nltkor 1.2.14__cp311-cp311-macosx_13_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nltkor/Kor_char.py +193 -0
- nltkor/__init__.py +16 -0
- nltkor/alignment/__init__.py +1315 -0
- nltkor/cider/__init__.py +2 -0
- nltkor/cider/cider.py +55 -0
- nltkor/cider/cider_scorer.py +207 -0
- nltkor/distance/__init__.py +441 -0
- nltkor/distance/wasserstein.py +126 -0
- nltkor/etc.py +22 -0
- nltkor/lazyimport.py +144 -0
- nltkor/make_requirement.py +11 -0
- nltkor/metrics/__init__.py +63 -0
- nltkor/metrics/bartscore.py +301 -0
- nltkor/metrics/bertscore.py +331 -0
- nltkor/metrics/bleu_tensor.py +20 -0
- nltkor/metrics/classical.py +847 -0
- nltkor/metrics/entment.py +24 -0
- nltkor/metrics/eval.py +517 -0
- nltkor/metrics/mauve.py +273 -0
- nltkor/metrics/mauve_utils.py +131 -0
- nltkor/misc/__init__.py +11 -0
- nltkor/misc/string2string_basic_functions.py +59 -0
- nltkor/misc/string2string_default_tokenizer.py +83 -0
- nltkor/misc/string2string_hash_functions.py +159 -0
- nltkor/misc/string2string_word_embeddings.py +503 -0
- nltkor/search/__init__.py +10 -0
- nltkor/search/classical.py +569 -0
- nltkor/search/faiss_search.py +787 -0
- nltkor/search/kobert_tokenizer.py +181 -0
- nltkor/sejong/__init__.py +3 -0
- nltkor/sejong/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/sejong/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/sejong/__pycache__/sejong_download.cpython-38.pyc +0 -0
- nltkor/sejong/__pycache__/sejong_download.cpython-39.pyc +0 -0
- nltkor/sejong/__pycache__/ssem.cpython-38.pyc +0 -0
- nltkor/sejong/__pycache__/ssem.cpython-39.pyc +0 -0
- nltkor/sejong/ch.py +12 -0
- nltkor/sejong/dict_semClassNum.txt +491 -0
- nltkor/sejong/layer.txt +630 -0
- nltkor/sejong/sejong_download.py +87 -0
- nltkor/sejong/ssem.py +684 -0
- nltkor/similarity/__init__.py +3 -0
- nltkor/similarity/bartscore____.py +337 -0
- nltkor/similarity/bertscore____.py +339 -0
- nltkor/similarity/classical.py +245 -0
- nltkor/similarity/cosine_similarity.py +175 -0
- nltkor/tag/__init__.py +71 -0
- nltkor/tag/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/tag/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/tag/__pycache__/espresso_tag.cpython-38.pyc +0 -0
- nltkor/tag/__pycache__/espresso_tag.cpython-39.pyc +0 -0
- nltkor/tag/espresso_tag.py +220 -0
- nltkor/tag/libs/__init__.py +10 -0
- nltkor/tag/libs/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/tag/libs/__pycache__/attributes.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/attributes.cpython-39.pyc +0 -0
- nltkor/tag/libs/__pycache__/config.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/config.cpython-39.pyc +0 -0
- nltkor/tag/libs/__pycache__/metadata.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/metadata.cpython-39.pyc +0 -0
- nltkor/tag/libs/__pycache__/reader.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/reader.cpython-39.pyc +0 -0
- nltkor/tag/libs/__pycache__/taggers.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/taggers.cpython-39.pyc +0 -0
- nltkor/tag/libs/__pycache__/utils.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/utils.cpython-39.pyc +0 -0
- nltkor/tag/libs/__pycache__/word_dictionary.cpython-38.pyc +0 -0
- nltkor/tag/libs/__pycache__/word_dictionary.cpython-39.pyc +0 -0
- nltkor/tag/libs/arguments.py +280 -0
- nltkor/tag/libs/attributes.py +231 -0
- nltkor/tag/libs/config.py +159 -0
- nltkor/tag/libs/metadata.py +129 -0
- nltkor/tag/libs/ner/__init__.py +2 -0
- nltkor/tag/libs/ner/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/tag/libs/ner/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-38.pyc +0 -0
- nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-39.pyc +0 -0
- nltkor/tag/libs/ner/macmorphoreader.py +7 -0
- nltkor/tag/libs/ner/ner_reader.py +92 -0
- nltkor/tag/libs/network.c +72325 -0
- nltkor/tag/libs/network.cpython-311-darwin.so +0 -0
- nltkor/tag/libs/network.pyx +878 -0
- nltkor/tag/libs/networkconv.pyx +1028 -0
- nltkor/tag/libs/networkdependencyconv.pyx +451 -0
- nltkor/tag/libs/parse/__init__.py +1 -0
