nmdc-runtime 2.10.0__py3-none-any.whl → 2.11.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nmdc-runtime might be problematic. Click here for more details.

Files changed (77) hide show
  1. nmdc_runtime/Dockerfile +177 -0
  2. nmdc_runtime/api/analytics.py +22 -2
  3. nmdc_runtime/api/core/idgen.py +36 -6
  4. nmdc_runtime/api/db/mongo.py +0 -12
  5. nmdc_runtime/api/endpoints/find.py +65 -225
  6. nmdc_runtime/api/endpoints/lib/linked_instances.py +180 -0
  7. nmdc_runtime/api/endpoints/nmdcschema.py +65 -144
  8. nmdc_runtime/api/endpoints/objects.py +4 -11
  9. nmdc_runtime/api/endpoints/operations.py +0 -27
  10. nmdc_runtime/api/endpoints/queries.py +22 -0
  11. nmdc_runtime/api/endpoints/sites.py +0 -24
  12. nmdc_runtime/api/endpoints/util.py +57 -35
  13. nmdc_runtime/api/entrypoint.sh +7 -0
  14. nmdc_runtime/api/main.py +84 -60
  15. nmdc_runtime/api/models/util.py +12 -5
  16. nmdc_runtime/api/openapi.py +116 -180
  17. nmdc_runtime/api/swagger_ui/assets/custom-elements.js +522 -0
  18. nmdc_runtime/api/swagger_ui/assets/script.js +247 -0
  19. nmdc_runtime/api/swagger_ui/assets/style.css +155 -0
  20. nmdc_runtime/api/swagger_ui/swagger_ui.py +34 -0
  21. nmdc_runtime/minter/adapters/repository.py +21 -0
  22. nmdc_runtime/minter/domain/model.py +20 -0
  23. nmdc_runtime/site/changesheets/data/OmicsProcessing-to-catted-Biosamples.tsv +1561 -0
  24. nmdc_runtime/site/changesheets/scripts/missing_neon_soils_ecosystem_data.py +311 -0
  25. nmdc_runtime/site/changesheets/scripts/neon_soils_add_ncbi_ids.py +210 -0
  26. nmdc_runtime/site/dagster.yaml +53 -0
  27. nmdc_runtime/site/entrypoint-daemon.sh +26 -0
  28. nmdc_runtime/site/entrypoint-dagit-readonly.sh +26 -0
  29. nmdc_runtime/site/entrypoint-dagit.sh +26 -0
  30. nmdc_runtime/site/export/ncbi_xml.py +632 -11
  31. nmdc_runtime/site/export/ncbi_xml_utils.py +114 -0
  32. nmdc_runtime/site/graphs.py +7 -0
  33. nmdc_runtime/site/ops.py +92 -34
  34. nmdc_runtime/site/repository.py +2 -0
  35. nmdc_runtime/site/resources.py +16 -3
  36. nmdc_runtime/site/translation/submission_portal_translator.py +82 -14
  37. nmdc_runtime/site/workspace.yaml +13 -0
  38. nmdc_runtime/static/NMDC_logo.svg +1073 -0
  39. nmdc_runtime/static/ORCID-iD_icon_vector.svg +4 -0
  40. nmdc_runtime/static/README.md +5 -0
  41. nmdc_runtime/static/favicon.ico +0 -0
  42. nmdc_runtime/util.py +87 -1
  43. nmdc_runtime-2.11.1.dist-info/METADATA +46 -0
  44. {nmdc_runtime-2.10.0.dist-info → nmdc_runtime-2.11.1.dist-info}/RECORD +47 -57
  45. {nmdc_runtime-2.10.0.dist-info → nmdc_runtime-2.11.1.dist-info}/WHEEL +1 -2
  46. nmdc_runtime/api/endpoints/ids.py +0 -192
  47. nmdc_runtime/client/__init__.py +0 -0
  48. nmdc_runtime/containers.py +0 -14
  49. nmdc_runtime/core/__init__.py +0 -0
  50. nmdc_runtime/core/db/Database.py +0 -13
  51. nmdc_runtime/core/db/__init__.py +0 -0
  52. nmdc_runtime/core/exceptions/__init__.py +0 -23
  53. nmdc_runtime/core/exceptions/base.py +0 -47
  54. nmdc_runtime/core/exceptions/token.py +0 -13
  55. nmdc_runtime/domain/__init__.py +0 -0
