nkululeko 0.93.8__py3-none-any.whl → 0.93.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.8"
1
+ VERSION="0.93.10"
2
2
  SAMPLING_RATE = 16000
@@ -30,7 +30,7 @@ class ImportSet(Featureset):
30
30
  "feature type == import needs import_file = ['file1', 'filex']"
31
31
  )
32
32
  except SyntaxError:
33
- if type(feat_import_files) == str:
33
+ if type(feat_import_files) is str:
34
34
  feat_import_files = [feat_import_files]
35
35
  else:
36
36
  self.util.error(f"import_file is wrong: {feat_import_files}")
@@ -40,6 +40,11 @@ class ImportSet(Featureset):
40
40
  if not os.path.isfile(feat_import_file):
41
41
  self.util.error(f"no import file: {feat_import_file}")
42
42
  df = audformat.utils.read_csv(feat_import_file)
43
+ if df.isnull().values.any():
44
+ self.util.warn(
45
+ f"imported features contain {df.isna().sum()} NAN, filling with zero."
46
+ )
47
+ df = df.fillna(0)
43
48
  df = self.util.make_segmented_index(df)
44
49
  df = df[df.index.isin(self.data_df.index)]
45
50
  if import_files_append:
nkululeko/models/model.py CHANGED
@@ -171,6 +171,7 @@ class Model:
171
171
  f"LOGO: {self.logo} folds: mean {results.mean():.3f}, std:"
172
172
  f" {results.std():.3f}"
173
173
  )
174
+ report.print_logo(results)
174
175
 
175
176
  def train(self):
176
177
  """Train the model."""
@@ -31,6 +31,10 @@ class MLPModel(Model):
31
31
  super().set_model_type("ann")
32
32
  self.name = "mlp"
33
33
  self.target = glob_conf.config["DATA"]["target"]
34
+ manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
35
+ if manual_seed:
36
+ self.util.debug(f"seeding random to {23}")
37
+ torch.manual_seed(23)
34
38
  labels = glob_conf.labels
35
39
  self.class_num = len(labels)
36
40
  # set up loss criterion
@@ -36,6 +36,10 @@ class MLP_Reg_model(Model):
36
36
  else:
37
37
  self.util.error(f"unknown loss function: {criterion}")
38
38
  self.util.debug(f"training model with {criterion} loss function")
39
+ manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
40
+ if manual_seed:
41
+ self.util.debug(f"seeding random to {23}")
42
+ torch.manual_seed(23)
39
43
  # set up the model
40
44
  cuda = "cuda" if torch.cuda.is_available() else "cpu"
41
45
  self.device = self.util.config_val("MODEL", "device", cuda)
@@ -380,6 +380,18 @@ class Reporter:
380
380
  def set_filename_add(self, my_string):
381
381
  self.filenameadd = f"_{my_string}"
382
382
 
383
+ def print_logo(self, results):
384
+ res_dir = self.util.get_path("res_dir")
385
+ result_str = f"LOGO results: [{','.join(results.astype(str))}]"
386
+ file_name = f"{res_dir}/logo_results.txt"
387
+ with open(file_name, "w") as text_file:
388
+ text_file.write(
389
+ f"LOGO: mean {results.mean():.3f}, std: " + f"{results.std():.3f}"
390
+ )
391
+ text_file.write("\n")
392
+ text_file.write(result_str)
393
+ self.util.debug(result_str)
394
+
383
395
  def print_results(self, epoch=None):
384
396
  if epoch is None:
385
397
  epoch = self.epoch
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.8
3
+ Version: 0.93.10
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -353,6 +353,15 @@ If you use it, please mention the Nkululeko paper:
353
353
  Changelog
354
354
  =========
355
355
 