- nltkor/tag/libs/parse/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/tag/libs/parse/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-38.pyc +0 -0
- nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-39.pyc +0 -0
- nltkor/tag/libs/parse/parse_reader.py +283 -0
- nltkor/tag/libs/pos/__init__.py +2 -0
- nltkor/tag/libs/pos/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/tag/libs/pos/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-38.pyc +0 -0
- nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-39.pyc +0 -0
- nltkor/tag/libs/pos/macmorphoreader.py +7 -0
- nltkor/tag/libs/pos/pos_reader.py +97 -0
- nltkor/tag/libs/reader.py +485 -0
- nltkor/tag/libs/srl/__init__.py +3 -0
- nltkor/tag/libs/srl/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/tag/libs/srl/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-38.pyc +0 -0
- nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-39.pyc +0 -0
- nltkor/tag/libs/srl/__pycache__/train_srl.cpython-38.pyc +0 -0
- nltkor/tag/libs/srl/__pycache__/train_srl.cpython-39.pyc +0 -0
- nltkor/tag/libs/srl/__srl_reader_.py +535 -0
- nltkor/tag/libs/srl/srl_reader.py +436 -0
- nltkor/tag/libs/srl/train_srl.py +87 -0
- nltkor/tag/libs/taggers.py +926 -0
- nltkor/tag/libs/utils.py +384 -0
- nltkor/tag/libs/word_dictionary.py +239 -0
- nltkor/tag/libs/wsd/__init__.py +2 -0
- nltkor/tag/libs/wsd/__pycache__/__init__.cpython-38.pyc +0 -0
- nltkor/tag/libs/wsd/__pycache__/__init__.cpython-39.pyc +0 -0
- nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-38.pyc +0 -0
- nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-39.pyc +0 -0
- nltkor/tag/libs/wsd/macmorphoreader.py +7 -0
- nltkor/tag/libs/wsd/wsd_reader.py +93 -0
- nltkor/tokenize/__init__.py +62 -0
- nltkor/tokenize/ko_tokenize.py +115 -0
- nltkor/trans.py +121 -0
- nltkor-1.2.14.dist-info/LICENSE.txt +1093 -0
- nltkor-1.2.14.dist-info/METADATA +41 -0
- nltkor-1.2.14.dist-info/RECORD +127 -0
- nltkor-1.2.14.dist-info/WHEEL +5 -0
- nltkor-1.2.14.dist-info/top_level.txt +1 -0
@@ -0,0 +1,337 @@
|
|
1
|
+
"""
|
2
|
+
string2string similarity
|
3
|
+
src = https://github.com/stanfordnlp/string2string
|
4
|
+
|
5
|
+
|
6
|
+
MIT License
|
7
|
+
|
8
|
+
Copyright (c) 2023 Mirac Suzgun
|
9
|
+
|
10
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
11
|
+
of this software and associated documentation files (the "Software"), to deal
|
12
|
+
in the Software without restriction, including without limitation the rights
|
13
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
14
|
+
copies of the Software, and to permit persons to whom the Software is
|
15
|
+
furnished to do so, subject to the following conditions:
|
16
|
+
|
17
|
+
The above copyright notice and this permission notice shall be included in all
|
18
|
+
copies or substantial portions of the Software.
|
19
|
+
|
20
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
21
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
22
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
23
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
24
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
25
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
26
|
+
SOFTWARE.
|
27
|
+
|
28
|
+
|
29
|
+
"""
|
30
|
+
|
31
|
+
|
32
|
+
"""
|
33
|
+
This class contains the original implementation of the BARTScore algorithm by Yuan et al. (2021).
|
34
|
+
|
35
|
+
BARTScore: BART-based Evaluation Metric for Text Generation
|
36
|
+
|
37
|
+
@inproceedings{bartscore2021,
|
38
|
+
author = {Yuan, Weizhe and Neubig, Graham and Liu, Pengfei},
|
39
|
+
booktitle = {Advances in Neural Information Processing Systems},
|
40
|
+
editor = {M. Ranzato and A. Beygelzimer and Y. Dauphin and P.S. Liang and J. Wortman Vaughan},
|
41
|
+
pages = {27263--27277},
|
42
|
+
publisher = {Curran Associates, Inc.},
|
43
|
+
title = {BARTScore: Evaluating Generated Text as Text Generation},
|
44
|
+
url = {https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf},
|
45
|
+
volume = {34},
|
46
|
+
year = {2021}
|
47
|
+
}
|
48
|
+
|
49
|
+
Disclaimer:
|
50
|
+
This code is adapted from https://github.com/neulab/BARTScore/blob/main/bart_score.py
|
51
|
+
"""
