nlpertools 1.0.4__py3-none-any.whl → 1.0.6.dev0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- nlpertools/__init__.py +24 -11
- nlpertools/algo/__init__.py +0 -0
- nlpertools/algo/ac.py +18 -0
- nlpertools/algo/bit_ops.py +28 -0
- nlpertools/algo/kmp.py +94 -0
- nlpertools/algo/num_ops.py +12 -0
- nlpertools/algo/template.py +116 -0
- nlpertools/algo/union.py +13 -0
- nlpertools/data_client.py +387 -0
- nlpertools/data_structure/__init__.py +0 -0
- nlpertools/data_structure/base_structure.py +109 -0
- nlpertools/dataprocess.py +611 -3
- nlpertools/default_db_config.yml +41 -0
- nlpertools/io/__init__.py +3 -3
- nlpertools/io/dir.py +54 -47
- nlpertools/io/file.py +277 -205
- nlpertools/ml.py +483 -317
- nlpertools/monitor/__init__.py +0 -0
- nlpertools/monitor/gpu.py +18 -0
- nlpertools/monitor/memory.py +24 -0
- nlpertools/movie.py +36 -0
- nlpertools/nlpertools_config.yml +1 -0
- nlpertools/{openApi.py → open_api.py} +65 -62
- nlpertools/other.py +364 -188
- nlpertools/pic.py +288 -0
- nlpertools/plugin.py +43 -34
- nlpertools/reminder.py +98 -15
- nlpertools/template/__init__.py +0 -0
- nlpertools/utils/__init__.py +3 -0
- nlpertools/utils/lazy.py +727 -0
- nlpertools/utils/log_util.py +20 -0
- nlpertools/utils/package.py +89 -0
- nlpertools/utils/package_v1.py +94 -0
- nlpertools/utils/package_v2.py +117 -0
- nlpertools/utils_for_nlpertools.py +93 -0
- nlpertools/vector_index_demo.py +108 -0
- nlpertools/wrapper.py +161 -0
- {nlpertools-1.0.4.dist-info → nlpertools-1.0.6.dev0.dist-info}/LICENSE +200 -200
- nlpertools-1.0.6.dev0.dist-info/METADATA +111 -0
- nlpertools-1.0.6.dev0.dist-info/RECORD +43 -0
- {nlpertools-1.0.4.dist-info → nlpertools-1.0.6.dev0.dist-info}/WHEEL +1 -1
- nlpertools-1.0.6.dev0.dist-info/top_level.txt +2 -0
- nlpertools_helper/__init__.py +10 -0
- nlpertools-1.0.4.dist-info/METADATA +0 -42
- nlpertools-1.0.4.dist-info/RECORD +0 -15
- nlpertools-1.0.4.dist-info/top_level.txt +0 -1
nlpertools/ml.py
CHANGED
@@ -1,317 +1,483 @@
|
|
1
|
-
# encoding=utf-8
|
2
|
-
|
3
|
-
import
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
def
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
return
|
307
|
-
|
308
|
-
from
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
1
|
+
# encoding=utf-8
|
2
|
+
import codecs
|
3
|
+
import os
|
4
|
+
import random
|
5
|
+
|
6
|
+
from .io.dir import j_mkdir
|
7
|
+
from .io.file import readtxt_list_all_strip, writetxt_w_list, save_to_csv
|
8
|
+
# import numpy as np
|
9
|
+
# import seaborn as sns
|
10
|
+
# import torch
|
11
|
+
# import torch.nn as nn
|
12
|
+
# import xgboost as xgb
|
13
|
+
# from matplotlib import pyplot as plt
|
14
|
+
# from nltk.stem import WordNetLemmatizer
|
15
|
+
# from sklearn import metrics
|
16
|
+
# from transformers import BertTokenizer, BertForMaskedLM
|
