nnpdf 4.1.0__py3-none-any.whl → 4.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- n3fit/backends/keras_backend/MetaModel.py +27 -26
- n3fit/backends/keras_backend/callbacks.py +16 -8
- n3fit/backends/keras_backend/internal_state.py +13 -2
- n3fit/backends/keras_backend/operations.py +26 -26
- n3fit/hyper_optimization/hyper_scan.py +3 -9
- n3fit/hyper_optimization/penalties.py +11 -8
- n3fit/hyper_optimization/rewards.py +65 -34
- n3fit/model_gen.py +344 -270
- n3fit/model_trainer.py +71 -105
- n3fit/performfit.py +2 -7
- n3fit/tests/regressions/quickcard_1.json +12 -28
- n3fit/tests/regressions/quickcard_3.json +12 -28
- n3fit/tests/regressions/quickcard_pol_1.json +10 -26
- n3fit/tests/regressions/quickcard_pol_3.json +9 -25
- n3fit/tests/regressions/quickcard_qed_1.json +11 -27
- n3fit/tests/regressions/quickcard_qed_3.json +11 -27
- n3fit/tests/test_hyperopt.py +6 -12
- n3fit/tests/test_layers.py +6 -6
- n3fit/tests/test_modelgen.py +73 -24
- n3fit/tests/test_multireplica.py +52 -16
- n3fit/tests/test_penalties.py +7 -8
- n3fit/tests/test_preprocessing.py +2 -2
- n3fit/tests/test_vpinterface.py +5 -10
- n3fit/vpinterface.py +88 -44
- {nnpdf-4.1.0.dist-info → nnpdf-4.1.1.dist-info}/METADATA +9 -3
- {nnpdf-4.1.0.dist-info → nnpdf-4.1.1.dist-info}/RECORD +105 -67
- {nnpdf-4.1.0.dist-info → nnpdf-4.1.1.dist-info}/WHEEL +1 -1
- nnpdf_data/_version.py +1 -1
- nnpdf_data/commondata/ATLAS_2JET_7TEV_R06/metadata.yaml +16 -5
- nnpdf_data/commondata/ATLAS_TTBAR_13P6TEV_TOT/data.yaml +2 -0
- nnpdf_data/commondata/ATLAS_TTBAR_13P6TEV_TOT/kinematics.yaml +13 -0
- nnpdf_data/commondata/ATLAS_TTBAR_13P6TEV_TOT/metadata.yaml +51 -0
- nnpdf_data/commondata/ATLAS_TTBAR_13P6TEV_TOT/uncertainties.yaml +17 -0
- nnpdf_data/commondata/ATLAS_TTBAR_5TEV_TOT/data.yaml +2 -0
- nnpdf_data/commondata/ATLAS_TTBAR_5TEV_TOT/kinematics.yaml +13 -0
- nnpdf_data/commondata/ATLAS_TTBAR_5TEV_TOT/metadata.yaml +52 -0
- nnpdf_data/commondata/ATLAS_TTBAR_5TEV_TOT/uncertainties.yaml +22 -0
- nnpdf_data/commondata/ATLAS_WPWM_13P6TEV_TOT/data.yaml +3 -0
- nnpdf_data/commondata/ATLAS_WPWM_13P6TEV_TOT/kinematics.yaml +17 -0
- nnpdf_data/commondata/ATLAS_WPWM_13P6TEV_TOT/metadata.yaml +57 -0
- nnpdf_data/commondata/ATLAS_WPWM_13P6TEV_TOT/uncertainties.yaml +8 -0
- nnpdf_data/commondata/ATLAS_Z0_13P6TEV_TOT/data.yaml +2 -0
- nnpdf_data/commondata/ATLAS_Z0_13P6TEV_TOT/kinematics.yaml +9 -0
- nnpdf_data/commondata/ATLAS_Z0_13P6TEV_TOT/metadata.yaml +54 -0
- nnpdf_data/commondata/ATLAS_Z0_13P6TEV_TOT/uncertainties.yaml +7 -0
- nnpdf_data/commondata/CMS_1JET_8TEV/metadata.yaml +7 -1
- nnpdf_data/commondata/CMS_2JET_7TEV/metadata.yaml +16 -19
- nnpdf_data/commondata/CMS_TTBAR_13P6TEV_TOT/data.yaml +2 -0
- nnpdf_data/commondata/CMS_TTBAR_13P6TEV_TOT/kinematics.yaml +13 -0
- nnpdf_data/commondata/CMS_TTBAR_13P6TEV_TOT/metadata.yaml +51 -0