  56. nmdc_runtime/domain/users/__init__.py +0 -0
  57. nmdc_runtime/domain/users/queriesInterface.py +0 -18
  58. nmdc_runtime/domain/users/userSchema.py +0 -37
  59. nmdc_runtime/domain/users/userService.py +0 -14
  60. nmdc_runtime/infrastructure/__init__.py +0 -0
  61. nmdc_runtime/infrastructure/database/__init__.py +0 -0
  62. nmdc_runtime/infrastructure/database/db.py +0 -3
  63. nmdc_runtime/infrastructure/database/models/__init__.py +0 -0
  64. nmdc_runtime/infrastructure/database/models/user.py +0 -1
  65. nmdc_runtime/lib/__init__.py +0 -1
  66. nmdc_runtime/lib/extract_nmdc_data.py +0 -33
  67. nmdc_runtime/lib/load_nmdc_data.py +0 -121
  68. nmdc_runtime/lib/nmdc_dataframes.py +0 -825
  69. nmdc_runtime/lib/nmdc_etl_class.py +0 -396
  70. nmdc_runtime/lib/transform_nmdc_data.py +0 -1117
  71. nmdc_runtime/site/drsobjects/__init__.py +0 -0
  72. nmdc_runtime/site/drsobjects/ingest.py +0 -93
  73. nmdc_runtime/site/drsobjects/registration.py +0 -131
  74. nmdc_runtime-2.10.0.dist-info/METADATA +0 -265
  75. nmdc_runtime-2.10.0.dist-info/top_level.txt +0 -1
  76. {nmdc_runtime-2.10.0.dist-info → nmdc_runtime-2.11.1.dist-info}/entry_points.txt +0 -0
  77. {nmdc_runtime-2.10.0.dist-info → nmdc_runtime-2.11.1.dist-info}/licenses/LICENSE +0 -0
@@ -1,21 +1,17 @@
1
- from operator import itemgetter
2
- from typing import List, Annotated
1
+ import logging
2
+ from typing import Annotated
3
3
 
4
4
  from fastapi import APIRouter, Depends, Path, Query
5
- from jinja2 import Environment, PackageLoader, select_autoescape
6
- from nmdc_runtime.util import get_nmdc_jsonschema_dict
7
5
  from pymongo.database import Database as MongoDatabase
8
- from starlette.responses import HTMLResponse
9
- from toolz import merge, assoc_in
10
6
 
11
7
  from nmdc_schema.get_nmdc_view import ViewGetter
12
8
  from nmdc_runtime.api.core.util import raise404_if_none
13
9
  from nmdc_runtime.api.db.mongo import (
14
10
  get_mongo_db,
15
- activity_collection_names,
16
11
  get_planned_process_collection_names,
17
12
  get_nonempty_nmdc_schema_collection_names,
18
13
  )
14
+ from nmdc_runtime.api.endpoints.nmdcschema import get_linked_instances
19
15
  from nmdc_runtime.api.endpoints.util import (
20
16
  find_resources,
21
17
  strip_oid,
@@ -25,9 +21,8 @@ from nmdc_runtime.api.models.metadata import Doc
25
21
  from nmdc_runtime.api.models.util import (
26
22
  FindResponse,
27
23
  FindRequest,
28
- entity_attributes_to_index,
29
24
  )
30
- from nmdc_runtime.util import get_class_names_from_collection_spec
25
+
31
26
 
32
27
  router = APIRouter()
33
28
 
@@ -178,133 +173,71 @@ def find_data_objects_for_study(
178
173
  is a list of the `DataObject`s associated with that `Biosample`.
179
174
  """
180
175
  biosample_data_objects = []
181
- study = raise404_if_none(
182
- mdb.study_set.find_one({"id": study_id}, ["id"]), detail="Study not found"
183
- )
184
-
185
- # Note: With nmdc-schema v10 (legacy schema), we used the field named `part_of` here.
186
- # With nmdc-schema v11 (Berkeley schema), we use the field named `associated_studies` here.