17
|
+
from .utils.package import *
|
18
|
+
|
19
|
+
|
20
|
+
def calc_llm_train_activation_memory(
|
21
|
+
model_name, sequence_length, batch_size, hidden_dim, lay_number, attention_heads_num, gpu_num=1
|
22
|
+
):
|
23
|
+
|
24
|
+
"""
|
25
|
+
return bytes
|
26
|
+
|
27
|
+
reference:
|
28
|
+
1. https://zhuanlan.zhihu.com/p/665172400
|
29
|
+
2. https://deepspeed.readthedocs.io/en/latest/memory.html#discussion 里面没有乘以层数就很怪
|
30
|
+
"""
|
31
|
+
# reference1
|
32
|
+
# attention
|
33
|
+
# FFN
|
34
|
+
# Layer Norm
|
35
|
+
r1 = (
|
36
|
+
sequence_length
|
37
|
+
* batch_size
|
38
|
+
* hidden_dim
|
39
|
+
* lay_number
|
40
|
+
* (34 + 5 * attention_heads_num * sequence_length / hidden_dim)
|
41
|
+
)
|
42
|
+
# reference2
|
43
|
+
r2 = (
|
44
|
+
lay_number*(2 * sequence_length * attention_heads_num + 16 * hidden_dim)
|
45
|
+
* sequence_length
|
46
|
+
* batch_size
|
47
|
+
/ gpu_num
|
48
|
+
)
|
49
|
+
print(r1)
|
50
|
+
print(r2)
|
51
|
+
return r1
|
52
|
+
|
53
|
+
|
54
|
+
class DataAnalysis:
|
55
|
+
@staticmethod
|
56
|
+
def draw_pic(df, save_path):
|
57
|
+
"""
|
58
|
+
画直方图,对比两个不同类别差异
|
59
|
+
:param df: pd.DataFrame
|
60
|
+
:param save_path: str
|
61
|
+
:return:
|
62
|
+
"""
|
63
|
+
sns.distplot(df[df["label"] == 1]["feature"], label="label1")
|
64
|
+
sns.distplot(df[df["label"] == 0]["feature"], label="label2")
|
65
|
+
plt.legend()
|
66
|
+
plt.savefig(save_path)
|
67
|
+
|
68
|
+
|
69
|
+
class DataStructure:
|
70
|
+
spo = {
|
71
|
+
"sentence": "内容简介《宜兴紫砂图典》由故宫出版社出版",
|
72
|
+
"triplets": [
|
73
|
+
{
|
74
|
+
"s": {"text": "宜兴紫砂图典", "l": 5, "r": 11},
|
75
|
+
"p": {"text": "出版社", "l": 15, "r": 18},
|
76
|
+
"o": {"text": "故宫出版社", "l": 13, "r": 18},
|
77
|
+
}
|
78
|
+
],
|
79
|
+
"source": "baidu",
|
80
|
+
}
|
81
|
+
ner_input_example = "这句话一共有两个实体分别为大象和老鼠。"
|
82
|
+
ner_label_example = (
|
83
|
+
list("OOOOOOOOOOOOO") + ["B-s", "I-s"] + ["O"] + ["B-o", "I-o"] + ["O"]
|
84
|
+
)
|
85
|
+
|
86
|
+
|
87
|
+
def text_jaccard(ipt1, ipt2, ipt_level="char", sim_level="char"):
|
88
|
+
# 两个句子的jacccard系数
|
89
|
+
# 判断输入来重新定义ipt_level和sim_level
|
90
|
+
|
91
|
+
# a = set(ipt1.split())
|
92
|
+
# b = set(ipt2.split())
|
93
|
+
a = set(ipt1)
|
94
|
+
b = set(ipt2)
|
95
|
+
c = a.intersection(b)
|
96
|
+
# spical situation:
|
97
|
+
if not ipt1 and not ipt2:
|
98
|
+
return 0
|
99
|
+
return int(100 * float(len(c)) / (len(a) + len(b) - len(c)))
|
100
|
+
|
101
|
+
|
102
|
+
class STEM(object):
|
103
|
+
def __init__(self, IPT_MODEL_PATH):
|
104
|
+
self.ltp = LTP(IPT_MODEL_PATH)
|
105
|
+
|
106
|
+
def start_by_dep(self, sentence):
|
107
|
+
seg, hidden = self.ltp.seg([sentence])
|
108
|
+
dep = self.ltp.dep(hidden) # , graph=False)
|
109
|
+
seg, dep = seg[0], dep[0]
|
110
|
+
for i in dep:
|
111
|
+
# 主谓宾
|
112
|
+
if "SBV" == i[2]:
|