|
52
|
+
|
53
|
+
import numpy as np
|
54
|
+
from typing import List, Union, Dict
|
55
|
+
import traceback
|
56
|
+
|
57
|
+
# import torch
|
58
|
+
# import torch.nn as nn
|
59
|
+
# from transformers import BartTokenizer, BartForConditionalGeneration
|
60
|
+
|
61
|
+
import subprocess
|
62
|
+
import sys
|
63
|
+
from nltk.make_requirement import make_requirement
|
64
|
+
|
65
|
+
# def install_and_import(package):
|
66
|
+
# try:
|
67
|
+
# __import__(package)
|
68
|
+
# except ImportError:
|
69
|
+
# print(f"{package} not found, installing with pip...")
|
70
|
+
# subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
71
|
+
# finally:
|
72
|
+
# globals()[package] = __import__(package)
|
73
|
+
|
74
|
+
# # 사용 예시
|
75
|
+
# install_and_import('numpy')
|
76
|
+
|
77
|
+
|
78
|
+
# # 사용 예시
|
79
|
+
# install_and_import('torch')
|
80
|
+
# install_and_import('transformers', '>=4.8.2')
|
81
|
+
|
82
|
+
try:
|
83
|
+
import torch
|
84
|
+
import torch.nn as nn
|
85
|
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
86
|
+
except ImportError:
|
87
|
+
requirement = ['torch', 'transformers>=4.8.2']
|
88
|
+
file_path = make_requirement(requirement)
|
89
|
+
raise Exception(f"""You need to install Library
|
90
|
+
please pip install below Libaries
|
91
|
+
\t pip install torch
|
92
|
+
\t pip install transformers>=4.8.2
|
93
|
+
Or, use pip install requirement.txt
|
94
|
+
\t pip install -r {file_path}
|
95
|
+
""")
|
96
|
+
|
97
|
+
|
98
|
+
|
99
|
+
# BARTScore class
|
100
|
+
class BARTScore:
|
101
|
+
"""
|
102
|
+
This class implements the BARTScore algorithm.
|
103
|
+
"""
|
104
|
+
|
105
|
+
def __init__(self,
|
106
|
+
model_name_or_path='facebook/bart-large-cnn',
|
107
|
+
tokenizer_name_or_path: str = None,
|
108
|
+
device: str = 'cpu',
|
109
|
+
max_length=1024,
|
110
|
+
) -> None:
|
111
|
+
r"""
|
112
|
+
This function initializes the BARTScore class, which computes the BARTScore between two pieces of text.
|
113
|
+
|
114
|
+
Arguments:
|
115
|
+
model_name_or_path (str): The name or path of the model. Defaults to 'facebook/bart-large-cnn'.
|
116
|
+
tokenizer_name_or_path (str): The name or path of the tokenizer. Defaults to None.
|
117
|
+
device (str): The device to use. Defaults to 'cpu'.
|
118
|
+
max_length (int): The maximum length of the input. Defaults to 1024.
|
119
|
+
|
120
|
+
Returns:
|
121
|
+
None
|
122
|
+
|
123
|
+
Raises:
|
124
|
+
ValueError: If the device is not 'cpu' or 'cuda'.
|
125
|
+
|
126
|
+
.. attention::
|
127
|
+
|
128
|
+
If you use this class, please make sure to cite the following paper:
|
129
|
+
|
130
|
+
.. code-block:: latex
|
131
|
+
|
132
|
+
@inproceedings{bartscore2021,
|
133
|
+
author = {Yuan, Weizhe and Neubig, Graham and Liu, Pengfei},
|
134
|
+
booktitle = {Advances in Neural Information Processing Systems},
|
135
|
+
editor = {M. Ranzato and A. Beygelzimer and Y. Dauphin and P.S. Liang and J. Wortman Vaughan},
|
136
|
+
pages = {27263--27277},
|
137
|
+
publisher = {Curran Associates, Inc.},
|
138
|
+
title = {BARTScore: Evaluating Generated Text as Text Generation},
|
139
|
+
url = {https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf},
|
140
|
+
volume = {34},
|
141
|
+
year = {2021}
|
142
|
+
}
|
143
|
+
|
144
|
+
.. note::
|
145
|
+
* The default model is the BART-large-cnn model.
|
146
|
+
* If the tokenizer name or path is not specified, then the model name or path will be used.
|
147
|
+
* If the device is 'cuda', then the model will be loaded onto the GPU.
|
148
|
+
* If device is not specified, use the GPU if available, otherwise use the CPU.
|
149
|
+
|
150
|
+
"""
|
151
|
+
|
152
|
+
if tokenizer_name_or_path is None:
|
153
|
+
tokenizer_name_or_path = model_name_or_path
|
154
|
+
|
155
|
+
# Set the attributes
|
156
|
+
self.device = device
|
157
|
+
self.max_length = max_length
|
158
|
+
|
159
|
+
# Load model and tokenizer
|
160
|
+
self.tokenizer = BartTokenizer.from_pretrained(tokenizer_name_or_path)
|
161
|
+
self.model = BartForConditionalGeneration.from_pretrained(model_name_or_path)
|
162
|
+
self.model.eval()
|
163
|
+
self.model.to(device)
|
164
|
+
|
165
|
+
# Set up loss
|
166
|
+
self.loss_fct = nn.NLLLoss(reduction='none', ignore_index=self.model.config.pad_token_id)
|
167
|
+
self.lsm = nn.LogSoftmax(dim=1)
|
168
|
+
|
169
|
+
|
170
|
+
|
171
|
+
# Loads the model weights from a specified path
|
172
|
+
def load(self,
|
173
|
+
weights_path=None,
|
174
|
+
) -> None:
|
175
|
+
"""
|
176
|
+
This function loads the model weights from a specified path.
