnnnWdOPfXUSd970OZbFEQ+YKq2d+9eI8n87Gc/M8YYUygUTG9vr7n++uud54yMjJienh5z22231Xyd7373u6atrc1ks9maz7nvvvtMLBYzY2NjNZ9z6623mp6eHjMyMuJ8bePGjWbBggWmUCiMe/7q1asbvkh/61vfatauXVvxtRNOOMF89rOfHffcHTt2eD5hWmks3OqdoN7//vc3/XpBFvYxtk488URz3XXX1XzcmODPN2NaazzcgjrnojIef/iHf2g+9KEP1XzcmODPj1YaC7egzo3pEOYxvvjii83f//3fm/Xr1zcUMAV9voVR5Evyqtk06qxZsyRJO3bs0J49e3Teeec5z0mn01q9erUef/zxuq/T3d2tZDI54eOvv/667rzzTp111llKpVI1X+cXv/iFVq9eXbF52fnnn69du3Zp586dzby1CmNjY/r1r39d8b4k6bzzzqv7vrzUKmPRjIcfflhz587V8uXL9dGPflR79+715PtOlyiMcaFQ0ODgoPMeJhKG+Sa1zng0w885F4Xx6Ovr0+OPP67Vq1fXfN0wzI9WGYtmcD6q/TpejvGmTZv0/PPPa/369Q29zzDMtzBqqYDJGKNPfvKTOvvss3XyySdLkvbs2SNJmjdvXsVz582b5zxWbf/+/frCF76gv/iLvxj32Gc+8xl1dnbq6KOP1osvvqj77ruv7jHt2bNnwu/tPrap2Ldvn/L5fFPvy0utNBaNes973qM777xTW7Zs0Y033qj//M//1Dvf+U6Njo5O+/eeDlEZ4xtvvFGHDh3Sn/7pn9Z83aDPN6m1xqNRfs65sI/HokWLlE6n9Za3vEV/9Vd/pY985CM1Xzfo86OVxqJRnI+CMcbPPvusPvvZz+rOO++sGaBVC/p8C6uWCpjWrVunbdu26e677x73WCwWq/i7MWbc1yRpYGBAF1xwgU488cQJo/2//du/VV9fnx588EElEgldfvnlzgK+k046STNmzNCMGTP0nve8p+73nujrtTz66KPO686YMUN33nln0+/La604FpO5+OKLdcEFF+jkk0/WhRdeqAceeEDPPPOMfvjDHzb8GkEShTG+++67tWHDBn3nO9/R3LlzJYVzvkmtOR6T8XPOhX08Hn30UT3xxBO67bbb9JWvfMV5H2GcH604FpPhfOT/GOfzeV122WW67rrrtHz58gnfVxjnW1g1Fq5GwMc//nHdf//9euSRR7Ro0SLn6729vZKK0fz8+fOdr+/du3dcdD44OKg1a9ZoxowZ+v73vz9hqnX27NmaPXu2li9frje/+c1avHix/uM//kOrVq3Sj370I2WzWUlSe3u78/2rI36b9q7+/rW85S1vqehuMm/ePKXTaSUSiQlfu9HXnS6tNhZTNX/+fB1zzDF69tlnp/wafonCGH/nO9/RVVddpe9973t617ve5Xw9bPNNar3xmCqv5lwUxmPZsmWSpFNOOUWvvvqqNmzYoEsvvTR086PVxmKqOB95P8aDg4N64okn1NfXp3Xr1kkqliQbY5RMJvXggw9q1apVoZpvYRb5DJMxRuvWrdPmzZu1ZcsW54PFWrZsmXp7e/WTn/zE+drY2Jh+9rOf6ayzznK+NjAwoPPOO09tbW26//77lclkGvrekpwU9jHHHKPjjz9exx9/vBYuXChJWrVqlR555BGNjY05/+7BBx/UggULtHTp0obeY3t7u/O6xx9/vLq6utTW1qYzzjij4n1J0k9+8pOK9+WlVh2Lqdq/f79eeumlig/yoIvKGN9999268sorddddd+mCCy6o+D5hmW9S647HVE33nIvKeEz02vZ1wzI/WnUsporzkfdj3N3dre3bt2vr1q3On7Vr12rFihXaunWrzjzzzNDMt0g44m0kAuZjH/uY6enpMQ8//HBFe8yhoSHnOddff73p6ekxmzdvNtu3bzeXXnppRVvJgYEBc+aZZ5pTTjnFPPfccxWvk8vljDHG/PKXvzS33HKLbc4hVgAABj5JREFU6evrMzt37jRbtmwxZ599tjnuuOMqOqBUO3DggJk3b5659NJLzfbt283mzZtNd3f3uLaSfX19pq+vz5xxxhnmsssuM319feY3v/lN3fdu20r+y7/8i3n66afNNddcYzo7O83OnTud5+zfv9/09fWZH/7wh0aSueeee0xfX5/ZvXt30z/rybTyWAwODjr/TpK56aabTF9fn9Pic3Bw0HzqU58yjz/+uNmxY4d56KGHzKpVq8zChQud9x4GURjju+66yySTSfO1r32t4nsfOHCg7nsP2nwzprXHI4hzLgrj8dWvftXcf//95plnnjHPPPOM+da3vmW6u7vN5z73ubrvPWjzo5XHIohzYzpEYYyrNdolL2jzLQoiHzBJmvDPpk2bnOcUCgWzfv1609vba9LptHnHO95htm/f7jz+0EMP1XydHTt2GGOM2bZtmzn33HPNrFmzTDqdNkuXLjVr1641L7/88qTHuG3bNvP2t7/dpNNp09vbazZs2DCupeRE3/uYY46Z9LW/9rWvmWOOOca0tbWZ008/3WmnaW3atGnC116/fv2kr92sVh6LWsd9xRVXGGOMGRoaMuedd56ZM2eOSaVSZsmSJeaKK64wL774YkM/26CIwhivXr267ljVE6T5Zkxrj0cQ51wUxuPmm282J510kuno6DDd3d1m5cqV5tZbbzX5fH7S1w7S/GjlsQji3JgOURjjao0GTMYEa75FQcyYGlsKAwAAAECLi/waJgAAAACYKgImAAAAAKiBgAkAAAAAaiBgAgAAAIAaCJgAAAAAoAYCJgAAAACogYAJAAAAAGogYAIAAACAGgiYAAAAAKAGAiYAQChdeeWVisViisViSqVSmjdvnt797nfrW9/6lgqFQsOvc/vtt2vmzJnTd6AAgFAjYAIAhNaaNWu0e/du7dy5Uw888IDOPfdcXX311Xrf+96nXC7n9+EBACKAgAkAEFrpdFq9vb1auHChTj/9dP3d3/2d7rvvPj3wwAO6/fbbJUk33XSTTjnlFHV2dmrx4sX6y7/8Sx08eFCS9PDDD+vDH/6w+vv7nWzVhg0bJEljY2P69Kc/rYULF6qzs1NnnnmmHn74YX/eKADANwRMAIBIeec736lTTz1VmzdvliTF43HdfPPNeuqpp3THHXdoy5Yt+vSnPy1JOuuss/SVr3xF3d3d2r17t3bv3q2/+Zu/kSR9+MMf1mOPPaZ77rlH27Zt0wc/+EGtWbNGzz77rG/vDQDgvZgxxvh9EAAANOvKK6/UgQMH9IMf/GDcY5dccom2bdump59+etxj3/ve9/Sxj31M+/btk1Rcw3TNNdfowIEDznOef/55velNb9LLL7+sBQsWOF9/17vepbe+9a364he/eMTfDwAgmJJ+HwAAAEeaMUaxWEyS9NBDD+mLX/yinn76aQ0MDCiXy2lkZESHDh1SZ2fnhP/+ySeflDFGy5cvr/j66Oiojj766Gk/fgBAcBAwAQAi57/+67+0bNkyvfDCC3rve9+rtWvX6gtf+IJmzZqln//857rqqquUzWZr/vtCoaBEIqFf//rXSiQSFY/NmDFjug8fABAgBEwAgEjZsmWLtm/frr/+67/WE088oVwupxtvvFHxeHHZ7ne/+92K57e1tSmfz1d8beXKlcrn89q7d6/e/va3e3bsAIDgIWACAITW6Oio9uzZo3w+r1dffVU//vGPtXHjRr3vfe/T5Zdfru3btyuXy+mWW27RhRdeqMcee0y33XZbxWssXbpUBw8e1E9/+lOdeuqp6ujo0PLly/Vnf/Znuvzyy3XjjTdq5cqV2rdvn7Zs2aJTTjlF733ve316xwAAr9ElDwAQWj/+8Y81f/58LV26VGvWrNFDDz2km2++Wffdd58SiYROO+003XTTTfrSl76kk08+WXfeeac2btxY8RpnnXWW1q5dq4svvlhz5szRl7/8ZUnSpk2bdPnll+tTn/qUVqxYoYsuuki//OUvtXjxYj/eKgDAJ3TJAwAAAIAayDABAAAAQA0ETAAAAABQAwETAAAAANRAwAQAAAAANRAwAQAAAEANBEwAAAAAUAMBEwAAAADUQMAEAAAAADUQMAEAAABADQRMAAAAAFADARMAAAAA1PD/AQYblDHytHFFAAAAAElFTkSuQmCC",
|
334
|
+
"text/plain": [
|
335
|
+
"<Figure size 1000x600 with 1 Axes>"
|
336
|
+
]
|
337
|
+
},
|
338
|
+
"metadata": {},
|
339
|
+
"output_type": "display_data"
|
340
|
+
}
|
341
|
+
],
|
342
|
+
"source": [
|
343
|
+
"plt.figure(figsize=(10,6))\n",
|
344
|
+
"plt.plot(df['value'])\n",
|
345
|
+
"plt.xlabel('Date')\n",
|
346
|
+
"plt.ylabel('value')\n",
|
347
|
+
"plt.title('Synthetic time series Dataset')\n",
|
348
|
+
"plt.show()"
|
349
|
+
]
|
350
|
+
},
|
351
|
+
{
|
352
|
+
"cell_type": "code",
|
353
|
+
"execution_count": 23,
|
354
|
+
"id": "6c46e388-cba3-43ca-b5ef-b5dfd55d4418",
|
355
|
+
"metadata": {},
|
356
|
+
"outputs": [
|
357
|
+
{
|
358
|
+
"data": {
|
359
|
+
"text/html": [
|
360
|
+
"<div>\n",
|
361
|
+
"<style scoped>\n",
|
362