- nnpdf_data/commondata/CMS_TTBAR_13P6TEV_TOT/uncertainties.yaml +12 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/data_d2Sig_dmttBar_dyttBar.yaml +17 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/data_dSig_dmttBar.yaml +8 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/data_dSig_dpTt.yaml +8 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/data_dSig_dyt.yaml +11 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/filter.py +260 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/kinematics_d2Sig_dmttBar_dyttBar.yaml +193 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/kinematics_dSig_dmttBar.yaml +57 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/kinematics_dSig_dpTt.yaml +57 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/kinematics_dSig_dyt.yaml +81 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/metadata.yaml +114 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/rawdata/mtt_abs_parton.yaml +828 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/rawdata/mttytt-abs_parton.yaml +1899 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/rawdata/ptt_abs_parton.yaml +828 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/rawdata/submission.yaml +47 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/rawdata/yt_abs_parton.yaml +1179 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/uncertainties_d2Sig_dmttBar_dyttBar.yaml +2282 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/uncertainties_dSig_dmttBar.yaml +1256 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/uncertainties_dSig_dpTt.yaml +1256 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_2L_138FB-1_DIF/uncertainties_dSig_dyt.yaml +1598 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_35P9FB-1_TOT/data.yaml +2 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_35P9FB-1_TOT/kinematics.yaml +13 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_35P9FB-1_TOT/metadata.yaml +51 -0
- nnpdf_data/commondata/CMS_TTBAR_13TEV_35P9FB-1_TOT/uncertainties.yaml +17 -0
- nnpdf_data/commondata/CMS_TTBAR_5TEV_TOT/metadata.yaml +1 -1
- nnpdf_data/commondata/NNPDF_POS_2P24GEV/metadata.yaml +60 -0
- nnpdf_data/commondata/dataset_names.yml +6 -1
- nnpdf_data/theory_cards/41000010.yaml +42 -0
- nnpdf_data/theory_cards/41000011.yaml +43 -0
- nnpdf_data/theory_cards/41000012.yaml +43 -0
- nnpdf_data/theory_cards/41000013.yaml +42 -0
- nnpdf_data/theory_cards/41000014.yaml +43 -0
- nnpdf_data/theory_cards/41000015.yaml +43 -0
- validphys/_version.py +1 -1
- validphys/config.py +30 -10
- validphys/convolution.py +37 -14
- validphys/coredata.py +15 -5
- validphys/covmats.py +9 -2
- validphys/dataplots.py +1 -1
- validphys/filters.py +17 -3
- validphys/fkparser.py +11 -1
- validphys/gridvalues.py +1 -0
- validphys/hessian2mc.py +5 -5
- validphys/lhaindex.py +5 -0
- validphys/loader.py +1 -1
- validphys/n3fit_data.py +107 -61
- validphys/nnprofile_default.yaml +2 -1
- validphys/pineparser.py +12 -2
- validphys/scripts/postfit.py +4 -4
- validphys/scripts/vp_pdfrename.py +8 -9
- validphys/tests/conftest.py +6 -2
- validphys/tests/test_hessian2mc.py +7 -5
- validphys/utils.py +1 -0
- n3fit/tests/regressions/quickcard_pol/filter.yml +0 -80
- n3fit/tests/regressions/quickcard_pol/nnfit/input/lockfile.yaml +0 -111
- n3fit/tests/regressions/quickcard_pol/nnfit/replica_1/quickcard_pol.exportgrid +0 -572
- n3fit/tests/regressions/quickcard_pol/nnfit/replica_1/quickcard_pol.json +0 -71
- n3fit/tests/regressions/quickcard_pol/nnfit/replica_3/quickcard_pol.exportgrid +0 -615
- n3fit/tests/regressions/quickcard_pol/nnfit/replica_3/quickcard_pol.json +0 -71
- n3fit/tests/regressions/weights.weights.h5 +0 -0