|
177
|
+
|
178
|
+
Arguments:
|
179
|
+
weights_path (str): The path to the weights.
|
180
|
+
|
181
|
+
Returns:
|
182
|
+
None
|
183
|
+
"""
|
184
|
+
if weights_path is None:
|
185
|
+
weights_path = 'models/bart.pth'
|
186
|
+
|
187
|
+
self.model.load_state_dict(torch.load(weights_path, map_location=self.device))
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
# Compute the BARTScore between source sentences and target sentences
|
192
|
+
def compute(self,
|
193
|
+
source_sentences: List[str],
|
194
|
+
target_sentences: Union[List[str], List[List[str]]],
|
195
|
+
batch_size: int = 4,
|
196
|
+
agg: str = 'mean',
|
197
|
+
) -> Dict[str, List[float]]:
|
198
|
+
"""
|
199
|
+
This function scores the target sentences against the source sentences using BARTScore.
|
200
|
+
|
201
|
+
Arguments:
|
202
|
+
source_sentences (List[str]): The source sentences.
|
203
|
+
target_sentences (Union[List[str], List[List[str]]]): The target sentences.
|
204
|
+
batch_size (int): The batch size to use (default: 4)
|
205
|
+
agg (str): The aggregation method. Defaults to 'mean'; used only when target_sentences is a list of lists.
|
206
|
+
|
207
|
+
Returns:
|
208
|
+
Dict[str, List[float]]: The BARTScore for each example.
|
209
|
+
|
210
|
+
Raises:
|
211
|
+
ValueError: If the number of source sentences and target sentences do not match.
|
212
|
+
"""
|
213
|
+
# Check the number of source sentences and target sentences
|
214
|
+
if len(source_sentences) != len(target_sentences):
|
215
|
+
raise ValueError(f'Number of source sentences ({len(source_sentences)}) and number of target sentences ({len(target_sentences)}) do not match.')
|
216
|
+
|
217
|
+
# If the target sentences are a list of lists, then call the multi_ref_score function
|
218
|
+
if isinstance(target_sentences[0], list):
|
219
|
+
return self.compute_multi_ref_score(
|
220
|
+
source_sentences=source_sentences,
|
221
|
+
target_sentences=target_sentences,
|
222
|
+
batch_size=batch_size,
|
223
|
+
agg=agg
|
224
|
+
)
|
225
|
+
|
226
|
+
# Score for each example
|
227
|
+
score_list = []
|
228
|
+
|
229
|
+
for i in range(0, len(source_sentences), batch_size):
|
230
|
+
# Get the current batch
|
231
|
+
src_batch = source_sentences[i: i + batch_size]
|
232
|
+
tgt_batch = target_sentences[i: i + batch_size]
|
233
|
+
try:
|
234
|
+
with torch.no_grad():
|
235
|
+
# Encode the batch
|
236
|
+
encoded_src = self.tokenizer(
|
237
|
+
src_batch,
|
238
|
+
max_length=self.max_length,
|
239
|
+
truncation=True,
|
240
|
+
padding=True,
|
241
|
+
return_tensors='pt'
|
242
|
+
)
|
243
|
+
encoded_tgt = self.tokenizer(
|
244
|
+
tgt_batch,
|
245
|
+
max_length=self.max_length,
|
246
|
+
truncation=True,
|
247
|
+
padding=True,
|
248
|
+
return_tensors='pt'
|
249
|
+
)
|
250
|
+
|
251
|
+
# Get the input ids and attention masks for the source and target sentences
|
252
|
+
src_tokens = encoded_src['input_ids'].to(self.device)
|
253
|
+
src_mask = encoded_src['attention_mask'].to(self.device)
|
254
|
+
tgt_tokens = encoded_tgt['input_ids'].to(self.device)
|
255
|
+
tgt_mask = encoded_tgt['attention_mask']
|
256
|
+
tgt_len = tgt_mask.sum(dim=1).to(self.device)
|
257
|
+
|
258
|
+
# Feed the batch to the model and get the loss
|
259
|
+
output = self.model(
|
260
|
+
input_ids=src_tokens,
|
261
|
+
attention_mask=src_mask,
|
262
|
+
labels=tgt_tokens
|
263
|
+
)
|
264
|
+
logits = output.logits.view(-1, self.model.config.vocab_size)
|
265
|
+
# Compute the loss
|
266
|
+
loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1))
|
267
|
+
loss = loss.view(tgt_tokens.shape[0], -1)
|
268
|
+
loss = loss.sum(dim=1) / tgt_len
|
269
|
+
# Get the score
|
270
|
+
curr_score_list = [-x.item() for x in loss]
|
271
|
+
# Append the score to the list
|
272
|
+
score_list += curr_score_list
|
273
|
+
|
274
|
+
except:
|
275
|
+
# If there is an error, print the traceback
|
276
|
+
raise Exception(f'Error in scoring batch {i // batch_size}:\n{traceback.format_exc()}')
|
277
|
+
return {'score': np.array(score_list)}
|
278
|
+
|
279
|
+
|
280
|
+
|
281
|
+
# Score a batch of examples with multiple references
|
282
|
+
def compute_multi_ref_score(self,
|
283
|
+
source_sentences: List[str],
|
284
|
+
target_sentences: List[List[str]],
|
285
|
+
batch_size: int = 4,
|
286
|
+
agg: str = "mean",
|
287
|
+
) -> Dict[str, List[float]]:
|
288
|
+
"""
|
289
|
+
Score a batch of examples with multiple references.