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
363
|
+
" vertical-align: middle;\n",
|
364
|
+
" }\n",
|
365
|
+
"\n",
|
366
|
+
" .dataframe tbody tr th {\n",
|
367
|
+
" vertical-align: top;\n",
|
368
|
+
" }\n",
|
369
|
+
"\n",
|
370
|
+
" .dataframe thead th {\n",
|
371
|
+
" text-align: right;\n",
|
372
|
+
" }\n",
|
373
|
+
"</style>\n",
|
374
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
375
|
+
" <thead>\n",
|
376
|
+
" <tr style=\"text-align: right;\">\n",
|
377
|
+
" <th></th>\n",
|
378
|
+
" <th>value</th>\n",
|
379
|
+
" <th>year</th>\n",
|
380
|
+
" <th>month</th>\n",
|
381
|
+
" <th>day</th>\n",
|
382
|
+
" <th>weekday</th>\n",
|
383
|
+
" </tr>\n",
|
384
|
+
" </thead>\n",
|
385
|
+
" <tbody>\n",
|
386
|
+
" <tr>\n",
|
387
|
+
" <th>2023-01-01</th>\n",
|
388
|
+
" <td>0.496714</td>\n",
|
389
|
+
" <td>2023</td>\n",
|
390
|
+
" <td>1</td>\n",
|
391
|
+
" <td>1</td>\n",
|
392
|
+
" <td>6</td>\n",
|
393
|
+
" </tr>\n",
|
394
|
+
" <tr>\n",
|
395
|
+
" <th>2023-01-02</th>\n",
|
396
|
+
" <td>-0.138264</td>\n",
|
397
|
+
" <td>2023</td>\n",
|
398
|
+
" <td>1</td>\n",
|
399
|
+
" <td>2</td>\n",
|
400
|
+
" <td>0</td>\n",
|
401
|
+
" </tr>\n",
|
402
|
+
" <tr>\n",
|
403
|
+
" <th>2023-01-03</th>\n",
|
404
|
+
" <td>0.647689</td>\n",
|
405
|
+
" <td>2023</td>\n",
|
406
|
+
" <td>1</td>\n",
|
407
|
+
" <td>3</td>\n",
|
408
|
+
" <td>1</td>\n",
|
409
|
+
" </tr>\n",
|
410
|
+
" <tr>\n",
|
411
|
+
" <th>2023-01-04</th>\n",
|
412
|
+
" <td>1.523030</td>\n",
|
413
|
+
" <td>2023</td>\n",
|
414
|
+
" <td>1</td>\n",
|
415
|
+
" <td>4</td>\n",
|
416
|
+
" <td>2</td>\n",
|
417
|
+
" </tr>\n",
|
418
|
+
" <tr>\n",
|
419
|
+
" <th>2023-01-05</th>\n",
|
420
|
+
" <td>-0.234153</td>\n",
|
421
|
+
" <td>2023</td>\n",
|
422
|
+
" <td>1</td>\n",
|
423
|
+
" <td>5</td>\n",
|
424
|
+
" <td>3</td>\n",
|
425
|
+
" </tr>\n",
|
426
|
+
" <tr>\n",
|
427
|
+
" <th>...</th>\n",
|
428
|
+
" <td>...</td>\n",
|
429
|
+
" <td>...</td>\n",
|
430
|
+
" <td>...</td>\n",
|
431
|
+
" <td>...</td>\n",
|
432
|
+
" <td>...</td>\n",
|
433
|
+
" </tr>\n",
|
434
|
+
" <tr>\n",
|
435
|
+
" <th>2023-04-06</th>\n",
|
436
|
+
" <td>-1.463515</td>\n",
|
437
|
+
" <td>2023</td>\n",
|
438
|
+
" <td>4</td>\n",
|
439
|
+
" <td>6</td>\n",
|
440
|
+
" <td>3</td>\n",
|
441
|
+
" </tr>\n",
|
442
|
+
" <tr>\n",
|
443
|
+
" <th>2023-04-07</th>\n",
|
444
|
+
" <td>0.296120</td>\n",
|
445
|
+
" <td>2023</td>\n",
|
446
|
+
" <td>4</td>\n",
|
447
|
+
" <td>7</td>\n",
|
448
|
+
" <td>4</td>\n",
|
449
|
+
" </tr>\n",
|
450
|
+
" <tr>\n",
|
451
|
+
" <th>2023-04-08</th>\n",
|
452
|
+
" <td>0.261055</td>\n",
|
453
|
+
" <td>2023</td>\n",
|
454
|
+
" <td>4</td>\n",
|
455
|
+
" <td>8</td>\n",
|
456
|
+
" <td>5</td>\n",
|
457
|
+
" </tr>\n",
|
458
|
+
" <tr>\n",
|
459
|
+
" <th>2023-04-09</th>\n",
|
460
|
+
" <td>0.005113</td>\n",
|
461
|
+
" <td>2023</td>\n",
|
462
|
+
" <td>4</td>\n",
|
463
|
+
" <td>9</td>\n",
|
464
|
+
" <td>6</td>\n",
|
465
|
+
" </tr>\n",
|
466
|
+
" <tr>\n",
|
467
|
+
" <th>2023-04-10</th>\n",
|
468
|
+
" <td>-0.234587</td>\n",
|
469
|
+
" <td>2023</td>\n",
|
470
|
+
" <td>4</td>\n",
|
471
|
+
" <td>10</td>\n",
|
472
|
+
" <td>0</td>\n",
|
473
|
+
" </tr>\n",
|
474
|
+
" </tbody>\n",
|
475
|
+
"</table>\n",
|
476
|
+
"<p>100 rows × 5 columns</p>\n",
|
477
|
+
"</div>"
|
478
|
+
],
|
479
|
+
"text/plain": [
|
480
|
+
" value year month day weekday\n",
|
481
|
+
"2023-01-01 0.496714 2023 1 1 6\n",
|
482
|
+
"2023-01-02 -0.138264 2023 1 2 0\n",
|
483
|
+
"2023-01-03 0.647689 2023 1 3 1\n",
|
484
|
+
"2023-01-04 1.523030 2023 1 4 2\n",
|
485
|
+
"2023-01-05 -0.234153 2023 1 5 3\n",
|
486
|
+
"... ... ... ... ... ...\n",
|
487
|
+
"2023-04-06 -1.463515 2023 4 6 3\n",
|
488
|
+
"2023-04-07 0.296120 2023 4 7 4\n",
|
489
|
+
"2023-04-08 0.261055 2023 4 8 5\n",
|
490
|
+
"2023-04-09 0.005113 2023 4 9 6\n",
|
491
|
+
"2023-04-10 -0.234587 2023 4 10 0\n",
|
492
|
+
"\n",
|
493
|
+
"[100 rows x 5 columns]"
|
494
|
+
]
|
495
|
+
},
|
496
|
+
"execution_count": 23,
|
497
|
+
"metadata": {},
|
498
|
+
"output_type": "execute_result"
|
499
|
+
}
|
500
|
+
],
|
501
|
+
"source": [
|
502
|
+
"df['year']=df.index.year\n",
|
503
|
+
"df['month']=df.index.month\n",
|
504
|
+
"df['day']=df.index.day\n",
|
505
|
+
"df['weekday']=df.index.weekday\n",
|
506
|
+
"df"
|
507
|
+
]
|
508
|
+
},
|
509
|
+
{
|
510
|
+
"cell_type": "code",
|
511
|
+
"execution_count": 25,
|
512
|
+
"id": "a09ab128-c1a1-40da-aa23-23862def187f",
|
513
|
+
"metadata": {},
|
514
|
+
"outputs": [
|
515
|
+
{
|
516
|
+
"data": {
|
517
|
+
"text/html": [
|
518
|
+
"<div>\n",
|
519
|
+
"<style scoped>\n",
|
520
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
521
|
+
" vertical-align: middle;\n",
|
522
|
+
" }\n",
|
523
|
+
"\n",
|
524
|
+
" .dataframe tbody tr th {\n",
|
525
|
+
" vertical-align: top;\n",
|
526
|
+
" }\n",
|
527
|
+
"\n",
|
528
|
+
" .dataframe thead th {\n",
|
529
|
+
" text-align: right;\n",
|
530
|
+
" }\n",
|
531
|
+
"</style>\n",