- n3fit/tests/regressions/weights_pol.weights.h5 +0 -0
- n3fit/tests/test +0 -1
- nnpdf_data/theory_cards/40000099.yaml +0 -41
- nnpdf_data/theory_cards/40000099.yml +0 -41
- {nnpdf-4.1.0.dist-info → nnpdf-4.1.1.dist-info}/entry_points.txt +0 -0
- {nnpdf-4.1.0.dist-info → nnpdf-4.1.1.dist-info/licenses}/LICENSE +0 -0
|
@@ -1,80 +0,0 @@
|
|
|
1
|
-
############################################################
|
|
2
|
-
# Regression file to test Polarized PDF fits
|
|
3
|
-
############################################################
|
|
4
|
-
description: N3FIT regression test for polarised fits
|
|
5
|
-
|
|
6
|
-
############################################################
|
|
7
|
-
dataset_inputs:
|
|
8
|
-
- {dataset: E143_NC_NOTFIXED_EP_G1, frac: 0.60, cfac: [NRM]}
|
|
9
|
-
- {dataset: E143_NC_NOTFIXED_ED_G1, frac: 0.60, cfac: [NRM]}
|
|
10
|
-
- {dataset: E154_NC_9GEV_EN_G1, frac: 0.60, cfac: [NRM]}
|
|
11
|
-
|
|
12
|
-
############################################################
|
|
13
|
-
datacuts:
|
|
14
|
-
t0pdfset: NNPDFpol10_100 # PDF set to generate t0 covmat
|
|
15
|
-
unpolarized_bc: NNPDF40_nnlo_pch_as_01180
|
|
16
|
-
q2min: 1.00 # Q2 minimum
|
|
17
|
-
w2min: 4.00 # W2 minimum
|
|
18
|
-
|
|
19
|
-
############################################################
|
|
20
|
-
# Define the unpolarized PDF set to be used as BC for POS
|
|
21
|
-
positivity_bound:
|
|
22
|
-
unpolarized_bc: NNPDF40_nnlo_pch_as_01180
|
|
23
|
-
n_std: 1.00 # Standard Deviation to be added as Error
|
|
24
|
-
|
|
25
|
-
############################################################
|
|
26
|
-
theory:
|
|
27
|
-
theoryid: 41_100_010
|
|
28
|
-
|
|
29
|
-
############################################################
|
|
30
|
-
genrep: True # on = generate MC replicas, False = use real data
|
|
31
|
-
trvlseed: 3
|
|
32
|
-
nnseed: 2
|
|
33
|
-
mcseed: 1
|
|
34
|
-
|
|
35
|
-
load: "weights_pol.weights.h5"
|
|
36
|
-
|
|
37
|
-
parameters:
|
|
38
|
-
nodes_per_layer: [25, 20, 4]
|
|
39
|
-
activation_per_layer: [tanh, tanh, linear]
|
|
40
|
-
initializer: glorot_normal
|
|
41
|
-
optimizer:
|
|
42
|
-
optimizer_name: 'RMSprop'
|
|
43
|
-
learning_rate: 0.00001
|
|
44
|
-
clipnorm: 1e-4
|
|
45
|
-
epochs: 600
|
|
46
|
-
positivity:
|
|
47
|
-
multiplier: 1.05
|
|
48
|
-
threshold: 1e-5
|
|
49
|
-
integrability:
|
|
50
|
-
multiplier: 1.5
|
|
51
|
-
threshold: 1e-2
|
|
52
|
-
stopping_patience: 0.1
|
|
53
|
-
layer_type: dense
|
|
54
|
-
dropout: 0.0
|
|
55
|
-
threshold_chi2: 5.0
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
fitting:
|
|
59
|
-
savepseudodata: false
|
|
60
|
-
fitbasis: POLARIZED_EVOL
|
|
61
|
-
sum_rules: TSR
|
|
62
|
-
basis:
|
|
63
|
-
- {fl: sng, trainable: false, smallx: [1.094, 1.118], largex: [1.46, 3.003]}
|
|
64
|
-
- {fl: g, trainable: false, smallx: [0.8189, 1.844], largex: [2.591, 5.697]}
|
|
65
|
-
- {fl: t3, trainable: false, smallx: [-0.4401, 0.9163], largex: [1.773, 3.333]}
|
|
66
|
-
- {fl: t8, trainable: false, smallx: [0.5852, 0.8537], largex: [1.533, 3.436]}
|
|
67
|
-
|
|
68
|
-
###########################################################
|
|
69
|
-
positivity:
|
|
70
|
-
posdatasets:
|
|
71
|
-
- {dataset: NNPDF_POS_2P24GEV_XGL-POLARIZED, maxlambda: 1e5}
|
|
72
|
-
|
|
73
|
-