|
290
|
+
|
291
|
+
Arguments:
|
292
|
+
source_sentences (List[str]): The source sentences.
|
293
|
+
target_sentences (List[List[str]]): The target sentences.
|
294
|
+
agg (str): The aggregation method. Can be "mean" or "max".
|
295
|
+
batch_size (int): The batch size.
|
296
|
+
|
297
|
+
Returns:
|
298
|
+
Dict[str, List[float]]: The BARTScore for each example.
|
299
|
+
|
300
|
+
Raises:
|
301
|
+
ValueError: If the number of source sentences and target sentences do not match.
|
302
|
+
"""
|
303
|
+
|
304
|
+
# Assert we have the same number of references
|
305
|
+
ref_nums = [len(x) for x in target_sentences]
|
306
|
+
if len(set(ref_nums)) > 1:
|
307
|
+
raise Exception("You have different number of references per test sample.")
|
308
|
+
|
309
|
+
ref_num = len(target_sentences[0])
|
310
|
+
score_matrix = []
|
311
|
+
for i in range(ref_num):
|
312
|
+
curr_target_sentences = [x[i] for x in target_sentences]
|
313
|
+
scores = self.compute(source_sentences, curr_target_sentences, batch_size)
|
314
|
+
score_matrix.append(scores)
|
315
|
+
if agg == "mean":
|
316
|
+
score_list = np.mean(score_matrix, axis=0)
|
317
|
+
elif agg == "max":
|
318
|
+
score_list = np.max(score_matrix, axis=0)
|
319
|
+
else:
|
320
|
+
raise NotImplementedError(f"Aggregation method {agg} not implemented yet.")
|
321
|
+
return {"score": score_list}
|
322
|
+
|
323
|
+
def demo():
|
324
|
+
demo_setences = [
|
325
|
+
("I am a student", "He is a teacher"),
|
326
|
+
("나는 학생이다", "그는 선생님이다"),
|
327
|
+
("점심에 온기동에서 삼겹차슈덮밥을 먹었다.", "저녁에 피나치공에서 피자와 치킨을 먹었다."),
|
328
|
+
('제가 나와 있는 곳은 경남 거제시 옥포동 덕포 해수욕장에 나와 있습니다.', '강한 바람에 간판이나 지붕이 떨어지는 등 피해가 잇따르기도 했습니다.'),
|
329
|
+
('Outraged mortuary workers in Kenya have criticised the country’s police chief after he accused them of leasing corpses to opposition politicians.',
|
330
|
+
'Head of police Japheth Koome earlier this week claimed that opposition politicians hired bodies from mortuaries and planted them at the scenes of protests so as to blame the police for brutality.')
|
331
|
+
|
332
|
+
]
|
333
|
+
for str1, str2 in demo_setences:
|
334
|
+
print("demo : ", BARTScore().compute([str1], [str2]))
|
335
|
+
|
336
|
+
if __name__ == "__main__":
|
337
|
+
demo()
|
@@ -0,0 +1,339 @@
|
|
1
|
+
"""
|
2
|
+
string2string similarity
|
3
|
+
src = https://github.com/stanfordnlp/string2string
|
4
|
+
|
5
|
+
|
6
|
+
MIT License
|
7
|
+
|
8
|
+
Copyright (c) 2023 Mirac Suzgun
|
9
|
+
|
10
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
11
|
+
of this software and associated documentation files (the "Software"), to deal
|
12
|
+
in the Software without restriction, including without limitation the rights
|
13
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
14
|
+
copies of the Software, and to permit persons to whom the Software is
|
15
|
+
furnished to do so, subject to the following conditions:
|
16
|
+
|
17
|
+
The above copyright notice and this permission notice shall be included in all
|
18
|
+
copies or substantial portions of the Software.
|
19
|
+
|
20
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
21
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
22
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
23
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
24
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
25
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
26
|
+
SOFTWARE.
|
27
|
+
|
28
|
+
|
29
|
+
"""
|
30
|
+
|
31
|
+
|
32
|
+
"""
|
33
|
+
This class contains the original implementation of the BERTScore algorithm by Zhang et al. (2020).