|
532
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
533
|
+
" <thead>\n",
|
534
|
+
" <tr style=\"text-align: right;\">\n",
|
535
|
+
" <th></th>\n",
|
536
|
+
" <th>value</th>\n",
|
537
|
+
" <th>year</th>\n",
|
538
|
+
" <th>month</th>\n",
|
539
|
+
" <th>day</th>\n",
|
540
|
+
" <th>weekday</th>\n",
|
541
|
+
" <th>lag_1</th>\n",
|
542
|
+
" </tr>\n",
|
543
|
+
" </thead>\n",
|
544
|
+
" <tbody>\n",
|
545
|
+
" <tr>\n",
|
546
|
+
" <th>2023-01-01</th>\n",
|
547
|
+
" <td>0.496714</td>\n",
|
548
|
+
" <td>2023</td>\n",
|
549
|
+
" <td>1</td>\n",
|
550
|
+
" <td>1</td>\n",
|
551
|
+
" <td>6</td>\n",
|
552
|
+
" <td>NaN</td>\n",
|
553
|
+
" </tr>\n",
|
554
|
+
" <tr>\n",
|
555
|
+
" <th>2023-01-02</th>\n",
|
556
|
+
" <td>-0.138264</td>\n",
|
557
|
+
" <td>2023</td>\n",
|
558
|
+
" <td>1</td>\n",
|
559
|
+
" <td>2</td>\n",
|
560
|
+
" <td>0</td>\n",
|
561
|
+
" <td>0.496714</td>\n",
|
562
|
+
" </tr>\n",
|
563
|
+
" <tr>\n",
|
564
|
+
" <th>2023-01-03</th>\n",
|
565
|
+
" <td>0.647689</td>\n",
|
566
|
+
" <td>2023</td>\n",
|
567
|
+
" <td>1</td>\n",
|
568
|
+
" <td>3</td>\n",
|
569
|
+
" <td>1</td>\n",
|
570
|
+
" <td>-0.138264</td>\n",
|
571
|
+
" </tr>\n",
|
572
|
+
" <tr>\n",
|
573
|
+
" <th>2023-01-04</th>\n",
|
574
|
+
" <td>1.523030</td>\n",
|
575
|
+
" <td>2023</td>\n",
|
576
|
+
" <td>1</td>\n",
|
577
|
+
" <td>4</td>\n",
|
578
|
+
" <td>2</td>\n",
|
579
|
+
" <td>0.647689</td>\n",
|
580
|
+
" </tr>\n",
|
581
|
+
" <tr>\n",
|
582
|
+
" <th>2023-01-05</th>\n",
|
583
|
+
" <td>-0.234153</td>\n",
|
584
|
+
" <td>2023</td>\n",
|
585
|
+
" <td>1</td>\n",
|
586
|
+
" <td>5</td>\n",
|
587
|
+
" <td>3</td>\n",
|
588
|
+
" <td>1.523030</td>\n",
|
589
|
+
" </tr>\n",
|
590
|
+
" <tr>\n",
|
591
|
+
" <th>...</th>\n",
|
592
|
+
" <td>...</td>\n",
|
593
|
+
" <td>...</td>\n",
|
594
|
+
" <td>...</td>\n",
|
595
|
+
" <td>...</td>\n",
|
596
|
+
" <td>...</td>\n",
|
597
|
+
" <td>...</td>\n",
|
598
|
+
" </tr>\n",
|
599
|
+
" <tr>\n",
|
600
|
+
" <th>2023-04-06</th>\n",
|
601
|
+
" <td>-1.463515</td>\n",
|
602
|
+
" <td>2023</td>\n",
|
603
|
+
" <td>4</td>\n",
|
604
|
+
" <td>6</td>\n",
|
605
|
+
" <td>3</td>\n",
|
606
|
+
" <td>-0.392108</td>\n",
|
607
|
+
" </tr>\n",
|
608
|
+
" <tr>\n",
|
609
|
+
" <th>2023-04-07</th>\n",
|
610
|
+
" <td>0.296120</td>\n",
|
611
|
+
" <td>2023</td>\n",
|
612
|
+
" <td>4</td>\n",
|
613
|
+
" <td>7</td>\n",
|
614
|
+
" <td>4</td>\n",
|
615
|
+
" <td>-1.463515</td>\n",
|
616
|
+
" </tr>\n",
|
617
|
+
" <tr>\n",
|
618
|
+
" <th>2023-04-08</th>\n",
|
619
|
+
" <td>0.261055</td>\n",
|
620
|
+
" <td>2023</td>\n",
|
621
|
+
" <td>4</td>\n",
|
622
|
+
" <td>8</td>\n",
|
623
|
+
" <td>5</td>\n",
|
624
|
+
" <td>0.296120</td>\n",
|
625
|
+
" </tr>\n",
|
626
|
+
" <tr>\n",
|
627
|
+
" <th>2023-04-09</th>\n",
|
628
|
+
" <td>0.005113</td>\n",
|
629
|
+
" <td>2023</td>\n",
|
630
|
+
" <td>4</td>\n",
|
631
|
+
" <td>9</td>\n",
|
632
|
+
" <td>6</td>\n",
|
633
|
+
" <td>0.261055</td>\n",
|
634
|
+
" </tr>\n",
|
635
|
+
" <tr>\n",
|
636
|
+
" <th>2023-04-10</th>\n",
|
637
|
+
" <td>-0.234587</td>\n",
|
638
|
+
" <td>2023</td>\n",
|
639
|
+
" <td>4</td>\n",
|
640
|
+
" <td>10</td>\n",
|
641
|
+
" <td>0</td>\n",
|
642
|
+
" <td>0.005113</td>\n",
|
643
|
+
" </tr>\n",
|
644
|
+
" </tbody>\n",
|
645
|
+
"</table>\n",
|
646
|
+
"<p>100 rows × 6 columns</p>\n",
|
647
|
+
"</div>"
|
648
|
+
],
|
649
|
+
"text/plain": [
|
650
|
+
" value year month day weekday lag_1\n",
|
651
|
+
"2023-01-01 0.496714 2023 1 1 6 NaN\n",
|
652
|
+
"2023-01-02 -0.138264 2023 1 2 0 0.496714\n",
|
653
|
+
"2023-01-03 0.647689 2023 1 3 1 -0.138264\n",
|
654
|
+
"2023-01-04 1.523030 2023 1 4 2 0.647689\n",
|
655
|
+
"2023-01-05 -0.234153 2023 1 5 3 1.523030\n",
|
656
|
+
"... ... ... ... ... ... ...\n",
|
657
|
+
"2023-04-06 -1.463515 2023 4 6 3 -0.392108\n",
|
658
|
+
"2023-04-07 0.296120 2023 4 7 4 -1.463515\n",
|
659
|
+
"2023-04-08 0.261055 2023 4 8 5 0.296120\n",
|
660
|
+
"2023-04-09 0.005113 2023 4 9 6 0.261055\n",
|
661
|
+
"2023-04-10 -0.234587 2023 4 10 0 0.005113\n",
|
662
|
+
"\n",
|
663
|
+
"[100 rows x 6 columns]"
|
664
|
+
]
|
665
|
+
},
|
666
|
+
"execution_count": 25,
|
667
|
+
"metadata": {},
|
668
|
+
"output_type": "execute_result"
|
669
|
+
}
|
670
|
+
],
|
671
|
+
"source": [
|
672
|
+
"df['lag_1']=df['value'].shift(1)\n",
|
673
|
+
"df"
|
674
|
+
]
|
675
|
+
},
|
676
|
+
{
|
677
|
+
"cell_type": "code",
|
678
|
+
"execution_count": 26,
|
679
|
+
"id": "30c06285-7362-48e2-80cb-89302f8a29e0",
|
680
|
+
"metadata": {},
|
681
|
+
"outputs": [
|
682
|
+
{
|
683
|
+
"data": {
|
684
|
+
"text/html": [
|
685
|
+
"<div>\n",
|
686
|
+
"<style scoped>\n",
|
687
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
688
|
+
" vertical-align: middle;\n",
|
689
|
+
" }\n",
|
690
|
+
"\n",
|
691
|
+
" .dataframe tbody tr th {\n",
|
692
|
+
" vertical-align: top;\n",
|
693
|
+
" }\n",
|
694
|
+
"\n",
|
695
|
+
" .dataframe thead th {\n",
|
696
|
+