############################################################
|
|
74
|
-
integrability:
|
|
75
|
-
integdatasets:
|
|
76
|
-
- {dataset: NNPDF_INTEG_1GEV_XGL-POLARIZED, maxlambda: 1e2}
|
|
77
|
-
|
|
78
|
-
############################################################
|
|
79
|
-
debug: true
|
|
80
|
-
double_precision: true
|
|
@@ -1,111 +0,0 @@
|
|
|
1
|
-
description: N3FIT regression test for polarised fits
|
|
2
|
-
dataset_inputs:
|
|
3
|
-
- dataset: E143_NC_NOTFIXED_EP_G1
|
|
4
|
-
frac: 0.6
|
|
5
|
-
cfac:
|
|
6
|
-
- NRM
|
|
7
|
-
- dataset: E143_NC_NOTFIXED_ED_G1
|
|
8
|
-
frac: 0.6
|
|
9
|
-
cfac:
|
|
10
|
-
- NRM
|
|
11
|
-
- dataset: E154_NC_9GEV_EN_G1
|
|
12
|
-
frac: 0.6
|
|
13
|
-
cfac:
|
|
14
|
-
- NRM
|
|
15
|
-
datacuts:
|
|
16
|
-
t0pdfset: NNPDFpol10_100
|
|
17
|
-
unpolarized_bc: NNPDF40_nnlo_pch_as_01180
|
|
18
|
-
q2min: 1.0
|
|
19
|
-
w2min: 4.0
|
|
20
|
-
positivity_bound:
|
|
21
|
-
unpolarized_bc: NNPDF40_nnlo_pch_as_01180
|
|
22
|
-
n_std: 1.0
|
|
23
|
-
theory:
|
|
24
|
-
theoryid: 41100010
|
|
25
|
-
genrep: true
|
|
26
|
-
trvlseed: 3
|
|
27
|
-
nnseed: 2
|
|
28
|
-
mcseed: 1
|
|
29
|
-
load: weights_pol.weights.h5
|
|
30
|
-
parameters:
|
|
31
|
-
nodes_per_layer:
|
|
32
|
-
- 25
|
|
33
|
-
- 20
|
|
34
|
-
- 4
|
|
35
|
-
activation_per_layer:
|
|
36
|
-
- tanh
|
|
37
|
-
- tanh
|
|
38
|
-
- linear
|
|
39
|
-
initializer: glorot_normal
|
|
40
|
-
optimizer:
|
|
41
|
-
optimizer_name: RMSprop
|
|
42
|
-
learning_rate: 1e-05
|
|
43
|
-
clipnorm: 0.0001
|
|
44
|
-
epochs: 600
|
|
45
|
-
positivity:
|
|
46
|
-
multiplier: 1.05
|
|
47
|
-
threshold: 1e-05
|
|
48
|
-
integrability:
|
|
49
|
-
multiplier: 1.5
|
|
50
|
-
threshold: 0.01
|
|
51
|
-
stopping_patience: 0.1
|
|
52
|
-
layer_type: dense
|
|
53
|
-
dropout: 0.0
|
|
54
|
-
threshold_chi2: 5.0
|
|
55
|
-
fitting:
|
|
56
|
-
savepseudodata: false
|
|
57
|
-
fitbasis: POLARIZED_EVOL
|
|
58
|
-
sum_rules: TSR
|
|
59
|
-
basis:
|
|
60
|
-
- fl: sng
|
|
61
|
-
trainable: false
|
|
62
|
-
smallx:
|
|
63
|
-
- 1.094
|
|
64
|
-
- 1.118
|
|
65
|
-
largex:
|
|
66
|
-
- 1.46
|
|
67
|
-
- 3.003
|
|
68
|
-
- fl: g
|
|
69
|
-
trainable: false
|
|
70
|
-
smallx:
|
|
71
|
-
- 0.8189
|
|
72
|
-
- 1.844
|
|
73
|
-
largex:
|
|
74
|
-
- 2.591
|
|
75
|
-
- 5.697
|
|
76
|
-
- fl: t3
|
|
77
|
-
trainable: false
|
|
78
|
-
smallx:
|
|
79
|
-
- -0.4401
|
|
80
|
-
- 0.9163
|
|
81
|
-
largex:
|
|
82
|
-
- 1.773
|
|
83
|
-
- 3.333
|
|
84
|
-
- fl: t8
|
|
85
|
-
trainable: false
|
|
86
|
-
smallx:
|
|
87
|
-
- 0.5852
|
|
88
|
-
- 0.8537
|
|
89
|
-
largex:
|
|
90
|
-
- 1.533
|
|
91
|
-
- 3.436
|
|
92
|
-
positivity:
|
|
93
|
-
posdatasets:
|
|
94
|
-
- dataset: NNPDF_POS_2P24GEV_XGL-POLARIZED
|
|
95
|
-
maxlambda: 100000.0
|
|
96
|
-
integrability:
|
|
97
|
-
integdatasets:
|
|
98
|
-
- dataset: NNPDF_INTEG_1GEV_XGL-POLARIZED
|
|
99
|
-
maxlambda: 100.0
|
|
100
|
-
debug: true
|
|
101
|
-
double_precision: true
|
|
102
|
-
use_cuts: internal
|
|
103
|
-
use_t0: true
|
|
104
|
-
actions_:
|
|
105
|
-
- datacuts::theory::fitting performfit
|
|
106
|
-
allow_legacy_names: false
|
|
107
|
-
fiatlux:
|
|
108
|
-
use_thcovmat_in_fitting: false
|
|
109
|
-
use_thcovmat_in_sampling: false
|
|
110
|
-
data_grouping_recorded_spec_:
|
|
111
|
-
standard_report: experiment
|