113
|
+
subject = seg[i[0]]
|
114
|
+
verb = seg[i[1]]
|
115
|
+
if "VOB" in i[2]:
|
116
|
+
if seg[i[1]] == verb:
|
117
|
+
object = seg[i[0]]
|
118
|
+
|
119
|
+
return subject
|
120
|
+
|
121
|
+
return None
|
122
|
+
|
123
|
+
def start_by_srl(self, sentence):
|
124
|
+
"""
|
125
|
+
用语义角色标注工具
|
126
|
+
:param sentence: "他叫汤姆去拿外衣。"
|
127
|
+
:return: events: [['他', '叫', '汤姆', '去', '拿', '外衣'], ['汤姆', '拿', '外衣']]
|
128
|
+
"""
|
129
|
+
# 语义角色标注方法
|
130
|
+
seg, hidden = self.ltp.seg([sentence])
|
131
|
+
srl = self.ltp.srl(hidden)
|
132
|
+
seg, srl = seg[0], srl[0]
|
133
|
+
events = []
|
134
|
+
for wdx, each_srl in enumerate(srl):
|
135
|
+
if each_srl:
|
136
|
+
args = []
|
137
|
+
for arg in each_srl:
|
138
|
+
args.extend(seg[arg[1] : arg[2] + 1])
|
139
|
+
# 添加上谓词
|
140
|
+
args.insert(each_srl[0][2] - each_srl[0][1] + 1, seg[wdx])
|
141
|
+
events.append(args)
|
142
|
+
# print(events)
|
143
|
+
return events
|
144
|
+
|
145
|
+
|
146
|
+
# 这个是另一种
|
147
|
+
# 数据示例为:{"sentence": "兴族闪蝶,Morpho patroclus,Morpho achilles patroclus,节肢动物门、昆虫纲、鳞翅目、蛱蝶科、闪蝶属的一种蝴蝶", "triplets": [{"s": {"text": "兴族闪蝶", "l": 0, "r": 4}, "p": {"text": "目", "l": 60, "r": 61}, "o": {"text": "鳞翅目", "l": 58, "r": 61}}, {"s": {"text": "蛱蝶科", "l": 62, "r": 65}, "p": {"text": "目", "l": 60, "r": 61}, "o": {"text": "鳞翅目", "l": 58, "r": 61}}, {"s": {"text": "蝴蝶", "l": 72, "r": 74}, "p": {"text": "目", "l": 60, "r": 61}, "o": {"text": "鳞翅目", "l": 58, "r": 61}}, {"s": {"text": "闪蝶属", "l": 66, "r": 69}, "p": {"text": "目", "l": 60, "r": 61}, "o": {"text": "鳞翅目", "l": 58, "r": 61}}], "source": "baidu"}
|
148
|
+
def subject_object_labeling_new(spo_list, text):
|
149
|
+
pass
|
150
|
+
|
151
|
+
|
152
|
+
# 这个是传统格式的
|
153
|
+
# 数据格式示例:{"postag": [{"word": "兴族闪蝶", "pos": "nz"}, {"word": ",", "pos": "w"}, {"word": "Morpho patroclus", "pos": "nz"}, {"word": ",", "pos": "w"}, {"word": "Morpho achilles patroclus", "pos": "nz"}, {"word": ",", "pos": "w"}, {"word": "节肢动物门", "pos": "nz"}, {"word": "、", "pos": "w"}, {"word": "昆虫纲", "pos": "nz"}, {"word": "、", "pos": "w"}, {"word": "鳞翅目", "pos": "n"}, {"word": "、", "pos": "w"}, {"word": "蛱蝶科", "pos": "nz"}, {"word": "、", "pos": "w"}, {"word": "闪蝶属", "pos": "nz"}, {"word": "的", "pos": "u"}, {"word": "一种", "pos": "m"}, {"word": "蝴蝶", "pos": "n"}], "text": "兴族闪蝶,Morpho patroclus,Morpho achilles patroclus,节肢动物门、昆虫纲、鳞翅目、蛱蝶科、闪蝶属的一种蝴蝶", "spo_list": [{"predicate": "目", "object_type": "目", "subject_type": "生物", "object": "鳞翅目", "subject": "兴族闪蝶"}, {"predicate": "目", "object_type": "目", "subject_type": "生物", "object": "鳞翅目", "subject": "蛱蝶科"}, {"predicate": "目", "object_type": "目", "subject_type": "生物", "object": "鳞翅目", "subject": "蝴蝶"}, {"predicate": "目", "object_type": "目", "subject_type": "生物", "object": "鳞翅目", "subject": "闪蝶属"}]}
|
154
|
+