" text-align: right;\n",
|
697
|
+
" }\n",
|
698
|
+
"</style>\n",
|
699
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
700
|
+
" <thead>\n",
|
701
|
+
" <tr style=\"text-align: right;\">\n",
|
702
|
+
" <th></th>\n",
|
703
|
+
" <th>value</th>\n",
|
704
|
+
" <th>year</th>\n",
|
705
|
+
" <th>month</th>\n",
|
706
|
+
" <th>day</th>\n",
|
707
|
+
" <th>weekday</th>\n",
|
708
|
+
" <th>lag_1</th>\n",
|
709
|
+
" <th>lag_2</th>\n",
|
710
|
+
" </tr>\n",
|
711
|
+
" </thead>\n",
|
712
|
+
" <tbody>\n",
|
713
|
+
" <tr>\n",
|
714
|
+
" <th>2023-01-01</th>\n",
|
715
|
+
" <td>0.496714</td>\n",
|
716
|
+
" <td>2023</td>\n",
|
717
|
+
" <td>1</td>\n",
|
718
|
+
" <td>1</td>\n",
|
719
|
+
" <td>6</td>\n",
|
720
|
+
" <td>NaN</td>\n",
|
721
|
+
" <td>NaN</td>\n",
|
722
|
+
" </tr>\n",
|
723
|
+
" <tr>\n",
|
724
|
+
" <th>2023-01-02</th>\n",
|
725
|
+
" <td>-0.138264</td>\n",
|
726
|
+
" <td>2023</td>\n",
|
727
|
+
" <td>1</td>\n",
|
728
|
+
" <td>2</td>\n",
|
729
|
+
" <td>0</td>\n",
|
730
|
+
" <td>0.496714</td>\n",
|
731
|
+
" <td>NaN</td>\n",
|
732
|
+
" </tr>\n",
|
733
|
+
" <tr>\n",
|
734
|
+
" <th>2023-01-03</th>\n",
|
735
|
+
" <td>0.647689</td>\n",
|
736
|
+
" <td>2023</td>\n",
|
737
|
+
" <td>1</td>\n",
|
738
|
+
" <td>3</td>\n",
|
739
|
+
" <td>1</td>\n",
|
740
|
+
" <td>-0.138264</td>\n",
|
741
|
+
" <td>0.496714</td>\n",
|
742
|
+
" </tr>\n",
|
743
|
+
" <tr>\n",
|
744
|
+
" <th>2023-01-04</th>\n",
|
745
|
+
" <td>1.523030</td>\n",
|
746
|
+
" <td>2023</td>\n",
|
747
|
+
" <td>1</td>\n",
|
748
|
+
" <td>4</td>\n",
|
749
|
+
" <td>2</td>\n",
|
750
|
+
" <td>0.647689</td>\n",
|
751
|
+
" <td>-0.138264</td>\n",
|
752
|
+
" </tr>\n",
|
753
|
+
" <tr>\n",
|
754
|
+
" <th>2023-01-05</th>\n",
|
755
|
+
" <td>-0.234153</td>\n",
|
756
|
+
" <td>2023</td>\n",
|
757
|
+
" <td>1</td>\n",
|
758
|
+
" <td>5</td>\n",
|
759
|
+
" <td>3</td>\n",
|
760
|
+
" <td>1.523030</td>\n",
|
761
|
+
" <td>0.647689</td>\n",
|
762
|
+
" </tr>\n",
|
763
|
+
" <tr>\n",
|
764
|
+
" <th>...</th>\n",
|
765
|
+
" <td>...</td>\n",
|
766
|
+
" <td>...</td>\n",
|
767
|
+
" <td>...</td>\n",
|
768
|
+
" <td>...</td>\n",
|
769
|
+
" <td>...</td>\n",
|
770
|
+
" <td>...</td>\n",
|
771
|
+
" <td>...</td>\n",
|
772
|
+
" </tr>\n",
|
773
|
+
" <tr>\n",
|
774
|
+
" <th>2023-04-06</th>\n",
|
775
|
+
" <td>-1.463515</td>\n",
|
776
|
+
" <td>2023</td>\n",
|
777
|
+
" <td>4</td>\n",
|
778
|
+
" <td>6</td>\n",
|
779
|
+
" <td>3</td>\n",
|
780
|
+
" <td>-0.392108</td>\n",
|
781
|
+
" <td>-0.327662</td>\n",
|
782
|
+
" </tr>\n",
|
783
|
+
" <tr>\n",
|
784
|
+
" <th>2023-04-07</th>\n",
|
785
|
+
" <td>0.296120</td>\n",
|
786
|
+
" <td>2023</td>\n",
|
787
|
+
" <td>4</td>\n",
|
788
|
+
" <td>7</td>\n",
|
789
|
+
" <td>4</td>\n",
|
790
|
+
" <td>-1.463515</td>\n",
|
791
|
+
" <td>-0.392108</td>\n",
|
792
|
+
" </tr>\n",
|
793
|
+
" <tr>\n",
|
794
|
+
" <th>2023-04-08</th>\n",
|
795
|
+
" <td>0.261055</td>\n",
|
796
|
+
" <td>2023</td>\n",
|
797
|
+
" <td>4</td>\n",
|
798
|
+
" <td>8</td>\n",
|
799
|
+
" <td>5</td>\n",
|
800
|
+
" <td>0.296120</td>\n",
|
801
|
+
" <td>-1.463515</td>\n",
|
802
|
+
" </tr>\n",
|
803
|
+
" <tr>\n",
|
804
|
+
" <th>2023-04-09</th>\n",
|
805
|
+
" <td>0.005113</td>\n",
|
806
|
+
" <td>2023</td>\n",
|
807
|
+
" <td>4</td>\n",
|
808
|
+
" <td>9</td>\n",
|
809
|
+
" <td>6</td>\n",
|
810
|
+
" <td>0.261055</td>\n",
|
811
|
+
" <td>0.296120</td>\n",
|
812
|
+
" </tr>\n",
|
813
|
+
" <tr>\n",
|
814
|
+
" <th>2023-04-10</th>\n",
|
815
|
+
" <td>-0.234587</td>\n",
|
816
|
+
" <td>2023</td>\n",
|
817
|
+
" <td>4</td>\n",
|
818
|
+
" <td>10</td>\n",
|
819
|
+
" <td>0</td>\n",
|
820
|
+
" <td>0.005113</td>\n",
|
821
|
+
" <td>0.261055</td>\n",
|
822
|
+
" </tr>\n",
|
823
|
+
" </tbody>\n",
|
824
|
+
"</table>\n",
|
825
|
+
"<p>100 rows × 7 columns</p>\n",
|
826
|
+
"</div>"
|
827
|
+
],
|
828
|
+
"text/plain": [
|
829
|
+
" value year month day weekday lag_1 lag_2\n",
|
830
|
+
"2023-01-01 0.496714 2023 1 1 6 NaN NaN\n",
|
831
|
+
"2023-01-02 -0.138264 2023 1 2 0 0.496714 NaN\n",
|
832
|
+
"2023-01-03 0.647689 2023 1 3 1 -0.138264 0.496714\n",
|
833
|
+
"2023-01-04 1.523030 2023 1 4 2 0.647689 -0.138264\n",
|
834
|
+
"2023-01-05 -0.234153 2023 1 5 3 1.523030 0.647689\n",
|
835
|
+
"... ... ... ... ... ... ... ...\n",
|
836
|
+
"2023-04-06 -1.463515 2023 4 6 3 -0.392108 -0.327662\n",
|
837
|
+
"2023-04-07 0.296120 2023 4 7 4 -1.463515 -0.392108\n",
|
838
|
+
"2023-04-08 0.261055 2023 4 8 5 0.296120 -1.463515\n",
|
839
|
+
"2023-04-09 0.005113 2023 4 9 6 0.261055 0.296120\n",
|
840
|
+
"2023-04-10 -0.234587 2023 4 10 0 0.005113 0.261055\n",
|
841
|
+
"\n",
|
842
|
+
"[100 rows x 7 columns]"
|
843
|
+
]
|
844
|
+
},
|
845
|
+
"execution_count": 26,
|
846
|
+
"metadata": {},
|
847
|
+
"output_type": "execute_result"
|
848
|
+
}
|
849
|
+
],
|
850
|
+
"source": [
|
851
|
+
"df['lag_2']=df['value'].shift(2)\n",
|
852
|
+
"df"
|
853
|
+
]
|
854
|
+
},
|
855
|
+
{
|
856
|
+
"cell_type": "code",
|
857
|
+