|
34
|
+
|
35
|
+
BERTScore: Evaluating Text Generation with BERT
|
36
|
+
|
37
|
+
@inproceedings{bertscore2020,
|
38
|
+
title={BERTScore: Evaluating Text Generation with BERT},
|
39
|
+
author={Tianyi Zhang* and Varsha Kishore* and Felix Wu* and Kilian Q. Weinberger and Yoav Artzi},
|
40
|
+
booktitle={International Conference on Learning Representations},
|
41
|
+
year={2020},
|
42
|
+
url={https://openreview.net/forum?id=SkeHuCVFDr}
|
43
|
+
}
|
44
|
+
|
45
|
+
Disclaimer:
|
46
|
+
This code is adapted from https://github.com/Tiiiger/bert_score
|
47
|
+
"""
|
48
|
+
|
49
|
+
from typing import List, Union, Optional, Tuple
|
50
|
+
|
51
|
+
import os
|
52
|
+
import sys
|
53
|
+
import time
|
54
|
+
from collections import defaultdict
|
55
|
+
|
56
|
+
try:
|
57
|
+
import pandas as pd
|
58
|
+
import torch
|
59
|
+
from bert_score.utils import (bert_cos_score_idf, get_hash,
|
60
|
+
get_idf_dict, get_model, get_tokenizer,
|
61
|
+
lang2model, model2layers)
|
62
|
+
from nltk.search.kobert_tokenizer import KoBERTTokenizer
|
63
|
+
except ImportError:
|
64
|
+
raise Exception("""You need to install Library
|
65
|
+
please pip install below Libaries
|
66
|
+
\t pip install torch
|
67
|
+
\t pip install pandas
|
68
|
+
\t pip install bert_score
|
69
|
+
""")
|
70
|
+
|
71
|
+
# import torch
|
72
|
+
# from bert_score.utils import (bert_cos_score_idf, get_hash,
|
73
|
+
# get_idf_dict, get_model, get_tokenizer,
|
74
|
+
# lang2model, model2layers)
|
75
|
+
# from nltk.search.kobert_tokenizer import KoBERTTokenizer
|
76
|
+
|
77
|
+
|
78
|
+
|
79
|
+
|
80
|
+
|
81
|
+
class BERTScore:
|
82
|
+
"""
|
83
|
+
This class implements the BERTScore algorithm.
|
84
|
+
"""
|
85
|
+
|
86
|
+
def __init__(self,
|
87
|
+
model_name_or_path: str = None,
|
88
|
+
lang: str = None,
|
89
|
+
num_layers: int = None,
|
90
|
+
all_layers: bool = False,
|
91
|
+
use_fast_tokenizer: bool = False,
|
92
|
+
device: str = 'cpu',
|
93
|
+
baseline_path: str = None,
|
94
|
+
) -> None:
|
95
|
+
r"""
|
96
|
+
This function initializes the BERTScore class, which computes the BERTScore between two texts.
|
97
|
+
|
98
|
+
Arguments:
|
99
|
+
model_name_or_path (str): BERT model type to use (e.g., bert-base-uncased).
|
100
|
+
lang (str): Language of the texts (e.g., en).
|
101
|
+
num_layers (int): Number of layers to use.
|
102
|
+
all_layers (bool): Whether to use all layers
|
103
|
+
use_fast_tokenizer (bool): Whether to use the fast tokenizer.
|
104
|
+
device (str): Device to use (e.g., cpu or cuda).
|
105
|
+
baseline_path (str): Path to the baseline file.
|
106
|
+
|
107
|
+
Returns:
|
108
|
+
None
|
109
|
+
|
110
|
+
Raises:
|
111
|
+
ValueError: If model_name_or_path and lang are both None.
|
112
|
+
|
113
|
+
.. attention::
|
114
|
+
|
115
|
+
If you use this class, please make sure to cite the following paper:
|
116
|
+
|
117
|
+
.. code-block:: latex
|
118
|
+
|
119
|
+
@inproceedings{bertscore2020,
|
120
|
+
title={BERTScore: Evaluating Text Generation with BERT},
|
121
|
+
author={Tianyi Zhang* and Varsha Kishore* and Felix Wu* and Kilian Q. Weinberger and Yoav Artzi},
|
122
|
+
booktitle={International Conference on Learning Representations},
|
123
|
+
year={2020},
|
124
|
+
url={https://openreview.net/forum?id=SkeHuCVFDr}
|
125
|
+
}
|
126
|
+
|
127
|
+
|
128
|
+
.. note::
|
129
|
+
* If model_name_or_path is not specified, use the default model for the language.
|
130
|
+
* If num_layers is not specified, use the default number of layers.
|
131
|
+
* If device is not specified, use the GPU if available, otherwise use the CPU.
|
132
|
+
* If baseline_path is not specified, use the default baseline file.