def subject_object_labeling(spo_list, text):
|
155
|
+
# TODO
|
156
|
+
"""
|
157
|
+
百度那种有spo字典的数据,给标成。草,看不懂,得找找哪里用的
|
158
|
+
:param spo_list:
|
159
|
+
:param text:
|
160
|
+
:return: labeling_list
|
161
|
+
"""
|
162
|
+
|
163
|
+
def _spo_list_to_spo_predicate_dict(spo_list):
|
164
|
+
spo_predicate_dict = dict()
|
165
|
+
for spo_item in spo_list:
|
166
|
+
predicate = spo_item["predicate"]
|
167
|
+
subject = spo_item["subject"]
|
168
|
+
object = spo_item["object"]
|
169
|
+
spo_predicate_dict.setdefault(predicate, []).append((subject, object))
|
170
|
+
return spo_predicate_dict
|
171
|
+
|
172
|
+
def _index_q_list_in_k_list(q_list, k_list):
|
173
|
+
"""Known q_list in k_list, find index(first time) of q_list in k_list"""
|
174
|
+
q_list_length = len(q_list)
|
175
|
+
k_list_length = len(k_list)
|
176
|
+
for idx in range(k_list_length - q_list_length + 1):
|
177
|
+
t = [q == k for q, k in zip(q_list, k_list[idx : idx + q_list_length])]
|
178
|
+
# print(idx, t)
|
179
|
+
if all(t):
|
180
|
+
# print(idx)
|
181
|
+
idx_start = idx
|
182
|
+
return idx_start
|
183
|
+
|
184
|
+
def _labeling_type(spo, spo_type):
|
185
|
+
idx_start = _index_q_list_in_k_list(q_list=spo, k_list=text)
|
186
|
+
labeling_list[idx_start] = "B-" + spo_type
|
187
|
+
if len(spo) == 2:
|
188
|
+
labeling_list[idx_start + 1] = "I-" + spo_type
|
189
|
+
elif len(spo) >= 3:
|
190
|
+
labeling_list[idx_start + 1 : idx_start + len(spo)] = ["I-" + spo_type] * (
|
191
|
+
len(spo) - 1
|
192
|
+
)
|
193
|
+
else:
|
194
|
+
pass
|
195
|
+
|
196
|
+
spo_predicate_dict = _spo_list_to_spo_predicate_dict(spo_list)
|
197
|
+
labeling_list = ["O"] * len(text)
|
198
|
+
# count = 0
|
199
|
+
for predicate, spo_list_form in spo_predicate_dict.items():
|
200
|
+
if predicate in text:
|
201
|
+
for (spo_subject, spo_object) in spo_list_form:
|
202
|
+
# if predicate not in spo_subject and predicate not in spo_object:
|
203
|
+
_labeling_type(spo_subject, "SUB")
|
204
|
+
_labeling_type(spo_object, "OBJ")
|
205
|
+
_labeling_type(predicate, "PRE")
|
206
|
+
# count += 1
|
207
|
+
# print(count)
|
208
|
+
# if count == 2:
|
209
|
+
# print()
|
210
|
+
if labeling_list != ["O"] * len(text):
|
211
|
+
return labeling_list
|
212
|
+
return None
|
213
|
+
|
214
|
+
|
215
|
+
def label(text, labels):
|
216
|
+
"""
|
217
|
+
返回两列的标记数据序列
|
218
|
+
:param text:
|
219
|
+
:param labels:
|
220
|
+
:return:
|
221
|
+
"""
|
222
|
+
train_sequence = "\n".join(
|
223
|
+
[
|
224
|
+
"\t".join(i) if i[0] != " " else "[null]\t{}".format(i[1])
|
225
|
+
for i in zip(list(text), labels)
|
226
|
+
]
|
227
|
+
)
|
228
|
+
return train_sequence
|
229
|
+
|
230
|
+
|
231
|
+
def convert_crf_format_10_fold(corpus, objdir_path):
|
232
|
+
"""
|
233
|
+
把已经是crf格式的数据,分成十折。
|
234
|
+
para:
|
235
|
+
|
236
|
+
"""
|
237
|
+