"execution_count": 27,
|
858
|
+
"id": "9734d51b-898b-4c6b-a1cd-a30a5cdab71b",
|
859
|
+
"metadata": {},
|
860
|
+
"outputs": [
|
861
|
+
{
|
862
|
+
"data": {
|
863
|
+
"text/html": [
|
864
|
+
"<div>\n",
|
865
|
+
"<style scoped>\n",
|
866
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
867
|
+
" vertical-align: middle;\n",
|
868
|
+
" }\n",
|
869
|
+
"\n",
|
870
|
+
" .dataframe tbody tr th {\n",
|
871
|
+
" vertical-align: top;\n",
|
872
|
+
" }\n",
|
873
|
+
"\n",
|
874
|
+
" .dataframe thead th {\n",
|
875
|
+
" text-align: right;\n",
|
876
|
+
" }\n",
|
877
|
+
"</style>\n",
|
878
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
879
|
+
" <thead>\n",
|
880
|
+
" <tr style=\"text-align: right;\">\n",
|
881
|
+
" <th></th>\n",
|
882
|
+
" <th>value</th>\n",
|
883
|
+
" <th>year</th>\n",
|
884
|
+
" <th>month</th>\n",
|
885
|
+
" <th>day</th>\n",
|
886
|
+
" <th>weekday</th>\n",
|
887
|
+
" <th>lag_1</th>\n",
|
888
|
+
" <th>lag_2</th>\n",
|
889
|
+
" <th>rollling_mean_5</th>\n",
|
890
|
+
" <th>rollling_std_5</th>\n",
|
891
|
+
" <th>rollling_min_5</th>\n",
|
892
|
+
" <th>rollling_max_5</th>\n",
|
893
|
+
" </tr>\n",
|
894
|
+
" </thead>\n",
|
895
|
+
" <tbody>\n",
|
896
|
+
" <tr>\n",
|
897
|
+
" <th>2023-01-01</th>\n",
|
898
|
+
" <td>0.496714</td>\n",
|
899
|
+
" <td>2023</td>\n",
|
900
|
+
" <td>1</td>\n",
|
901
|
+
" <td>1</td>\n",
|
902
|
+
" <td>6</td>\n",
|
903
|
+
" <td>NaN</td>\n",
|
904
|
+
" <td>NaN</td>\n",
|
905
|
+
" <td>NaN</td>\n",
|
906
|
+
" <td>NaN</td>\n",
|
907
|
+
" <td>NaN</td>\n",
|
908
|
+
" <td>NaN</td>\n",
|
909
|
+
" </tr>\n",
|
910
|
+
" <tr>\n",
|
911
|
+
" <th>2023-01-02</th>\n",
|
912
|
+
" <td>-0.138264</td>\n",
|
913
|
+
" <td>2023</td>\n",
|
914
|
+
" <td>1</td>\n",
|
915
|
+
" <td>2</td>\n",
|
916
|
+
" <td>0</td>\n",
|
917
|
+
" <td>0.496714</td>\n",
|
918
|
+
" <td>NaN</td>\n",
|
919
|
+
" <td>NaN</td>\n",
|
920
|
+
" <td>NaN</td>\n",
|
921
|
+
" <td>NaN</td>\n",
|
922
|
+
" <td>NaN</td>\n",
|
923
|
+
" </tr>\n",
|
924
|
+
" <tr>\n",
|
925
|
+
" <th>2023-01-03</th>\n",
|
926
|
+
" <td>0.647689</td>\n",
|
927
|
+
" <td>2023</td>\n",
|
928
|
+
" <td>1</td>\n",
|
929
|
+
" <td>3</td>\n",
|
930
|
+
" <td>1</td>\n",
|
931
|
+
" <td>-0.138264</td>\n",
|
932
|
+
" <td>0.496714</td>\n",
|
933
|
+
" <td>NaN</td>\n",
|
934
|
+
" <td>NaN</td>\n",
|
935
|
+
" <td>NaN</td>\n",
|
936
|
+
" <td>NaN</td>\n",
|
937
|
+
" </tr>\n",
|
938
|
+
" <tr>\n",
|
939
|
+
" <th>2023-01-04</th>\n",
|
940
|
+
" <td>1.523030</td>\n",
|
941
|
+
" <td>2023</td>\n",
|
942
|
+
" <td>1</td>\n",
|
943
|
+
" <td>4</td>\n",
|
944
|
+
" <td>2</td>\n",
|
945
|
+
" <td>0.647689</td>\n",
|
946
|
+
" <td>-0.138264</td>\n",
|
947
|
+
" <td>NaN</td>\n",
|
948
|
+
" <td>NaN</td>\n",
|
949
|
+
" <td>NaN</td>\n",
|
950
|
+
" <td>NaN</td>\n",
|
951
|
+
" </tr>\n",
|
952
|
+
" <tr>\n",
|
953
|
+
" <th>2023-01-05</th>\n",
|
954
|
+
" <td>-0.234153</td>\n",
|
955
|
+
" <td>2023</td>\n",
|
956
|
+
" <td>1</td>\n",
|
957
|
+
" <td>5</td>\n",
|
958
|
+
" <td>3</td>\n",
|
959
|
+
" <td>1.523030</td>\n",
|
960
|
+
" <td>0.647689</td>\n",
|
961
|
+
" <td>0.459003</td>\n",
|
962
|
+
" <td>0.708232</td>\n",
|
963
|
+
" <td>-0.234153</td>\n",
|
964
|
+
" <td>1.523030</td>\n",
|
965
|
+
" </tr>\n",
|
966
|
+
" <tr>\n",
|
967
|
+
" <th>...</th>\n",
|
968
|
+
" <td>...</td>\n",
|
969
|
+
" <td>...</td>\n",
|
970
|
+
" <td>...</td>\n",
|
971
|
+
" <td>...</td>\n",
|
972
|
+
" <td>...</td>\n",
|
973
|
+
" <td>...</td>\n",
|
974
|
+
" <td>...</td>\n",
|
975
|
+
" <td>...</td>\n",
|
976
|
+
" <td>...</td>\n",
|
977
|
+
" <td>...</td>\n",
|
978
|
+
" <td>...</td>\n",
|
979
|
+
" </tr>\n",
|
980
|
+
" <tr>\n",
|
981
|
+
" <th>2023-04-06</th>\n",
|
982
|
+
" <td>-1.463515</td>\n",
|
983
|
+
" <td>2023</td>\n",
|
984
|
+
" <td>4</td>\n",
|
985
|
+
" <td>6</td>\n",
|
986
|
+
" <td>3</td>\n",
|
987
|
+
" <td>-0.392108</td>\n",
|
988
|
+
" <td>-0.327662</td>\n",
|
989
|
+
" <td>-0.383339</td>\n",
|
990
|
+
" <td>0.880255</td>\n",
|
991
|
+
" <td>-1.463515</td>\n",
|
992
|
+
" <td>0.968645</td>\n",
|
993
|
+
" </tr>\n",
|
994
|
+
" <tr>\n",
|
995
|
+
" <th>2023-04-07</th>\n",
|
996
|
+
" <td>0.296120</td>\n",
|
997
|
+
" <td>2023</td>\n",
|
998
|
+
" <td>4</td>\n",
|
999
|
+
" <td>7</td>\n",
|
1000
|
+
" <td>4</td>\n",
|
1001
|
+
" <td>-1.463515</td>\n",
|
1002
|
+
" <td>-0.392108</td>\n",
|
1003
|
+
" <td>-0.517844</td>\n",
|
1004
|
+
" <td>0.640848</td>\n",
|
1005
|
+
" <td>-1.463515</td>\n",
|
1006
|
+
" <td>0.296120</td>\n",
|
1007
|
+
" </tr>\n",
|
1008
|
+
" <tr>\n",
|
1009
|
+
" <th>2023-04-08</th>\n",
|
1010
|
+
" <td>0.261055</td>\n",
|
1011
|
+
" <td>2023</td>\n",
|
1012
|
+
" <td>4</td>\n",
|
1013
|
+
" <td>8</td>\n",
|
1014
|
+
" <td>5</td>\n",
|
1015
|
+
" <td>0.296120</td>\n",
|
1016
|
+
" <td>-1.463515</td>\n",
|
1017
|
+
" <td>-0.325222</td>\n",
|
1018
|
+
" <td>0.712386</td>\n",
|
1019
|
+
" <td>-1.463515</td>\n",
|
1020
|
+
" <td>0.296120</td>\n",
|
1021
|
