nkululeko 0.93.5__py3-none-any.whl → 0.93.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +16 -8
- nkululeko/resample.py +3 -3
- {nkululeko-0.93.5.dist-info → nkululeko-0.93.7.dist-info}/METADATA +13 -5
- {nkululeko-0.93.5.dist-info → nkululeko-0.93.7.dist-info}/RECORD +9 -9
- {nkululeko-0.93.5.dist-info → nkululeko-0.93.7.dist-info}/WHEEL +1 -1
- {nkululeko-0.93.5.dist-info → nkululeko-0.93.7.dist-info}/LICENSE +0 -0
- {nkululeko-0.93.5.dist-info → nkululeko-0.93.7.dist-info}/entry_points.txt +0 -0
- {nkululeko-0.93.5.dist-info → nkululeko-0.93.7.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.93.
|
1
|
+
VERSION="0.93.7"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -162,14 +162,20 @@ class Dataset:
|
|
162
162
|
except KeyError:
|
163
163
|
# just a try...
|
164
164
|
pass
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
165
|
+
try:
|
166
|
+
if got_target2:
|
167
|
+
df[self.target] = df_target[self.target]
|
168
|
+
if got_speaker2:
|
169
|
+
df["speaker"] = df_target["speaker"]
|
170
|
+
if got_gender2:
|
171
|
+
df["gender"] = df_target["gender"]
|
172
|
+
if got_age2:
|
173
|
+
df["age"] = df_target["age"].astype(int)
|
174
|
+
except ValueError as ve:
|
175
|
+
self.util.error(
|
176
|
+
f"{ve}\nYou might need to set "
|
177
|
+
+ "data.target_tables_append = True"
|
178
|
+
)
|
173
179
|
# copy other column
|
174
180
|
for column in df_target.columns:
|
175
181
|
if column not in [self.target, "age", "speaker", "gender"]:
|
@@ -649,6 +655,8 @@ class Dataset:
|
|
649
655
|
if mappings:
|
650
656
|
mapping = ast.literal_eval(mappings)
|
651
657
|
df[target] = df[target].map(mapping)
|
658
|
+
# remove any exiting nan values after mapping
|
659
|
+
df = df.dropna()
|
652
660
|
self.util.debug(f"{self.name}: mapped {mapping}")
|
653
661
|
# remove labels that are not in the labels list
|
654
662
|
labels = self.util.config_val("DATA", "labels", False)
|
nkululeko/resample.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1
|
-
"""
|
2
|
-
Resample audio files or INI files (train, test, all) to change the sampling rate.
|
1
|
+
"""Resample audio files or INI files (train, test, all) to change the sampling rate.
|
3
2
|
|
4
3
|
This script provides a command-line interface to resample audio files or INI files
|
5
4
|
containing train, test, and all data. It supports resampling a single file, a
|
@@ -27,9 +26,10 @@ import argparse
|
|
27
26
|
import configparser
|
28
27
|
import os
|
29
28
|
|
30
|
-
import audformat
|
31
29
|
import pandas as pd
|
32
30
|
|
31
|
+
import audformat
|
32
|
+
|
33
33
|
from nkululeko.augmenting.resampler import Resampler
|
34
34
|
from nkululeko.constants import VERSION
|
35
35
|
from nkululeko.experiment import Experiment
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.93.
|
3
|
+
Version: 0.93.7
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -20,7 +20,7 @@ Requires-Dist: audiofile
|
|
20
20
|
Requires-Dist: audiomentations
|
21
21
|
Requires-Dist: audmetric
|
22
22
|
Requires-Dist: audonnx
|
23
|
-
Requires-Dist:
|
23
|
+
Requires-Dist: confidence_intervals
|
24
24
|
Requires-Dist: datasets
|
25
25
|
Requires-Dist: imageio
|
26
26
|
Requires-Dist: matplotlib
|
@@ -28,12 +28,12 @@ Requires-Dist: numpy
|
|
28
28
|
Requires-Dist: opensmile
|
29
29
|
Requires-Dist: pandas
|
30
30
|
Requires-Dist: praat-parselmouth
|
31
|
-
Requires-Dist:
|
31
|
+
Requires-Dist: scikit_learn
|
32
32
|
Requires-Dist: scipy
|
33
33
|
Requires-Dist: seaborn
|
34
34
|
Requires-Dist: sounddevice
|
35
35
|
Requires-Dist: tensorflow
|
36
|
-
Requires-Dist:
|
36
|
+
Requires-Dist: tensorflow_hub
|
37
37
|
Requires-Dist: torch
|
38
38
|
Requires-Dist: torchvision
|
39
39
|
Requires-Dist: transformers
|
@@ -72,7 +72,7 @@ The idea is to have a framework (based on e.g. sklearn and torch) that can be us
|
|
72
72
|
* The latest features can be seen in [the ini-file](./ini_file.md) options that are used to control Nkululeko
|
73
73
|
* Below is a [Hello World example](#helloworld) that should set you up fastly, also on [Google Colab](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
|
74
74
|
* [Here's a blog post on how to set up nkululeko on your computer.](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
|
75
|
-
* [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-
|
75
|
+
* [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-2v3q3yfzk-XfNGoqLfp3ts9KfCZpfTyg). Please click the link if interested in contributing.