187
- biosamples = mdb.biosample_set.find({"associated_studies": study["id"]}, ["id"])
188
- biosample_ids = [biosample["id"] for biosample in biosamples]
189
-
190
- # SchemaView interface to NMDC Schema
191
- nmdc_view = ViewGetter()
192
- nmdc_sv = nmdc_view.get_view()
193
- dg_descendants = [
194
- (f"nmdc:{t}" if ":" not in t else t)
195
- for t in nmdc_sv.class_descendants("DataGeneration")
196
- ]
197
-
198
- def collect_data_objects(doc_ids, collected_objects, unique_ids):
199
- """Helper function to collect data objects from `has_input` and `has_output` references."""
200
- for doc_id in doc_ids:
201
- # Check if this is a DataObject by looking at the document's type directly
202
- doc = mdb.alldocs.find_one({"id": doc_id}, {"type": 1})
203
- if (
204
- doc
205
- and doc.get("type") == "nmdc:DataObject"
206
- and doc_id not in unique_ids
207
- ):
208
- data_obj = mdb.data_object_set.find_one({"id": doc_id})
209
- if data_obj:
210
- collected_objects.append(strip_oid(data_obj))
211
- unique_ids.add(doc_id)
212
-
213
- # Another way in which DataObjects can be related to Biosamples is through the
214
- # `was_informed_by` key/slot. We need to link records from the `workflow_execution_set`
215
- # collection that are "informed" by the same DataGeneration records that created
216
- # the outputs above. Then we need to get additional DataObject records that are
217
- # created by this linkage.
218
- def process_informed_by_docs(doc, collected_objects, unique_ids):
219
- """Process documents linked by `was_informed_by` and collect relevant data objects."""
220
- # Note: As of nmdc-schema 11.9.0, the `was_informed_by` field, if defined,
221
- # will contain a list of strings. In MongoDB, the `{k: v}` filter
222
- # can be used to check whether either (a) the value of field `f` is
223
- # an array containing `v` as one of its elements, or (b) the value
224
- # of field `f` is exactly equal to `v`. We rely on behavior (a) here.
225
- informed_by_docs = mdb.workflow_execution_set.find(
226
- {"was_informed_by": doc["id"]}
227
- )
228
- for informed_doc in informed_by_docs:
229
- collect_data_objects(
230
- informed_doc.get("has_input", []), collected_objects, unique_ids
231
- )
232
- collect_data_objects(
233
- informed_doc.get("has_output", []), collected_objects, unique_ids
234
- )
235
176
 
236
- biosample_data_objects = []
177
+ # Respond with an error if the specified `Study` does not exist.
178
+ # Note: We project only the `_id` field, to minimize data transfer.
179
+ raise404_if_none(
180
+ mdb["study_set"].find_one({"id": study_id}, projection={"_id": 1}),
181
+ detail="Study not found",
182
+ )
237
183
 
238
- for biosample_id in biosample_ids:
239
- current_ids = [biosample_id]
240
- collected_data_objects = []
241
- unique_ids = set()
242
-
243
- # Iterate over records in the `alldocs` collection. Look for
244
- # records that have the given biosample_id as value on the
245
- # `has_input` key/slot. The retrieved documents might also have a
246
- # `has_output` key/slot associated with them. Get the value of the
247
- # `has_output` key and check if it's type is `nmdc:DataObject`. If
248
- # it's not, repeat the process till it is.
