nkululeko 0.93.4__py3-none-any.whl → 0.93.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.4"
1
+ VERSION="0.93.6"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -4,12 +4,13 @@ import os
4
4
  import os.path
5
5
  from random import sample
6
6
 
7
- import audformat
8
7
  import numpy as np
9
8
  import pandas as pd
10
9
 
11
- import nkululeko.glob_conf as glob_conf
10
+ import audformat
11
+
12
12
  from nkululeko.filter_data import DataFilter
13
+ import nkululeko.glob_conf as glob_conf
13
14
  from nkululeko.plots import Plots
14
15
  from nkululeko.reporting.report_item import ReportItem
15
16
  from nkululeko.utils.util import Util
@@ -32,6 +33,9 @@ class Dataset:
32
33
  self.target = self.util.config_val("DATA", "target", "none")
33
34
  self.plot = Plots()
34
35
  self.limit = int(self.util.config_val_data(self.name, "limit", 0))
36
+ self.target_tables_append = eval(
37
+ self.util.config_val_data(self.name, "target_tables_append", "False")
38
+ )
35
39
  self.start_fresh = eval(self.util.config_val("DATA", "no_reuse", "False"))
36
40
  self.is_labeled, self.got_speaker, self.got_gender, self.got_age = (
37
41
  False,
@@ -158,14 +162,20 @@ class Dataset:
158
162
  except KeyError:
159
163
  # just a try...
160
164
  pass
161
- if got_target2:
162
- df[self.target] = df_target[self.target]
163
- if got_speaker2:
164
- df["speaker"] = df_target["speaker"]
165
- if got_gender2:
166
- df["gender"] = df_target["gender"]
167
- if got_age2:
168
- df["age"] = df_target["age"].astype(int)
165
+ try:
166
+ if got_target2:
167
+ df[self.target] = df_target[self.target]
168
+ if got_speaker2:
169
+ df["speaker"] = df_target["speaker"]
170
+ if got_gender2:
171
+ df["gender"] = df_target["gender"]
172
+ if got_age2:
173
+ df["age"] = df_target["age"].astype(int)
174
+ except ValueError as ve:
175
+ self.util.error(
176
+ f"{ve}\nYou might need to set "
177
+ + "data.target_tables_append = True"
178
+ )
169
179
  # copy other column
170
180
  for column in df_target.columns:
171
181
  if column not in [self.target, "age", "speaker", "gender"]:
@@ -321,7 +331,12 @@ class Dataset:
321
331
  for column in source_df.columns:
322
332
  if column not in [self.target, "age", "speaker", "gender"]:
323
333
  df_local[column] = source_df[column]
324
- df = pd.concat([df, df_local])
334
+ # ensure segmented index
335
+ df_local = self.util.make_segmented_index(df_local)
336
+ if self.target_tables_append:
337
+ df = pd.concat([df, df_local], axis=0)
338
+ else:
339
+ df = pd.concat([df, df_local], axis=1)
325
340
  return df, is_labeled, got_speaker, got_gender, got_age
326
341
 
327
342
  def split(self):
nkululeko/resample.py CHANGED
@@ -1,5 +1,4 @@
1
- """
2
- Resample audio files or INI files (train, test, all) to change the sampling rate.
1
+ """Resample audio files or INI files (train, test, all) to change the sampling rate.
3
2
 
4
3
  This script provides a command-line interface to resample audio files or INI files
5
4
  containing train, test, and all data. It supports resampling a single file, a
@@ -27,9 +26,10 @@ import argparse
27
26
  import configparser
28
27
  import os
29
28
 