# corpus = list(range(1,22))
|
238
|
+
j_mkdir(objdir_path)
|
239
|
+
split_position = int(len(corpus) / 10)
|
240
|
+
for k in range(0, 10):
|
241
|
+
if k == 9:
|
242
|
+
dev_set = corpus[k * split_position :]
|
243
|
+
train_set = corpus[: k * split_position]
|
244
|
+
else:
|
245
|
+
dev_set = corpus[k * split_position : (k + 1) * split_position]
|
246
|
+
train_set = (
|
247
|
+
corpus[: k * split_position] + corpus[(k + 1) * split_position :]
|
248
|
+
)
|
249
|
+
writetxt_w_list(
|
250
|
+
train_set, os.path.join(objdir_path, "train{}.txt".format(k + 1))
|
251
|
+
)
|
252
|
+
writetxt_w_list(dev_set, os.path.join(objdir_path, "test{}.txt".format(k + 1)))
|
253
|
+
writetxt_w_list(dev_set, os.path.join(objdir_path, "dev{}.txt".format(k + 1)))
|
254
|
+
|
255
|
+
|
256
|
+
def read_seq_res(path, labels):
|
257
|
+
"""
|
258
|
+
读序列标注三列数据的方法
|
259
|
+
:param path:
|
260
|
+
:param labels:
|
261
|
+
:return:
|
262
|
+
"""
|
263
|
+
with codecs.open(path, "r", "utf-8") as rd:
|
264
|
+
seqs_str = rd.read().strip()
|
265
|
+
seqs_list = seqs_str.split("\n\n")
|
266
|
+
text, raw_label, predict_label = [], [], []
|
267
|
+
for seq in seqs_list:
|
268
|
+
seq_split = seq.split("\n")
|
269
|
+
text_tmp = ""
|
270
|
+
raw_index_dict, pre_index_dict = {}, {}
|
271
|
+
for label in labels:
|
272
|
+
raw_index_dict.setdefault(label, [])
|
273
|
+
pre_index_dict.setdefault(label, [])
|
274
|
+
for idx, line in enumerate(seq_split):
|
275
|
+
tmp = line.split("\t")
|
276
|
+
text_tmp += tmp[0]
|
277
|
+
if tmp[1] in labels:
|
278
|
+
raw_index_dict[tmp[1]].append(idx)
|
279
|
+
if tmp[2] in labels:
|
280
|
+
pre_index_dict[tmp[2]].append(idx)
|
281
|
+
text.append(text_tmp)
|
282
|
+
raw_label.append(raw_index_dict)
|
283
|
+
predict_label.append(pre_index_dict)
|
284
|
+
return text, raw_label, predict_label
|
285
|
+
|
286
|
+
|
287
|
+
def kfold_txt(corpus, path, k=9, is_shuffle=True):
|
288
|
+
"""
|
289
|
+
k是10份中训练集占了几份
|
290
|
+
"""
|
291
|
+
j_mkdir(path)
|
292
|
+
if is_shuffle:
|
293
|
+
random.shuffle(corpus)
|
294
|
+
split_position = int(len(corpus) / 10)
|
295
|
+
train_set, dev_set = corpus[: k * split_position], corpus[k * split_position :]
|
296
|
+
writetxt_w_list(train_set, os.path.join(path, "train.tsv"), num_lf=1)
|
297
|
+
writetxt_w_list(dev_set, os.path.join(path, "test.tsv"), num_lf=1)
|
298
|
+
writetxt_w_list(dev_set, os.path.join(path, "dev.tsv"), num_lf=1)
|
299
|
+
|
300
|
+
|
301
|
+
def kfold_df(df, save_dir=None):
|
302
|
+
"""
|
303
|
+
划分train test val集, 写为windows可读的csv。
|
304
|
+
:param df:pd.DataFrame
|
305
|
+
:param save_dir:
|
306
|
+
:return:
|
307
|
+
"""
|
308
|
+
from sklearn.model_selection import KFold
|
309
|
+
import pandas as pd
|
310
|
+
|
311
|
+
train_idx, test_and_val_idx = KFold(n_splits=8, shuffle=True).split(df).__next__()
