nkululeko 0.93.8__py3-none-any.whl → 0.93.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/feat_extract/feats_import.py +6 -1
- nkululeko/models/model.py +1 -0
- nkululeko/models/model_mlp.py +4 -0
- nkululeko/models/model_mlp_regression.py +4 -0
- nkululeko/reporting/reporter.py +12 -0
- {nkululeko-0.93.8.dist-info → nkululeko-0.93.10.dist-info}/METADATA +10 -1
- {nkululeko-0.93.8.dist-info → nkululeko-0.93.10.dist-info}/RECORD +12 -12
- {nkululeko-0.93.8.dist-info → nkululeko-0.93.10.dist-info}/LICENSE +0 -0
- {nkululeko-0.93.8.dist-info → nkululeko-0.93.10.dist-info}/WHEEL +0 -0
- {nkululeko-0.93.8.dist-info → nkululeko-0.93.10.dist-info}/entry_points.txt +0 -0
- {nkululeko-0.93.8.dist-info → nkululeko-0.93.10.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.93.
|
1
|
+
VERSION="0.93.10"
|
2
2
|
SAMPLING_RATE = 16000
|
@@ -30,7 +30,7 @@ class ImportSet(Featureset):
|
|
30
30
|
"feature type == import needs import_file = ['file1', 'filex']"
|
31
31
|
)
|
32
32
|
except SyntaxError:
|
33
|
-
if type(feat_import_files)
|
33
|
+
if type(feat_import_files) is str:
|
34
34
|
feat_import_files = [feat_import_files]
|
35
35
|
else:
|
36
36
|
self.util.error(f"import_file is wrong: {feat_import_files}")
|
@@ -40,6 +40,11 @@ class ImportSet(Featureset):
|
|
40
40
|
if not os.path.isfile(feat_import_file):
|
41
41
|
self.util.error(f"no import file: {feat_import_file}")
|
42
42
|
df = audformat.utils.read_csv(feat_import_file)
|
43
|
+
if df.isnull().values.any():
|
44
|
+
self.util.warn(
|
45
|
+
f"imported features contain {df.isna().sum()} NAN, filling with zero."
|
46
|
+
)
|
47
|
+
df = df.fillna(0)
|
43
48
|
df = self.util.make_segmented_index(df)
|
44
49
|
df = df[df.index.isin(self.data_df.index)]
|
45
50
|
if import_files_append:
|
nkululeko/models/model.py
CHANGED
nkululeko/models/model_mlp.py
CHANGED
@@ -31,6 +31,10 @@ class MLPModel(Model):
|
|
31
31
|
super().set_model_type("ann")
|
32
32
|
self.name = "mlp"
|
33
33
|
self.target = glob_conf.config["DATA"]["target"]
|
34
|
+
manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
|
35
|
+
if manual_seed:
|
36
|
+
self.util.debug(f"seeding random to {23}")
|
37
|
+
torch.manual_seed(23)
|
34
38
|
labels = glob_conf.labels
|
35
39
|
self.class_num = len(labels)
|
36
40
|
# set up loss criterion
|
@@ -36,6 +36,10 @@ class MLP_Reg_model(Model):
|
|
36
36
|
else:
|
37
37
|
self.util.error(f"unknown loss function: {criterion}")
|
38
38
|
self.util.debug(f"training model with {criterion} loss function")
|
39
|
+
manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
|
40
|
+
if manual_seed:
|
41
|
+
self.util.debug(f"seeding random to {23}")
|
42
|
+
torch.manual_seed(23)
|
39
43
|
# set up the model
|
40
44
|
cuda = "cuda" if torch.cuda.is_available() else "cpu"
|
41
45
|
self.device = self.util.config_val("MODEL", "device", cuda)
|
nkululeko/reporting/reporter.py
CHANGED
@@ -380,6 +380,18 @@ class Reporter:
|
|
380
380
|
def set_filename_add(self, my_string):
|
381
381
|
self.filenameadd = f"_{my_string}"
|
382
382
|
|
383
|
+
def print_logo(self, results):
|
384
|
+
res_dir = self.util.get_path("res_dir")
|
385
|
+
result_str = f"LOGO results: [{','.join(results.astype(str))}]"
|
386
|
+
file_name = f"{res_dir}/logo_results.txt"
|
387
|
+
with open(file_name, "w") as text_file:
|
388
|
+
text_file.write(
|
389
|
+
f"LOGO: mean {results.mean():.3f}, std: " + f"{results.std():.3f}"
|
390
|
+
)
|
391
|
+
text_file.write("\n")
|
392
|
+
text_file.write(result_str)
|
393
|
+
self.util.debug(result_str)
|
394
|
+
|
383
395
|
def print_results(self, epoch=None):
|
384
396
|
if epoch is None:
|
385
397
|
epoch = self.epoch
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.93.
