nkululeko 0.93.8__py3-none-any.whl → 0.93.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.8"
1
+ VERSION="0.93.9"
2
2
  SAMPLING_RATE = 16000
@@ -31,6 +31,10 @@ class MLPModel(Model):
31
31
  super().set_model_type("ann")
32
32
  self.name = "mlp"
33
33
  self.target = glob_conf.config["DATA"]["target"]
34
+ manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
35
+ if manual_seed:
36
+ self.util.debug(f"seeding random to {23}")
37
+ torch.manual_seed(23)
34
38
  labels = glob_conf.labels
35
39
  self.class_num = len(labels)
36
40
  # set up loss criterion
@@ -36,6 +36,10 @@ class MLP_Reg_model(Model):
36
36
  else:
37
37
  self.util.error(f"unknown loss function: {criterion}")
38
38
  self.util.debug(f"training model with {criterion} loss function")
39
+ manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
40
+ if manual_seed:
41
+ self.util.debug(f"seeding random to {23}")
42
+ torch.manual_seed(23)
39
43
  # set up the model
40
44
  cuda = "cuda" if torch.cuda.is_available() else "cpu"
41
45
  self.device = self.util.config_val("MODEL", "device", cuda)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.8
3
+ Version: 0.93.9
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -353,6 +353,10 @@ If you use it, please mention the Nkululeko paper:
353
353
  Changelog
354
354
  =========
355
355
 
356
+ Version 0.93.9
357
+ --------------
358
+ * added manual seed to torch models
359
+
356
360
  Version 0.93.8
357
361
  --------------
358
362
  * fixed bugs in plot
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=CK6zAyfTJ7tNTdh3Js3fEqv5jrLD4c_UfCI4ZOK7bcE,39
5
+ nkululeko/constants.py,sha256=You_V04d-IB4p0wmFPKd-3cS-1kXiPfYJ0cAAvw5UCc,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -88,8 +88,8 @@ nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c
88
88
  nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8,600
89
89
  nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
90
90
  nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
91
- nkululeko/models/model_mlp.py,sha256=lnKd8BP7r3cWbcw48UJhge62_vDb2Gqivi8G33aKscg,10477
92
- nkululeko/models/model_mlp_regression.py,sha256=ErwMWj5PPbLnFS9SzAuub-woy_sLCHuaiam5P9gDDGY,10103
91
+ nkululeko/models/model_mlp.py,sha256=v-ntFqXbyotA8_wGwtDICQy18IAqtGNjwitZeVeKWLU,10671
92
+ nkululeko/models/model_mlp_regression.py,sha256=j8Y1nRHU9YJSQuBKpZb-JL-5seHGr6N5OX1biKj3Xa0,10297
93
93
  nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
94
94
  nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
95
95
  nkululeko/models/model_tree.py,sha256=6L3PD3aIiiQz1RPWS6z3Edx4f0gnR7AOfBKOJzf0BNU,433
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
115
- nkululeko-0.93.8.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.8.dist-info/METADATA,sha256=QbeZSf2hWV3iClfliA5r6us-ZE6tHeluJffh5dqyKXA,42477
117
- nkululeko-0.93.8.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
118
- nkululeko-0.93.8.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.8.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.8.dist-info/RECORD,,
115
+ nkululeko-0.93.9.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.9.dist-info/METADATA,sha256=hjKd743I_s1am4B8LlrFnLypWNVtlNwzzIMLhOOGYgA,42544
117
+ nkululeko-0.93.9.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
118
+ nkululeko-0.93.9.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.9.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.9.dist-info/RECORD,,