249
- while current_ids:
250
- new_current_ids = []
251
- for current_id in current_ids:
252
- # Query to find all documents with current_id as the value on
253
- # `has_input` slot
254
- for doc in mdb.alldocs.find({"has_input": current_id}):
255
- has_output = doc.get("has_output", [])
256
-
257
- # Process `DataGeneration` type documents linked by `was_informed_by`
258
- if not has_output and any(
259
- t in dg_descendants for t in doc.get("_type_and_ancestors", [])
260
- ):
261
- process_informed_by_docs(
262
- doc, collected_data_objects, unique_ids
263
- )
264
- continue
265
-
266
- collect_data_objects(has_output, collected_data_objects, unique_ids)
267
- # Add non-DataObject outputs to continue the chain
268
- for op in has_output:
269
- doc_check = mdb.alldocs.find_one({"id": op}, {"type": 1})
270
- if doc_check and doc_check.get("type") != "nmdc:DataObject":
271
- new_current_ids.append(op)
272
-
273
- if any(
274
- t in dg_descendants for t in doc.get("_type_and_ancestors", [])
275
- ):
276
- process_informed_by_docs(
277
- doc, collected_data_objects, unique_ids
278
- )
279
-
280
- # Also check if current_id is a DataObject that serves as input to other processes
281
- current_doc_type = mdb.alldocs.find_one({"id": current_id}, {"type": 1})
282
- if (
283
- current_doc_type
284
- and current_doc_type.get("type") == "nmdc:DataObject"
285
- ):
286
- # Find all documents in alldocs that have this DataObject as input
287
- for doc in mdb.alldocs.find({"has_input": current_id}):
288
- has_output = doc.get("has_output", [])
289
- # Process outputs from these documents
290
- collect_data_objects(
291
- has_output, collected_data_objects, unique_ids
292
- )
293
- # Add non-DataObject outputs to continue the chain
294
- for op in has_output:
295
- doc_check = mdb.alldocs.find_one({"id": op}, {"type": 1})
296
- if doc_check and doc_check.get("type") != "nmdc:DataObject":
297
- new_current_ids.append(op)
298
-
299
- current_ids = new_current_ids
300
-
301
- if collected_data_objects:
302
- result = {
184
+ # Use the `get_linked_instances` function—which is the function that
185
+ # underlies the `/nmdcschema/linked_instances` API endpoint—to get all
186
+ # the `Biosample`s that are downstream of the specified `Study`.
187
+ #
188
+ # Note: The `get_linked_instances` function requires that a `max_page_size`
189
+ # integer argument be passed in. In our case, we want to get _all_ of
190
+ # the instances. Python has no "infinity" integer; and, even if it did,
191
+ # if we were to specify too large of an integer, we'd get this error:
192
+ # > "OverflowError: MongoDB can only handle up to 8-byte ints"
193
+ # So, as a workaround, we pass in a number that is large enough that we
194
+ # think it will account for all cases in practice (e.g., a study having
195
+ # a trillion biosamples or a trillion data objects).
196
+ #
197
+ # TODO: Update the `get_linked_instances` function to optionally impose _no_ limit.
198
+ #
199
+ large_max_page_size: int = 1_000_000_000_000
200
+ linked_biosamples_result: dict = get_linked_instances(
201
+ ids=[study_id],
202
+ types=["nmdc:Biosample"],
203
+ hydrate=False, # we'll only use their `id` values
204
+ page_token=None,
205
+ max_page_size=large_max_page_size,
206
+ mdb=mdb,
207
+ )
208
+ biosample_ids = [d["id"] for d in linked_biosamples_result.get("resources", [])]
209
+ logging.debug(f"Found {len(biosample_ids)} Biosamples for Study {study_id}")
210
+
211
+ # Get all the `DataObject`s that are downstream from any of those `Biosample`s.
212
+ data_objects_by_biosample_id = {}
213
+ linked_data_objects_result: dict = get_linked_instances(
214
+ ids=biosample_ids,
215
+ types=["nmdc:DataObject"],
216
+ hydrate=True, # we want the full `DataObject` documents
217
+ page_token=None,
218
+ max_page_size=large_max_page_size,
219
+ mdb=mdb,
220
+ )
221
+ for data_object in linked_data_objects_result.get("resources", []):
222
+ upstream_biosample_id = data_object["_downstream_of"][0]
223
+ if upstream_biosample_id not in data_objects_by_biosample_id.keys():
224
+ data_objects_by_biosample_id[upstream_biosample_id] = []
225
+
226
+ # Strip away the metadata fields injected by `get_linked_instances()`.
227
+ data_object.pop("_upstream_of", None)
228
+ data_object.pop("_downstream_of", None)
229
+ data_objects_by_biosample_id[upstream_biosample_id].append(data_object)
230
+
231
+ # Convert the `data_objects_by_biosample_id` dictionary into a list of dicts;
232
+ # i.e., into the format returned by the initial version of this API endpoint,
233
+ # which did not use the `get_linked_instances` function under the hood.