+
" </tr>\n",
|
1022
|
+
" <tr>\n",
|
1023
|
+
" <th>2023-04-09</th>\n",
|
1024
|
+
" <td>0.005113</td>\n",
|
1025
|
+
" <td>2023</td>\n",
|
1026
|
+
" <td>4</td>\n",
|
1027
|
+
" <td>9</td>\n",
|
1028
|
+
" <td>6</td>\n",
|
1029
|
+
" <td>0.261055</td>\n",
|
1030
|
+
" <td>0.296120</td>\n",
|
1031
|
+
" <td>-0.258667</td>\n",
|
1032
|
+
" <td>0.727486</td>\n",
|
1033
|
+
" <td>-1.463515</td>\n",
|
1034
|
+
" <td>0.296120</td>\n",
|
1035
|
+
" </tr>\n",
|
1036
|
+
" <tr>\n",
|
1037
|
+
" <th>2023-04-10</th>\n",
|
1038
|
+
" <td>-0.234587</td>\n",
|
1039
|
+
" <td>2023</td>\n",
|
1040
|
+
" <td>4</td>\n",
|
1041
|
+
" <td>10</td>\n",
|
1042
|
+
" <td>0</td>\n",
|
1043
|
+
" <td>0.005113</td>\n",
|
1044
|
+
" <td>0.261055</td>\n",
|
1045
|
+
" <td>-0.227163</td>\n",
|
1046
|
+
" <td>0.723664</td>\n",
|
1047
|
+
" <td>-1.463515</td>\n",
|
1048
|
+
" <td>0.296120</td>\n",
|
1049
|
+
" </tr>\n",
|
1050
|
+
" </tbody>\n",
|
1051
|
+
"</table>\n",
|
1052
|
+
"<p>100 rows × 11 columns</p>\n",
|
1053
|
+
"</div>"
|
1054
|
+
],
|
1055
|
+
"text/plain": [
|
1056
|
+
" value year month day weekday lag_1 lag_2 \\\n",
|
1057
|
+
"2023-01-01 0.496714 2023 1 1 6 NaN NaN \n",
|
1058
|
+
"2023-01-02 -0.138264 2023 1 2 0 0.496714 NaN \n",
|
1059
|
+
"2023-01-03 0.647689 2023 1 3 1 -0.138264 0.496714 \n",
|
1060
|
+
"2023-01-04 1.523030 2023 1 4 2 0.647689 -0.138264 \n",
|
1061
|
+
"2023-01-05 -0.234153 2023 1 5 3 1.523030 0.647689 \n",
|
1062
|
+
"... ... ... ... ... ... ... ... \n",
|
1063
|
+
"2023-04-06 -1.463515 2023 4 6 3 -0.392108 -0.327662 \n",
|
1064
|
+
"2023-04-07 0.296120 2023 4 7 4 -1.463515 -0.392108 \n",
|
1065
|
+
"2023-04-08 0.261055 2023 4 8 5 0.296120 -1.463515 \n",
|
1066
|
+
"2023-04-09 0.005113 2023 4 9 6 0.261055 0.296120 \n",
|
1067
|
+
"2023-04-10 -0.234587 2023 4 10 0 0.005113 0.261055 \n",
|
1068
|
+
"\n",
|
1069
|
+
" rollling_mean_5 rollling_std_5 rollling_min_5 rollling_max_5 \n",
|
1070
|
+
"2023-01-01 NaN NaN NaN NaN \n",
|
1071
|
+
"2023-01-02 NaN NaN NaN NaN \n",
|
1072
|
+
"2023-01-03 NaN NaN NaN NaN \n",
|
1073
|
+
"2023-01-04 NaN NaN NaN NaN \n",
|
1074
|
+
"2023-01-05 0.459003 0.708232 -0.234153 1.523030 \n",
|
1075
|
+
"... ... ... ... ... \n",
|
1076
|
+
"2023-04-06 -0.383339 0.880255 -1.463515 0.968645 \n",
|
1077
|
+
"2023-04-07 -0.517844 0.640848 -1.463515 0.296120 \n",
|
1078
|
+
"2023-04-08 -0.325222 0.712386 -1.463515 0.296120 \n",
|
1079
|
+
"2023-04-09 -0.258667 0.727486 -1.463515 0.296120 \n",
|
1080
|
+
"2023-04-10 -0.227163 0.723664 -1.463515 0.296120 \n",
|
1081
|
+
"\n",
|
1082
|
+
"[100 rows x 11 columns]"
|
1083
|
+
]
|
1084
|
+
},
|
1085
|
+
"execution_count": 27,
|
1086
|
+
"metadata": {},
|
1087
|
+
"output_type": "execute_result"
|
1088
|
+
}
|
1089
|
+
],
|
1090
|
+
"source": [
|
1091
|
+
"df['rollling_mean_5']=df['value'].rolling(5).mean()\n",
|
1092
|
+
"df['rollling_std_5']=df['value'].rolling(5).std()\n",
|
1093
|
+
"df['rollling_min_5']=df['value'].rolling(5).min()\n",
|
1094
|
+
"df['rollling_max_5']=df['value'].rolling(5).max()\n",
|
1095
|
+
"df"
|
1096
|
+
]
|
1097
|
+
},
|
1098
|
+
{
|
1099
|
+
"cell_type": "code",
|
1100
|
+
"execution_count": 28,
|
1101
|
+
"id": "44564c15-d51e-4dd8-bed9-0d5d3e340fac",
|
1102
|
+
"metadata": {},
|
1103
|
+
"outputs": [
|
1104
|
+
{
|
1105
|
+
"data": {
|
1106
|
+
"text/html": [
|
1107
|
+
"<div>\n",
|
1108
|
+
"<style scoped>\n",
|
1109
|
+
" .dataframe tbody tr th:only-of-type {\n",
|
1110
|
+
" vertical-align: middle;\n",
|
1111
|
+
" }\n",
|
1112
|
+
"\n",
|
1113
|
+
" .dataframe tbody tr th {\n",
|
1114
|
+
" vertical-align: top;\n",
|
1115
|
+
" }\n",
|
1116
|
+
"\n",
|
1117
|
+
" .dataframe thead th {\n",
|
1118
|
+
" text-align: right;\n",
|
1119
|
+
" }\n",
|
1120
|
+
"</style>\n",
|
1121
|
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1122
|
+
" <thead>\n",
|
1123
|
+
" <tr style=\"text-align: right;\">\n",
|
1124
|
+
" <th></th>\n",
|
1125
|
+
" <th>value</th>\n",
|
1126
|
+
" <th>year</th>\n",
|
1127
|
+
" <th>month</th>\n",
|
1128
|
+
" <th>day</th>\n",
|
1129
|
+
" <th>weekday</th>\n",
|
1130
|
+
" <th>lag_1</th>\n",
|
1131
|
+
" <th>lag_2</th>\n",
|
1132
|
+
" <th>rollling_mean_5</th>\n",
|
1133
|
+
" <th>rollling_std_5</th>\n",
|
1134
|
+
" <th>rollling_min_5</th>\n",
|
1135
|
+
" <th>rollling_max_5</th>\n",
|
1136
|
+
" <th>expanding_mean_5</th>\n",
|
1137
|
+
" <th>expanding_std_5</th>\n",
|
1138
|
+
" <th>expanding_min_5</th>\n",
|
1139
|
+
" <th>expanding_max_5</th>\n",
|
1140
|
+
" </tr>\n",
|
1141
|
+
" </thead>\n",
|
1142
|
+
" <tbody>\n",
|
1143
|
+
" <tr>\n",
|
1144
|
+
" <th>2023-01-01</th>\n",
|
1145
|
+
" <td>0.496714</td>\n",
|
1146
|
+
" <td>2023</td>\n",
|
1147
|
+
" <td>1</td>\n",
|
1148
|
+
" <td>1</td>\n",
|
1149
|
+
" <td>6</td>\n",
|
1150
|
+
" <td>NaN</td>\n",
|
1151
|
+
" <td>NaN</td>\n",
|
1152
|
+
" <td>NaN</td>\n",
|
1153
|
+
" <td>NaN</td>\n",
|
1154
|
+
" <td>NaN</td>\n",
|
1155
|
+
" <td>NaN</td>\n",
|
1156
|
+
" <td>NaN</td>\n",