|
133
|
+
"""
|
134
|
+
|
135
|
+
# Check the arguments
|
136
|
+
if model_name_or_path is None and lang is None:
|
137
|
+
raise ValueError("You must specify either model_name_or_path or lang")
|
138
|
+
|
139
|
+
# Set the attributes
|
140
|
+
self.model_name_or_path = model_name_or_path
|
141
|
+
self.lang = lang
|
142
|
+
self.num_layers = num_layers
|
143
|
+
self.all_layers = all_layers
|
144
|
+
self.use_fast_tokenizer = use_fast_tokenizer
|
145
|
+
self.baseline_path = baseline_path
|
146
|
+
|
147
|
+
# If model_name_or_path is not specified, use the default model for the language
|
148
|
+
if self.model_name_or_path is None:
|
149
|
+
self.lang = lang.lower()
|
150
|
+
self.model_name_or_path = lang2model[self.lang]
|
151
|
+
|
152
|
+
# If num_layers is not specified, use the default number of layers
|
153
|
+
if num_layers is None:
|
154
|
+
self.num_layers = model2layers[self.model_name_or_path]
|
155
|
+
|
156
|
+
# Set the device
|
157
|
+
self.device = device
|
158
|
+
if self.device is None:
|
159
|
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
160
|
+
|
161
|
+
# Load model and tokenizer
|
162
|
+
if self.model_name_or_path == 'skt/kobert-base-v1':
|
163
|
+
self.tokenizer = KoBERTTokenizer.from_pretrained(self.model_name_or_path)
|
164
|
+
else:
|
165
|
+
self.tokenizer = get_tokenizer(self.model_name_or_path, self.use_fast_tokenizer)
|
166
|
+
self.model = get_model(self.model_name_or_path, self.num_layers, self.all_layers)
|
167
|
+
self.model.eval()
|
168
|
+
self.model.to(device)
|
169
|
+
|
170
|
+
|
171
|
+
|
172
|
+
# Compute the BERTScore between source sentences and target sentences
|
173
|
+
def compute(self,
|
174
|
+
source_sentences: List[str],
|
175
|
+
target_sentences: Union[List[str], List[List[str]]],
|
176
|
+
batch_size: int = 4,
|
177
|
+
idf: bool = False,
|
178
|
+
nthreads: int = 4,
|
179
|
+
return_hash: bool = False,
|
180
|
+
rescale_with_baseline: bool = False,
|
181
|
+
verbose: bool = False,
|
182
|
+
) -> Union[dict, Optional[str]]:
|
183
|
+
"""
|
184
|
+
This function scores the source sentences based on their similarity to the target sentences using BERTScore.
|
185
|
+
|
186
|
+
Arguments:
|
187
|
+
source_sentences (list of str): candidate sentences
|
188
|
+
target_sentences (list of str or list of list of str): reference sentences
|
189
|
+
batch_size (int): bert score processing batch size
|
190
|
+
idf (bool or dict): use idf weighting, can also be a precomputed idf_dict
|
191
|
+
nthreads (int): number of threads
|
192
|
+
return_hash (bool): return hashcode of the setting
|
193
|
+
rescale_with_baseline (bool): rescale bertscore with pre-computed baseline
|
194
|
+
verbose (bool): turn on intermediate status update
|
195
|
+
|
196
|
+
Returns:
|
197
|
+
(Dict[str, Tensor], Optional[str]): A dictionary containing the precision, recall, and F1 score, and the hashcode (if return_hash is True).
|
198
|
+
where the precision, recall, and F1 score are tensors of shape (len(source_sentences),
|
199
|
+
|
200
|
+
Raises:
|
201
|
+
ValueError: If the number of source sentences and target sentences do not match.
|
202
|
+
"""
|
203
|
+
|
204
|
+
# Check the arguments
|
205
|
+
if len(source_sentences) != len(target_sentences):
|
206
|
+
raise ValueError("The number of candidates and references do not match")
|
207
|
+
|
208
|
+
# If the target sentences are grouped, flatten them
|
209
|
+
ref_group_boundaries = None
|
210
|
+
if not isinstance(target_sentences[0], str):
|
211
|
+
ref_group_boundaries = []
|
212
|
+
ori_source_sentences, ori_target_sentences = source_sentences, target_sentences
|
213
|
+
source_sentences, target_sentences = [], []
|
214
|
+
count = 0
|
215
|
+
for cand, ref_group in zip(ori_source_sentences, ori_target_sentences):
|
216
|
+
source_sentences += [cand] * len(ref_group)
|
217
|
+
target_sentences += ref_group
|
218
|
+
ref_group_boundaries.append((count, count + len(ref_group)))
|
219
|
+
count += len(ref_group)
|
220
|
+
|
221
|
+
if rescale_with_baseline and self.baseline_path is None:
|
222
|
+
raise ValueError("Need to specify baseline_path when rescaling with baseline")
|
223
|
+
|
224
|
+
# Get the IDF dict
|
225
|
+
if not idf:
|
226
|
+
idf_dict = defaultdict(lambda: 1.0)
|
227
|
+
# set idf for [SEP] and [CLS] to 0
|
228
|
+
idf_dict[self.tokenizer.sep_token_id] = 0
|
229
|
+
idf_dict[self.tokenizer.cls_token_id] = 0
|
230
|
+
elif isinstance(idf, dict):
|
231
|
+
if verbose:
|
232
|
+
print("using predefined IDF dict...")
|
233
|
+
idf_dict = idf
|
234
|
+
else:
|
235
|
+
if verbose:
|
236
|
+
print("preparing IDF dict...")