356
+ Version 0.93.10
357
+ --------------
358
+ * added nan check for imported features
359
+ * added LOGO result output
360
+
361
+ Version 0.93.9
362
+ --------------
363
+ * added manual seed to torch models
364
+
356
365
  Version 0.93.8
357
366
  --------------
358
367
  * fixed bugs in plot
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=CK6zAyfTJ7tNTdh3Js3fEqv5jrLD4c_UfCI4ZOK7bcE,39
5
+ nkululeko/constants.py,sha256=0grSx0I2K13N--2KpgQU90VQf94GJLPJXHFLbHVPDjI,40
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -60,7 +60,7 @@ nkululeko/feat_extract/feats_auddim.py,sha256=CGLp_aYhudfwoU5522vjrvjPxfZcyw593A
60
60
  nkululeko/feat_extract/feats_audmodel.py,sha256=OsZyB1rdcG0Fai2gAwBlbuubmWor1_-P4IDkZLqgPKE,3161
61
61
  nkululeko/feat_extract/feats_clap.py,sha256=1tttpfm2SJmQgYm2u8eUVpDiDOpWdKqFChpY3ZZokNs,3395
62
62
  nkululeko/feat_extract/feats_hubert.py,sha256=F3vrPCkx8EimJjFWYCZ7Yg9uo1G3NjYt4UKrGIUev8k,5172
63
- nkululeko/feat_extract/feats_import.py,sha256=u9pTRbxZF2AbQDo4bhyqW6tlH3boS3KHpqW5Gh-Uy1U,2006
63
+ nkululeko/feat_extract/feats_import.py,sha256=cPi4XRuRs71npB8YGXr7rYOvkeTU_oZEl3GrGncdiqY,2222
64
64
  nkululeko/feat_extract/feats_mld.py,sha256=5aRoYiGDm5ApoFntxAMQYPjEelXHHRBHZcAJR9dxaeI,1945
65
65
  nkululeko/feat_extract/feats_mos.py,sha256=3UXCKe86F49yHpZMQnLfDWXx9XdmlXHOy8efoa3WaOk,4138
66
66
  nkululeko/feat_extract/feats_opensmile.py,sha256=BLj5sUaBPz7vLPfNlt9LdQurSypmViqgSpPK-6aXGhQ,4029
@@ -81,15 +81,15 @@ nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
81
81
  nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
82
82
  nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
83
83
  nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
84
- nkululeko/models/model.py,sha256=gfLpPBEuKYbIBayz23-6gNbvzunqBkCDzgZhAB1ypbM,12940
84
+ nkululeko/models/model.py,sha256=2STBD3jtLKeNSk7arCFJdaV6FL-nuLR1qpsjvZ4W-9A,12975
85
85
  nkululeko/models/model_bayes.py,sha256=tQUXEsXoS6WnfapQjP78S_gxNBssTOqE78A2iG8SfLU,407
86
86
  nkululeko/models/model_cnn.py,sha256=lu6ZSGqJBL69PdrgwwgzjGmu_DaBaiATkz6oVqQpKhc,10498
87
87
  nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c,1332
88
88
  nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8,600
89
89
  nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
90
90
  nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
91
- nkululeko/models/model_mlp.py,sha256=lnKd8BP7r3cWbcw48UJhge62_vDb2Gqivi8G33aKscg,10477
92
- nkululeko/models/model_mlp_regression.py,sha256=ErwMWj5PPbLnFS9SzAuub-woy_sLCHuaiam5P9gDDGY,10103
91
+ nkululeko/models/model_mlp.py,sha256=v-ntFqXbyotA8_wGwtDICQy18IAqtGNjwitZeVeKWLU,10671
92
+ nkululeko/models/model_mlp_regression.py,sha256=j8Y1nRHU9YJSQuBKpZb-JL-5seHGr6N5OX1biKj3Xa0,10297
93
93
  nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
94
94
  nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
95
95
  nkululeko/models/model_tree.py,sha256=6L3PD3aIiiQz1RPWS6z3Edx4f0gnR7AOfBKOJzf0BNU,433
@@ -102,7 +102,7 @@ nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z
102
102
  nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
103
103
  nkululeko/reporting/report.py,sha256=bYN8B66gg3IWHAyfd6uIVjpYKy3rOI6aEwgfXU0LSAY,1006
104
104
  nkululeko/reporting/report_item.py,sha256=AqKD40AlZpRuHLbggn5PkH6ctGJwh9rGNBNgOvgUODg,534
105
- nkululeko/reporting/reporter.py,sha256=nDQsj0xl3_a1Rn3CAAdbWIenodDIT72LsYFNzCaKtmg,20384
105
+ nkululeko/reporting/reporter.py,sha256=CxRXXDfil5C7K0LyaGJZGFDUwfqxdd6Eun8QRTs-Ckk,20875
106
106
  nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
107
107
  nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
108
  nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
115
- nkululeko-0.93.8.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.8.dist-info/METADATA,sha256=QbeZSf2hWV3iClfliA5r6us-ZE6tHeluJffh5dqyKXA,42477
117
- nkululeko-0.93.8.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
118
- nkululeko-0.93.8.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.8.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.8.dist-info/RECORD,,
115
+ nkululeko-0.93.10.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.10.dist-info/METADATA,sha256=vO975smqhzWtD-pm5SqiEqJV6RBxPy4UTHxGz4d6Ta4,42644
117
+ nkululeko-0.93.10.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
118
+ nkululeko-0.93.10.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.10.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.10.dist-info/RECORD,,