|
1157
|
+
" <td>NaN</td>\n",
|
1158
|
+
" <td>NaN</td>\n",
|
1159
|
+
" <td>NaN</td>\n",
|
1160
|
+
" </tr>\n",
|
1161
|
+
" <tr>\n",
|
1162
|
+
" <th>2023-01-02</th>\n",
|
1163
|
+
" <td>-0.138264</td>\n",
|
1164
|
+
" <td>2023</td>\n",
|
1165
|
+
" <td>1</td>\n",
|
1166
|
+
" <td>2</td>\n",
|
1167
|
+
" <td>0</td>\n",
|
1168
|
+
" <td>0.496714</td>\n",
|
1169
|
+
" <td>NaN</td>\n",
|
1170
|
+
" <td>NaN</td>\n",
|
1171
|
+
" <td>NaN</td>\n",
|
1172
|
+
" <td>NaN</td>\n",
|
1173
|
+
" <td>NaN</td>\n",
|
1174
|
+
" <td>NaN</td>\n",
|
1175
|
+
" <td>NaN</td>\n",
|
1176
|
+
" <td>NaN</td>\n",
|
1177
|
+
" <td>NaN</td>\n",
|
1178
|
+
" </tr>\n",
|
1179
|
+
" <tr>\n",
|
1180
|
+
" <th>2023-01-03</th>\n",
|
1181
|
+
" <td>0.647689</td>\n",
|
1182
|
+
" <td>2023</td>\n",
|
1183
|
+
" <td>1</td>\n",
|
1184
|
+
" <td>3</td>\n",
|
1185
|
+
" <td>1</td>\n",
|
1186
|
+
" <td>-0.138264</td>\n",
|
1187
|
+
" <td>0.496714</td>\n",
|
1188
|
+
" <td>NaN</td>\n",
|
1189
|
+
" <td>NaN</td>\n",
|
1190
|
+
" <td>NaN</td>\n",
|
1191
|
+
" <td>NaN</td>\n",
|
1192
|
+
" <td>NaN</td>\n",
|
1193
|
+
" <td>NaN</td>\n",
|
1194
|
+
" <td>NaN</td>\n",
|
1195
|
+
" <td>NaN</td>\n",
|
1196
|
+
" </tr>\n",
|
1197
|
+
" <tr>\n",
|
1198
|
+
" <th>2023-01-04</th>\n",
|
1199
|
+
" <td>1.523030</td>\n",
|
1200
|
+
" <td>2023</td>\n",
|
1201
|
+
" <td>1</td>\n",
|
1202
|
+
" <td>4</td>\n",
|
1203
|
+
" <td>2</td>\n",
|
1204
|
+
" <td>0.647689</td>\n",
|
1205
|
+
" <td>-0.138264</td>\n",
|
1206
|
+
" <td>NaN</td>\n",
|
1207
|
+
" <td>NaN</td>\n",
|
1208
|
+
" <td>NaN</td>\n",
|
1209
|
+
" <td>NaN</td>\n",
|
1210
|
+
" <td>NaN</td>\n",
|
1211
|
+
" <td>NaN</td>\n",
|
1212
|
+
" <td>NaN</td>\n",
|
1213
|
+
" <td>NaN</td>\n",
|
1214
|
+
" </tr>\n",
|
1215
|
+
" <tr>\n",
|
1216
|
+
" <th>2023-01-05</th>\n",
|
1217
|
+
" <td>-0.234153</td>\n",
|
1218
|
+
" <td>2023</td>\n",
|
1219
|
+
" <td>1</td>\n",
|
1220
|
+
" <td>5</td>\n",
|
1221
|
+
" <td>3</td>\n",
|
1222
|
+
" <td>1.523030</td>\n",
|
1223
|
+
" <td>0.647689</td>\n",
|
1224
|
+
" <td>0.459003</td>\n",
|
1225
|
+
" <td>0.708232</td>\n",
|
1226
|
+
" <td>-0.234153</td>\n",
|
1227
|
+
" <td>1.523030</td>\n",
|
1228
|
+
" <td>0.459003</td>\n",
|
1229
|
+
" <td>0.708232</td>\n",
|
1230
|
+
" <td>-0.234153</td>\n",
|
1231
|
+
" <td>1.523030</td>\n",
|
1232
|
+
" </tr>\n",
|
1233
|
+
" <tr>\n",
|
1234
|
+
" <th>...</th>\n",
|
1235
|
+
" <td>...</td>\n",
|
1236
|
+
" <td>...</td>\n",
|
1237
|
+
" <td>...</td>\n",
|
1238
|
+
" <td>...</td>\n",
|
1239
|
+
" <td>...</td>\n",
|
1240
|
+
" <td>...</td>\n",
|
1241
|
+
" <td>...</td>\n",
|
1242
|
+
" <td>...</td>\n",
|
1243
|
+
" <td>...</td>\n",
|
1244
|
+
" <td>...</td>\n",
|
1245
|
+
" <td>...</td>\n",
|
1246
|
+
" <td>...</td>\n",
|
1247
|
+
" <td>...</td>\n",
|
1248
|
+
" <td>...</td>\n",
|
1249
|
+
" <td>...</td>\n",
|
1250
|
+
" </tr>\n",
|
1251
|
+
" <tr>\n",
|
1252
|
+
" <th>2023-04-06</th>\n",
|
1253
|
+
" <td>-1.463515</td>\n",
|
1254
|
+
" <td>2023</td>\n",
|
1255
|
+
" <td>4</td>\n",
|
1256
|
+
" <td>6</td>\n",
|
1257
|
+
" <td>3</td>\n",
|
1258
|
+
" <td>-0.392108</td>\n",
|
1259
|
+
" <td>-0.327662</td>\n",
|
1260
|
+
" <td>-0.383339</td>\n",
|
1261
|
+
" <td>0.880255</td>\n",
|
1262
|
+
" <td>-1.463515</td>\n",
|
1263
|
+
" <td>0.968645</td>\n",
|
1264
|
+
" <td>-0.111587</td>\n",
|
1265
|
+
" <td>0.925228</td>\n",
|
1266
|
+
" <td>-2.619745</td>\n",
|
1267
|
+
" <td>1.852278</td>\n",
|
1268
|
+
" </tr>\n",
|
1269
|
+
" <tr>\n",
|
1270
|
+
" <th>2023-04-07</th>\n",
|
1271
|
+
" <td>0.296120</td>\n",
|
1272
|
+
" <td>2023</td>\n",
|
1273
|
+
" <td>4</td>\n",
|
1274
|
+
" <td>7</td>\n",
|
1275
|
+
" <td>4</td>\n",
|
1276
|
+
" <td>-1.463515</td>\n",
|
1277
|
+
" <td>-0.392108</td>\n",
|
1278
|
+
" <td>-0.517844</td>\n",
|
1279
|
+
" <td>0.640848</td>\n",
|
1280
|
+
" <td>-1.463515</td>\n",
|
1281
|
+
" <td>0.296120</td>\n",
|
1282
|
+
" <td>-0.107384</td>\n",
|
1283
|
+
" <td>0.921327</td>\n",
|
1284
|
+
" <td>-2.619745</td>\n",
|
1285
|
+
" <td>1.852278</td>\n",
|
1286
|
+
" </tr>\n",
|
1287
|
+
" <tr>\n",
|
1288
|
+
" <th>2023-04-08</th>\n",
|
1289
|
+
" <td>0.261055</td>\n",
|
1290
|
+
" <td>2023</td>\n",
|
1291
|
+
" <td>4</td>\n",
|
1292
|
+
" <td>8</td>\n",
|
1293
|
+
" <td>5</td>\n",
|
1294
|
+
" <td>0.296120</td>\n",
|
1295
|
+
" <td>-1.463515</td>\n",
|
1296
|
+
" <td>-0.325222</td>\n",
|
1297
|
+
" <td>0.712386</td>\n",
|
1298
|
+
" <td>-1.463515</td>\n",
|
1299
|
+
" <td>0.296120</td>\n",
|
1300
|
+
" <td>-0.103624</td>\n",
|
1301
|
+
" <td>0.917320</td>\n",
|
1302
|
+
" <td>-2.619745</td>\n",
|
1303
|
+
" <td>1.852278</td>\n",
|
1304
|
+
" </tr>\n",
|
1305
|
+
" <tr>\n",
|
1306
|
+
" <th>2023-04-09</th>\n",
|
1307
|
+
" <td>0.005113</td>\n",
|
1308
|
+
" <td>2023</td>\n",
|
1309
|
+
" <td>4</td>\n",
|
1310
|
+
" <td>9</td>\n",
|
1311
|
+
" <td>6</td>\n",
|
1312
|
+
" <td>0.261055</td>\n",
|
1313
|
+
" <td>0.296120</td>\n",
|
1314
|
+
" <td>-0.258667</td>\n",
|
1315
|
+