30
- import audformat
31
29
  import pandas as pd
32
30
 
31
+ import audformat
32
+
33
33
  from nkululeko.augmenting.resampler import Resampler
34
34
  from nkululeko.constants import VERSION
35
35
  from nkululeko.experiment import Experiment
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.4
3
+ Version: 0.93.6
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -20,7 +20,7 @@ Requires-Dist: audiofile
20
20
  Requires-Dist: audiomentations
21
21
  Requires-Dist: audmetric
22
22
  Requires-Dist: audonnx
23
- Requires-Dist: confidence-intervals
23
+ Requires-Dist: confidence_intervals
24
24
  Requires-Dist: datasets
25
25
  Requires-Dist: imageio
26
26
  Requires-Dist: matplotlib
@@ -28,12 +28,12 @@ Requires-Dist: numpy
28
28
  Requires-Dist: opensmile
29
29
  Requires-Dist: pandas
30
30
  Requires-Dist: praat-parselmouth
31
- Requires-Dist: scikit-learn
31
+ Requires-Dist: scikit_learn
32
32
  Requires-Dist: scipy
33
33
  Requires-Dist: seaborn
34
34
  Requires-Dist: sounddevice
35
35
  Requires-Dist: tensorflow
36
- Requires-Dist: tensorflow-hub
36
+ Requires-Dist: tensorflow_hub
37
37
  Requires-Dist: torch
38
38
  Requires-Dist: torchvision
39
39
  Requires-Dist: transformers
@@ -72,7 +72,7 @@ The idea is to have a framework (based on e.g. sklearn and torch) that can be us
72
72
  * The latest features can be seen in [the ini-file](./ini_file.md) options that are used to control Nkululeko
73
73
  * Below is a [Hello World example](#helloworld) that should set you up fastly, also on [Google Colab](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
74
74
  * [Here's a blog post on how to set up nkululeko on your computer.](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
75
- * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-1wtvbxtwz-P5YoRJq8whxKSee86ebhJg). Please click the link if interested in contributing.
75
+ * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-2v3q3yfzk-XfNGoqLfp3ts9KfCZpfTyg). Please click the link if interested in contributing.
76
76
  * [Here's a slide presentation about nkululeko](docs/nkululeko.pdf)
77
77
  * [Here's a video presentation about nkululeko](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
78
78
  * [Here's the 2022 LREC article on nkululeko](http://felix.syntheticspeech.de/publications/Nkululeko_LREC.pdf)
@@ -355,6 +355,14 @@ If you use it, please mention the Nkululeko paper:
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.93.6
359
+ --------------
360
+ * added error message and hint for data.target_tables_append
361
+
362
+ Version 0.93.5
363
+ --------------
364
+ * fixed bug in dataset loading
365
+
358
366
  Version 0.93.4
359
367
  --------------
360
368
  * ccc in plots now configurable
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=IgnX0Wy81d5r7fZn_FKbdv78UmFITOMd-J_szX4AMKc,39
5
+ nkululeko/constants.py,sha256=CBvqIM1vafeKeZJAFI4K96rOgsKVLyvRhUJoNEsmOIo,39
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -22,7 +22,7 @@ nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
23
23
  nkululeko/plots.py,sha256=emn2NpZyOGlC8pw0NdAGRbUkPzZzbOKFO50HZ7vJG40,25275
24
24
  nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
25
- nkululeko/resample.py,sha256=akSAjJ3qn-O5NAyLJHVHdsK7MUZPGaZUvM2TwMSmj2M,5194
25
+ nkululeko/resample.py,sha256=rn3-M1A-iwVGibfQNGyeYNa7briD24lIN9Szq_1uTJo,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
27
27
  nkululeko/scaler.py,sha256=7VOZ4sREMoQtahfETt9RyuR29Fb7PCwxlYVjBbdCVFc,4101
28
28
  nkululeko/segment.py,sha256=DRjC6b7SeInYgwBcDPXpTXPvXPS-J8kFQO7H095bK80,4945
@@ -49,7 +49,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwp
49
49
  nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
50
50
  nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
51
51
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
- nkululeko/data/dataset.py,sha256=Hz2IOsdcESG-P3aP7r4d1xj_gIP6fyGCYOwukoQ7SM8,29321
52
+ nkululeko/data/dataset.py,sha256=Sqk5XVArXVjwN-6B9uT0T9OkUPyoQwklJPqgDPPQgNE,29954
53
53
  nkululeko/data/dataset_csv.py,sha256=p2b4eS5R2Q5zdOIc56NRRU2PTFXSRt0qrdHGafHkWKo,4830
54
54
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
55
  nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
115
- nkululeko-0.93.4.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.4.dist-info/METADATA,sha256=0xLv3PmFcHyVfO0DqDtELse_fMHnx1vZUqrR1lWVZgM,42210
117
- nkululeko-0.93.4.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
118
- nkululeko-0.93.4.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.4.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.4.dist-info/RECORD,,
115
+ nkululeko-0.93.6.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.6.dist-info/METADATA,sha256=Dx6ZisILoZzC7-BXKBskHm-mBPzjY8CEaiRVOo2vlc0,42364
117
+ nkululeko-0.93.6.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
118
+ nkululeko-0.93.6.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.6.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.5.0)
2
+ Generator: setuptools (75.6.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5