234
+ for biosample_id, data_objects in data_objects_by_biosample_id.items():
235
+ biosample_data_objects.append(
236
+ {
303
237
  "biosample_id": biosample_id,
304
- "data_objects": collected_data_objects,
238
+ "data_objects": data_objects,
305
239
  }
306
- biosample_data_objects.append(result)
307
-
240
+ )
308
241
  return biosample_data_objects
309
242
 
310
243
 
@@ -699,96 +632,3 @@ def find_related_objects_for_workflow_execution(
699
632
  }
700
633
 
701
634
  return response
702
-
703
-
704
- jinja_env = Environment(
705
- loader=PackageLoader("nmdc_runtime"), autoescape=select_autoescape()
706
- )
707
-
708
-
709
- def attr_index_sort_key(attr):
710
- return "_" if attr == "id" else attr
711
-
712
-
713
- def documentation_links(jsonschema_dict, collection_names) -> dict:
714
- """This function constructs a hierarchical catalog of (links to) schema classes and their slots.
715
-
716
- The returned dictionary `doc_links` is used as input to the Jinja template `nmdc_runtime/templates/search.html`
717
- in order to support user experience for `GET /search`.
718
- """
719
-
720
- # Note: All documentation URLs generated within this function will begin with this.
721
- base_url = r"https://w3id.org/nmdc"
722
-
723
- # Initialize dictionary in which to associate key/value pairs via the following for loop.
724
- doc_links = {}
725
-
726
- for collection_name in collection_names:
727
- # Since a given collection can be associated with multiple classes, the `doc_links` dictionary
728
- # will have a _list_ of values for each collection.
729
- class_descriptors = []
730
-
731
- # If the collection name is one that the `search.html` page has a dedicated section for,
732
- # give it a top-level key; otherwise, nest it under `activity_set`.
733
- key_hierarchy: List[str] = ["activity_set", collection_name]
734
- if collection_name in ("biosample_set", "study_set", "data_object_set"):
735
- key_hierarchy = [collection_name]
736
-
737
- # Process the name of each class that the schema associates with this collection.
738
- collection_spec = jsonschema_dict["$defs"]["Database"]["properties"][
739
- collection_name
740
- ]
741
- class_names = get_class_names_from_collection_spec(collection_spec)
742
- for idx, class_name in enumerate(class_names):
743
- # Make a list of dictionaries, each of which describes one attribute of this class.
744
- entity_attrs = list(jsonschema_dict["$defs"][class_name]["properties"])
745
- entity_attr_descriptors = [
746
- {"url": f"{base_url}/{attr_name}", "attr_name": attr_name}
747
- for attr_name in entity_attrs
748
- ]
749
-
750
- # Make a dictionary describing this class.
751
- class_descriptor = {
752
- "collection_name": collection_name,
753
- "entity_url": f"{base_url}/{class_name}",
754
- "entity_name": class_name,
755
- "entity_attrs": sorted(
756
- entity_attr_descriptors, key=itemgetter("attr_name")
757
- ),
758
- }
759
-
760
- # Add that descriptor to this collection's list of class descriptors.
761
- class_descriptors.append(class_descriptor)
762
-
763
- # Add a key/value pair describing this collection to the `doc_links` dictionary.
764
- # Reference: https://toolz.readthedocs.io/en/latest/api.html#toolz.dicttoolz.assoc_in
765
- doc_links = assoc_in(doc_links, keys=key_hierarchy, value=class_descriptors)
766
-
767
- return doc_links
768
-
769
-
770
- @router.get("/search", response_class=HTMLResponse, include_in_schema=False)
771
- def search_page(
772
- mdb: MongoDatabase = Depends(get_mongo_db),
773
- ):
774
- template = jinja_env.get_template("search.html")
775
- indexed_entity_attributes = merge(
776
- {n: {"id"} for n in activity_collection_names(mdb)},
777
- {
778
- coll: sorted(attrs | {"id"}, key=attr_index_sort_key)
779
- for coll, attrs in entity_attributes_to_index.items()
780
- },
781
- )
782
- doc_links = documentation_links(
783
- get_nmdc_jsonschema_dict(),
784
- (
785
- list(activity_collection_names(mdb))
786
- + ["biosample_set", "study_set", "data_object_set"]
787
- ),
788
- )
789
- html_content = template.render(
790
- activity_collection_names=sorted(activity_collection_names(mdb)),
791
- indexed_entity_attributes=indexed_entity_attributes,
792
- doc_links=doc_links,
793
- )
794
- return HTMLResponse(content=html_content, status_code=200)
@@ -0,0 +1,180 @@
1
+ """
2
+
3
+ This module houses logic for the `GET /nmdcschema/linked_instances` endpoint, defined as
4
+ `nmdc_runtime.api.endpoints.nmdcschema.linked_instances`, to avoid (further) bloating the
5
+ `nmdc_runtime.api.endpoints.nmdcschema` module.