" <td>0.727486</td>\n",
|
1316
|
+
" <td>-1.463515</td>\n",
|
1317
|
+
" <td>0.296120</td>\n",
|
1318
|
+
" <td>-0.102526</td>\n",
|
1319
|
+
" <td>0.912694</td>\n",
|
1320
|
+
" <td>-2.619745</td>\n",
|
1321
|
+
" <td>1.852278</td>\n",
|
1322
|
+
" </tr>\n",
|
1323
|
+
" <tr>\n",
|
1324
|
+
" <th>2023-04-10</th>\n",
|
1325
|
+
" <td>-0.234587</td>\n",
|
1326
|
+
" <td>2023</td>\n",
|
1327
|
+
" <td>4</td>\n",
|
1328
|
+
" <td>10</td>\n",
|
1329
|
+
" <td>0</td>\n",
|
1330
|
+
" <td>0.005113</td>\n",
|
1331
|
+
" <td>0.261055</td>\n",
|
1332
|
+
" <td>-0.227163</td>\n",
|
1333
|
+
" <td>0.723664</td>\n",
|
1334
|
+
" <td>-1.463515</td>\n",
|
1335
|
+
" <td>0.296120</td>\n",
|
1336
|
+
" <td>-0.103847</td>\n",
|
1337
|
+
" <td>0.908168</td>\n",
|
1338
|
+
" <td>-2.619745</td>\n",
|
1339
|
+
" <td>1.852278</td>\n",
|
1340
|
+
" </tr>\n",
|
1341
|
+
" </tbody>\n",
|
1342
|
+
"</table>\n",
|
1343
|
+
"<p>100 rows × 15 columns</p>\n",
|
1344
|
+
"</div>"
|
1345
|
+
],
|
1346
|
+
"text/plain": [
|
1347
|
+
" value year month day weekday lag_1 lag_2 \\\n",
|
1348
|
+
"2023-01-01 0.496714 2023 1 1 6 NaN NaN \n",
|
1349
|
+
"2023-01-02 -0.138264 2023 1 2 0 0.496714 NaN \n",
|
1350
|
+
"2023-01-03 0.647689 2023 1 3 1 -0.138264 0.496714 \n",
|
1351
|
+
"2023-01-04 1.523030 2023 1 4 2 0.647689 -0.138264 \n",
|
1352
|
+
"2023-01-05 -0.234153 2023 1 5 3 1.523030 0.647689 \n",
|
1353
|
+
"... ... ... ... ... ... ... ... \n",
|
1354
|
+
"2023-04-06 -1.463515 2023 4 6 3 -0.392108 -0.327662 \n",
|
1355
|
+
"2023-04-07 0.296120 2023 4 7 4 -1.463515 -0.392108 \n",
|
1356
|
+
"2023-04-08 0.261055 2023 4 8 5 0.296120 -1.463515 \n",
|
1357
|
+
"2023-04-09 0.005113 2023 4 9 6 0.261055 0.296120 \n",
|
1358
|
+
"2023-04-10 -0.234587 2023 4 10 0 0.005113 0.261055 \n",
|
1359
|
+
"\n",
|
1360
|
+
" rollling_mean_5 rollling_std_5 rollling_min_5 rollling_max_5 \\\n",
|
1361
|
+
"2023-01-01 NaN NaN NaN NaN \n",
|
1362
|
+
"2023-01-02 NaN NaN NaN NaN \n",
|
1363
|
+
"2023-01-03 NaN NaN NaN NaN \n",
|
1364
|
+
"2023-01-04 NaN NaN NaN NaN \n",
|
1365
|
+
"2023-01-05 0.459003 0.708232 -0.234153 1.523030 \n",
|
1366
|
+
"... ... ... ... ... \n",
|
1367
|
+
"2023-04-06 -0.383339 0.880255 -1.463515 0.968645 \n",
|
1368
|
+
"2023-04-07 -0.517844 0.640848 -1.463515 0.296120 \n",
|
1369
|
+
"2023-04-08 -0.325222 0.712386 -1.463515 0.296120 \n",
|
1370
|
+
"2023-04-09 -0.258667 0.727486 -1.463515 0.296120 \n",
|
1371
|
+
"2023-04-10 -0.227163 0.723664 -1.463515 0.296120 \n",
|
1372
|
+
"\n",
|
1373
|
+
" expanding_mean_5 expanding_std_5 expanding_min_5 \\\n",
|
1374
|
+
"2023-01-01 NaN NaN NaN \n",
|
1375
|
+
"2023-01-02 NaN NaN NaN \n",
|
1376
|
+
"2023-01-03 NaN NaN NaN \n",
|
1377
|
+
"2023-01-04 NaN NaN NaN \n",
|
1378
|
+
"2023-01-05 0.459003 0.708232 -0.234153 \n",
|
1379
|
+
"... ... ... ... \n",
|
1380
|
+
"2023-04-06 -0.111587 0.925228 -2.619745 \n",
|
1381
|
+
"2023-04-07 -0.107384 0.921327 -2.619745 \n",
|
1382
|
+
"2023-04-08 -0.103624 0.917320 -2.619745 \n",
|
1383
|
+
"2023-04-09 -0.102526 0.912694 -2.619745 \n",
|
1384
|
+
"2023-04-10 -0.103847 0.908168 -2.619745 \n",
|
1385
|
+
"\n",
|
1386
|
+
" expanding_max_5 \n",
|
1387
|
+
"2023-01-01 NaN \n",
|
1388
|
+
"2023-01-02 NaN \n",
|
1389
|
+
"2023-01-03 NaN \n",
|
1390
|
+
"2023-01-04 NaN \n",
|
1391
|
+
"2023-01-05 1.523030 \n",
|
1392
|
+
"... ... \n",
|
1393
|
+
"2023-04-06 1.852278 \n",
|
1394
|
+
"2023-04-07 1.852278 \n",
|
1395
|
+
"2023-04-08 1.852278 \n",
|
1396
|
+
"2023-04-09 1.852278 \n",
|
1397
|
+
"2023-04-10 1.852278 \n",
|
1398
|
+
"\n",
|
1399
|
+
"[100 rows x 15 columns]"
|
1400
|
+
]
|
1401
|
+
},
|
1402
|
+
"execution_count": 28,
|
1403
|
+
"metadata": {},
|
1404
|
+
"output_type": "execute_result"
|
1405
|
+
}
|
1406
|
+
],
|
1407
|
+
"source": [
|
1408
|
+
"df['expanding_mean_5']=df['value'].expanding(5).mean()\n",
|
1409
|
+
"df['expanding_std_5']=df['value'].expanding(5).std()\n",
|
1410
|
+
"df['expanding_min_5']=df['value'].expanding(5).min()\n",
|
1411
|
+
"df['expanding_max_5']=df['value'].expanding(5).max()\n",
|
1412
|
+
"df"
|
1413
|
+
]
|
1414
|
+
},
|
1415
|
+
{
|
1416
|
+
"cell_type": "code",
|
1417
|
+
"execution_count": null,
|
1418
|
+
"id": "d21f8ebe-35f2-41a9-97d2-7ed86a75b0f1",
|
1419
|
+
"metadata": {},
|
1420
|
+
"outputs": [],
|
1421
|
+
"source": []
|
1422
|
+
}
|
1423
|
+
],
|
1424
|
+
"metadata": {
|
1425
|
+
"kernelspec": {
|
1426
|
+
"display_name": "Python 3 (ipykernel)",
|
1427
|
+
"language": "python",
|
1428
|
+
"name": "python3"
|
1429
|
+
},
|
1430
|
+
"language_info": {
|
1431
|
+
"codemirror_mode": {
|
1432
|
+
"name": "ipython",
|
1433
|
+
"version": 3
|
1434
|
+
},
|
1435
|
+
"file_extension": ".py",
|
1436
|
+
"mimetype": "text/x-python",
|
1437
|
+
"name": "python",
|
1438
|
+
"nbconvert_exporter": "python",
|
1439
|
+
"pygments_lexer": "ipython3",
|
1440
|
+
"version": "3.11.7"
|
1441
|
+
}
|
1442
|
+
},
|
1443
|
+
"nbformat": 4,
|
1444
|
+
"nbformat_minor": 5
|
1445
|
+
}
|