|
237
|
+
start = time.perf_counter()
|
238
|
+
idf_dict = get_idf_dict(target_sentences, self.tokenizer, nthreads=nthreads)
|
239
|
+
if verbose:
|
240
|
+
print("done in {:.2f} seconds".format(time.perf_counter() - start))
|
241
|
+
|
242
|
+
if verbose:
|
243
|
+
print("calculating scores...")
|
244
|
+
|
245
|
+
start = time.perf_counter()
|
246
|
+
|
247
|
+
# Get all the predictions
|
248
|
+
all_preds = bert_cos_score_idf(
|
249
|
+
model = self.model,
|
250
|
+
refs = target_sentences,
|
251
|
+
hyps = source_sentences,
|
252
|
+
tokenizer= self.tokenizer,
|
253
|
+
idf_dict = idf_dict,
|
254
|
+
verbose = verbose,
|
255
|
+
device = self.device,
|
256
|
+
batch_size=batch_size,
|
257
|
+
all_layers=self.all_layers,
|
258
|
+
).cpu()
|
259
|
+
|
260
|
+
# If the target sentences are grouped, take the max score
|
261
|
+
if ref_group_boundaries is not None:
|
262
|
+
max_preds = []
|
263
|
+
for beg, end in ref_group_boundaries:
|
264
|
+
max_preds.append(all_preds[beg:end].max(dim=0)[0])
|
265
|
+
all_preds = torch.stack(max_preds, dim=0)
|
266
|
+
|
267
|
+
# Rescale with baseline
|
268
|
+
use_custom_baseline = self.baseline_path is not None
|
269
|
+
if rescale_with_baseline:
|
270
|
+
if self.baseline_path is None:
|
271
|
+
self.baseline_path = os.path.join(
|
272
|
+
os.path.dirname(__file__), f"rescale_baseline/{self.lang}/{self.model_name_or_path}.tsv"
|
273
|
+
)
|
274
|
+
if os.path.isfile(self.baseline_path):
|
275
|
+
if not self.all_layers:
|
276
|
+
baselines = torch.from_numpy(
|
277
|
+
pd.read_csv(self.baseline_path).iloc[self.num_layers].to_numpy()
|
278
|
+
)[1:].float()
|
279
|
+
else:
|
280
|
+
baselines = (
|
281
|
+
torch.from_numpy(pd.read_csv(self.baseline_path).to_numpy())[:, 1:]
|
282
|
+
.unsqueeze(1)
|
283
|
+
.float()
|
284
|
+
)
|
285
|
+
|
286
|
+
all_preds = (all_preds - baselines) / (1 - baselines)
|
287
|
+
else:
|
288
|
+
print(
|
289
|
+
f"Warning: Baseline not Found for {self.model_name_or_path} on {self.lang} at {self.baseline_path}",
|
290
|
+
file=sys.stderr,
|
291
|
+
)
|
292
|
+
|
293
|
+
# Get the final output
|
294
|
+
out = all_preds[..., 0], all_preds[..., 1], all_preds[..., 2] # P, R, F
|
295
|
+
scores = {
|
296
|
+
"precision": out[0].numpy(),
|
297
|
+
"recall": out[1].numpy(),
|
298
|
+
"f1": out[2].numpy(),
|
299
|
+
}
|
300
|
+
|
301
|
+
# Print the time
|
302
|
+
if verbose:
|
303
|
+
time_diff = time.perf_counter() - start
|
304
|
+
print(
|
305
|
+
f"done in {time_diff:.2f} seconds, {len(target_sentences) / time_diff:.2f} sentences/sec"
|
306
|
+
)
|
307
|
+
|
308
|
+
# If return hash, return both the output and the hash
|
309
|
+
if return_hash:
|
310
|
+
return tuple(
|
311
|
+
[
|
312
|
+
scores,
|
313
|
+
get_hash(
|
314
|
+
self.model_name_or_path,
|
315
|
+
self.num_layers,
|
316
|
+
idf,
|
317
|
+
rescale_with_baseline,
|
318
|
+
use_custom_baseline=use_custom_baseline,
|
319
|
+
use_fast_tokenizer=self.use_fast_tokenizer,
|
320
|
+
),
|
321
|
+
]
|
322
|
+
)
|
323
|
+
# Otherwise, just return the output
|
324
|
+
return scores
|
325
|
+
|
326
|
+
|
327
|
+
|
328
|
+
|
329
|
+
def demo():
|
330
|
+
demo_setences = [
|
331
|
+
("I am a student", "He is a teacher"),
|
332
|
+
("나는 학생이다", "그는 선생님이다"),
|
333
|
+
("점심에 온기동에서 삼겹차슈덮밥을 먹었다.", "저녁에 피나치공에서 피자와 치킨을 먹었다.")
|
334
|
+
]
|
335
|
+
for str1, str2 in demo_setences:
|
336
|
+
print("demo : ", BERTScore(model_name_or_path='bert-base-uncased', lang='en', num_layers=12).compute([str1], [str2]))
|
337
|
+
|
338
|
+
if __name__ == "__main__":
|
339
|
+
demo()
|