|
312
|
+
df_test_and_val = df.iloc[test_and_val_idx]
|
313
|
+
test_idx, val_idx = (
|
314
|
+
KFold(n_splits=2, shuffle=True).split(df_test_and_val).__next__()
|
315
|
+
)
|
316
|
+
df_train = df.iloc[train_idx]
|
317
|
+
df_val = df.iloc[val_idx]
|
318
|
+
df_test = df.iloc[test_idx]
|
319
|
+
if save_dir:
|
320
|
+
j_mkdir(save_dir)
|
321
|
+
save_to_csv(df_train, os.path.join(save_dir, "train.csv"))
|
322
|
+
save_to_csv(df_test, os.path.join(save_dir, "test.csv"))
|
323
|
+
save_to_csv(df_val, os.path.join(save_dir, "val.csv"))
|
324
|
+
return df_train, df_val, df_test
|
325
|
+
|
326
|
+
|
327
|
+
# 读取crf序列格式的数据
|
328
|
+
def read_seq_data(path):
|
329
|
+
content = readtxt_list_all_strip(path)
|
330
|
+
lines = [i.split("\t") if i else "" for i in content]
|
331
|
+
print(lines)
|
332
|
+
sequences, labels, sequence, label = [], [], [], []
|
333
|
+
for idx, line in enumerate(lines):
|
334
|
+
if line == "":
|
335
|
+
if sequence:
|
336
|
+
sequences.append(sequence)
|
337
|
+
labels.append(label)
|
338
|
+
sequence, label = [], []
|
339
|
+
else:
|
340
|
+
sequence.append(line[0])
|
341
|
+
label.append(line[1])
|
342
|
+
if idx == len(lines) - 1 and sequence:
|
343
|
+
sequences.append(sequence)
|
344
|
+
labels.append(label)
|
345
|
+
return sequences, labels
|
346
|
+
|
347
|
+
|
348
|
+
def split_5_percent(lines, sample_precent=5):
|
349
|
+
random.seed(8)
|
350
|
+
# lines = list(range(1, 109))
|
351
|
+
idx_lines = [(idx, i) for idx, i in enumerate(lines)]
|
352
|
+
div = int(len(lines) / 100)
|
353
|
+
sample_num = div * sample_precent
|
354
|
+
sample = random.sample(idx_lines, sample_num)
|
355
|
+
sorted_sample = sorted(sample, key=lambda x: x[0])
|
356
|
+
remove_idx = [i[0] for i in sorted_sample]
|
357
|
+
less_has_raw_line_info = [str(i[0] + 1) + "\t" + str(i[1]) for i in sorted_sample]
|
358
|
+
most = [i for idx, i in enumerate(lines) if not idx in remove_idx]
|
359
|
+
print(less_has_raw_line_info)
|
360
|
+
print(most)
|
361
|
+
return most, less_has_raw_line_info
|
362
|
+
|
363
|
+
|
364
|
+
def split_sentence(sentence, language="chinese", cross_line=True):
|
365
|
+
"""
|
366
|
+
分句,英文有nltk,中文怎么能没有好的分句工具呢
|
367
|
+
:param sentence:
|
368
|
+
:param language:
|
369
|
+
:param cross_line:
|
370
|
+
:return:
|
371
|
+
"""
|
372
|
+
# sentences->Str
|
373
|
+
# example '12“345。”“6789”'
|
374
|
+
assert language in ["chinese", "english"], "unsupportable for other language"
|
375
|
+
sentence = sentence.replace("\r", "")
|
376
|
+
if language == "chinese":
|
377
|
+
split_signs = list("。!?…")
|
378
|
+
if cross_line:
|
379
|
+
split_signs.append("\n")
|
380
|
+
other_sign = "”"
|
381
|
+
elif language == "english":
|
382
|
+
split_signs = list(".!?")
|
383
|
+
other_sign = '"'
|
384
|
+
else:
|
385
|
+
split_signs = list(".!?")
