nkululeko 0.93.9__py3-none-any.whl → 0.93.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.9"
1
+ VERSION="0.93.11"
2
2
  SAMPLING_RATE = 16000
@@ -30,7 +30,7 @@ class ImportSet(Featureset):
30
30
  "feature type == import needs import_file = ['file1', 'filex']"
31
31
  )
32
32
  except SyntaxError:
33
- if type(feat_import_files) == str:
33
+ if type(feat_import_files) is str:
34
34
  feat_import_files = [feat_import_files]
35
35
  else:
36
36
  self.util.error(f"import_file is wrong: {feat_import_files}")
@@ -40,6 +40,11 @@ class ImportSet(Featureset):
40
40
  if not os.path.isfile(feat_import_file):
41
41
  self.util.error(f"no import file: {feat_import_file}")
42
42
  df = audformat.utils.read_csv(feat_import_file)
43
+ if df.isnull().values.any():
44
+ self.util.warn(
45
+ f"imported features contain {df.isna().sum()} NAN, filling with zero."
46
+ )
47
+ df = df.fillna(0)
43
48
  df = self.util.make_segmented_index(df)
44
49
  df = df[df.index.isin(self.data_df.index)]
45
50
  if import_files_append:
nkululeko/models/model.py CHANGED
@@ -171,6 +171,7 @@ class Model:
171
171
  f"LOGO: {self.logo} folds: mean {results.mean():.3f}, std:"
172
172
  f" {results.std():.3f}"
173
173
  )
174
+ report.print_logo(results)
174
175
 
175
176
  def train(self):
176
177
  """Train the model."""
nkululeko/plots.py CHANGED
@@ -628,8 +628,7 @@ class Plots:
628
628
  # one up because of the runs
629
629
  fig_dir = self.util.get_path("fig_dir") + "../"
630
630
  exp_name = self.util.get_exp_name(only_data=True)
631
- format = self.util.config_val("PLOT", "format", "png")
632
- filename = f"{fig_dir}{exp_name}EXPL_tree-plot.{format}"
631
+ filename = f"{fig_dir}{exp_name}EXPL_tree-plot.{self.format}"
633
632
  fig = ax.figure
634
633
  fig.savefig(filename)
635
634
  fig.clear()
@@ -380,6 +380,18 @@ class Reporter:
380
380
  def set_filename_add(self, my_string):
381
381
  self.filenameadd = f"_{my_string}"
382
382
 
383
+ def print_logo(self, results):
384
+ res_dir = self.util.get_path("res_dir")
385
+ result_str = f"LOGO results: [{','.join(results.astype(str))}]"
386
+ file_name = f"{res_dir}/logo_results.txt"
387
+ with open(file_name, "w") as text_file:
388
+ text_file.write(
389
+ f"LOGO: mean {results.mean():.3f}, std: " + f"{results.std():.3f}"
390
+ )
391
+ text_file.write("\n")
392
+ text_file.write(result_str)
393
+ self.util.debug(result_str)
394
+
383
395
  def print_results(self, epoch=None):
384
396
  if epoch is None:
385
397
  epoch = self.epoch
nkululeko/segment.py CHANGED
@@ -62,6 +62,11 @@ def main():
62
62
  expr.fill_train_and_tests()
63
63
  util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
64
64
 
65
+ def calc_dur(x):
66
+ starts = x[1]
67
+ ends = x[2]
68
+ return (ends - starts).total_seconds()
69
+
65
70
  # segment
66
71
  segmented_file = util.config_val("SEGMENT", "result", "segmented.csv")
67
72
 
@@ -104,16 +109,11 @@ def main():
104
109
  df_seg = df_seg.drop(columns=[target])
105
110
  df_seg = df_seg.rename(columns={"class_label": target})
106
111
  # save file
112
+ df_seg["duration"] = df_seg.index.to_series().map(lambda x: calc_dur(x))
107
113
  df_seg.to_csv(f"{expr.data_dir}/{segmented_file}")
108
114
 
109
- def calc_dur(x):
110
- starts = x[1]
111
- ends = x[2]
112
- return (ends - starts).total_seconds()
113
-
114
115
  if "duration" not in df.columns:
115
116
  df["duration"] = df.index.to_series().map(lambda x: calc_dur(x))
116
- df_seg["duration"] = df_seg.index.to_series().map(lambda x: calc_dur(x))
117
117
  num_before = df.shape[0]
118
118
  num_after = df_seg.shape[0]
119
119
  util.debug(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.9
3
+ Version: 0.93.11
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -353,6 +353,15 @@ If you use it, please mention the Nkululeko paper:
353
353
  Changelog
354
354
  =========
355
355
 