6
+
7
+ """
8
+
9
+ from typing import Literal, Any
10
+
11
+ from bson import ObjectId
12
+ from pymongo.collection import Collection as MongoCollection
13
+ from pymongo.database import Database as MongoDatabase
14
+ from toolz import merge
15
+
16
+ from nmdc_runtime.api.core.util import hash_from_str
17
+ from nmdc_runtime.util import get_class_name_to_collection_names_map, nmdc_schema_view
18
+
19
+
20
+ def hash_from_ids_and_types(ids: list[str], types: list[str]) -> str:
21
+ """A quick hash as a function of `ids` and `types`.
22
+
23
+ This will serve as part of a temporary mongo collection name.
24
+ Because it will only be "part of" the name, avoiding hash collisions isn't a priority.
25
+
26
+ Returns a hex digest truncated to 8 characters, so 16**8 ≈ 4M possible values.
27
+ """
28
+ return hash_from_str(
29
+ ",".join(sorted(ids)) + "." + ",".join(sorted(types)), algo="md5"
30
+ )[:8]
31
+
32
+
33
+ def temp_linked_instances_collection_name(ids: list[str], types: list[str]) -> str:
34
+ """A name for a temporary mongo collection to store linked instances in service of an API request."""
35
+ return f"_runtime.tmp.linked_instances.{hash_from_ids_and_types(ids=ids,types=types)}.{ObjectId()}"
36
+
37
+
38
+ def gather_linked_instances(
39
+ alldocs_collection: MongoCollection,
40
+ ids: list[str],
41
+ types: list[str],
42
+ ) -> str:
43
+ """Collect linked instances and stores them in a new temporary collection.
44
+
45
+ Run an aggregation pipeline over `alldocs_collection` that collects ∈`types` instances linked to `ids`.
46
+ The pipeline is run twice, once for each of {"downstream", "upstream"} directions.
47
+ """
48
+ merge_into_collection_name = temp_linked_instances_collection_name(
49
+ ids=ids, types=types
50
+ )
51
+ for direction in ["downstream", "upstream"]:
52
+ _ = list(
53
+ alldocs_collection.aggregate(
54
+ pipeline_for_direction(
55
+ ids=ids,
56
+ types=types,
57
+ direction=direction,
58
+ merge_into_collection_name=merge_into_collection_name,
59
+ ),
60
+ allowDiskUse=True,
61
+ )
62
+ )
63
+ return merge_into_collection_name
64
+
65
+
66
+ def pipeline_for_direction(
67
+ ids: list[str],
68
+ types: list[str],
69
+ direction: Literal["downstream", "upstream"],
70
+ merge_into_collection_name: str,
71
+ alldocs_collection_name: str = "alldocs",
72
+ ) -> list:
73
+ """A pure function that returns the aggregation pipeline for `direction`.
74
+
75
+ The pipeline
76
+ - collects ∈`types` instances linked to `ids` along `direction`,
77
+ - retains only those document fields essential to the caller, and
78
+ - ensures the collected instances are present, and properly updated if applicable, in a merge-target collection.