|
386
|
+
other_sign = '"'
|
387
|
+
sentences = []
|
388
|
+
start_idx = 0
|
389
|
+
for idx, char in enumerate(sentence):
|
390
|
+
if idx == len(sentence) - 1:
|
391
|
+
if char in split_signs:
|
392
|
+
sentences.append(sentence[start_idx : idx + 1].strip())
|
393
|
+
start_idx = idx + 1
|
394
|
+
else:
|
395
|
+
sentences.append(sentence[start_idx:].strip())
|
396
|
+
else:
|
397
|
+
if char in split_signs:
|
398
|
+
if sentence[idx + 1] == other_sign:
|
399
|
+
if idx < len(sentence) - 2:
|
400
|
+
# 处理。”。
|
401
|
+
if sentence[idx + 2] not in split_signs:
|
402
|
+
sentences.append(sentence[start_idx : idx + 2].strip())
|
403
|
+
start_idx = idx + 2
|
404
|
+
elif sentence[idx + 1] not in split_signs:
|
405
|
+
sentences.append(sentence[start_idx : idx + 1].strip())
|
406
|
+
start_idx = idx + 1
|
407
|
+
return sentences
|
408
|
+
|
409
|
+
|
410
|
+
def pos_reduction():
|
411
|
+
wnl = WordNetLemmatizer()
|
412
|
+
# lemmatize nouns
|
413
|
+
print(wnl.lemmatize("cars", "n"))
|
414
|
+
print(wnl.lemmatize("men", "n"))
|
415
|
+
|
416
|
+
# lemmatize verbs
|
417
|
+
print(wnl.lemmatize("running", "v"))
|
418
|
+
print(wnl.lemmatize("ate", "v"))
|
419
|
+
|
420
|
+
|
421
|
+
class DataVisualization:
|
422
|
+
# 和下面的类冲突了
|
423
|
+
pass
|
424
|
+
|
425
|
+
|
426
|
+
class Evaluate:
|
427
|
+
def __init__(self):
|
428
|
+
pass
|
429
|
+
|
430
|
+
def auc_metric(self, k):
|
431
|
+
pass
|
432
|
+
|
433
|
+
def map_metric(self):
|
434
|
+
pass
|
435
|
+
|
436
|
+
def ndcg(self, n, y_true, y_score):
|
437
|
+
report = metrics.ndcg_score(y_true, y_score)
|
438
|
+
return report
|
439
|
+
|
440
|
+
|
441
|
+
class DecideTreeUtils:
|
442
|
+
@staticmethod
|
443
|
+
def draw(bst):
|
444
|
+
# xgb 画图
|
445
|
+
fig_tree, ax_tree = plt.subplots(figsize=(200, 200))
|
446
|
+
xgb.plot_tree(bst, ax=ax_tree)
|
447
|
+
fig_tree.savefig("tree.png")
|
448
|
+
plt.show()
|
449
|
+
|
450
|
+
|
451
|
+
def seed_everything(seed=7777777) -> None:
|
452
|
+
"""
|
453
|
+
设置整个开发环境的seed
|
454
|
+
:param seed:
|
455
|
+
:param device:
|
456
|
+
:return:
|
457
|
+
"""
|
458
|
+
random.seed(seed)
|
459
|
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
460
|
+
np.random.seed(seed)
|
461
|
+
torch.manual_seed(seed) # CPU随机种子确定
|
462
|
+
torch.cuda.manual_seed(seed)
|
463
|
+
torch.cuda.manual_seed_all(seed)
|
464
|
+
# some cudnn methods can be random even after fixing the seed
|
465
|
+
# unless you tell it to be deterministic
|
466
|
+
torch.backends.cudnn.deterministic = True
|
467
|
+
|
468
|
+
|
469
|
+
if __name__ == "__main__":
|
470
|
+
# stem = STEM(IPT_MODEL_PATH)
|
471
|
+
# test_sentence = "美国袭击伊拉克"
|
472
|
+
# a = stem.start_by_srl(test_sentence)
|
473
|
+
|
474
|
+
res = calc_llm_train_activation_memory(
|
475
|
+
model_name="",
|
476
|
+
sequence_length=2048,
|
477
|
+
batch_size=1,
|
478
|
+
hidden_dim=4096,
|
479
|
+
lay_number=28,
|
480
|
+
attention_heads_num=32,
|
481
|
+
gpu_num=1
|
482
|
+
)
|
483
|
+
print(res, "G")
|