356
+ Version 0.93.11
357
+ --------------
358
+ * bugfix: silero segmenter assigned file duration values
359
+
360
+ Version 0.93.10
361
+ --------------
362
+ * added nan check for imported features
363
+ * added LOGO result output
364
+
356
365
  Version 0.93.9
357
366
  --------------
358
367
  * added manual seed to torch models
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=You_V04d-IB4p0wmFPKd-3cS-1kXiPfYJ0cAAvw5UCc,39
5
+ nkululeko/constants.py,sha256=RFv_MnQuDew9o2GQ6vQEZEZj1JoIn68nAUZQ1_9S_yw,40
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -20,12 +20,12 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
20
20
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
21
21
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
23
- nkululeko/plots.py,sha256=zHWZ8Ns_0SLOEdbDVulObpRPoXRw_qqPXJv2dM08EeE,26049
23
+ nkululeko/plots.py,sha256=Mm30pDLBb55iE9SYaSg76KFBKnebZTlypFQIBo26wuY,25991
24
24
  nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
25
25
  nkululeko/resample.py,sha256=rn3-M1A-iwVGibfQNGyeYNa7briD24lIN9Szq_1uTJo,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
27
27
  nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
28
- nkululeko/segment.py,sha256=DRjC6b7SeInYgwBcDPXpTXPvXPS-J8kFQO7H095bK80,4945
28
+ nkululeko/segment.py,sha256=7UrJEwdLmh9wDL5iBwpdJyJm9dwSxidHrHt-_D2qtxw,4949
29
29
  nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
30
30
  nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
31
31
  nkululeko/test_predictor.py,sha256=DEHE_D3A6m6KJTrpDKceA1n655t_UZV3WQd57K4a3Ho,2863
@@ -60,7 +60,7 @@ nkululeko/feat_extract/feats_auddim.py,sha256=CGLp_aYhudfwoU5522vjrvjPxfZcyw593A
60
60
  nkululeko/feat_extract/feats_audmodel.py,sha256=OsZyB1rdcG0Fai2gAwBlbuubmWor1_-P4IDkZLqgPKE,3161
61
61
  nkululeko/feat_extract/feats_clap.py,sha256=1tttpfm2SJmQgYm2u8eUVpDiDOpWdKqFChpY3ZZokNs,3395
62
62
  nkululeko/feat_extract/feats_hubert.py,sha256=F3vrPCkx8EimJjFWYCZ7Yg9uo1G3NjYt4UKrGIUev8k,5172
63
- nkululeko/feat_extract/feats_import.py,sha256=u9pTRbxZF2AbQDo4bhyqW6tlH3boS3KHpqW5Gh-Uy1U,2006
63
+ nkululeko/feat_extract/feats_import.py,sha256=cPi4XRuRs71npB8YGXr7rYOvkeTU_oZEl3GrGncdiqY,2222
64
64
  nkululeko/feat_extract/feats_mld.py,sha256=5aRoYiGDm5ApoFntxAMQYPjEelXHHRBHZcAJR9dxaeI,1945
65
65
  nkululeko/feat_extract/feats_mos.py,sha256=3UXCKe86F49yHpZMQnLfDWXx9XdmlXHOy8efoa3WaOk,4138
66
66
  nkululeko/feat_extract/feats_opensmile.py,sha256=BLj5sUaBPz7vLPfNlt9LdQurSypmViqgSpPK-6aXGhQ,4029
@@ -81,7 +81,7 @@ nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
81
81
  nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
82
82
  nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
83
83
  nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
84
- nkululeko/models/model.py,sha256=gfLpPBEuKYbIBayz23-6gNbvzunqBkCDzgZhAB1ypbM,12940
84
+ nkululeko/models/model.py,sha256=2STBD3jtLKeNSk7arCFJdaV6FL-nuLR1qpsjvZ4W-9A,12975
85
85
  nkululeko/models/model_bayes.py,sha256=tQUXEsXoS6WnfapQjP78S_gxNBssTOqE78A2iG8SfLU,407
86
86
  nkululeko/models/model_cnn.py,sha256=lu6ZSGqJBL69PdrgwwgzjGmu_DaBaiATkz6oVqQpKhc,10498
87
87
  nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c,1332
@@ -102,7 +102,7 @@ nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z
102
102
  nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
103
103
  nkululeko/reporting/report.py,sha256=bYN8B66gg3IWHAyfd6uIVjpYKy3rOI6aEwgfXU0LSAY,1006
104
104
  nkululeko/reporting/report_item.py,sha256=AqKD40AlZpRuHLbggn5PkH6ctGJwh9rGNBNgOvgUODg,534
105
- nkululeko/reporting/reporter.py,sha256=nDQsj0xl3_a1Rn3CAAdbWIenodDIT72LsYFNzCaKtmg,20384
105
+ nkululeko/reporting/reporter.py,sha256=CxRXXDfil5C7K0LyaGJZGFDUwfqxdd6Eun8QRTs-Ckk,20875
106
106
  nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
107
107
  nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
108
  nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
115
- nkululeko-0.93.9.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.9.dist-info/METADATA,sha256=hjKd743I_s1am4B8LlrFnLypWNVtlNwzzIMLhOOGYgA,42544
117
- nkululeko-0.93.9.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
118
- nkululeko-0.93.9.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.9.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.9.dist-info/RECORD,,
115
+ nkululeko-0.93.11.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.11.dist-info/METADATA,sha256=pMKMenPiE34afU4cUaCXCsi6wqi8OJH5YsHp9Q2pmos,42733
117
+ nkululeko-0.93.11.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
118
+ nkululeko-0.93.11.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.11.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.11.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.6.0)
2
+ Generator: setuptools (75.7.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5