79
+ """
80
+ return pipeline_for_instances_linked_to_ids_by_direction(
81
+ ids=ids,
82
+ types=types,
83
+ direction=direction,
84
+ alldocs_collection_name=alldocs_collection_name,
85
+ ) + [
86
+ {"$project": {"id": 1, "type": 1, f"_{direction}_of": 1}},
87
+ pipeline_stage_for_merging_instances_and_grouping_link_provenance_by_direction(
88
+ merge_into_collection_name=merge_into_collection_name, direction=direction
89
+ ),
90
+ ]
91
+
92
+
93
+ def pipeline_for_instances_linked_to_ids_by_direction(
94
+ ids: list[str],
95
+ types: list[str],
96
+ direction: Literal["downstream", "upstream"],
97
+ alldocs_collection_name: str = "alldocs",
98
+ slim: bool = True,
99
+ ) -> list[dict[str, Any]]:
100
+ """
101
+ Returns an aggregation pipeline that:
102
+ - traverses the graph of documents in the alldocs collection, following `direction`-specific relationships
103
+ to discover documents linked to the documents given by `ids`.
104
+ - `$unwind`s the collected (via `$graphLookup`) docs,
105
+ - filters them by given `types` of interest,
106
+ - adds bookkeeping information about `direction`ality, and
107
+ - (optionally) projects only essential fields to reduce response latency and size.
108
+ """
109
+ return [
110
+ {"$match": {"id": {"$in": ids}}},
111
+ {
112
+ "$graphLookup": {
113
+ "from": alldocs_collection_name,
114
+ "startWith": f"$_{direction}.id",
115
+ "connectFromField": f"_{direction}.id",
116
+ "connectToField": "id",
117
+ "as": f"{direction}_docs",
118
+ }
119
+ },
120
+ {"$unwind": {"path": f"${direction}_docs"}},
121
+ {"$match": {f"{direction}_docs._type_and_ancestors": {"$in": types}}},
122
+ {"$addFields": {f"{direction}_docs._{direction}_of": ["$id"]}},
123
+ {"$replaceRoot": {"newRoot": f"${direction}_docs"}},
124
+ ] + ([{"$project": {"id": 1, "type": 1, f"_{direction}_of": 1}}] if slim else [])
125
+
126
+
127
+ def pipeline_stage_for_merging_instances_and_grouping_link_provenance_by_direction(
128
+ merge_into_collection_name: str,
129
+ direction: Literal["downstream", "upstream"],
130
+ ) -> dict[str, Any]:
131
+ """
132
+ Returns an aggregation-pipeline step that merges its input document stream to a collection dedicated to serving
133
+ the caller in a manner amenable to pagination across multiple HTTP requests.
134
+ """
135
+ return {
136
+ "$merge": {
137
+ "into": merge_into_collection_name,
138
+ "on": "_id",
139
+ "whenMatched": [
140
+ {
141
+ "$set": {
142
+ f"_{direction}_of": {
143
+ "$setUnion": [
144
+ f"$_{direction}_of",
145
+ f"$$new._{direction}_of",
146
+ ]
147
+ }
148
+ }
149
+ }
150
+ ],
151
+ "whenNotMatched": "insert",
152
+ }
153
+ }
154
+
155
+
156
+ def hydrated(resources: list[dict], mdb: MongoDatabase) -> list[dict]:
157
+ """Replace each `dict` in `resources` with a hydrated version.
158
+
159
+ Instead of returning the retrieved "full" documents as is, we merge each one with (a copy of) the corresponding
160
+ original document in *resources*, which includes additional fields, e.g. `_upstream_of` and `_downstream_of`.
161
+ """
162
+ class_name_to_collection_names_map = get_class_name_to_collection_names_map(
163
+ nmdc_schema_view()
164
+ )
165
+ types_of_resources = {r["type"] for r in resources}
166
+ full_docs_by_id = {}
167
+
168
+ for type in types_of_resources:
169
+ resource_ids_of_type = [d["id"] for d in resources if d["type"] == type]
170
+ schema_collection = mdb.get_collection(
171
+ # Note: We are assuming that documents of a given type are only allowed (by the schema) to reside in one
172
+ # collection. Based on that assumption, we will query only the _first_ collection whose name we get from
173
+ # the map. This assumption is continuously verified prior to code deployment via
174
+ # `test_get_class_name_to_collection_names_map_has_one_and_only_one_collection_name_per_class_name`.
175
+ class_name_to_collection_names_map[type.removeprefix("nmdc:")][0]
176
+ )
177
+ for doc in schema_collection.find({"id": {"$in": resource_ids_of_type}}):
178
+ full_docs_by_id[doc["id"]] = doc
179
+
180
+ return [merge(r, full_docs_by_id[r["id"]]) for r in resources]