|
76
76
|
* [Here's a slide presentation about nkululeko](docs/nkululeko.pdf)
|
77
77
|
* [Here's a video presentation about nkululeko](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
|
78
78
|
* [Here's the 2022 LREC article on nkululeko](http://felix.syntheticspeech.de/publications/Nkululeko_LREC.pdf)
|
@@ -355,6 +355,14 @@ If you use it, please mention the Nkululeko paper:
|
|
355
355
|
Changelog
|
356
356
|
=========
|
357
357
|
|
358
|
+
Version 0.93.7
|
359
|
+
--------------
|
360
|
+
* added a safety to remove nan values after mapping
|
361
|
+
|
362
|
+
Version 0.93.6
|
363
|
+
--------------
|
364
|
+
* added error message and hint for data.target_tables_append
|
365
|
+
|
358
366
|
Version 0.93.5
|
359
367
|
--------------
|
360
368
|
* fixed bug in dataset loading
|
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
|
3
3
|
nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
|
4
4
|
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=YYzv168mmioG2Q0PtPCW_hXkhHgUwKjFGEItE1RU22g,39
|
6
6
|
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
7
|
nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
|
8
8
|
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
@@ -22,7 +22,7 @@ nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
|
22
22
|
nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
|
23
23
|
nkululeko/plots.py,sha256=emn2NpZyOGlC8pw0NdAGRbUkPzZzbOKFO50HZ7vJG40,25275
|
24
24
|
nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
|
25
|
-
nkululeko/resample.py,sha256=
|
25
|
+
nkululeko/resample.py,sha256=rn3-M1A-iwVGibfQNGyeYNa7briD24lIN9Szq_1uTJo,5194
|
26
26
|
nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
|
27
27
|
nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
|
28
28
|
nkululeko/segment.py,sha256=DRjC6b7SeInYgwBcDPXpTXPvXPS-J8kFQO7H095bK80,4945
|
@@ -49,7 +49,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwp
|
|
49
49
|
nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
|
50
50
|
nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
|
51
51
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
|
-
nkululeko/data/dataset.py,sha256=
|
52
|
+
nkululeko/data/dataset.py,sha256=G4jzD2MvzB7d6Oja_pUIdShFr7Qsbs0ogGzuTcyQfLo,30041
|
53
53
|
nkululeko/data/dataset_csv.py,sha256=p2b4eS5R2Q5zdOIc56NRRU2PTFXSRt0qrdHGafHkWKo,4830
|
54
54
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
55
55
|
nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
|
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
112
112
|
nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
|
113
113
|
nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
|
114
114
|
nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
|
115
|
-
nkululeko-0.93.
|
116
|
-
nkululeko-0.93.
|
117
|
-
nkululeko-0.93.
|
118
|
-
nkululeko-0.93.
|
119
|
-
nkululeko-0.93.
|
120
|
-
nkululeko-0.93.
|
115
|
+
nkululeko-0.93.7.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
116
|
+
nkululeko-0.93.7.dist-info/METADATA,sha256=tUTllLqcYKVJXgGOkPb2vcXBUcBKqjl03rKExtV4zeE,42447
|
117
|
+
nkululeko-0.93.7.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
118
|
+
nkululeko-0.93.7.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
|
119
|
+
nkululeko-0.93.7.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
120
|
+
nkululeko-0.93.7.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|