|
3
|
+
Version: 0.93.10
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -353,6 +353,15 @@ If you use it, please mention the Nkululeko paper:
|
|
353
353
|
Changelog
|
354
354
|
=========
|
355
355
|
|
356
|
+
Version 0.93.10
|
357
|
+
--------------
|
358
|
+
* added nan check for imported features
|
359
|
+
* added LOGO result output
|
360
|
+
|
361
|
+
Version 0.93.9
|
362
|
+
--------------
|
363
|
+
* added manual seed to torch models
|
364
|
+
|
356
365
|
Version 0.93.8
|
357
366
|
--------------
|
358
367
|
* fixed bugs in plot
|
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
|
3
3
|
nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
|
4
4
|
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=0grSx0I2K13N--2KpgQU90VQf94GJLPJXHFLbHVPDjI,40
|
6
6
|
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
7
|
nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
|
8
8
|
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
@@ -60,7 +60,7 @@ nkululeko/feat_extract/feats_auddim.py,sha256=CGLp_aYhudfwoU5522vjrvjPxfZcyw593A
|
|
60
60
|
nkululeko/feat_extract/feats_audmodel.py,sha256=OsZyB1rdcG0Fai2gAwBlbuubmWor1_-P4IDkZLqgPKE,3161
|
61
61
|
nkululeko/feat_extract/feats_clap.py,sha256=1tttpfm2SJmQgYm2u8eUVpDiDOpWdKqFChpY3ZZokNs,3395
|
62
62
|
nkululeko/feat_extract/feats_hubert.py,sha256=F3vrPCkx8EimJjFWYCZ7Yg9uo1G3NjYt4UKrGIUev8k,5172
|
63
|
-
nkululeko/feat_extract/feats_import.py,sha256=
|
63
|
+
nkululeko/feat_extract/feats_import.py,sha256=cPi4XRuRs71npB8YGXr7rYOvkeTU_oZEl3GrGncdiqY,2222
|
64
64
|
nkululeko/feat_extract/feats_mld.py,sha256=5aRoYiGDm5ApoFntxAMQYPjEelXHHRBHZcAJR9dxaeI,1945
|
65
65
|
nkululeko/feat_extract/feats_mos.py,sha256=3UXCKe86F49yHpZMQnLfDWXx9XdmlXHOy8efoa3WaOk,4138
|
66
66
|
nkululeko/feat_extract/feats_opensmile.py,sha256=BLj5sUaBPz7vLPfNlt9LdQurSypmViqgSpPK-6aXGhQ,4029
|
@@ -81,15 +81,15 @@ nkululeko/losses/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
81
81
|
nkululeko/losses/loss_ccc.py,sha256=NOK0y0fxKUnU161B5geap6Fmn8QzoPl2MqtPiV8IuJE,976
|
82
82
|
nkululeko/losses/loss_softf1loss.py,sha256=5gW-PuiqeAZcRgfwjueIOQtMokOjZWgQnVIv59HKTCo,1309
|
83
83
|
nkululeko/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
84
|
-
nkululeko/models/model.py,sha256=
|
84
|
+
nkululeko/models/model.py,sha256=2STBD3jtLKeNSk7arCFJdaV6FL-nuLR1qpsjvZ4W-9A,12975
|
85
85
|
nkululeko/models/model_bayes.py,sha256=tQUXEsXoS6WnfapQjP78S_gxNBssTOqE78A2iG8SfLU,407
|
86
86
|
nkululeko/models/model_cnn.py,sha256=lu6ZSGqJBL69PdrgwwgzjGmu_DaBaiATkz6oVqQpKhc,10498
|
87
87
|
nkululeko/models/model_gmm.py,sha256=mhHFNtTzHuJvqYSA0h5YhvjA--KhnN6MTU_S0G3-d1c,1332
|
88
88
|
nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8,600
|
89
89
|
nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
|
90
90
|
nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
|
91
|
-
nkululeko/models/model_mlp.py,sha256=
|
92
|
-
nkululeko/models/model_mlp_regression.py,sha256=
|
91
|
+
nkululeko/models/model_mlp.py,sha256=v-ntFqXbyotA8_wGwtDICQy18IAqtGNjwitZeVeKWLU,10671
|
92
|
+
nkululeko/models/model_mlp_regression.py,sha256=j8Y1nRHU9YJSQuBKpZb-JL-5seHGr6N5OX1biKj3Xa0,10297
|
93
93
|
nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
|
94
94
|
nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
|
95
95
|
nkululeko/models/model_tree.py,sha256=6L3PD3aIiiQz1RPWS6z3Edx4f0gnR7AOfBKOJzf0BNU,433
|
@@ -102,7 +102,7 @@ nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z
|
|
102
102
|
nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
|
103
103
|
nkululeko/reporting/report.py,sha256=bYN8B66gg3IWHAyfd6uIVjpYKy3rOI6aEwgfXU0LSAY,1006
|
104
104
|
nkululeko/reporting/report_item.py,sha256=AqKD40AlZpRuHLbggn5PkH6ctGJwh9rGNBNgOvgUODg,534
|
105
|
-
nkululeko/reporting/reporter.py,sha256=
|
105
|
+
nkululeko/reporting/reporter.py,sha256=CxRXXDfil5C7K0LyaGJZGFDUwfqxdd6Eun8QRTs-Ckk,20875
|
106
106
|
nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
|
107
107
|
nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
108
108
|
nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
|
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
112
112
|
nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
|
113
113
|
nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
|
114
114
|
nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
|
115
|
-
nkululeko-0.93.
|
116
|
-
nkululeko-0.93.
|
117
|
-
nkululeko-0.93.
|
118
|
-
nkululeko-0.93.
|
119
|
-
nkululeko-0.93.
|
120
|
-
nkululeko-0.93.
|
115
|
+
nkululeko-0.93.10.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
116
|
+
nkululeko-0.93.10.dist-info/METADATA,sha256=vO975smqhzWtD-pm5SqiEqJV6RBxPy4UTHxGz4d6Ta4,42644
|
117
|
+
nkululeko-0.93.10.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
118
|
+
nkululeko-0.93.10.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
|
119
|
+
nkululeko-0.93.10.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
120
|
+
nkululeko-0.93.10.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|